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Abstract  127 

Short stature may be caused by a multitude of conditions including genetic and non-genetic causes. 128 

Over the last decade, advances in genetic sequencing technologies have revolutionized our 129 

understanding of the underlying physiology of growth and greatly increased our ability to identify 130 

genetic etiologies of short stature. The current guideline provides a general overview of the approach 131 

to the evaluation of a child with short stature followed by recommendations identifying factors in the 132 

medical and family history, physical examination, radiographic, and laboratory work up which 133 

increase the likelihood of identifying a genetic etiology. An algorithm is proposed for the genetic 134 

work up of individuals with short stature based on their clinical presentation. The risks and benefits 135 

of genetic testing are discussed as well.   136 
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Introduction 137 

Over the past two decades, the advancement and increased availability of genomic 138 

sequencing tools have provided numerous clinically significant insights into the etiology of short 139 

stature (SS), transforming the diagnostic approach to growth disorders and a wide range of 140 

congenital conditions. This guideline offers recommendations on the diagnostic approach to children 141 

with SS, focusing on indications for using currently available genetic tools. Recommendations are 142 

partly based on a systematic review and meta-analysis of the literature [Scalco_SystRev_pending]. 143 

Definitions and abbreviations used in this paper are shown in Boxes 1 and 2.  144 

The traditional definition of SS is based on a statistical cut-off, i.e., a height of more than 2 145 

standard deviations below the mean for sex and age based on appropriate population reference 146 

data, commonly expressed as a height standard deviation score (HSDS) of <-2.0 (2.3rd percentile). In 147 

this guideline, the term SS also includes two other manifestations of growth failure, i.e., a decreasing 148 

height SDS over time (growth faltering) and a height SDS below the expected range based on the sex-149 

adjusted mid-parental height SDS (target height, TH1 or conditional TH (cTH)2,3).  150 

Human height is a polygenic and heterogeneous trait, with its heritability reported to be 151 

approximately 80% based on estimates from twin studies4. Both rare and common genetic variants 152 

concurrently affect human height. According to genome-wide association studies (GWAS), a 153 

combination of >12,000 independent single nucleotide variants (SNVs) (generally with a population 154 

allele frequency >1%), clustered within >7,000 non-overlapping genomic segments, covering about 155 

21% of the genome, determine an individual's height potential5. While each of these common 156 

genomic variants has a very small effect on one’s height (each contributing less than 2 mm), in 157 

aggregate, they can explain about half of the heritability and nearly half of overall phenotypic 158 

variation in height (reviewed in6). Additionally, rare variants with a larger impact on height variability 159 

(ranging from approximately 1-4 cm) also contribute to height determination in the general 160 

population6,7. 161 
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In individuals with SS, the condition may result from a single pathogenic variant following a 162 

clear monogenic inheritance pattern, which is both necessary and sufficient to explain the observed 163 

phenotype. In other cases, it may be attributed to a combination of two or more rare variants 164 

(digenic or oligogenic inheritance) or the interaction of common variants in a classical polygenic 165 

manner8,9,10.  166 

It is commonly assumed that if a child’s HSDS is close to (c)TH SDS, a polygenic etiology may 167 

be most likely, and this is considered a benign condition leading to an adult height that is close to 168 

target height11. However, monogenic causes can also be found in such patients, especially autosomal 169 

dominant gene variants if one parent is short12. Another benign condition associated with SS in 170 

childhood and early adolescence is slow maturation of the epiphyseal growth plates, which, if 171 

combined with late onset of puberty, is termed ‘constitutional delay of growth and puberty (CDGP). 172 

This condition typically results in a normal adult height, but on average 1 SD below TH13. 173 

 174 

Methods 175 

International Growth Genetics Guideline Consortium  176 

The work on this guideline was initiated by the Clinical Practice Committee of the European 177 

Society of Paediatric Endocrinology (ESPE). First, a small steering committee (A.D., A.A.L.J., M.D., 178 

J.M.W. and S.C.) was set up to design the format of the guideline and invite the methodologist 179 

(O.M.D.) and pediatric endocrinologists and medical geneticists with special expertise in genetic 180 

testing of short children to participate in the International Growth Genetics Guideline Consortium 181 

(IGGGC) (Mid 2024). The Presidents of the European Society of Human Genetics and American 182 

College of Medical Genetics were informed. The consortium (n=34) consisted of 21 pediatric 183 

endocrinologists, 11 clinical geneticists, 1 clinical laboratory geneticist, and 1 clinical 184 
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epidemiologist/endocrinologist. ESPE was the only sponsor and funded all costs related to the 185 

initiative. 186 

A subcommittee of IGGGC (O.M.D., A.D., J.M.W, O.N. and J.H.D., chaired by A.A.L.J.), in 187 

collaboration with staff members of A.A.L.J. and A.D. performed a systematic review on the clinical 188 

question: “What is the diagnostic yield of genetic testing in children with short stature, and how do 189 

various clinical features influence this yield?” The full results are reported in a separate publication 190 

[Scalco_SystRev_pending] and the main findings are discussed in this guideline.  191 

Another subcommittee of IGGGC (J.A., J.B., P.C., Y.H.J, O.N., chaired by J.H.D.) performed a 192 

literature search on the question “What are the clinical consequences of genetic findings in children 193 

with isolated short stature?”, using ten prevalent genetic causes of children presenting with isolated 194 

SS. The results are included in the Supplementary Information for this guideline.  195 

Based on the planned format of the guideline, nine working groups were formed, chaired by 196 

O.M.D., O.N., J.A., A.A.L.J., J.M.W., I.N., M.D., A.D. and A.L., to formulate draft recommendations and 197 

rationales. The reports of the working groups were combined into several consecutive versions of the 198 

guideline, which were discussed and revised electronically. During the process, all participants 199 

completed conflict of interest forms, summarized in Competing Interests. A semi-final version served 200 

as a discussion document for an 8-hour hybrid meeting in May 2025 with all available members of 201 

the consortium, where all recommendations and rationales were discussed and revised. Consensus 202 

was reached upon discussion and in some cases by voting. Minority positions were considered in the 203 

rationale behind recommendations.  204 

 205 

Target Groups and Aims 206 

The guideline has been developed for pediatric endocrinologists, adult endocrinologists, 207 

medical geneticists and general pediatricians who care for children with growth disorders. The 208 
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overall purpose of this guideline is to provide clinicians with practical guidance on the diagnostic 209 

approach to children with SS. In clinical practice, both the recommendations and the clinical 210 

judgement of treating physicians should be considered. Recommendations are not meant to replace 211 

clinical acumen and may need adaptation to local circumstances. We acknowledge that in low-212 

resource settings, financial and other restrictions may prevent clinicians from adhering to the 213 

recommendations.   214 

 215 

Summary of methods used for guideline development 216 

For this guideline we used ‘Recommendations, Assessment, Development, and Evaluation’ 217 

(GRADE) as a methodological basis to inform the recommendations14. Recommendations were not 218 

only informed by the quality of the evidence, but also by potential desirable and undesirable effects, 219 

values and preferences14,15. National contexts were also considered. 220 

The recommendations are worded as ‘recommend’ (strong recommendation) and ‘suggest’ 221 

(weak recommendation). The quality of evidence behind the recommendations is classified as very 222 

low (⊕◯◯◯), low (⊕⊕◯◯), moderate (⊕⊕⊕◯), and strong (⊕⊕⊕⊕). A strong 223 

recommendation implies that virtually all well-informed stakeholders—including clinicians, patients, 224 

and policymakers—are expected to favor the proposed course of action. In contrast, a weak 225 

recommendation indicates that although the majority may follow the suggested management, a 226 

notable proportion may reasonably opt for an alternative approach16. Statements derived primarily 227 

from clinical expertise and consensus within the working group, rather than from systematic 228 

evidence appraisal, are categorized as ‘good clinical practice’ and are not assigned a formal grade. 229 

Recommendations that lack both a clear evidence base and consensus-derived clinical rationale are 230 

not graded. Formal evidence assessment and grading were applied only to recommendations directly 231 

addressing the predefined clinical questions. The recommendations are divided into seven sections, 232 

as summarized in Figure 1.    233 
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 234 

Review process 235 

In October 2025, a draft of the guideline was reviewed by four experts in the field (see 236 

‘Acknowledgments’ section), the Clinical Practice Committee of ESPE, various other regional societies 237 

of pediatric endocrinology and various regional societies of human/medical genetics [including the 238 

European Society of Human Genetics (ESHG) and American College of Medical Genetics (ACMG)] for 239 

final approval and endorsement. All comments and suggestions were then discussed and 240 

implemented as thought appropriate by the guideline working group (see Supplementary Table 6). 241 

After incorporation of comments from the reviewers and various societies, all authors approved the 242 

submitted version of the manuscript.  243 
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Recommendations  244 

A. Recommendation regarding the use of a diagnostic classification of SS (R1) 245 

R1. We suggest using a descriptive classification after the initial assessment of the child with SS, 246 

followed by an etiological classification after complete evaluation. 247 

Rationale 248 

The clinician is expected to have a basic knowledge of the most prevalent and clinically 249 

relevant causes of SS and the diagnostic work-up. At the initial assessment, SS can be stratified by 250 

subtype based on clinical evaluation. Categorization is important for the diagnostic process and often 251 

points towards a likely set of diagnoses. We suggest that children with SS are first classified according 252 

to the following clinical parameters: 1) Prenatal vs postnatal onset; 2) Skeletal 253 

malformation/disproportion vs no skeletal malformation/disproportion; 3) Presence or absence of 254 

syndromic characteristics (non-skeletal abnormalities); 4) Isolated SS vs non-isolated SS; and 5)  255 

Familial vs non-familial SS (Supplementary Information 1, part 1). Criteria for syndromic SS include 256 

clinical features such as microcephaly, congenital anomalies, facial dysmorphism, and developmental 257 

disorders (developmental delay, intellectual disability, autism spectrum disorder). When the 258 

diagnostic work-up is completed, the patient can be classified according to an etiological 259 

classification (Supplementary Information 1, part 2). 260 

 261 

B. Recommendations on genetic investigation in clinical practice (R2-R7) 262 

In recent decades, numerous molecular techniques have been developed to analyze genetic 263 

and epigenetic variants. Many of these have been incorporated into the clinical evaluation of 264 

patients suspected of a genetic condition, including children with SS. Clinicians must be familiar with 265 

the primary indications for each technique, as well as their limitations. They must also remain 266 

informed about regionally available genetic testing. Table 1 summarizes the types of genetic variants 267 
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detected by currently available genetic diagnostic tools, including their limitations and comparative 268 

cost and highlights their applications. The availability and cost of genetic tests vary significantly 269 

between countries.  270 

 271 

R2. We recommend close collaboration between clinical laboratory geneticists, medical geneticists 272 

and pediatric endocrinologists in the indication for genetic tests and interpretation of their results; 273 

genetic counseling is recommended for every family undergoing genetic testing. (Good clinical 274 

practice) 275 

Rationale 276 

 Ideally, there is close collaboration between pediatric endocrinologists, pediatric radiologists, 277 

clinical laboratory geneticists and medical geneticists for interpretation of genetic testing results. A 278 

multidisciplinary clinic would be the ideal setting for communicating and discussing the results and 279 

implications of a genetic test with patients and their parents. The level of evidence of the association 280 

of a gene with a given phenotype is discussed in Supplementary Information 2. 281 

   282 

R3. We recommend that variant pathogenicity is classified by the laboratory according to published 283 

guidelines (ACMG/ACGS). (Good clinical practice) 284 

Rationale 285 

Guidelines for genetic variant interpretation incorporate multiple lines of evidence17. It is 286 

essential that the classification of any identified variant is explicitly contextualized in relation to the 287 

relevant phenotype and mode of inheritance. This information should be clearly presented in the 288 

report to allow for clinical interpretation and appropriate medical decision-making (see 289 

Supplementary Information 2). However, for many variants identified in children with SS, it is 290 

difficult to definitively assign pathogenicity. Segregation analysis may be helpful (see R4) but is 291 
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confounded by multiple factors including assortative mating (the fact that short individuals tend to 292 

partner with other short individuals), incomplete penetrance, variable expressivity and the existence 293 

of phenocopies. Thus, in vitro functional characterization is an important adjunct tool to provide 294 

additional evidence whether a variant is pathogenic or not. This is not an easy task in the diagnostic 295 

setting but is important when treatment is available or the child may be able to participate in a 296 

clinical trial depending on the interpretation of the variant.  297 

Over the last few years, diagnostic laboratories have started to perform rapid functional 298 

assays where the results can influence variant interpretation in the clinical report18, although so far, 299 

this is rarely performed in clinical practice. These tests may include testing the effect of variants on 300 

splicing or the determination of a reduction or increase of RNA expression using quantitative real 301 

time PCR assays. These assays may only be feasible when the gene is expressed in easily accessible 302 

tissues such as blood or urine or, if necessary, skin biopsies.  303 

Additionally, for certain conditions, it is possible to identify a characteristic methylation 304 

profile (DNA methylation signatures, Table 1) that defines the disease which would provide 305 

supportive evidence for variant pathogenicity19, or gene expression signatures that can characterize a 306 

condition and indicate impact on functional pathways20. These DNA methylation/gene expression 307 

signatures (which are not variant-specific) provide a lower level of support for pathogenicity of a 308 

variant than variant-specific functional assays.  309 

 310 

R4. We recommend that segregation analysis should be performed in patients where it may alter 311 

classification of the variant’s pathogenicity. (Good clinical practice)   312 

Rationale 313 
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Segregation analysis in parents and/or relatives can be helpful as a criterion for changing the 314 

classification of a variant of uncertain significance (VUS) to likely pathogenic or benign. Therefore, in 315 

such patients testing of other family members should be considered.  316 

 317 

R5. We recommend that testing of other family members should be considered when the 318 

identification of the same pathogenic variant in relatives could influence healthcare management 319 

and/or enable more precise genetic counseling. (Good medical practice)   320 

Rationale 321 

The decision to pursue familial analysis should consider the specific gene involved, the 322 

predicted inheritance pattern, and the associated phenotypes. Diagnostic variant screening in 323 

children should only be conducted if it provides a potential health benefit for the child21. This process 324 

should always be preceded by thorough genetic counseling, including a discussion of the potential 325 

benefits, limitations, and projected outcomes of testing. 326 

 327 

R6. If the patient develops new clinical features, re-analysis of available genetic data should be 328 

performed. In children with persistently unexplained SS in whom genetic testing was previously 329 

performed, we recommend that reanalysis of genetic data be considered periodically, taking into 330 

consideration bioinformatic improvements and new genetic discoveries. (Good clinical practice) 331 

Rationale 332 

Reanalyzing exome or genome data is recommended periodically due to the progression of 333 

genetic knowledge and technology22,23. Since the annotation of variants has improved after 334 

establishing vigorous QC measures for ES around 201824, resequencing should be considered for DNA 335 

samples tested before that time from patients with a high likelihood of a genetic cause but a 336 

previous negative test result. Additional resources for such re-evaluation of results over time should 337 
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be provided by payers. This recommendation is based on the potential for new gene-disease 338 

associations, refinements in classification of variants, and advancements in bioinformatics that can 339 

enhance diagnostic yield25,26.  340 

 341 

R7. We recommend that the benefits and risks of the genetic investigation in a child with SS should 342 

be carefully discussed with the family on an individual basis in a pre-test appointment. (Good clinical 343 

practice) 344 

Rationale 345 

Prior to embarking on genetic testing, one should carefully consider the potential benefits 346 

and risks from pursuing genetic investigations, summarized in Box 3. For a more detailed discussion 347 

on this topic, see Supplementary Information 3 and the results of the literature review on the clinical 348 

consequences of 10 prevalent genetic causes encountered in children with isolated SS 349 

(Supplementary Information 4).   350 

 351 

C. Recommendations regarding assessment of relevant diagnostic clues for a genetic cause of SS 352 

from the medical and family history (R8-R12) 353 

In this and the three following sections (Figure 1), we present recommendations regarding 354 

diagnostic clues from the medical and family history (section C, R8-12), detailed medical examination 355 

(section D, R13-16), radiographs (section E, R17-19) and laboratory investigations (section F, R20-22) 356 

that have been associated with an increased likelihood of a genetic cause and/or indicate a specific 357 

genetic cause of SS. These findings may guide the choice of test and the interpretation of results. We 358 

also summarize the evidence on whether the presence of these clinical features in fact increases the 359 

diagnostic yield of genetic testing. 360 
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A proper medical assessment of a child with SS includes a detailed medical and family 361 

history, clinical examination, radiological assessment and laboratory investigation. This should assist 362 

the clinician in preparing a differential diagnosis ranked according to the likelihood of a primary or 363 

secondary growth disorder (intrinsic or extrinsic to the growth plate, respectively, Supplementary 364 

Information 1). For general characteristics of these categories, see Supplementary Information 5 365 

and 6.  366 

While for most secondary growth disorders monogenic causes are rare, a monogenic cause 367 

can be relatively frequently found in primary growth disorders. Thus, after exclusion of a non-genetic 368 

secondary growth disorder, the clinician faces the challenge of estimating the likelihood of a genetic 369 

cause of the patient’s SS. All genetic syndromes associated with SS (6037 entries in OMIM, May 370 

2025) are associated with their own phenotypic profiles. These phenotypes have been expanding 371 

with the increasing use of next-generation sequencing (NGS) identifying more mildly affected 372 

individuals, leading to numerous syndromes with partially overlapping phenotypes.  373 

   374 

R8. We recommend searching for diagnostic clues for a primary or secondary growth disorder from 375 

the medical history of the child and family including a three-generation pedigree. (Good clinical 376 

practice)  377 

Rationale        378 

A thorough medical history (including review of systems) and family history of the short child 379 

can offer important clues to the etiology. Secondary growth disorders (Supplemental Information 6) 380 

can usually be suspected based on the clinical assessment and laboratory screening and confirmed 381 

through targeted laboratory testing. Identifying clinical information that increases the likelihood of a 382 

primary growth disorder of genetic origin (Supplementary Information 5) can help guide genetic 383 

testing.    384 
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 385 

R9. In children born SGA with persistent isolated or non-isolated SS for whom no cause could be 386 

identified, we recommend thorough clinical evaluation for imprinting disorders followed by specific 387 

DNA methylation testing where suspected. (⊕⊕◯◯)  388 

Rationale 389 

The underlying mechanism leading to being born SGA can involve maternal, placental, and/or 390 

fetal factors27. Therefore, SGA refers to a heterogeneous group of children with different etiologies 391 

and clinical outcomes. Most SGA-born children experience catch-up growth and achieve a height 392 

within their TH range, whereas approximately 10% have persistent SS (“short SGA”)28. 393 

Children with short SGA and clinical features suggestive of an imprinting disorder (such as Silver-394 

Russell syndrome or Temple syndrome) should be investigated by DNA methylation testing. The 395 

decision to test should be guided by the NH-CSS (Netchine-Harbison clinical scoring system). Initial 396 

testing should include methylation analysis of imprinted loci on chromosomes 11p15, 7 and 397 

14q3229,30 [Wakeling;inpreparation]. If negative, testing for alternative diagnoses (including variants 398 

in IGF2, CDKN1C, HMGA2, PLAG1 or upd(20)mat) is recommended [Wakeling;inpreparation]. 399 

 400 

R10. In children born SGA with persistent isolated or non-isolated SS for whom no cause could be 401 

identified and in whom rhGH treatment is considered, we recommend comprehensive genetic 402 

testing for diagnostic purposes (see algorithm) and to identify rare genetic conditions in which rhGH 403 

treatment is contraindicated. (⊕⊕⊕◯) 404 

As some etiologies of short SGA may increase cancer risk due to defects in DNA damage repair 405 

or replication31, it is important to clinically evaluate all children with unexplained short SGA and 406 

perform genetic testing prior to rhGH initiation, especially when associated with microcephaly, 407 

dysmorphic features, developmental delay and/or learning disability.   408 
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In a child with isolated SS, SGA status does not increase the likelihood of identifying a genetic 409 

etiology [ScalcoSystRevpending]. However, many children with syndromic growth disorders may also 410 

be born SGA leading to higher rates of genetic diagnoses in the larger short SGA population32. An 411 

estimate of the diagnostic yield of genetic testing in short SGA through a conventional literature 412 

review is shown in Supplementary Information 7. The current list of genetic causes associated with 413 

SS and increased cancer risk is presented in Supplementary Information 8. In such patients the risks 414 

and benefits should be carefully weighed and discussed thoroughly with the patient allowing for 415 

shared decision making as to whether to proceed with rhGH treatment.   416 

      417 

R11. We recommend genetic testing in a short child with major malformations and/or 418 

neurodevelopmental disorders. (⊕⊕⊕◯)  419 

Rationale 420 

With a detailed medical history, symptoms of any organ or system dysfunction (e.g., brain, 421 

heart, lung, kidneys, ears, eyes, skeleton, immune system, hemostasis) can be identified, and 422 

information can be collected on the presence of a neurodevelopmental disorder [developmental 423 

delay (DD), intellectual disability (ID) or neurological/behavioral symptoms, e.g., autism spectrum 424 

disorder]. A neurodevelopmental disorder is an established indication for genetic testing irrespective 425 

of height33. A search of the OMIM database identified 1,967 entries with SS and neurodevelopmental 426 

delay in the clinical synopsis (May 2025).  427 

Based on the systematic review [ScalcoSystRevpending], the diagnostic yield of genetic 428 

testing is 15.1% (95% CI 10.4-20.6%) in isolated SS, 50.8% (43.1-58.4%) in syndromic SS including 429 

those with neurodevelopmental disorders and 69.8% (61.1-77.9%) in skeletal dysplasias. For an 430 

estimate of the diagnostic yield of genetic testing in children presenting with various other potential 431 

diagnostic clues see Supplementary Information 9.                        432 

 433 
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R12. We recommend genetic testing in a short child if the family history suggests autosomal 434 

dominant, autosomal recessive, X-linked or mitochondrial inheritance, or if the child’s height SDS is 435 

much shorter than that of both parents. (⊕⊕⊕◯)  436 

Rationale  437 

Evaluation of the inheritance pattern can help distinguish monogenic from polygenic causes.      438 

A three-generation pedigree, with information about parental consanguinity and heights of siblings, 439 

parents, grandparents, aunts and uncles, may help identify patterns of inheritance such as 440 

recessive, dominant, X-linked, or mitochondrial, or may raise the possibility of an 441 

imprinting disorder (for details, see Supplementary Information 5 and 10). In a child with no family 442 

history of SS, genetic etiologies should still be considered. However, the cause of mild familial SS in 443 

most individuals is likely polygenic34. 444 

An autosomal dominant growth disorder is suspected if one parent has a similar HSDS as the 445 

short child. As noted above, due to assortative mating, autosomal dominant growth disorders may 446 

also be found if both parents are short. Recessive growth disorders are more commonly found in 447 

consanguineous families or in small and isolated communities but should also be suspected in non-448 

consanguineous families when two or more affected siblings are born to unaffected parents. If 449 

maternal-side male relatives are short and the patient is a boy, X-linked inheritance of SS should be 450 

suspected. If no other family members are affected, an autosomal recessive, X-linked recessive, or de 451 

novo-dominant inheritance should be considered.  452 

Five studies have shown that having a family history of SS represented by at least one parent 453 

with height SDS < -2 significantly increases the diagnostic yield [ScalcoSystRevpending].  454 

 455 

D. Recommendations regarding assessment of relevant diagnostic clues for a genetic cause of SS 456 

from the physical examination (R13-16) 457 
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R13. We recommend performing a detailed clinical examination before referring for genetic testing. 458 

(Good clinical practice) 459 

Rationale 460 

A thorough physical examination (deep phenotyping) is essential in the clinical work-up of a 461 

child with SS. Diagnostic clues for primary and secondary disorders are summarized in 462 

Supplementary Information 5 and 6, respectively. The focus should be on the anthropometric 463 

assessment, which, in addition to height and weight measurements, should include head 464 

circumference, arm span, and sitting height. Pubertal stage should be evaluated. Assessing the 465 

presence of dysmorphic features, skin abnormalities, skeletal anomalies, and congenital 466 

malformations is also crucial for establishing clinical diagnoses, guiding genetic studies, and 467 

identifying potential candidate genes. 468 

 469 

R14. We recommend assessing for Turner syndrome including its mosaic form by a validated genetic 470 

test in a girl with clinical features suggestive of Turner syndrome, as well as in any girl with 471 

unexplained SS. (⊕⊕⊕⊕) 472 

Rationale 473 

In textbooks and guidelines, it has been advised that karyotyping should be performed in all 474 

girls with unexplained SS. This is based on observations that SS can be the only presenting sign of 475 

Turner syndrome and on the important clinical consequences of establishing the diagnosis35. If 476 

karyotyping is used, a minimum of 30 metaphases should be analyzed. Other validated methods 477 

besides karyotype may be employed in certified laboratories.  478 

The diagnostic yield of this approach in girls with characteristic clinical features is assumed to 479 

be high. In contrast, the diagnostic yield of karyotyping in otherwise asymptomatic short girls has 480 

been reported as 2.5% in two small studies36,37. In a population-based epidemiological study the age- 481 
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and sex-specific cumulative incidences from birth until 16 years of age was 52 per 100 000 at 16 482 

years38.  483 

 484 

R15. We recommend genetic testing in a short child if the auxological assessment shows one of the 485 

following: severe SS (height <-3 SDS); microcephaly; macrocephaly (absolute or relative); or body 486 

disproportion (Sitting height/height or arm span/height outside +/- 2.5 SDS). (⊕⊕⊕◯)   487 

Rationale 488 

Measurement of various auxological parameters (height, head circumference and body 489 

proportions) is essential in the assessment of a short child. Although no studies have been reported 490 

in which the impact of severe SS, microcephaly and disproportionate SS have been investigated in 491 

isolation, circumstantial evidence from the literature suggests that the diagnostic yield of genetic 492 

testing of SS is increased with increasing severity of shortness and additional clinical features 493 

(Supplementary Information 5).  494 

 495 

Severe SS (height < -3 SDS)  496 

While the presence of dysmorphic features or skeletal changes are probably the most 497 

important predictors of a genetic condition, the literature suggests that adults and children with 498 

severe isolated SS have an increased likelihood of establishing a genetic cause 499 

[ScalcoSystRevpending]. However, the presence of other clinical features in the reported patient 500 

cohorts39,40 does not allow for accurate quantification of the effect of the severity of SS.  501 

 502 

Microcephaly and relative macrocephaly 503 

The presence of microcephaly in a short child may increase the diagnostic yield of genetic 504 

testing41 and also points to specific etiologies, such as a heterozygous pathogenic IGF1R variant or a 505 

DNA repair syndrome42. In two studies (heterogeneous in terms of patient characteristics), the 506 
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presence of microcephaly in children with syndromic SS increased the diagnostic yield from 44% to 507 

56.3%41 and 24.5% to 83.3%43. 508 

Relative macrocephaly at birth is commonly seen in infants with Silver-Russell syndrome, 509 

Temple syndrome, 3M syndrome, and hypochondroplasia, among other genetic diseases. In most 510 

children with achondroplasia, relative macrocephaly progresses to true macrocephaly before the age 511 

of 2 years. No information is available on the impact of this feature on the diagnostic yield of genetic 512 

testing [ScalcoSystRevpending].  513 

 514 

Disproportion 515 

Several studies have reported that the presence of body disproportion increases the 516 

diagnostic yield of genetic testing in short children, particularly in genes responsible for skeletal 517 

disorders. Unfortunately, most of these reports did not define or quantify body 518 

disproportion44,45,46,47. Body disproportion may become more evident as the child ages. 519 

In short children with mild skeletal anomalies, significant differences were observed for 520 

sitting height/height (SH/H) SDS in patients with an identified pathogenic variant in bone dysplasia 521 

associated genes (i.e., ACAN, IHH) compared to those without48. In short children tested for SHOX, a 522 

SH/H ratio SDS >249,50,51 or a SH/H >1 SDS or arm span ≥3 cm below height52 appear to be useful 523 

predictive factors. In three studies focused on single genes involved in growth plate cartilage 524 

regulation—SHOX (in two studies) and NPR2 (in one)—an elevated SH/H SDS (> +2) was associated 525 

with a marked increase in diagnostic yield. Reported yields rose from 3.1% to 13.8%50, 5.7% to 40%53, 526 

and 17.6% to 28.3%51, respectively [ScalcoSystRevpending]. 527 

 528 

R16. We recommend genetic testing in a short child with clinical features suggestive of an underlying 529 

syndromic condition. (⊕⊕⊕⊕)  530 

Rationale 531 
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Several studies have reported an increased diagnostic yield in short children who show 532 

features suggestive of a broader syndromic (genetic) disorder, either identified while taking the 533 

medical history (e.g., neurodevelopmental disorders) or after physical examination (facial 534 

dysmorphism and/or one or more congenital malformations, e.g., congenital heart disease) 535 

[ScalcoSystRevpending]. For example, in a large cohort of 304 patients with SS who underwent ES, 536 

those with syndromic features (defined as a systemic abnormality) as compared to those with 537 

isolated SS had a higher yield of genetic diagnoses (34% vs 11%)54. In short SGA children, a prominent 538 

forehead and triangular face point to Silver-Russell syndrome55. 539 

 540 

E. Recommendations regarding assessment of relevant diagnostic clues for a genetic cause of SS 541 

from the radiographic assessment (R17-19) 542 

R17. We recommend performing a radiograph of the hand and wrist for bone age (BA) assessment      543 

in any child presenting with SS. Hand and wrist radiographs allow for identification of anatomic 544 

variants which may guide genetic investigation. (Good clinical practice)     545 

Rationale 546 

A radiograph of the (left) hand and wrist provides information on the degree of BA delay or 547 

advancement. A delayed BA is typical for a secondary growth disorder (e.g., juvenile hypothyroidism 548 

or growth hormone deficiency (GHD)) or for a general maturational delay, which may later present 549 

with delayed pubertal onset (then termed CDGP), considered a subclass of idiopathic short stature3. 550 

BA has limited utility below the age of 3 years.  551 

Most primary growth disorders present with a normal or delayed BA, but in prepubertal 552 

children with heterozygous pathogenic variants in ACAN56 or GNAS57 an advanced BA is frequently 553 

observed.  554 

The same radiograph can also provide information about anatomical abnormalities 555 

associated with genetic disorders. This can guide genetic investigations, particularly in children with 556 

isolated SS, who may carry defects in genes associated with growth plate function58. For example, the 557 
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presence of a Madelung deformity is suggestive of SHOX haploinsufficiency. However, the 558 

radiological indications of skeletal dysplasia can be subtle, often making it difficult to recognize 559 

relatively mild forms of genetic skeletal disorders59. For examples, see Supplementary Information 560 

11.  561 

 562 

R18. We recommend performing a skeletal survey (a series of radiographs that examine       563 

representative parts of the skeleton) in short children suspected of having a skeletal disorder, 564 

especially in the presence of disproportionate SS, bone deformities or bone mineralization 565 

abnormalities.   566 

Rationale 567 

The evaluation of skeletal surveys in childhood in combination with other clinical findings 568 

(e.g., clinical photographs and growth charts), should ideally be performed by an experienced 569 

pediatric radiologist or clinician trained to recognize the characteristic radiographic patterns 570 

associated with a specific skeletal dysplasia or group of skeletal disorders60,61,62. Specific genetic 571 

skeletal disorders can often be suggested by particular radiographic findings, but the final diagnosis 572 

should be confirmed by genetic testing.  573 

To date, more than 770 distinct genetic skeletal disorders have been described, which may 574 

result in various anomalies in the shape and size of specific bones in the skeleton60. Good clinical 575 

indicators for a skeletal dysplasia include disproportionate SS, brachydactyly, pathological fractures, 576 

cranial nerve palsies (in absence of a neuromuscular disorder), limb asymmetry, severe/progressive 577 

kyphoscoliosis, restricted or increased joint mobility and waddling gait.  578 

     The following X-rays are recommended for a comprehensive survey, but a more tailored 579 

approach may be warranted in certain situations: anterior-posterior (AP) and lateral view 580 

radiographs of the skull and spine, AP views of the pelvis and all four extremities (unilateral, if no 581 

asymmetry), and AP views of the hands and feet. The radiation dose of such skeletal survey is 582 
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relatively low63. To further minimize the effects of radiation in the newborn, a “babygram” (AP and 583 

lateral views) is advised64.  584 

 585 

R19. We recommend genetic testing in a short child with clinical or radiographic skeletal 586 

abnormalities. (⊕⊕⊕⊕)  587 

Rationale 588 

The presence of clinical or radiological skeletal abnormalities (Supplemental Information 11) 589 

increases the diagnostic yield of genetic testing in short children39,65,41,66,67[ScalcoSystRevpending]. 590 

For details of skeletal findings associated with specific skeletal dysplasias, see Spranger et al68.  591 

  592 

F. Recommendations regarding assessment of relevant diagnostic clues for a genetic cause of SS 593 

from laboratory investigations (R20-22)  594 

 595 

R20. We recommend that each child with SS should undergo a laboratory evaluation, either as a 596 

screening procedure or guided by clinical features. (Good clinical practice) 597 

Rationale 598 

The purpose of laboratory evaluation in short children, either in the form of a standardized 599 

screening or guided by clinical features, is to detect indications of a primary or secondary growth 600 

disorder. Similarly to any other screening procedure, the benefit of diagnosing a treatable condition 601 

at an early stage (effectiveness) has to be weighed against the costs. Pediatric textbooks and 602 

guidelines have suggested that laboratory screening of short children should be performed by a 603 

general pediatrician so that easily diagnosable and treatable conditions (e.g., hypothyroidism, celiac 604 

disease) would be detected and treated as early as possible3,69. Others have suggested that 605 

laboratory tests should be guided by clinical features rather than routinely applied to all patients 606 
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with SS70. A list of potentially useful laboratory screening tests is shown in Supplemental Information 607 

12.  608 

 609 

R21. We recommend genetic testing using next-generation sequencing (ES/GS or a targeted gene 610 

panel in a short child with severe GHD and/or anatomical abnormalities of the 611 

hypothalamus/pituitary area known to be associated with genetic causes. (Good clinical practice) 612 

Rationale 613 

GHD may be isolated (IGHD) or combined with other hormone deficiencies (combined 614 

pituitary hormone deficiency, CPHD). Both belong to a spectrum of disorders under the umbrella of 615 

congenital hypopituitarism (CH), a heterogeneous and complex disorder, associated with highly 616 

variable clinical phenotypes ranging in severity. Over the last four decades, pathogenic variants have 617 

been identified in numerous genes encoding hormones and their receptors, or developmental 618 

proteins including transcription factors implicated in hypothalamo-pituitary (HP) development71,72,73.  619 

Affected patients manifest different CH phenotypes, CPHD and IGHD being the most 620 

frequent. Less common phenotypes include septo-optic dysplasia (SOD) and holoprosencephaly 621 

(HPE) (Supplementary Information 13, Supplementary Table 3). Whilst some of the variants show 622 

classical autosomal recessive, autosomal dominant, and X-linked recessive inheritance, many of the 623 

variants are monoallelic and associated with variable penetrance. Carriers of the variant, often in the 624 

same family as the index patients, may manifest no or a milder clinical phenotype than the proband. 625 

We therefore recommend caution in interpretation of genetic findings that are not recessively 626 

inherited, particularly novel variants identified in genes with variable penetrance (see 627 

Supplementary Information 13). 628 

Supplementary Table 4 summarizes the genes currently associated with CH and their mode 629 

of inheritance. The clinical and neuroimaging phenotypes associated with CH are extremely 630 
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heterogeneous, with unpredictable endocrine deficiencies often evolving over time, particularly in 631 

patients with SOD or pituitary stalk interruption syndrome (PSIS)74,75, making monitoring challenging 632 

and treatment complicated. Due to the increasing number of CH-related genes and the variability in 633 

phenotypes, next generation sequencing (ES/GS or a panel-based approach) is currently the most 634 

efficient approach in identifying causative pathogenic variants and investigating the possibility of 635 

oligogenicity76,77.  636 

Establishing the genetic cause of CH can have important clinical benefits. For example, the 637 

identification of Type 2 GHD due to an autosomal dominant pathogenic GH1 variant should make the 638 

clinician aware of the potential appearance of other pituitary hormone deficiencies (ACTH, TSH and 639 

gonadotropins)78. Additionally, the identification of pathogenic variants in PROP1 in patients with a 640 

pituitary mass can avert surgery as this mass is likely to involute at a later stage79. Further, a mild 641 

“partial isolated GHD” (MIM 615925), characterized by slow growth and low, borderline or even 642 

normal serum GH responses to a GH stimulation test, can be caused by a mono-allelic pathogenic 643 

GHSR variant. Such patients show adequate catch-up growth on rhGH treatment80 .    644 

 645 

R22. We recommend a targeted gene panel or first-line candidate gene approach in the short child 646 

with characteristic clinical and laboratory features of insensitivity to growth hormone or IGF-1. 647 

(⊕⊕◯◯)  648 

Rationale 649 

SS due to GH-IGF-1 axis defects is associated with varying degrees of GH insensitivity (GHI). 650 

Some of these (e.g., IGF1R) present with IGF-1 insensitivity. The clinical features range from extreme 651 

pre- and post-natal growth failure with other physical and laboratory abnormalities to milder clinical 652 

phenotypes (Supplemental Information 14). Many other genetic SS syndromes can also present with 653 

features of GHI, for example RASopathies81,82. Furthermore, a similar clinical presentation (mild 654 
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growth failure in combination with a borderline low serum IGF-1 and a normal serum GH response to 655 

a GH stimulation test) can also be caused by conditions with normal GH sensitivity80,83,84.  656 

Developing a detailed pedigree is mandatory (R8), as genetic cases may be autosomal 657 

recessive or dominantly inherited. When the physical examination, laboratory assessment and 658 

radiological findings are consistent with a severe, ‘classical’ or typical, GHI presentation (decreased 659 

serum IGF-1 and normal or high result of a GH stimulation test85,86, a  targeted gene panel approach 660 

is recommended, including GHR, STAT5B, STAT3, IGFALS, PAPPA2, IGF1, QSOX2. Patients with 661 

heterozygous defects of IGF1R or carrying a 15q26.3 deletion are usually born SGA and present with 662 

(relatively) low head circumference and (relatively) high serum IGF-1, especially during GH 663 

treatment87.  664 

A milder or atypical GHI phenotype makes clinical diagnosis more difficult. ES/GS allows 665 

testing a broader range of genes, along with the potential for novel gene discovery. Less than half of 666 

atypical GHI patients are genetically confirmed via targeted gene panel testing88 indicating that a 667 

broader short stature gene panel may be more cost-effective. Additional information is provided in 668 

Supplementary Information 14, including Supplementary Table 5.    669 

 670 

G. General recommendations regarding positive and negative indications to perform genetic 671 

testing in children with SS (R23-24) 672 

R23. We recommend that genetic testing for SS (beyond laboratory screening including testing for 673 

Turner syndrome in girls) is not indicated in a child with isolated SS suspected of constitutional delay 674 

of growth and puberty (CDGP) or with a strong suspicion of a polygenic origin. (Good clinical 675 

practice).  676 

Rationale 677 
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Children who present with mild to moderate SS (a height SDS -2 to -2.5 SDS), slow growth, 678 

delayed BA but a growth trajectory within the TH range when corrected for BA can be considered 679 

“slow maturers”.  There is often a family history of pubertal delay. These patients often show 680 

delayed pubertal onset in adolescence (females >13 years, males >14 years) and are subsequently 681 

labelled as CDGP. Since slow growth and delayed or absent puberty are also characteristic signs of 682 

Turner syndrome, this should be excluded before the diagnosis of CDGP in a girl can be accepted (see 683 

R14). By definition, CDGP is a diagnosis of exclusion. Once puberty has started, growth progresses 684 

normally and may also be prolonged. Several genes have shown to be associated with pubertal 685 

timing89.  686 

Currently, a polygenic origin of SS cannot yet be confirmed in the clinic, but we postulate that 687 

the likelihood of a monogenic cause in a child with mild and isolated SS with borderline short and 688 

non-syndromic parents, no indication of autosomal dominant inheritance, and a height SDS close to 689 

the target height SDS is low (<10%). We assume that a polygenic origin is more likely in such patients.  690 

 691 

R24. We recommend considering genetic testing in any child with SS in whom information from 692 

personal and family medical history, physical examination, radiological or laboratory findings 693 

suggests an increased likelihood of a genetic cause (defined as a monogenic condition, chromosomal 694 

aberration, CNV or methylation disorder, not a polygenic origin). (⊕⊕⊕⊕)  695 

Rationale 696 

Each child presenting with SS deserves a full medical assessment, with special attention to all 697 

known diagnostic clues for a primary or secondary growth disorder. Current literature suggests that 698 

in children in whom a non-genetic growth disorder has been excluded and who present with one or 699 

more clinical or laboratory features known to increase the likelihood of a genetic cause, the 700 

diagnostic yield of genetic testing is sufficient to warrant genetic testing [ScalcoSystRevpending].  701 
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Genes with the strongest evidence of association with isolated SS in the absence of other 702 

specific clinical findings are ACAN, COL2A1, FBN1, FGFR3, GH1, GHR, GHSR, IGF1R, IHH, NF1, NPR2, 703 

PTPN11, and SHOX [ScalcoSystRevpending]. This can thus be considered a minimum list of genes 704 

recommended for evaluation in children with isolated SS. Depending on the expertise of each center 705 

and advances in the field, additional genes may be considered. Variants in genes typically associated 706 

with syndromic SS or skeletal dysplasia should be interpreted with caution in patients lacking 707 

characteristic features. 708 

Figure 2 shows the algorithm summarizing this recommendation. Genome sequencing (short 709 

read or long read) is the standard approach in a number of countries, and we expect that to increase 710 

in the future, thus making the use of targeted gene panel testing obsolete. We recognize that in 711 

resource limited countries genetic investigations may not be available nor reimbursed.  712 

 713 

Future perspectives 714 

NGS, with the use of large gene panels, ES and GS, has revolutionized the diagnostic 715 

approach to the short child with SS as it has in many other areas of medicine. However, ES provides 716 

information only on protein-coding genes which correspond to approximately 2% of the genome. 717 

Genetic testing can currently identify a monogenic cause in fewer than 15% of children with isolated 718 

SS, whereas up to 80% of children with syndromic SS or suspected skeletal dysplasia may receive a 719 

genetic diagnosis [ScalcoSystrevpending].  Therefore, there are still further genes or novel genetic 720 

variants causing SS to be identified.   721 

The limitations of current genetic testing will inevitably lead to applying GS in the near future 722 

to increase detection sensitivity for causative genetic variants. A recent study on genomes of a large 723 

cohort of families with suspected rare monogenic diseases has shown an incremental diagnostic yield 724 

of GS of approximately 8% for those who had previously undergone ES90. The main limitations to the 725 

large-scale use of GS are the higher analytical burden due to the millions of noncoding and structural 726 
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variants that can be identified. Previously, high cost was also a limitation, but currently the cost of 727 

the combination of ES and CMA is similar to the cost of GS, so that several laboratories are currently 728 

using GS as a first-line test91. We expect that the progressive use of artificial intelligence and 729 

reduction of costs will lead to more widespread use of GS as a first-line single test. In the future, we 730 

anticipate that the integration of multi-omic approaches facilitated by long-read sequencing will 731 

allow for the identification of additional genetic etiologies of growth disorders. As these approaches 732 

are integrated into clinical practice, diagnostic rates will improve92. 733 

With the growing discovery of regulatory and non-coding variants, understanding their 734 

transcriptomic impact will become increasingly important. We anticipate that RNA-seq will be 735 

incorporated into clinical practice to understand the potential impact of genetic variants on gene 736 

(mRNA) expression and that methylation signatures may play an increasing role in identifying genetic 737 

syndromes. 738 

Digenic or oligogenic inheritance, where interaction of two or more genes located at 739 

different loci are observed, may account for a non-conventional pattern of inheritance underlying 740 

some forms of SS93, as shown in a subset of patients with Noonan syndrome94. A systematic search 741 

for the phenotype resulting from the interplay between two or more genetic variants (epistasis) has 742 

become feasible only with modern machine learning methods95. The importance of the multiple gene 743 

effect on the growth process has been further emphasized by the development of polygenic risk 744 

scores for predicting familial SS96,97 and adult height98, showing an accuracy of 0.84-0.94. A polygenic 745 

risk score may help distinguish children with a benign, polygenic predisposition to short stature97 and 746 

also identify those who may have an underlying monogenic cause98. 747 

 In addition to sequence variants causing growth disorders, there is mounting evidence that 748 

epigenetic changes play a major role in the growth process. Epigenetic changes may directly affect 749 

transcriptional machinery or cause alterations in chromatin structure, making chromatin less or not 750 

accessible to transcription factors. The epigenetic processes that stably alter gene expression 751 
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patterns (and/or transmit the alterations at cell division) include DNA (cytosine) methylation, post-752 

translational modification of histone proteins and remodeling of chromatin, and RNA-based 753 

mechanisms. Each of these epigenetic changes may have an impact on growth and are discussed in 754 

Supplementary Information 15. Undoubtedly, with ongoing advances in genetic investigative 755 

technologies, the importance of genetic testing in the diagnostic workup of short stature will 756 

continue to increase. 757 

   758 
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Box 1. Definitions 1099 

• In this guideline,  1100 
o The word “child” is used for individuals between 0-<18 years. 1101 
o “Genetic testing” refers to any form of DNA sequencing, copy number analysis or 1102 

methylation analysis. 1103 
o A “genetic cause” includes any chromosomal abnormality, (likely) pathogenic copy 1104 

number variant (CNV), (likely) pathogenic DNA sequence variant, or methylation 1105 
defect for which sufficient evidence exists to show a causal relationship with the 1106 
individual's symptoms. 1107 

o “Short stature (SS)” is used for all manifestations of growth failure, i.e., the presence 1108 
of at least one out of three manifestations: a height below -2.0 SDS; a decreasing 1109 
height SDS over time (growth faltering); and a height SDS below the lower limit of 1110 
the statistically expected range around the sex-adjusted mid-parental height, 1111 
expressed as the deviation from target height (TH) (height SDS-TH SDS <-1.5) or 1112 
conditional target height (cTH) (height SDS-cTH SDS <-1.6).  1113 

o “Short SGA” individuals are defined as born small for gestational age (SGA) with 1114 
persistent SS. 1115 

o “Chromosomal microarray (CMA)”, as used here, encompasses all types of array-1116 
based genomic copy number analyses, including array-based comparative genomic 1117 
hybridization (aCGH) and single nucleotide polymorphism (SNP) arrays99. CNVs can 1118 
also be detected by software programs in sequencing data.  1119 

• The “standard deviation score (SDS)” of an individual’s height is defined as the number of 1120 
standard deviations above or below the mean for age and sex on a reference chart derived 1121 
from the most recent respective population study. 1122 

• “Small for gestational age (SGA)” is defined as a reported birth weight and/or birth length 1123 

below −2 SDS for gestational age.  1124 

● “Next-generation sequencing (NGS)” is a massively parallel sequencing technology that reads 1125 

multiple DNA fragments in parallel with each other. Exome sequencing (ES) examines only 1126 

exon sequences and intronic sequences nearby, i.e., only protein coding DNA sequences, that 1127 

include approximately 2% of human DNA. Genome sequencing (GS) reads all the bases in 1128 

DNA, i.e., includes exons, introns and non-coding intervening sequences. Both technologies 1129 

can be used to examine single nucleotide variants (SNVs), small insertions and deletions, and 1130 

copy number variations (CNVs) using different bioinformatic tools. However, some genomic 1131 

rearrangements need to be confirmed using other methods (such as chromosome analysis, 1132 

CMA, fluorescent in situ hybridization (FISH), or targeted sequencing of the breakpoints). 1133 

Both technologies can be used to sequence only a patient’s DNA or in so-called family 1134 

context when samples of biological parents or siblings can be used as reference samples for 1135 

comparison. Currently, ES and GS use short reads. In a research setting, long read GS is 1136 

available, a form of NGS that has technical advantages over short-read sequencing for the 1137 

detection of specific types of genetic variation. It can sequence long strands of DNA or RNA 1138 

without breaking them up into smaller fragments. Multiplex ligation-dependent probe 1139 

amplification (MLPA) is a polymerase chain reaction (PCR) based method that uses probes to 1140 

examine the copy number of a specific genomic region. Methylation-specific multiplex 1141 

ligation-dependent probe amplification (MS-MLPA) is used, for example, in growth restricted 1142 

imprinting disorders. 1143 

  1144 
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Box 2. Abbreviations used ≥2 times  1145 
● BA, bone age 1146 
● CDGP, constitutional delay of growth and puberty 1147 
● CMA, Chromosomal microarray (see definition) 1148 
● CNV, copy number variant 1149 
● ES, exome sequencing 1150 
● GH, growth hormone 1151 
● GHD, growth hormone deficiency 1152 
● GS, genome sequencing 1153 
● HSDS, height SDS 1154 
● IGF-1, insulin-like growth factor 1 1155 
● NGS, next-generation sequencing  1156 
● PCR, polymerase chain reaction 1157 
● QF-PCR, Quantitative Fluorescent Polymerase Chain Reaction 1158 
● rhGH, recombinant human growth hormone 1159 
● SDS, standard deviation score 1160 
● SGA, born small-for-gestational age  1161 
● SH/H, Sitting height/height ratio 1162 
● Short SGA, born small for gestational age (SGA) without catch-up growth 1163 
● SRS, Silver-Russell syndrome 1164 
● SS, Short stature (see definition) 1165 
● TH, target height  1166 
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Box 3. Potential benefits and risks of genetic testing in children with SS 1167 

 1168 

Potential benefits 1169 

● Definitive diagnosis can be gratifying to patients and their families 1170 

● Allows for more accurate genetic counseling and prediction of recurrence in other 1171 

children 1172 

● Obviates the need for further extensive diagnostic tests to determine the etiology of the 1173 

child’s SS 1174 

● Enables earlier diagnosis by identifying a genetic condition before full phenotypic 1175 

expression, particularly important in younger children 1176 

● Eliminates the need for GH stimulation tests 1177 

● Guides therapeutic decisions, e.g., deciding on prescribing growth stimulating 1178 

medication  1179 

● Detects diagnoses for which rhGH is contraindicated or should be given with caution 1180 

● Highlights the need to screen for significant comorbidities associated with the 1181 

underlying condition and refer to other specialties as needed 1182 

● Informs testing of additional family members allowing for earlier recognition of 1183 

additional cases in the family 1184 

● Detects secondary genetic variants with potential to prevent adverse outcomes for the 1185 

patient and their relatives 1186 

 1187 

Potential risks 1188 

● A false positive genetic diagnosis leads to incorrect assumptions about the cause of 1189 

disease, resulting in unnecessary anxiety, mismanagement, and inappropriate testing 1190 

and treatment. 1191 

● Uncertainties arising from variants of uncertain significance reported. 1192 

● Secondary findings, even if accurate, can lead to anxiety in the affected family and, if 1193 

erroneously classified, expose individuals to unnecessary surveillance or diagnostic 1194 

testing. 1195 

● Secondary findings can affect certain types of insurance coverage. Laws vary by region.  1196 

  1197 
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Table 1: Characteristics of current molecular genetic techniques  1198 

Molecular genetic exam Ability to identify (epi-)genetic variants   Limitations  

 
SNVs 
and 

InDels 

CNVs 
(resolution) 

Repeat 
expansions 

Inversions 
or 

translocatio
n 

Uniparental 
disomy 

Aberrant 
methylation 

 
Cost

g 

ANALYSIS APPROACH BASED ON CANDIDATE GENE/REGION 

FISH - +/- (500 kb a) - +/-e - - Only regions with commercial probes $$ 

MLPA - +/- (< 1 kb a) - - - - Only regions with commercial kits $$ 

MS-MLPA - +/- (< 1 kba) - - Suggestivee + Only regions with commercial kits $$ 

Single locus methylation test * - - - - Suggestivee + 
No discrimination between aberrant 

methylation, UPD and CNV 
$ 

Sanger sequencing + - - - - -   $ 

Panel NGS sequencing + +/- (< 1 kba) - - - - Restricted number of genes  $$ 

DNA methylation 
episignatures  

- - - - - + f $$$$ 

HYPOTHESIS-FREE ANALYSIS (GENOMICS APPROACH) 

Karyotype - +/- (5-10 Mb) - +/-d - - 
Requires cell culture and manual 

analysis by specialized cytogeneticist 
$ 

CMA (SNP-array) - + (50 kbb) - - +/- -   $$ 

CMA (CGH-array) - + (50 kbb) - - - -   $$ 

Exome sequencing singleton + +/- (< 1 kbc) +/-d +/-d Suggestivee -   $$ 

Exome sequencing trio/family + +/- (< 1 kbc) +/-d +/-d + -   $$$ 

Genome sequencing - short 
reads - singleton 

+ + (< 1 kb) +/-d +/-d Suggestivee - 
Limitations in evaluating variants in 

deep intergenic, regulatory and intron 
regions 

$$$ 
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Genome sequencing - short 
reads - trio/family 

+ + (< 1 kb) +/-d +/-d + - 
Limitations in evaluating variants in 

deep intergenic, regulatory and intron 
regions 

$$$$ 

Genome sequencing - long 
reads – singleton * 

+ + (< 1 kb) + + Suggestivee + 
Requires DNA extraction technique 
preserving large intact fragments 

$$$$ 

Genome Bisulfite Sequencing 
(GBS) * 

+ + (< 1 kb) +/-d +/-d Suggestivee + 
Requires additional complex 

bioinformatic pipelines for conversion 
NA 

Optical Genome Mapping 
(OGM) 

- + (< 1 kb) +/-d + Suggestivee - 
Requires DNA extraction technique  
preserving large intact fragments of 

DNA 
$$$ 

SNVs = Single nucleotide variant; InDels = Small insertions and deletions 1-50pb; CNVs = Copy number variants; FISH = Fluorescence In Situ Hybridization; MLPA = Multiplex 1199 

Ligation-dependent Probe Amplification; MS-MLPA = Methylation-Specific MLPA; CMA = Chromosomal Microarray Analysis; CGH-array = Comparative Genomic 1200 

Hybridization array; SNP-array = Single Nucleotide Polymorphism array; NGS = Next generation sequencing; UPD = Uniparental disomy  1201 

Single locus methylation test includes High Resolution Melting Analysis (HRMA); Methylation-Sensitive High Resolution Melting (MS-HRM) and Pyrosequencing 1202 

*  Tests available in research environment only 1203 

+  The test identifies the respective (epi-)genetic variants 1204 

+/- The test identifies the respective (epi-)genetic variants to a limited extent 1205 

- The test does not identify the respective (epi-)genetic variants 1206 

a – Resolution of CNV detection limited to the analyzed regions 1207 

b – Smaller CNVs might be detectable by targeted analysis 1208 

c – Greater sensitivity when it affects 3 or more exons 1209 

d – Can identify, but with limitations 1210 

e – Suggestive result needs to be confirmed by another method 1211 

f – Only in leukocyte DNA; limited conditions defined by known signatures; does not identify causal genetic variant 1212 

g –Cost to the consumer. Comparison between the methods presented using $, $$, $$$ or $$$$. It is important to note that the availability and cost of genetic tests can 1213 

vary significantly between countries, depending on local resources and healthcare systems. 1214 
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Figure Legends 1215 

Figure 1. Overview of the purpose and flow of the guideline.  1216 

Figure 2. Algorithm for the diagnostic work-up of children with short stature. After a full clinical evaluation and exclusion of non-genetic secondary growth disorders, 1217 

further diagnostic investigations depend on the clinical presentation, with the following categories: isolated short stature, skeletal dysplasia, defects in the GH/IGF axis, and 1218 

syndromic short stature. 1219 

*In the (near) future, genome sequencing (short read or long read) will most likely become the standard approach in many countries making targeted panels obsolete. Most 1220 

panels are currently performed in silico, i.e., genetic laboratories generate gene lists to analyse exome or genome sequencing data. 1221 

**Analysis of each case and the availability of resources should be considered in determining the best approach: exome sequencing (ES) or genome sequencing (GS); 1222 

singleton, trio, or family analysis. In many cases, the use of ES incorporating CNV analysis can establish the diagnosis, but there is a growing application of genome 1223 

sequencing (short and long read) which may become the preferred approach. The introduction of long-read genomic sequencing may also provide gene methylation 1224 

information allowing for the diagnosis of short-stature disorders due to imprinting defects.  1225 

*** In selected cases, the first line of molecular analysis should be methylation assessment of specific regions related to an imprinting disorder.   1226 

 1227 

  1228 
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Figure 1. Overview of the purpose and flow of the guideline. 1229 

                1230 

 1231 
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Figure 2 – Diagnostic Algorithm 1232 
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