International guideline on genetic testing of children with short stature **Supplementary Information** Authors: Andrew Dauber¹, Alexander A L Jorge², Ola Nilsson³, Olaf M Dekkers⁴, Jesús Argente⁵, Irene Netchine⁶, Philippe Backeljauw⁷, Jeffrey Baron⁸, Debora Bertola⁹, Peter Clayton¹⁰, Justin H Davies¹¹, Thomas Edouard¹², Thomas Eggermann¹³, Evelien Gevers¹⁴, Giedre Grigelioniene¹⁵; Karen E. Heath¹⁶, Youn Hee Jee¹⁷, Pablo Lapunzina¹⁸, Geert Mortier¹⁹, Stepanka Pruhova²⁰, Helen L Storr²¹, Emma Wakeling²², Carlos R. Fereira²³, Mehul Dattan²⁴, Stefano Cianfarani²⁵#, Jan M Wit²⁶ on behalf of the International Growth Genetics Guideline Consortium* ^ These authors contributed equally # Corresponding author * Other members of the consortium include Tomonobu Hasegawa²⁷, Anita Hokken-Koelega²⁸, Agnes Linglart²⁹, Xiaoping Luo³⁰, Xiumin Wang³¹, Vivian Hwa³², Louise Gregory³³ and Federica Buenocore³⁴ Version 8, September 30, 2025

Supplementary information 1: Update of Diagnostic Classification of Growth Failure

22

23

29

48

60

21

Part 1: Initial clinical categorization of short stature

- 24 Short stature (SS) can be categorized along several dimensions based on the initial clinical evaluation.
- 25 Taken together, these categorizations are important for the diagnostic process and often point
- 26 toward a likely set of diagnoses. However, the diagnostic process is complicated because many
- 27 disorders can have a variable clinical presentation. We suggest that children evaluated for SS are
- 28 classified according to the following five clinical parameters.

1. Prenatal onset vs postnatal onset

- 30 SS of prenatal onset is identified when a short child is born small for gestational age (SGA), defined
- 31 by a birth weight SDS and/or length SDS < -2. If birth length is unavailable, the first length SDS for age
- before 3 months of age, or birth weight, can be used as a proxy indicator of prenatal linear growth.
- 33 Prenatal onset can result from maternal disease or substance exposure (e.g., alcohol), placental
- insufficiency, or a wide variety of fetal disorders. In most children, the growth abnormality will
- 35 resolve after birth, allowing catch-up growth. In others, little or no catch-up growth occurs. For some
- disorders, prenatal growth failure will be followed by postnatal growth failure, causing further
- deviation from the normal range^{1,2}. A short birth length in contrast to a normal birth weight in an
- infant without postnatal catch-up growth should be considered a warning sign of a monogenic cause
- 39 compromising the growth plate^{3,4}.
- 40 With knowledge of intrauterine growth performance, it is possible to identify intrauterine growth
- 41 retardation (IUGR; slow fetal growth based on two ultrasound measurements), which may result in a
- 42 SGA baby. IUGR irrespective of birth size may lead to permanent SS.
- 43 SS of early postnatal onset (first 1-2 years of life) is typical of many congenital disorders, both
- 44 primary disorders (e.g., Turner syndrome and SHOX haploinsufficiency) and secondary disorders (e.g.,
- 45 congenital GH deficiency or congenital hypothyroidism) although children with many genetic forms
- 46 of SS can also present with a later postnatal onset, e.g., SHOX deficiency, Noonan syndrome or mild
- 47 skeletal dysplasia without a clear growth spurt.

2. Skeletal malformation/disproportion vs no skeletal malformation/disproportion

- 49 Skeletal malformation is identified when the shape of individual bones is abnormal, either by physical
- or radiological examination. Skeletal disproportion is typically identified by anthropometric
- 51 measurements or ratios of these measurements, such as the sitting height index or relative arm span.
- 52 Skeletal malformation and/or disproportion suggest a primary growth disorder, typically an
- 53 abnormality in a gene that plays a role in growth plate chondrogenesis. These conditions are usually
- 54 termed skeletal dysplasias or chondrodysplasias⁵.

55 3. Presence or absence of syndromic characteristics (non-skeletal abnormalities)

- 56 The presence of abnormal facies, significant dysmorphisms, microcephaly, (relative) macrocephaly,
- 57 minor or major congenital anomalies, or neurodevelopmental disorders^{6,7,8} characterize syndromic
- SS. It often results from variants in a gene that plays an important role in growth plate
- 59 chondrogenesis and in the development of non-skeletal tissues.

4. Isolated SS vs non-isolated SS

- 61 When a short child, born either with a normal or low birth size, does not show any signs of skeletal
- 62 malformation, body disproportion, syndromic conditions, nor any laboratory indications of a
- 63 secondary cause of SS (e.g., defects in the GH/IGF1 axis), it can be labelled as isolated SS. All other
- short children can be labelled non-isolated SS.

5. Familial vs non-familial SS

65

78

- SS is traditionally classified as familial and non-familial. The term "familial SS" has been defined as a subgroup of idiopathic SS (if the child's height SDS is within the parental target height range)⁹ or as
- an initial clinical characterization (if the child's height SDS is close to that of one of the parents¹⁰.
- 69 However, with advancement in genetic diagnostics, particularly in identifying monogenic conditions,
- it is now more clinically useful to differentiate whether the condition is more likely to have a mono-
- or polygenic basis. The inheritance pattern is assessed by drawing a pedigree of the extended family.
- 72 The pedigree may suggest a monogenic condition (for example, autosomal dominant, autosomal
- 73 recessive, X-linked recessive, and imprinted inheritance patterns) or a polygenic condition. A
- 74 polygenic inheritance¹¹ suggests a benign condition, generally considered a normal variant. A
- 75 nonfamilial (sporadic) occurrence suggests a causative dominant variant that occurred de novo or
- 76 causative recessive variants but can also be seen in children with delayed skeletal maturation, some
- of whom can later be diagnosed as constitutional delay of growth and puberty (CDGP).

Part 2: Etiological classification of SS

80	A. Primary growth disorders
81 82 83 84 85 86	Primary growth disorders are defined by SS that results from an abnormality intrinsic to growth plate cartilage ¹² . When the genetic disorder affects bone elongation or bone shape, the condition is termed a skeletal dysplasia, chondrodysplasia or genetic skeletal disorder. When the genetic disorder affects growth of some bones substantially more than that of other bones, the condition is often termed disproportionate SS. When the genetic disorder affects not only the growth plate but also non-skeletal tissues, the condition is often termed syndromic SS ¹² .
87 88 89 90	Primary growth disorders have been categorized here based on the type of genetic defect and the cellular localization of the causative molecular pathway. For each category, examples of specific disorders are provided, but this list is not exhaustive. For those disorders that present as a skeletal dysplasia, a more complete listing is provided elsewhere ¹³ .
91	A.1. Single gene defects
92 93 94	Many genetic defects in this category present with dysmorphic features and/or body disproportion, but for many defects such clinical features can be so mild that these patients may be initially considered "isolated SS".
95	A.1.a. Intracellular pathway defects
96 97 98	Growth plate chondrocyte proliferation and differentiation are affected by numerous intracellular molecular pathways, involving, for example, transcription factors, signal transduction, and DNA repair mechanisms ^{12,14} .
99 100 101 102 103 104 105	Examples: Isolated SS, SHOX-related Noonan syndrome and RASopathies Bloom syndrome Seckel syndrome spectrum disorders Albright hereditary osteodystrophy
106	A.1.b. Paracrine signaling defects
107 108 109 110 111	Normal growth plate chondrogenesis requires signaling between growth plate chondrocytes involving multiple paracrine growth factors, including PTHrP, CNP, IHH, IGF-1, IGF-2, FGFs, and BMPs. Consequently, abnormalities in these signaling systems can impair linear growth ¹² . Molecular defects in the ligands and receptors have been placed in this category, while defects more distal in the signal transduction pathways have been placed in the "intracellular" category.
112 113 114 115	Examples: NPR2 loss-of-function variants FGFR3 gain-of-function variants (e.g., achondroplasia, hypochondroplasia) IHH loss-of-function variants

A.1.c. Extracellular matrix defects

PTH1R loss-of-function and gain-of-function variants

119 120	Examples: SS with advanced bone age, ACAN-related
121 122 123 124	Type 2 collagenopathies Osteogenesis imperfecta FBN1-associated acromelic dysplasia
125	A.1.d. Monogenic disorders of unclear mechanism
126	
127	A.2. Chromosomal anomalies / multigene CNVs
128 129 130 131 132 133 134	Examples: Turner syndrome 45,X/46,XY mosaicism Trisomy 21 22q11.2 microdeletion syndrome Various pathogenic CNVs
135	B. Secondary growth disorders
136 137 138 139 140 141 142	Secondary growth disorders are defined by SS that results from an abnormality extrinsic to the growth plate. Secondary growth disorders occur when an abnormality in another organ system or in the child's environment (such as inadequate food supply) produces an abnormal concentration of hormones, cytokines, nutrients, electrolytes, minerals, or other components of the extracellular fluid surrounding the growth plate chondrocytes, secondarily impairing growth plate chondrogenesis ¹² . In general, secondary growth failure tends to cause proportionate SS as all growth plates in the body are similarly affected ^{12,6} .
143 144	The classification of secondary growth disorders outlined here is primarily organized according to the organ system most affected by the underlying disorder or condition.
145	
146	B.1 Insufficient nutrient intake (Malnutrition)
147	Malnutrition is still globally the most important cause of growth failure.
148 149 150 151	B.1a Undernutrition, including wasting (low weight-for-height), stunting (low height-for-age) and underweight (low weight-for-age). Undernutrition can be caused by external factors (inadequate food supply) or psychosocial or psychiatric conditions (psychosocial deprivation, anorexia nervosa, depression).
152	B.1b Micronutrient deficiency (e.g., phosphate)
153	
154	B.1c Maternal disease/placental insufficiency
155 156 157	Most infants born small for gestational age due to maternal disease, substance exposure or placental insufficiency show catch-up in linear growth in the first 2 years of life, but some may remain short for their age.

158				
159	<u>B.2 Di</u>	sorders in organ systems other than skeletal and endocrine		
160	B.2a Cardiac disorders			
161	B.2b	Pulmonary disorders, e.g. cystic fibrosis		
162	B.2 c	Liver disorders		
163 164	B.2d	2d Gastrointestinal disorders e.g. celiac disease, Crohn's disease, malabsorption syndromes, short bowel syndrome		
165 166	B.2e	Chronic kidney disease, such as infantile cystinosis, juvenile nephronophthisis, renal tubular acidosis and Fanconi syndrome		
167	B.2f	Chronic anemia		
168	B.2g	Muscular and neurological disorders		
169	B.2h	Connective tissue disorders		
170	B.2i	Autoimmune disorders, e.g. juvenile arthritis		
171	B.2j	Multiorgan disorders		
172				
173	B.3 Endocrine disorders			
174 175 176 177	Normal levels of several hormones are required for normal growth plate chondrogenesis ¹² . Defects in hormone secretion, transport and receptors have been placed in this category, while defects more distal in the signal transduction pathways have been placed in the A.1a or A.1b categories, with a few exceptions.			
178	B.3a Growth hormone deficiency (synonym: secondary IGF-1 deficiency)			
179 180 181	Growth hormone deficiency (GHD) can be congenital or acquired. If combined with other deficiencies the condition is referred to as hypopituitarism, multiple pituitary hormone deficiency or combined pituitary hormone deficiency.			
182	B.3b G	Growth hormone insensitivity		
183	B.3b.1	GHR variant (including Laron syndrome and partial GH insensitivity forms)		
184	B.3b.2 STAT5B defect			
185	B.3c.3 <i>QSOX2</i> deficiency			
186	B.3c Defects of the IGFs-IGF1R system			
187	B.3c.1 IGF-1 deficiency (<i>IGF1</i> defect)			
188	B.3c.2	IGF-2 deficiency (IGF2 defect)		
189	B.3c.3	IGF1R deficiency (IGF1R defect)		
190	B.3d Defects disrupting transport and release of circulating IGF-1			

191	B3d.1 ALS deficiency (IGFALS defect)
192	B.3d.2 PAPPA2 deficiency (<i>PAPPA2</i> defect)
193	B.3e Delayed or advanced secretion of sex steroids
194 195	B.3e.1 Delayed production/secretion of sex steroids in adolescence causes SS in adolescence (constitutional delay of growth and puberty, CDGP)
196 197	B.3e.2 Precocious puberty causes accelerated linear growth and growth plate closure in childhood, resulting in SS in adulthood
198	B.3f Decreased thyroid hormone effect
199	B.3f.1 Hypothyroidism, primary or secondary (central)
200	B.3f.2 Non-goitrous congenital hypothyroidism-6 (CHNG6), caused by heterozygous variants in THR
201	B.3g Glucocorticoid excess
202 203	B.3g.1 Endogenous: Cushing syndrome, e.g., Cushing disease, glucocorticoid-producing tumor in the adrenal
204	B.3g.2 Exogenous: Glucocorticoid treatment (systemic or local)
205	
206	B.4 Metabolic disorders
207 208 209	Normal metabolism of nutrients, minerals and electrolytes are required for normal growth plate chondrogenesis. Consequently, disorders in metabolic systems often affect growth. Many of these processes occur primarily in the liver and kidney.
210	B.4a Disorders of calcium and phosphorus metabolism
211	B.4a.1 Disorders of vitamin D and its metabolism or other forms of calcipenic rickets
212	B.4a.2 Disorders of phosphate metabolism (hypophosphatemic rickets)
213	B.4a.3 Hypophosphatasia
214	B.4b. Disorders of carbohydrate metabolism
215	B.4c Disorders of lipid metabolism
216	B.4d Disorders of protein metabolism
217	
218	B.5 Psychosocial/psychiatric disorders
219	B.5a Psychosocial deprivation
220	B.5b Anorexia Nervosa
221	
222	B.6 latrogenic
223	B.6a Treatment of childhood malignancy (irradiation, chemotherapy, stem cell transplant)

224	b.bb Other medications (e.g., pharmacological treatment of ADHD)
225	
226 227	C. Short stature of unknown origin with normal birth size (traditionally called "idiopathic short stature") or low birth size (we suggest calling this "idiopathic short SGA")
228 229 230	C.1 SS in a child born with a normal birth size in whom the diagnostic evaluation does not reveal a primary or secondary cause of growth impairment: Idiopathic SS (ISS) according to the 2008 ISS consensus definition ⁹
231	C.1a Isolated idiopathic SS
232 233	C.1b Non-isolated idiopathic SS (SS plus one or more clinical or laboratory features associated with increased likelihood of a genetic cause)
234 235	C.2 SS of a child born with a low birth size (birth length and/or weight <-2 SDS) (the idiopathic subgroup of the SGA definition according to the SGA consensus ²
236	C.2a Isolated idiopathic SS of a child born with a low birth size
237 238	C.2b Non-isolated SS of a child born with a low birth size (SS plus one or more clinical or laboratory features associated with increased likelihood of a genetic cause)

Supplementary Information 2. Level of evidence of the association of a gene with a given phenotype

Over the last two decades, each year, several novel associations between genes and phenotypes have been described. It is critical for clinicians to understand the strength of the evidence linking variants in a gene to a specific phenotype. Clinical genetic testing should focus on genes that are well established as causing the patient's phenotype and directly related to the clinical motivation for the test. This is straightforward for candidate gene approaches, but not so for exome or genome sequencing. The NIH-funded Clinical Genome Resource (ClinGen) framework offers a structured approach, categorizing gene-disease associations as "Definitive," "Strong," "Moderate," "Limited," "No Reported Evidence," or "Conflicting Evidence", helping clinicians interpret genetic results¹⁵.

Monogenic causes

Positive results, incomplete genotype, negative results, VUS

A genetic test result should be interpreted in the context of the disease associated with the gene, the identified variant, the inheritance mode, and the concordance between the altered gene function and the patient's phenotype. The primary finding in genetic tests typically corresponds to the reason the test was requested and may completely or partially explain the phenotype.

The laboratory must classify genetic variants according to the American College of Medical Genetics and Genetics and the Association for Molecular Pathology (ACMG/AMP) recommendations¹⁶ (see **R3**). Since this landmark publication, several updates and amendments have been proposed, and a new, updated version of these recommendations is anticipated soon. Clinicians should remain vigilant regarding the need to reassess variant classifications as new knowledge and tools become available. Clinicians should also be aware that adding a new patient with a VUS to

clinical databases (e.g., ClinVar) may result in assigning a new classification for the variant if the new patient has a similar phenotype to reported patients with the identical variant.

A genetic test result may be considered positive, and clinically actionable, when a likely pathogenic or pathogenic variant identified in a specific gene is consistent with the phenotype and inheritance model observed in the patient being evaluated. This includes, for example, biallelic (homozygous or compound heterozygous) variants for a recessive disease. In cases of recessive diseases where only a single heterozygous variant is identified, the result should be interpreted as an incomplete genotype, as a second variant may not have been detected due to limitations of the testing method.

A genetic test is considered negative when no variants capable of explaining the patient's phenotype are identified. However, a negative result does not rule out the possibility that a patient carries one or more causal variants. Various technical limitations may prevent the identification or recognition of a causal variant as deleterious. Some clinical diagnostic laboratories report variants only in known genes associated with the presenting phenotype, while other laboratories may also report variants in genes which have been predicted to cause or be associated with the phenotype based on various evidence (e.g., animal model). The identified benign/likely benign variants should not be listed in the routine report from the laboratory.

A genetic result may also include the identification of variants of uncertain significance (VUS). A VUS is a genetic alteration detected during testing that cannot be definitively classified as either pathogenic/likely pathogenic (disease-causing) or benign/likely benign (non-disease-causing) based on current evidence¹⁷. We recommend that the laboratory should report a VUS if the respective gene may be implicated in the phenotype that motivated the genetic study, emphasizing that there is inconclusive evidence.

These findings pose significant challenges for clinical interpretation. It is essential for physicians, patients, and their families to understand that a VUS is not definitive evidence and should

not guide clinical decision making. Unnecessary follow-up testing (e.g., imaging) solely based on a VUS should be avoided. However, in collaboration with the clinical geneticist, specific testing to refine a phenotype may allow for more accurate assessment of the pathogenicity of the VUS. A VUS test result should not be used for pre-implantation/prenatal testing or for predictive testing in other relatives. Family studies (if relevant) should be encouraged to clarify segregation, and re-evaluation should be performed in 2–5 years or if new clinical features emerge (see **R 6**). Comprehensive preand post-test genetic counseling is necessary to explain the ambiguous nature of a VUS to patients and their caregivers, helping to minimize the risk of misinterpretation. Clinicians, in collaboration with a clinical geneticist, should consider adding a new patient with a VUS to ClinVar, which may have future consequences for the pathogenicity classification.

The reclassification of a VUS into a more definitive category (pathogenic/likely pathogenic or benign/likely benign) requires further evidence, such as new phenotypic information, segregation analyses in family members, population studies, identification of additional affected families, and functional studies. Despite these efforts, most variants initially classified as VUS remain in this category over time. Development of advanced bioinformatics tools will assist with the burden of reinterpretation. Among those reclassified, the majority are downgraded to likely benign or benign¹⁸. However, significant efforts are underway to achieve definitive classification of genetic variants, particularly those in coding regions, which is expected to substantially reduce the number of variants classified as VUS in the coming years¹⁹.

Digenicity, oligogenicity and polygenicity

The interaction between two rare variants can occur within a phenotype modulation context, where one gene plays a predominant role in determining the phenotype, while a variant in a second gene either exacerbates or mitigates the effect of the primary alteration. In other scenarios, the co-

occurrence of deleterious variants in two distinct genes may be required for the phenotype to manifest, representing a digenic inheritance model^{20,21,22}.

Another scenario to consider involves patients who carry two or more non-overlapping genetic disorders, where the combination of phenotypes contributes to greater clinical complexity and severity of SS⁸. One should also consider the possibility of a multilocus imprinting disturbance resulting in mixed phenotypes [e.g., SRS or Beckwith-Wiedemann syndrome with a Temple syndrome (TS14) imprinting signature]²³. While it is plausible that a proportion of patients with SS exhibit digenicity, oligogenicity, or interactions between rare and common variants across multiple genes, only a limited number of convincing examples with well-characterized molecular mechanisms have been reported to date²⁴.

Further studies, including analyses of large families, well-defined patient cohorts, and population-level genetic datasets combined with rigorous functional investigations are needed to enhance our understanding of the genetic basis of growth disorders. This understanding must also encompass the polygenic component, which is currently assessed using the polygenic risk score (PRS), also called polygenic score (PGS). PRS is a quantitative measure that estimates an individual's genetic predisposition to a specific trait or disease. It is calculated by aggregating the effects of multiple single nucleotide polymorphisms (SNPs) across the genome, with each variant weighted according to its effect size, as determined by genome-wide association studies (GWAS). While still primarily a research tool, PRS holds potential for improving the prediction of adult height and identifying children at risk of developing SS^{25,26,27}.

Secondary findings

In tests that employ a genetic approach, where multiple regions and genes are evaluated simultaneously, secondary findings may occur. These refer to variants with clinical significance that

- are not directly related to the reason for ordering the genetic test. Extensive medical literature is
- available on this topic²⁸, see also **Supplementary Information 3**.

Supplementary information 3. Benefits and risks of genetic testing

Potential benefits

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

Prior to embarking on genetic testing, one should carefully consider the potential benefits and risks from pursuing genetic investigations. First, obtaining a definitive diagnosis can be gratifying to patients and their families as this facilitates understanding of the cause of the patient's SS²⁹. Additionally, establishment of a genetic diagnosis may obviate the need for further extensive diagnostic tests to determine the etiology of the child's SS9. Additionally, genetic testing may identify a condition associated with SS before the full phenotypic expression, which is particularly important in younger children, as it enables an earlier diagnosis and the possibility of timely clinical intervention. Perhaps most importantly, a genetic diagnosis may eliminate the need for GH stimulation tests, which have a high rate of false-positive findings leading to overdiagnosis and treatment of GH deficiency (GHD)³⁰. A genetic diagnosis can also help guide therapeutic decisions, either by identifying conditions for which there is an effective treatment to stimulate growth or by preventing the unnecessary use of recombinant human growth hormone (rhGH) in conditions for which rhGH has shown to be ineffective such as in patients with GHR mutations (Laron syndrome)³¹ or patients with specific growth plate disorders such as achondroplasia³². Additionally, it may have consequences for dosing rhGH (e.g., accepting elevated serum IGF-1 in children with heterozygous IGF1R defects on rhGH treatment³³ and a higher rhGH dosage for children with heterozygous SHOX defects than usual for short SGA children³⁴. Finally, there are conditions for which rhGH treatment is contraindicated due to the potential for harm, as in individuals with a cancer predisposition syndrome (e.g., Bloom syndrome)³⁵.

In addition to helping guide therapy, a genetic diagnosis may highlight the need to screen for significant comorbidities associated with the underlying condition. Prompt identification of some comorbidities is critical for early intervention and improved patient outcomes. For example, Turner syndrome is commonly associated with SS and often results in cardiovascular anomalies such as

coarctation of the aorta, making early diagnosis essential for preventing life-threatening complications³⁶. Similarly, Noonan syndrome can predispose individuals to lymphoproliferative disorders, where timely identification helps in monitoring and managing the risk of cancer development³⁷. Finally, a genetic diagnosis aids accurate genetic counseling, including on family planning. Examples of benefits of establishing the diagnosis in ten prevalent genetic causes of isolated SS are presented in **Suppl Information 4**, **Suppl Table 1**.

Some types of genetic testing, such as exome sequencing (ES) and genome sequencing (GS), have the potential to identify not only primary findings (i.e. variants related to the child's SS) but also clinically relevant secondary findings (i.e. actionable variants that are unrelated to the child's SS). The American College of Medical Genetics and Genetics (ACMG) guidelines recommend that laboratories should limit these additional findings by only analyzing a set of genes deemed to be highly medically actionable to detect pathogenic variants that may predispose to a severe but preventable outcome^{38,39}. Practices on analysis of secondary and incidental findings vary by country and medical center.

Potential risks

While many benefits of genetic testing clearly exist, one must also carefully consider the potential risks. Genetic variants can be difficult to interpret. A false positive genetic diagnosis occurs when a variant is mistakenly interpreted as pathogenic, leading to incorrect assumptions about the cause of disease. Such misinterpretation of genetic variants can lead to unnecessary anxiety, mismanagement, and inappropriate testing and treatment. In addition, secondary findings, even if accurate, can lead to anxiety in the affected family and, if erroneously classified, expose individuals to unnecessary surveillance or diagnostic testing.

Secondary findings can also affect insurance coverage. In terms of life and health insurance, the discovery of a genetic predisposition to certain diseases may lead to increased premiums or denial of coverage altogether. Although many countries, like the United States and members of the

European Union, have regulations preventing discrimination based on genetic information in health insurance, this protection does not always extend to life, disability, or long-term care insurance⁴⁰.

389

Supplementary information 4: Benefits of establishing the genetic diagnosis in ten prevalent genetic causes detected in children with isolated SS

In order to present an example of the clinical consequences of establishing a genetic diagnosis in a child with isolated SS, we performed a literature search on the clinical features in childhood and beyond of patients carrying a pathogenic genetic variant in 10 prevalent genetic causes of isolated childhood SS [heterozygous variants of *ACAN*, *COL2A1*, *FBN1*, *FGFR3*, *GHSR*, *IHH*, *NF1*, *NPR2*, *PTPN11* or *SHOX* (hemizygous in males)]^{41,42,3,43,44}. The clinical consequence of making a genetic diagnosis for each of these genes is mainly derived from studies in children with non-isolated SS. Consequences for management are summarized in **Suppl Table 1**.

Regarding management, for all syndromes discussed below a molecular genetic diagnosis can help the family and medical care providers by facilitating an understanding of the cause and natural history of the condition and by obviating the need for additional diagnostic testing.

ACAN

Protein: ACAN encodes aggrecan, which is the most abundant proteoglycan in hyaline cartilage and is essential for the structural integrity and function of growth plate, articular cartilage, and intervertebral discs¹².

Syndromes: Biallelic pathogenic *ACAN* variants cause a rare and severe skeletal dysplasia termed spondyloepimetaphyseal dysplasia, aggrecan type⁴⁵, while monoallelic pathogenic variants result in milder phenotypes, such as spondyloepiphyseal dysplasia, Kimberley type⁴⁶. Monoallelic *ACAN* pathogenic variants can also present as isolated SS, with or without advanced bone age or early-onset osteoarthritis and/or osteochondritis dissecans^{47,48}.

Phenotype: Autosomal dominant ACAN-related SS is associated with a range of variable, but potentially informative clinical features that, while not specific, may aid in diagnosis. These include advanced bone age, early growth cessation, osteochondritis dissecans, early onset osteoarthritis,

early onset intervertebral disc disease, midface hypoplasia and brachydactyly. An additional distinguishing feature is relatively preserved arm span compared to height, in contrast to relatively short legs⁴⁹. However, all of these features are variable and may not be observed in all patients and affected family members.

Several studies in idiopathic SS (ISS) cohorts suggest that heterozygous pathogenic *ACAN* variants are a relatively frequent cause, accounting for 1-2 percent of cases⁵⁰, although their prevalence varies across populations³. Pathogenic variants in *ACAN* have also been identified in short SGA children who had advanced bone age and two or more additional characteristics including midface hypoplasia, joint problems, or broad great toes⁵¹.

Management: In children and families with ACAN-related SS, a genetic diagnosis helps facilitate ongoing monitoring and counseling regarding the risk of early-onset osteoarthritis and intervertebral disc disease. Preventive strategies should emphasize a joint-friendly lifestyle, including low-impact physical activity and prevention of obesity, in the hope that these interventions will reduce the risk of long-term disability and chronic pain⁴⁸.

Treatment: Data on the response to rhGH treatment in individuals with pathogenic *ACAN* variants are limited and primarily based on retrospective case series, most of which lack adult height outcomes and often involve combined therapies with GnRH analogues or aromatase inhibitors^{48,52,51,53}.

In a prospective study involving 10 prepubertal children with *ACAN* variants treated with rhGH (50 μ g/kg/day), a significant increase in growth velocity and an average height SDS gain of 0.7 during the first year of treatment was observed and a median height gain of 1.2 SD at 3 years^{54,55}. Treatment did not accelerate bone age maturation during the study period. However, this study as well as retrospective data suggest a reduced response to rhGH beyond the first year of therapy^{51,53}. Currently available data do not allow for any conclusions on long-term efficacy up to adult height of rhGH alone or in combination with puberty modulation in this condition^{48,51}.

COL2A1

Protein: COL2A1 encodes the alpha-1 chain of type-II procollagen. Type II collagen is a major constituent of cartilage extracellular matrix, including both growth plate and articular cartilage, and plays a role in other structures, including the vitreous humor of the eye and the inner ear⁵⁶.

Syndromes: Monoallelic pathogenic *COL2A1* variants are associated with a diverse group of conditions known as type-II collagen disorders, including spondyloepiphyseal dysplasia congenita, Kniest dysplasia, Stickler syndrome type I, hypochondrogenesis, achondrogenesis type II, and multiple other recognized disorders⁵⁷. There is phenotypic overlap among these conditions and genotype-phenotype correlation is generally not clear-cut⁵⁸.

Phenotype: The phenotype can include skeletal dysplasia with SS, ophthalmologic abnormalities (e.g., lens subluxation, vitreous disorders, retinal detachment, cataracts, myopia), impaired hearing, cleft palate, and characteristic facial features⁵⁸. The severity of these disorders ranges from perinatal-lethal disorders to milder disorders that present in the neonatal period, childhood, adolescence, or adulthood^{58,13}. The diagnosis of a type II collagen disorder is usually prompted by clinical and radiographic findings, including disproportionate SS, palate abnormalities, ophthalmological manifestations, hearing loss, and radiographic spondyloepiphyseal dysplasia⁵⁷.

COL2A1 variants thought to be pathogenic have been reported in individuals who present clinically with isolated proportionate or disproportionate SS^{42,59,60}. In this situation, the mild presenting phenotype may imply that the molecular diagnosis will have fewer clinical consequences.

Management: Identifying a pathogenic variant in *COL2A1A*, along with clinical and radiological findings, contributes to a diagnosis of a specific type 2 collagenopathy. Recognizing the diagnostic category can help avoid unnecessary additional diagnostic testing, understand the prognosis, plan anticipatory health supervision, and inform genetic counselling. Practice guidelines regarding the diagnosis and management of patients with type II collagen disorders have been published by the Skeletal Dysplasia Management Consortium⁵⁷. Anticipatory health supervision

includes monitoring by an ophthalmologist, radiological monitoring for cervical instability, and monitoring for hearing loss⁵⁷.

Treatment: In two retrospective case series, rhGH therapy has been associated with increased growth velocity and height SDS gain in patients with heterozygous *COL2A1* variants^{61,62}, but many of these variants were classified as a rare variant of uncertain significance (VUS). Controlled studies are needed to determine the efficacy of rhGH treatment in short children carrying pathogenic *COL2A1* variants.

FBN1

Protein: FBN1 encodes fibrillin-1, the major constitutive element of extracellular microfibrils which has widespread distribution in both elastic and nonelastic connective tissue throughout the body. Fibrillin-1 is essential for the mechanical integrity of tissues but also regulates TGF- β signaling in extracellular matrix, which plays a role in growth and development.

Syndromes: Monoallelic pathogenic *FBN1* variants are best known for their association with tall stature syndromes, particularly Marfan syndrome, where pathogenic *FBN1* variants impair tissue elasticity and regulation of TGF- β signaling, leading to long limbs and tall stature. In contrast, specific missense *FBN1* variants involving the exon 41 and 42 are associated with three SS syndromes: Weill-Marchesani syndrome (WMS2), acromicric dysplasia (AD) and geleophysic dysplasia 2 (GD).

WMS2 is caused by specific in-frame or missense *FBN1* variants, leading to a reduced availability of functional fibrillin-1, resulting in decreased growth and short limbs. Recessive forms of WMS2 are caused by other genes participating in extracellular microfibrils or TGF- β signaling, such as biallelic variants in *ADAMTS10*, *ADAMTS17* and *LTBP2*^{63,64}, whereas AD and GD are also associated with *LPBP3* and *ADAMTS12* variants.

Phenotype: AD, GD and WMS2 belong to the group of acromelic dysplasias, defined by SS, brachydactyly and joint limitations. Other clinical features include muscular hypertrophy, congenital heart defects (especially, valvular issues) and eye abnormalities.

Native American ancestry is associated with reduced height in an ethnically diverse group of Peruvian individuals, and a population-specific missense variant in *FBN1* (E1297G) significantly associated with lower height⁶⁵. Additionally, cases of pathogenic variants in *FBN1* have been described in children with SS without typical syndromic features^{66,43}.

Management: Cardiac and ophthalmological assessment is indicated with follow-up dependent on findings.

Treatment: Response to long-term rhGH treatment has been reported in one patient with a pathogenic *FBN1* variant without clear effect on adult height⁶⁶.

FGFR3

Protein: FGFR3 encodes one of the receptors for fibroblast growth factors, a family of polypeptide growth factors involved in a variety of activities, including mitogenesis, angiogenesis, and wound healing. FGF receptors, such as FGFR3, contain an extracellular domain with either 2 or 3 immunoglobulin (Ig)-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain.

Syndromes: Gain-of-function variants in *FGFR3* impair growth plate chondrogenesis, causing SS. The severity of the phenotype can vary widely, depending on the variant, ranging from (most to least severe) thanatophoric dysplasia, achondroplasia, hypochondroplasia, and isolated SS.

Achondroplasia

Phenotype: Achondroplasia is the most common FGFR3-related disorder, characterized by disproportionate SS with rhizomelic shortening of the limbs, macrocephaly, and characteristic facial features⁶⁷. Other major clinical manifestations include thoracolumbar kyphosis, spinal stenosis, obstructive sleep apnea, restrictive pulmonary disease and conductive hearing loss.

In children with achondroplasia, suspicion of skeletal dysplasia often arises during fetal life due to an abnormal ultrasound study or soon after birth because of clinical manifestations. Genetic

testing serves to confirm the specific etiology. In infancy, craniocervical junction compression can cause central apnea which can be lethal.

Management: The diagnosis of achondroplasia, confirmed by genetic testing, has many clinical repercussions, increasing vigilance for the varied clinical problems and facilitating anticipatory health supervision⁶⁸. Because craniocervical junction compression may be life-threatening, early recognition and, if needed, decompression is particularly important⁶⁸.

Genetic diagnosis also informs genetic counselling. Approximately 80% of individuals with achondroplasia arise from *de novo* pathogenic *FGFR3* variants in which case the recurrence risk has been estimated at 0.2%, presumably due to parental germline mosaicism⁶⁹. If the condition was inherited from an affected parent, the recurrence risk is 50%.

Some of the manifestations of achondroplasia can be treated medically or surgically. Surgical interventions include ventriculoperitoneal shunt, suboccipital decompression for craniocervical junction compression, adenotonsillectomy, pressure-equalizing tubes for middle ear dysfunction, and procedures for bowing of the legs, kyphosis, and spinal stenosis. Recently, medical treatment to augment bone growth has been introduced.

Treatment: Clinical trials with rhGH have shown a modest long-term effect (3 cm) on adult height⁷⁰. rhGH treatment for achondroplasia is only registered in Japan. Vosoritide, a C-type natriuretic peptide (CNP) analog, increases linear growth rate⁷¹. Infigratinib, a non-selective FGFR1–3 tyrosine kinase inhibitor, has shown favorable results in clinical trials⁷². For both drugs, no long-term data on efficacy or safety are yet available. In addition, adjustments to the environment and psychosocial support are often introduced.

Hypochondroplasia

Phenotype: This condition, which is less severe than achondroplasia, presents primarily with disproportionate SS characterized by limb length that is decreased relative to trunk length⁷³. Many of the clinical problems occurring in achondroplasia are either not associated with hypochondroplasia

or tend to be less severe and less frequent than in achondroplasia (e.g., joint pain and spinal stenosis). Because the clinical and radiological manifestations are more subtle than in achondroplasia, genetic testing is especially useful to distinguish this condition from other causes of SS. Some genotype-phenotype correlations have been reported⁷³.

Similar to achondroplasia, hypochondroplasia can be inherited in an autosomal dominant manner, which is associated with a 50% recurrence risk for siblings of the proband. However, most individuals with hypochondroplasia have a *de novo* pathogenic variant, in which case the recurrence risk to sibs is estimated to be 1%, as a result of parental germline mosaicism.

FGFR3 variants thought to be pathogenic have been identified in individuals who were considered to have mild disproportionate SS or even proportionate SS at clinical presentation 60,42,74. In this situation, the mild presenting phenotype may imply that the molecular diagnosis will have fewer clinical consequences. The extent of these clinical consequences will likely become more apparent as additional patients in this situation are reported.

Treatment: Only few retrospective case series have been reported on the effect of rhGH in children with hypochondroplasia, showing a positive short-term growth response but disappointing long-term results^{75,76}. However, several novel therapies targeting either the CNP or FGFR3 pathways are currently in clinical trials. So far, one study on the efficacy of Vosoritide in children with hypochondroplasia has been published, showing that height velocity rose by ~1.8 cm/year over 6 months and height SDS increased by ~0.4 SD compared to baseline⁷⁷.

GHSR

Protein: GHSR encodes a G protein-coupled receptor (GHSR) expressed mainly in the pituitary and hypothalamus. It mediates the biologic effects of ghrelin (GHRL), a pleiotropic hormone secreted by the stomach that promotes food-seeking behavior and positive energy balance. GHSR can also signal in the absence of ligand due to high constitutive activity and selectively modulate

dopamine signaling through heterodimerization with dopamine receptors. Experimental data have shown that GHSR signaling stimulates GH secretion⁷⁸.

Syndrome: Loss-of-function of *GHSR* is associated with "isolated partial growth hormone deficiency", first described in 2006⁷⁹.

Phenotype: Missense variants in GHSR have been associated with proportionate SS, lownormal serum IGF-1 and isolated partial GHD or SS with normal serum GH responses to GH stimulation testing. Other reported clinical features include failure to thrive with low appetite and late puberty. Segregation studies have shown incomplete penetrance. The largest cohort studied to date included 26 patients with proportionate SS with a mean (SD) height SDS of -2.8 (0.5), mean (SD) serum IGF-I SDS of -1.6 (0.7) and a normal stimulated GH response, in line with previous smaller studies⁸⁰. Pathogenicity of the GHSR variants was studied *in vitro* using total protein levels, cell surface expression, and receptor activity in basal, stimulated, and inhibited states⁸⁰.

Management: The genetic diagnosis of GHSR haploinsufficiency is important because these patients often show a phenotype resembling ISS. Although partial GHD has been reported, most patients have a normal stimulated GH peak as the traditionally used pharmacological agents test the intact GHRH/somatostatin system⁸⁰.

Treatment: The short-term growth response to rhGH treatment in nine patients showed a mean height gain of 0.9 and 1.5 SDS after 1 and 2 years, respectively⁸⁰, in line with results reported on smaller cohorts.

IHH

Protein: IHH encodes a member of the hedgehog family of proteins and forms a feedback loop with PTHrP to regulate chondrocyte proliferation and differentiation in the growth plate cartilage⁸¹. Consequently, IHH is essential in endochondral bone formation, growth plate chondrogenesis^{82,83} and trabecular bone formation^{84,85}, dependent or independent of PTHrP.

Syndromes: Monoallelic pathogenic variants cause brachydactyly type A1 (BDA1)^{86,87}, a constellation of shortening or malformation of middle phalanges/toes and SS (height ranging between –4 and 0 SDS)⁸⁸. Biallelic pathogenic variants cause a rare dwarfism (height ranging between –9 and -2.3 SDS) called acrocapitofemoral dysplasia, also affecting hands and hips^{89,90,91}.

Most of the identified pathogenic variants associated with BDA1 have been located in the functionally important N-terminal segment of IHH [Byrnes_AM;2009;Brachydactyly;19277064]. In contrast, several series of patients with isolated SS with or without mild skeletal findings associated with BDA1 were found to have missense and loss-of-function variants distributed more diffusely in IHH^{88,9293}.

Phenotype: BDA1 is characterized by mild SS and shortening of the middle phalanges of the digits of the hand, with or without symphalangism (a condition where the interphalangeal joints of the fingers and/or toes fuse, leading to stiffness and limited mobility). Considerable inter- and intrafamilial variability has been observed, with all or only some digits affected, and complete absence of the middle phalanx in some cases. Metacarpals may also be shortened, and clinodactyly, camptodactyly and ulnar deviation have been reported. Some patients exhibit abnormalities of the feet. Mild body disproportion was observed in the Brazilian cohort (mean sitting height to height ratio +2.4 SDS, range +0.3 to +4.4)⁹². Most affected children had mildly delayed bone age, but advanced bone age has also been observed. Abnormal hand radiographs were observed in 50% of patients with varying degrees of shortening of the middle phalanx of the second and fifth fingers with cone-shaped epiphyses.

Management: No special needs for surveillance.

Treatment: Five patients with SS due to IHH variants treated with rhGH showed a modest mean effect (0.6 SDS gain) for one year of treatment⁹². A case report on two siblings showed a significant height SDS increase of +2.4 and +1.9 after 4 years of rhGH treatment⁹⁴. Further studies will be needed in a large cohort of patients to establish the full phenotypic spectrum, comorbidities, genotype-phenotype, and to determine the treatment efficacy of rhGH in terms of adult height.

NF1

Protein: NF1 encodes neurofibromin, a known tumor suppressor^{95,96}, which also plays a role in other regulatory systems of the body. Regarding linear growth regulation, neurofibromin is a negative regulator of the intracellular protein Ras, which regulates MAPK-ERK phosphorylation^{97,98} and PI3K activation downstream signaling⁹⁹. Loss of neurofibromin function leads to an increase in ERK phosphorylation causing reduced growth plate chondrogenesis by altering chondrocyte proliferation and differentiation ^{97,98}, similar to the molecular pathophysiology of Noonan syndrome¹⁰⁰.

An alternative pathophysiological explanation of growth retardation was suggested by observations in brain-specific *Nf1* knockout mice showing small anterior pituitary glands and reduced GHRH, pituitary GH and liver IGF-1 production¹⁰¹. However, in the human, evidence for a role of GH deficiency was unconvincing in two cohort studies^{102, 103} except for a single case with empty sella and hypopituitarism¹⁰⁴.

Syndrome: NF1 is a common genetic disorder affecting approximately 1 in 2,500 births¹⁰⁵ and is caused by heterozygous loss-of-function variants in neurofibromin. Children with NF1 are at high risk for various tumors (i.e., neurofibroma, plexiform neurofibroma, glioma, hamartoma), although pathogenic NF1 variants have shown highly variable clinical expressivity and poor genotype-phenotype correlation^{95,96}.

NF1 is inherited in an autosomal dominant fashion, but approximately 50% of patients have sporadic NF1 due to a *de novo* pathogenic *NF1* variant. NF1 shows 100% penetrance by adolescence; therefore, close monitoring and follow-up of physical examination to detect any of the seven clinical manifestations can establish the diagnosis during childhood unless patients meet the clinical diagnosis criteria at presentation ^{95,96}.

Phenotype: According to the NIH Consensus Development Conference Criteria, the diagnosis of NF1 requires at least two of seven clinical manifestations ^{106,107}: *i)* six or more café-au-lait macules

(coast of California), *ii*) two more neurofibromas of any type or one plexiform neurofibroma, *iii*) freckling in the axillary or inguinal region, *iv*) optic glioma, *v*) two or more iris hamartomas (Lisch nodules), *vi*) osseous lesion (sphenoid wing dysplasia or long-bone dysplasia with or without pseudoarthrosis), and *vii*) a first-degree relative with clinical NF1.

Although genetic confirmation may not be absolutely needed for NF1 diagnosis, genetic testing for *NF1* in blood or affected tissues may be helpful for diagnosis in children who present with atypical features, or may assist in genetic counseling and family planning ^{106,107}.

Consistent with the role of neurofibromin in growth regulation, approximately 50% of children with NF1 develop postnatal growth delay with reduced pubertal growth spurt, leading to SS or a height below target height¹⁰⁸. Growth patterns of children with NF1 in several longitudinal studies were reported to aid in growth assessment. On average, children with NF1 are 0.5 SDS shorter than reference children^{109,110,111}.

Endocrine dysfunctions are also frequent in NF1. For example, in two large cohorts 23-30% of children with NF1 developed endocrine dysfunctions, including central precocious puberty, GH hypersecretion or a low GH peak at a GH stimulation test^{112,103}. Children with NF1 with accelerated growth velocity or tall stature in childhood with or without precocious puberty should be evaluated for associated gliomas involving the chiasm and/or hypothalamic-pituitary axis^{113,114}. In addition, two recent systematic reviews and meta-analyses showed that NF1 is associated with decreased BMD at the lumbar spine and femur^{115,116}. Children with NF1 may also develop focal skeletal abnormalities that can cause morbidity¹⁰⁷.

Management: Because children with NF1 develop multiple complex clinical presentations, multidisciplinary approaches are required to monitor disease and provide adequate treatment. The detailed workup and management are well-summarized elsewhere¹¹⁷.

Treatment: rhGH therapy should be used only when patients are short, have poor height velocity and show definitively confirmed GHD¹⁰⁷. The reason for caution is that GH receptors are

expressed in plexiform neurofibroma¹¹⁸ and IGF receptors in Schwann cells¹¹⁹, suggesting that rhGH treatment may affect the progression or recurrence of tumors¹²⁰.

NPR2

Protein: NPR2 encodes the homodimeric transmembrane natriuretic peptide receptor B (NPRB). When activated by its endogenous ligand, C-type natriuretic peptide (CNP), it produces cyclic GMP from GTP. In the growth plate, NPRB signaling promotes chondrogenesis and therefore longitudinal bone growth. This effect is mediated, at least in part, by activation of p38, which inhibits the activation of MEK by RAF in the MAPK signaling pathway. This, in turn, leads to inhibition of FGFR3 signaling and its inhibitory effect on proliferation and differentiation of chondrocytes 121,122,123. This pathway underlies the rationale for the use of CNP analogues to inhibit the excessive signaling through FGFR3 in achondroplasia.

Syndromes: Bi-allelic pathogenic variants in *NPR2* cause acromesomelic dysplasia (Maroteaux type, autosomal recessive) with only the skeletal system consistently affected¹²⁴ while obligate carriers of *NPR2* variants are shorter than matched controls^{121,125}. *NPR2* mono-allelic loss-of-function variants are found in cohorts with isolated SS¹²⁶, while gain-of-function variants have been identified in those with tall stature¹²⁷.

NPR2 variants have also been found in children with disproportionate SS, who had screened negative for *SHOX* pathogenic variants¹²⁸, in short SGA children (the majority being small for length)³ and children with dominant SS¹²⁹.

Phenotype: The clinical phenotype of patients with heterozygous *NPR2* variants includes SS (mean height SDS -2.7), facial anomalies and skeletal features, such as brachydactyly, shortened metacarpals or metatarsals (particularly fourth to fifth), and clinodactyly¹³⁰. The SS can be disproportionate, but this finding has been insufficient to guide a candidate gene approach⁶⁰. Height SD scores progressively decrease as heterozygous children mature in contrast to remaining

unchanged in their normal siblings¹³¹. An increase in BMI with age during childhood and adolescence (mean SDS gain +1.4) has been reported¹³².

GH-IGF-1 status in carriers of monoallelic *NPR2* variants has been reported as normal in most patients¹³³. In some children serum IGF-1 has been low¹³⁴, as often observed in children with isolated SS¹³⁵.

Management: No special needs for surveillance.

Treatment: Short-term, uncontrolled trials of treatment with rhGH have been undertaken, with variable growth responses. The average response has been a gain in height SDS of +1 over an average treatment period of 3 years ^{133,129,61,130,136}. Height SDS change correlated negatively with initial age of treatment and was associated with location of the monoallelic variants; height SDS gain was greater for those with mutations in the carboxyl-terminal guanylyl cyclase catalytic domain compared to the extracellular ligand-binding domain¹³⁰. Adjuvant treatments to delay puberty with gonadotrophin releasing hormone analogues have also been trialed.

For children with isolated SS and minor skeletal anomalies without a clinical diagnosis, a screen for a heterozygous *NPR2* variant is worthwhile. No other major long-term health issues have been reported in these subjects.

PTPN11

Protein: PTPN11 encodes a signaling molecule (PTPN11) within the protein tyrosine phosphatase (PTP) family. PTPs regulate cell growth, differentiation, the mitotic cycle, and oncogenic transformation. PTPN11 contains two tandem Src homology-2 domains, hence its alternative name of SHP2, and is involved in signaling in a range of cellular functions - mitogenic activation, metabolic control, transcription regulation, and cell migration. PTPN11 acts downstream of various receptors and positively regulates MAPK signaling.

Syndromes: Germline monoallelic pathogenic variants in *PTPN11* are the commonest cause of Noonan syndrome (NS; Noonan syndrome type 1)^{137,138}, whereas somatic variants are found in juvenile myelomonocytic leukemia and acute myeloid leukemia.

Phenotype: Features of NS may include feeding difficulties, SS, a distinctive facial appearance, a broad or webbed neck, congenital heart defects (i.e., pulmonary valve stenosis, hypertrophic cardiomyopathy), bleeding problems, bone malformations (i.e., pectus, scoliosis), cryptorchidism in males and developmental delay (https://rarediseases.info.nih.gov/diseases/10955/noonan-syndrome). Other mutations within the RAS/MAPK pathway cause NS and related conditions (e.g. Leopard, Cardio-facio-cutaneous and

The finding of *PTPN11* variants in screens of children with isolated / idiopathic SS indicates that there are children who have NS but do not have sufficient clinical features to flag up the possibility of this diagnosis¹³⁹.

Costello syndromes, and Neurofibromatosis type 1), which are collectively known as RASopathies.

Both sexes at 5 years of age with *PTPN11* variants were shorter and lighter than those with other gene variants¹⁴⁰. A range of abnormalities in the GH/IGF-1 axis have been described with low or normal GH with low IGF-I and neurosecretory dysfunction^{141,142}.

Learning difficulties as well as psychological problems may occur in NS. A behavioral phenotype in which social and emotional recognition and expression are abnormal has been described¹⁴³. ADHD and anxiety disorders have also been reported¹⁴⁴.

Management: Finding a pathogenic *PTPN11* variant has important implications for health surveillance and management. Cardiac abnormalities, including pulmonary stenosis, hypertrophic cardiomyopathy and progressive aortic annular dilation and aneurysm, are reported in NS¹⁴⁵, and therefore echocardiography at diagnosis and appropriate follow-up should be undertaken. Bleeding problems most commonly related to Factor XI deficiency are associated with NS and may require attention^{138,146}. Therefore, assessment and support may be required. In boys, delayed puberty may occur, which may require investigation and treatment. Early feeding problems are common in NS,

but they can also develop later in childhood. This too may require intervention¹⁴⁷. In summary, the finding of a *PTPN11* variant in a child with isolated SS should prompt a targeted health and well-being assessment.

Treatment: rhGH can be considered and there are numerous reports indicating a positive response to treatment and in general no major safety issues, including cardiac issues and malignancy occurrence¹⁴¹. rhGH is registered for NS in most parts of the world. Regarding mutation status, the mean gain in height SDS after 4 years on rhGH was +1.3 (SD 0.8) in those with *PTPN11* variants which was not different to those with other variants at +1.5 (SD 0.7)¹⁴⁸. Reports on adult height after rhGH treatment have been reported in small cohorts ¹⁴¹.

SHOX

Protein: The short stature homeobox gene (*SHOX*) encodes a transcription factor and is located on the pseudoautosomal regions of the X- and Y-chromosomes. It is expressed in the growth plate and promotes growth plate chondrogenesis and therefore linear growth ¹⁴⁹.

Syndromes: Biallelic inactivating variants in SHOX cause Langer mesomelic dysplasia, which includes severe, disproportionate SS with short and often bowed radius and tibia¹⁵⁰. Heterozygous (in females) and hemizygous (in males) inactivating variants or deletions of SHOX or its enhancer regions cause a milder skeletal dysplasia, Leri-Weill dyschondrosteosis¹⁵⁰ or can present clinically as idiopathic SS (ISS), with body proportions that are mildly affected or sometimes within the normal range^{151,152}. Heterozygous or hemizygous variants of SHOX are a fairly frequent finding in ISS and account for ~2% of growth failure in cohort studies of ISS¹⁵³.

Phenotype: Birth length is only mildly affected, but growth failure occurs during early postnatal life and is usually established during the 2nd or 3rd year of life^{153,154}, with additional loss of height percentiles sometimes occurring during puberty^{155,156}.

In addition to wrist deformities, there are several variable signs indicating possible SHOX deficiency, including shortening of the fourth and fifth metacarpals, high arched palate, increased

carrying angle of the elbow, scoliosis, and micrognathia. In addition, muscular hypertrophy of the calves is found in one third of affected individuals¹⁵⁷. Importantly, the absence of any of these signs, including Madelung deformity, does not exclude SHOX haploinsufficiency. Consequently, auxology is a large part of the proposed scoring systems for the diagnosis of SHOX deficiency^{157,153,151,152}.

Management: Monitoring for linear growth, tempo of pubertal development, scoliosis and Madelung deformity are warranted.

Treatment: A randomized controlled trial demonstrated the benefit of rhGH in prepubertal patients with SHOX haploinsufficiency treated for 2 years¹⁵⁸. Subsequently, similar adult height gains to those observed in girls with Turner syndrome were demonstrated¹⁵⁹. SHOX haploinsufficiency is a registered indication for rhGH treatment in most parts of the world.

Concluding remarks

For the conditions reviewed, molecular genetic diagnosis has the potential to provide benefits, to help the child and family understand the cause and prognosis of the condition, to avoid unnecessary additional diagnostic testing, to identify comorbidities, to inform treatment decisions, genetic counselling and to guide targeted health surveillance.

Regarding treatment, rhGH is registered for two of these genetic conditions (*SHOX* and *PTPN11* haploinsufficiency). In patients with mono- or biallelic pathogenic *GHSR* variants, it seems plausible that spontaneous GH secretion may be decreased, and a case series⁸⁰ and various case reports have suggested that rhGH treatment increases linear growth. Preliminary uncontrolled data on rhGH treatment of short children carrying a heterozygous variant of *IHH*⁹, *NPR2* ¹³⁰, and *ACAN* ⁵⁴ have suggested a modest growth response to rhGH in the first years of treatment; the effect on adult height is still uncertain. Variants in some of these genes may predispose to neoplasia (*PTPN11*, *NF1*) and, prior to initiating therapy, caregivers should be counselled on the potential benefits and risks of rhGH therapy in each situation. For several genetic defects adjunctive treatment has been

investigated with GnRHa (SHOX and others). Alternative interventions for growth are available for some genetic diagnoses, such as vosoritide treatment for mono-allelic *FGFR3* variants.

Regarding early detection of comorbidities, long-term monitoring is warranted in eight of the 10 genetic disorders (**Supplementary Table 1**); so far, no comorbidities are known for individuals with *GHSR* or *NPR2* haploinsufficiency.

Supplementary Table 1. Clinical consequences of establishing a genetic diagnosis in children with SS based on the 10 prevalent genetic causes of isolated SS#

Gene	Associated clinical features in addition to SS	Available Interventions	Recommended surveillance for presentations with non-isolated SS&	Effect of making a genetic diagnosis on relatives' health
ACAN	*Mid-facial hypoplasia *Advanced bone age *Osteochondritis dissecans *Early-onset osteoarthritis *Early-onset intervertebral disc disease	*Orthopedic interventions including joint replacement	*Advise to seek early medical assessment for joint pain *Joint-friendly activities, low impact physical activity *Prevention of excess weight gain	*Advise to seek early medical assessment for joint pain *Joint-friendly activities, low impact physical activity
COL2A1	*Eye abnormalities (lens subluxation, retinal detachment, cataracts) *Hearing impairment *Cleft palate *Cervical spine abnormalities *Atlantooccipital instability *Early-onset osteoarthritis	*Spinal surgery *Cleft palate repair *Advice on signs and symptoms of retinal detachment	*Life-long ophthalmological assessment — follow-up dependent on findings *Ongoing audiological assessment *Clinical and radiological surveillance for cervical instability and spinal cord compression *Monitor for scoliosis	*Advise early ophthalmological, audiological, radiological and spinal assessment
FBN1	*Brachydactyly *Congenital heart disease *Joint stiffness * Eye abnormalities (microspherophakia, lens ectopia, glaucoma) potentially leading to visual impairment	*Orthopedic, cardiac and ophthalmological intervention as required	*Initial cardiac assessment, follow-up dependent on findings *Initial ophthalmological assessment – follow-up dependent on findings	*Requirement for cardiac and ophthalmological assessment
FGFR3	*Spinal stenosis (Increases with age and is very common in adults with achondroplasia) *Tibial bowing *Obstructive sleep apnea *Foramen magnum stenosis *Hydrocephalus	*Vosoritide *Surgical interventions for certain comorbidities	*Orthopedic surveillance *Monitor for sleep- disordered breathing *Audiological follow-up *Brain MRI in infancy to assess foramen magnum	

	*Short extremities			
GHSR	*Failure to thrive *Poor appetite *Delayed puberty	*rhGH therapy for GHD in childhood and possibly in adulthood	Unknown	rhGH therapy for SS
IHH	Brachydactyly (usually mild)	N/A	Unknown	
NF1	*Neurocutaneous stigmata *Neoplasia (neurofibroma, optic pathway glioma, phaeochromocytoma) *Osseous lesions (sphenoid wing dysplasia) *Scoliosis *Osteopenia, osteoporosis *GHD, GH excess *Precocious puberty *Facial features (prominent forehead, short nose, potential midface hypoplasia)	*rhGH therapy for GHD in childhood and adulthood *GnRHa for precocious puberty *Somatostatin analogue for GH excess *Neoplasia: surgery, chemotherapy, radiotherapy	*Children *Growth monitoring (6-monthly) * Assessment of puberty stage and tempo * Ophthalmological assessment *Annual examination for neoplasia *Neurodevelopmental assessment *Monitor for scoliosis *Annual blood pressure Adults *Annual examination for neoplasia *Breast cancer assessment from 30y (women) *Annual neurological assessment *Monitor for osteoporosis *Annual blood pressure and cardiac assessment	*Life-long institution of detailed screening for complications of NF-1
	*Brachydactyly *Short metacarpals and metatarsals *Clinodactyly			
PTPN11	*Distinctive facies *Broad/webbed neck	*rhGH therapy	*Linear growth monitoring 6- monthly	*Cardiac assessment

	*Pectus carinatum/excavatum *Scoliosis *Congenital heart disease (pulmonary valve stenosis and hypertrophic cardiomyopathy) *Feeding difficulties, failure to thrive *Bleeding diathesis *Delayed puberty *Cryptorchidism *Intellectual disability *Juvenile myelomonocytic leukemia *Eye abnormalities (strabismus, amblyopia, nystagmus) *Hearing defect	*Sex hormone substitution for delayed puberty *Educational psychologist support *Treatment of factor XI deficiency	*Assessment of puberty stage and tempo *Cardiac assessment and follow-up *Ophthalmological assessment *Hematological assessment for easy bruising, bleeding or monocytosis * renal ultrasound scan at diagnosis	*Ophthalmologic al assessment *Hematological assessment *Children: timely access to rhGH therapy
SHOX	*Calf hypertrophy *Short 4 th metacarpal *Scoliosis *High arched palate *Madelung deformity	*rhGH therapy (children) *GnRHa as adjuvant therapy?	*Growth monitoring 6- monthly *Assessment of puberty stage and tempo *Madelung deformity may cause pain - advice to support wrist *Monitor for scoliosis	Children: timely access to GH therapy to optimize growth outcomes

For all gene defects, establishing the diagnosis provides explanation of familial SS to end diagnostic odyssey.

[&] Recommended surveillance for presentations with <u>isolated</u> SS (ISS) is unknown for all gene defects, except for *NF1, PTPN11* and *SHOX* variants.

N/A information not available

Supplementary Information 5. Diagnostic clues for a primary growth disorder

Medical history

Important diagnostic clues include intrauterine growth monitored with at least two ultrasound scans, a small birth size (small-for-gestational age, SGA), microcephaly or relative macrocephaly (indicative for Silver-Russell syndrome, SRS) at birth, feeding problems in infancy, neurodevelopmental disorders (including developmental delay (DD), intellectual deficit (ID) and behavior problems), progressive poor bone growth, bone fragility or recurrent fractures and/or signs of skeletal dysplasia (e.g., disproportionate SS, bowing). While many genetic causes of SS are characterized by postnatal growth failure, others show a combination of prenatal and postnatal growth failure. Birth length SDS is usually lower than birth weight SDS^{1,160,7}.

A history of feeding problems is often present in patients with SRS¹⁶¹, Temple syndrome (TS14), *IGF1R* haploinsufficiency³³, Noonan syndrome¹⁴⁷ and Prader-Willi syndrome (PWS)¹⁶².

A history of developmental delay, learning disability or behavior problems (e.g., autism spectrum disorder, ASD) increases the likelihood of a genetic syndrome¹⁶³. A history of frequent or low impact fractures suggests a form of osteogenesis imperfecta or another underlying bone disorder.

While most primary growth disorders have a genetic cause, others are caused by prenatal damage to the growing fetus, e.g., due to alcohol abuse or maternal medication in pregnancy.

Family history

A three-generation pedigree, with information about parental consanguinity and heights in siblings, parents and grandparents, can help identify patients with monogenic forms of SS with recessive, dominant, X-linked or mitochondrial inheritance. Detailed information regarding other relatives with SS may provide diagnostic clues. This includes age of onset, presence of disproportion,

childhood treatment with rhGH, dysmorphic features, psychomotor delay, learning disability, skeletal abnormalities and other medical issues. It is also useful to ask whether there are adult family members with specific clinical features typical for relatively frequent dominant genetic disorders, such as early-onset arthritis or a growth pattern with early arrest (pointing towards ACAN haploinsufficiency)⁴⁸, a Madelung deformity (pointing at SHOX haploinsufficiency), a family history of SGA (suggestive for *IGF1R* and *IGF2* variants), etc. However, in certain genetic disorders (e.g., Noonan syndrome and SRS), clinical manifestations (facial dysmorphisms) become less evident with age.

A pedigree analysis may also provide important clues to the likely mode of inheritance. Where one parent is similarly affected, autosomal dominant inheritance is most likely. Where siblings alone are affected, autosomal recessive inheritance should be considered, particularly in the presence of parental consanguinity. Affected males linked via unaffected or mildly affected females are suggestive of X-linked inheritance. Incomplete penetrance or imprinting effects may result in apparent skipping of generations. Parental history of infertility and recurrent miscarriage is compatible with severe recessive conditions or the presence of a balanced translocation in one of the parents. The use of assisted reproductive technology may point to an underlying imprinting defect how to the not been established whether the assisted reproductive technology increases the rate of *de novo* variants 165. Where there is a known genetic cause for SS in the family, testing can be targeted at the familial gene variant. For those patients with a *de novo* autosomal dominant variant, SS is sporadic, and family history will be uninformative.

Anthropometry and Pubertal Status

Height, weight, head circumference, sitting height and arm span are essential measures and should be expressed as SDS for age and sex. Body mass index (BMI) and SH/H and relative arm span should also be calculated and expressed as SDS. Pubertal status is usually rated according to Tanner and either visually compared with reference data or expressed as SDS^{166,167,168}.

The clinician should make every effort to collect as many growth measurements as possible from previous years in order to construct a comprehensive growth curve. Several primary growth disorders are characterized by a specific growth pattern. This was first shown for Turner syndrome^{169,170} and later also for other genetic syndromes^{171,157,128,48,92,172}. The usual pattern is a low or low-normal birth length, decreasing length SDS for 2–3 years, a stable height SDS (HSDS) in childhood, and further HSDS decrease during adolescence with no or attenuated growth spurt. A HSDS similar to the height SDS of one of the parents obviously increases the likelihood of a dominant condition. It is plausible that stable but extreme SS (HSDS <–3) increases the likelihood of a primary growth disorder^{173,163}], while growth faltering is more compatible with severe GHD or GH insensitivity¹⁷⁴ or other secondary growth disorders.

It is plausible that microcephalic SS increases the likelihood of a genetic cause^{175,1}, but the available evidence for this is weak due to heterogeneous patient cohorts¹⁶³. In infants and toddlers, fontanelles and dentition including timing of the eruption should be evaluated¹⁷⁶.

Relative macrocephaly at birth has been defined as a head circumference at least 1.5 SDS above birth weight and/or length SDS^{177,161} and is a key diagnostic clue to SRS. In a study on the phenotype in 69 patients referred with a possible diagnosis of SRS¹⁷⁷, the Netchine-Harbison clinical scoring system (NH-CSS), validated by this study, was found to have 98% sensitivity for detection of patients with molecularly-proven SRS. Relative macrocephaly at birth, one of the six criteria of the NH-CSS, was present significantly more frequently in individuals with SRS 11p15 (96.9%) and SRS mUPD7 (81.8%) compared to those with no molecular diagnosis who scored \leq 3/6 (25%). Relative macrocephaly at birth and protruding forehead were the two criteria in the NH-CSS which best distinguished SRS from non-SRS SGA¹⁶¹.

In childhood and beyond relative macrocephaly is usually defined as a relatively mild degree of macrocephaly in which the head circumference is not above two standard deviations from the mean but appears disproportionately large when other factors such as body stature are taken into

account, thus for example 2 SD above the regression line of head circumference vs height¹⁷⁸. It can point to achondroplasia, hypochondroplasia, RASopathies¹⁷⁹, 3M syndrome¹⁸⁰, neurofibromatosis 1¹⁸¹, Turner syndrome¹⁸², Temple syndrome¹⁸³, and Mulibrey Nanism.

A relatively high sitting height/height ratio (SH/H) SDS is seen in several skeletal dysplasias (e.g., in Turner syndrome and SHOX or ACAN deficiency) ^{151,152,48}. A decreased SH/H SDS is observed in children with axial segment abnormalities ¹⁷⁶, such as biallelic variants of *PAPSS2* ¹⁸⁴. Reference data for SH/H are available from various countries ^{185,186,187,188,189,190,191}. Measuring sitting height is preferred above measuring lower segment because the latter has a relatively low accuracy and recent reference data for upper/lower segment ratio are scarce ¹⁹².

The relationship between arm span and height can be expressed as a relative arm span (arm span minus height, arm span/height ratio or arm span for height)⁴⁹. In most primary growth disorders, arm span is shorter than body height, except for heterozygous *ACAN* mutations, where it is generally normal for age and sex, but increased in adolescents⁴⁹.

The ratio between length of the upper arm and lower arm (and upper leg versus lower leg) is important for the differentiation between hypochondroplasia (short upper arms and legs, rhizomelia) versus *SHOX* or *NPR2* haploinsufficiency (short forearms and lower legs, mesomelia)^{128,157}, although in hypochondroplasia short forearms have also been reported¹⁹³.

Dysmorphic Features

Special attention should be given to dysmorphic features, since these can offer clues for specific genetic conditions. Selected dysmorphic features were recently summarized¹⁹⁴ (for more details: London Medical Database via www.Face2Gene.com [Face2Gene. London Medical Databases. Boston, MA, USA; 2019.51] and seven reviews on elements of morphology and standard terminology (quoted in Wit JM et al¹⁹⁴.

Supplementary Information 6. Diagnostic clues for a secondary growth disorder

Medical history

A decreasing BMI, anorexia, fatigue, or abdominal complaints can suggest malnutrition, inflammatory bowel disease or celiac disease. An increasing BMI, particularly if combined with growth faltering, should be considered a red flag because it can be an early symptom of Cushing syndrome, hypothyroidism or acquired GHD. Fatigue can suggest juvenile hypothyroidism. A history of brain trauma raises the pre-test likelihood of acquired hypopituitarism. Symptoms of increased intracranial pressure (headache, vomiting, disturbed visual acuity) warrant a full neurological assessment. A full inventory of medication should be made, with specific attention to the use of corticosteroids (oral, inhaled, or topical) and medication for attention-deficit hyperactivity disorder (not limited to methylphenidate). Psychosocial/psychiatric issues should be assessed for emotional deprivation, or anorexia nervosa.

Family history

This should contain questions about familial occurrence of autoimmune diseases and puberty timing and past growth-promoting treatment in parents. A more exhaustive list of symptoms and signs of primary and secondary growth disorders was published previously¹⁹⁴.

Physical examination

A decreasing height SDS (low height velocity for age and height SDS) is an important sign of a secondary growth disorder, so besides the height at presentation, the clinician should collect all available length and height measurements. A key diagnostic clue is a high or recently increased BMI SDS in combination with growth faltering, which may raise suspicion for conditions such as Cushing syndrome, hypothyroidism, GHD, or a brain tumor (e.g., craniopharyngioma). However, an increasing BMI SDS is also observed in several primary growth disorders of genetic origin, e.g. Temple

syndrome, Prader-Willi syndrome and GNAS-inactive associated phenotypes. Clinicians should also remain vigilant for additional clinical features of Cushing syndrome, such as Cushingoid appearance (yearly school photographs may provide useful longitudinal evidence), hypertension, virilization, and striae. Palpation of the thyroid gland is crucial for detecting the presence of a goiter which may be associated with hypothyroidism (mostly secondary to autoimmune thyroiditis). Other clinical features of this condition include a slow heart rate, pasty skin and a slow Achilles tendon reflex.

A low or decreasing BMI SDS in combination with growth faltering is a possible symptom of celiac disease or inflammatory bowel disorders (particularly Crohn's disease)^{195,196,197,198}. Height and BMI deceleration in inflammatory bowel disorders may start during early childhood, but progress very gradually, delaying the suspicion/diagnosis unless patient is monitored for growth routinely. Growth faltering and decreasing BMI are also observed in other chronic systemic illnesses such as renal tubular acidosis¹⁹⁹ or anorexia nervosa²⁰⁰.

A general neurological assessment should be performed in order to detect neurological abnormalities (suspicious for a brain tumor). A thorough visual inspection of the skin can help identify vitiligo, which may indicate an underlying multi-organ autoimmune disease, as well as dermatological manifestations associated with celiac disease (dermatitis herpetiformis, chronic urticaria, atopic dermatitis, psoriasis, rosacea and alopecia areata)²⁰¹ or Neurofibromatosis 1 (neurocutaneous stigmata).

Radiology

A markedly delayed bone maturation detected on a radiograph of the hand and wrist is consistent with either a secondary growth disorder or slow maturation of the epiphyseal growth plates that may later develop into constitutional delay of growth and puberty (CDGP). However, delayed bone age is also observed in some genetic causes of SS.

Laboratory screening

- Guidelines on laboratory screening in short children are mainly aimed at detecting secondary
- growth disorders (see **Suppl Information 12).**

Supplementary Information 7. Diagnostic yield of genetic testing in a short child born small for gestational age

The diagnostic yield of CMA in short SGA children 202,203,204 is quite variable (16-46%), probably associated with varying percentages of syndromic SS. The frequency of imprinting disorders in SGA children was tested by quantitative DNA methylation analysis at differentially methylated regions (DMRs) of germline DMRs of several genes in 98 short SGA patients and 50 controls, showing DNA methylation changes in six SGA children (6%)²⁰⁵. Exome (n = 16) or targeted gene panel (n = 39) sequencing in isolated short SGA resulted in (likely) pathogenic genetic variants in 8 out of 55 patients (15%)³. In syndromic short SGA, ES analysis identified a genetic cause in 34%⁷. In twenty-four SGA children with persistent SS associated with dysmorphic features and/or developmental delay, CNVs were present in 11/24 (46%) SGA children carrying (likely) pathogenic gene variants²⁰⁴. Since 2020, a combination of gene panels, ES and methylation analysis is the usual diagnostic approach. The diagnostic yield has varied between 11% and 55% [Scalco;SystRev;pending].

Silver-Russell syndrome (SRS) is an imprinting disorder in short SGA with heterogeneous (epi)genetic causes¹⁶¹. The Netchine-Harbison clinical scoring system can be used to assess whether molecular testing should be requested. We recommend starting with methylation analysis of the genomically imprinted loci on chromosomes 11p15, 7, and 14q32. If negative, genetic testing for differential diagnoses (SNVs, CNVs and UPDs) should be considered^{161,206,207}.

Besides the relatively high diagnostic yield and the importance of genetic counselling for future pregnancies and the wider family, there are several other reasons for recommending genetic testing in short children born SGA (see **Supplementary information 3**).

Supplementary Information 8. Current list of genetic causes associated with SS and increased cancer risk (thus considered contra-indications for rhGH therapy)

rhGH treatment is not recommended in several disorders with a high predisposition to develop cancer, such as chromosomal breakage syndromes and DNA repair disorders². Although rhGH therapy is indicated for short SGA children, it is essential to recognize that some of these children may have underlying cancer-predisposing conditions. Identifying such conditions is crucial to avoid potentially harmful treatments. Examples include (in alphabetical order, not exclusive): Ataxia telangiectasia, Bloom syndrome, Cartilage-hair hypoplasia, Cockayne syndrome, Costello syndrome, Dubowitz syndrome, Fanconi anemia, Mulibrey dwarfism, LIG4 deficiency, Louis-Bar syndrome, Neurofibromatosis type 1, Nijmegen breakage syndrome, PLK4 deficiency, Rothmund-Thomson syndrome, Seckel syndrome spectrum disorders, SLF2 deficiency, SMC5 deficiency, xeroderma pigmentosa, and XRCC4 deficiency³⁵.

Supplementary Information 9. Examples of clinical features derived from the medical history that may increase the likelihood of a genetic origin.

Developmental delay (DD) and/or intellectual disability (ID), neurological, psychiatric symptoms and behavior problems

In two overlapping cohorts^{163,208}, the diagnostic yield of exome sequencing appeared higher in short children with ID or DD, compared with those without ID/DD (81.8% *vs* 17.2%) and compared with the total cohort (70% vs 44%). However, the number of such patients was still limited (n=11²⁰⁸). Some genetic syndromes are associated with a specific developmental profile, such as severe expressive speech delay in Floating Harbor syndrome²⁰⁹ and verbal dyspraxia in SRS caused by upd(7)mat¹⁶¹. Neurologic (e.g., seizures) or neurocognitive symptoms (e.g., autism spectrum disorder) are seen in association with a wide number of syndromic conditions including SS.

Genetic testing of neurodevelopmental disorders is considered good clinical practice irrespective of body stature²¹⁰.

Early feeding problems

Early feeding difficulties are reported in many genetic disorders ²⁰⁰). Usually, feeding problems occur in early infancy and typically resolve by the age of 4-6 years and may be later associated with obesity in imprinting disorders (particularly PWS and Temple syndrome). Early feeding problems can be associated with poor suck due to hypotonia (e.g. in PWS and Temple Syndrome), oromotor dysfunction, gastroesophageal reflux, gastrointestinal dysmotility²¹¹ or delayed gastric emptying^{212,213}. The diagnostic yield of genetic disorders in short infants with feeding difficulties is unknown.

Hearing loss

Many skeletal dysplasias are associated with conductive deafness. Severe SS and

sensorineural deafness have been reported in patients with complete loss of function variants of *IGF1*^{214,215}.

Immune dysfunction

A history of recurrent infections may be associated with various SS syndromes, e.g., Artemis syndrome, Bloom syndrome, Cartilage-hair hypoplasia, DiGeorge syndrome, Kabuki syndrome, Rubinstein-Taybi syndrome, Schimke immuno-osseous dysplasia, X-linked agammaglobulinemia with GHD, various forms of GH insensitivity (*STAT5B*, *NFKB1*, *STAT3*, *QSOX2*), and *RGS10* variants^{216,217,218,219,220,211}.

Immune dysregulation (e.g. autoimmune thyroiditis, celiac disease, Crohn's disease, immune thrombocytopenic purpura, and autoimmune hemolytic anemia) is observed in RASopathies, Kabuki syndrome, Turner syndrome, and *STAT3* deficiency²²¹ or *STAT5B* variants^{179,216,222,223}.

Bleeding tendency

Noonan syndrome is the most common syndromic cause of SS to be associated with a bleeding diathesis¹³⁷, but SS associated with a bleeding disorder is observed in several other rare genetic defects.

Chronic kidney disease

Faltering growth can be the first sign of a chronic kidney disease, such as infantile cystinosis caused by a bi-allelic *CTNS* variant and juvenile nephronophthisis associated with multiple gene defects. High throughput sequencing identified the cause of kidney disease in approximately 1 in 4 individuals without a previously known cause of kidney disease. A family history of kidney disease was reported in 32% in children with P/LP variants²²⁴.

Cardiac abnormalities

Cardiac abnormalities in short children are linked to various genetic disorders, including Turner syndrome²²⁵, RASopathies^{226,227}, Kabuki syndrome²²⁸ and Down syndrome²²⁹. The type of congenital heart defect can orient the diagnosis: for instance, pulmonary valve stenosis and hypertrophic cardiomyopathy in Noonan syndrome, bicuspid aortic valve in Turner syndrome, and conotruncal defects in 22q11 microdeletion syndrome.

Maternal history of recurrent miscarriages

A maternal history of recurrent miscarriages increases the likelihood of genetic defects in the offspring, including those encompassing SS¹⁶³. Familial translocations might be the most common explanation in this situation – i.e. a child with an unbalanced translocation inherited from a parent with a balanced translocation. Variants in 'maternal effect' genes (eg: *NLRP2*, *NLRP5*) have been reported in mothers who have a history of recurrent miscarriage and/or children with multilocus imprinting disturbance (MLID), including loss of methylation at 11p15 (SRS) and /or 14q32 (Temple syndrome) (for review, see Mackay et al²³).

Supplementary Information 10. Genetic testing of the short child presenting with information from family history associated with increased pre-test probability of a genetic cause

The most common mode of inheritance for monogenic SS is autosomal dominant. In 200 patients with suspected genetic SS investigated via exome sequencing, the overall diagnostic rate was 38%⁴². In those genes with causative variants, the primary mode of inheritance was autosomal dominant (65%). Of the remainder, 19% were autosomal recessive and 15% X-linked.

In a cohort of 102 children with ISS⁶⁰, 58 had familial SS (FSS). Of 17 pathogenic/likely pathogenic variants identified, 13 (76%) were in the FSS group, although the effect of FSS alone on diagnostic yield did not reach statistical significance (p=0.175).

Plachy et al.¹⁰ reported the outcome of genetic testing (both retrospective and prospective) in 95 children with FSS who had been treated with rhGH. A monogenic cause, also present in the affected parent, was identified in 36 (38%). Of the 36 children with a monogenic cause of FSS, 29 (81%) had a causative gene variant expected to affect the growth plate.

Several autosomal dominant genes are now recognized to be associated with isolated SS with relatively high prevalence. These include *PTPN11*²³⁰, *SHOX*¹⁵³, *NPR2*¹²⁶, *ACAN*⁵⁰, *IHH*⁹² and *NPPC*¹⁷². Variants in these and other dominantly inherited genes may arise *de novo* and often have variable expression and penetrance.

Several genes, including *SHOX*, *ACAN* and *NPR2*, known to be associated with common dominant SS, have also been linked to autosomal recessive skeletal dysplasias. In one study, causative heterozygous variants in genes also known to cause recessive skeletal dysplasia were seen in 3.5%⁴². Furthermore, variants in genes affecting somatotrophs (*HESX1* or *POU1F1*) or the GH-IGF1 axis (*GH1*, *IGF1R*, *STAT5B*) can be associated with both dominant and recessive inheritance²³¹, complicating the attempts to assign causality and determine diagnostic yield for genes in this pathway.

Dominant inherited variants expressing a phenotype of SS only through paternal transmission or only through maternal transmission are in favor of an imprinting status of the gene involved. Several

genes, including *IGF2* and *CDKN1C*, known to be imprinted, have been linked to SRS: paternally transmitted for *IGF2*²³² and maternally transmitted for *CDKN1C*²³³.

Consanguinity, as well as the presence of more than one affected sibling, increases the likelihood of an autosomal recessive disorder. One recent paper²³⁴ described extensive genetic analysis in 42 children with SS from 34 consanguineous families. The diagnostic yield in this cohort was high (76% of families), particularly in those with additional clinical features: severe GH deficiency or insensitivity, microcephaly and syndromic SS. Most causative variants were homozygous (21/26). In another recent paper²³⁵ a genetic cause of SS was elucidated in 31 of 51 (61%) children of consanguineous parents.

The range of autosomal recessive conditions which have been reported in association with isolated and syndromic SS is very wide. However, there are clues which can increase diagnostic yield. In the consanguineous cohort ²³⁴, a candidate gene approach (based on endocrine investigations) led to the diagnosis in all patients with a suspected GH-IGF1 axis defect. In addition, some conditions are more prevalent in specific ethnic populations due to founder effects. One example is a recurrent *GHR* splice variant [c.594A>G, p.V199_M208 del, (rs121909360) previously known as E180splice] causing GH insensitivity syndrome (Laron syndrome), which is common in both Ecuador and the Sephardic Jewish community, likely due to emigration from the Iberian Peninsula to Central America ²³⁶.

Furthermore, in children where SRS is suspected but the child presents with a history of consanguinity or evocative clinical signs, rarer recessive diagnoses such as 3M syndrome, Mulibrey Nanism and Bloom syndrome need to be considered 161. Such diagnoses have also to be considered when parents are not consanguineous, for example if parents carry a different variant in the same gene, leading to compound heterozygous pathogenic variants.

1110 1111	Supplementary information 11. Examples of anatomical abnormalities that can be observed on a radiograph of the hand and wrist in certain cases of genetic short stature
1112	
1113	Key findings associated with genetic causes of SS include the following examples:
1114	Madelung deformity, particularly triangularization of the distal radial epiphysis and
1115	radiolucency of the medial radius, malpositioned lunate between ulna and radial epiphysis,
1116	associated with SHOX haploinsufficiency ²³⁷ .
1117	• Shortening of the middle phalanx (second and fifth finger) with cone-shaped epiphyses,
1118	associated with IHH haploinsufficiency ⁹²
1119	• Short metacarpals and cone-shaped epiphyses, linked with NPR2 haploinsufficiency ²³⁸
1120	• Short metacarpals (especially the 4th and 5th) seen in GNAS defects, including
1121	pseudohypoparathyroidism ²³⁹ or Turner syndrome
1122	 Clinodactyly and a short fifth finger, observed in SRS and SGA¹⁶¹
1123	Various types of brachydactyly syndromes observed in heterozygous defects of several genes
1124	(e.g., IHH, NPR2, FGFR3) ⁸⁷
1125	SS with an age appropriate or advanced bone age (e.g., ACAN defect,
1126	Pseudohypoparathyroidism 1A) ^{48,240}
1127	 SS with multiple exostoses (e.g., EXT1 and EXT2 pathogenic variants)²⁴¹

Supplementary information 12. Laboratory screening as part of the initial assessment of the short child

In this document we propose an annotated list of laboratory measurements built upon a previous report¹⁹⁴.

Hematological screening is included since anemia and macrocytosis can suggest a genetic hemoglobinopathy, e.g. Fanconi anemia²⁴². Autoimmune cytopenia in short children could be related to genetic syndromes such as Kabuki syndrome²¹⁶. Examples of secondary growth disorders associated with anemia include celiac disease and inflammatory bowel disease (IBD).

Endocrine screening usually includes serum FT4, TSH and insulin-like growth factor 1 (IGF-1). In some centers this is combined with IGFBP-3 at screening, while in other centers assessment of serum IGFBP-3 is added to a repeat serum IGF-1 determination. A decreased serum IGF-1 in a short child suggests GHD or GH insensitivity²⁴³ and usually leads to further testing of the GH-IGF-1 axis (e.g., GH stimulation testing, GHST). In case of a combination of a low serum IGF-1, low GH peak at GHST and central hypothyroidism, congenital hypopituitarism is suspected²⁴⁴ and should lead to further testing of pituitary function (pituitary-adrenal axis, pituitary-gonadal axis and prolactin). In a child with a low IGF-1 and normal or increased GH peak at GHST, further genetic testing is needed to detect a *GH1* or *GHSR* variant (associated with a normal GH sensitivity) or one of the syndromes characterized by GH insensitivity, e.g., a GH-receptor gene (*GHR*) variant (Laron syndrome) or a mutation in the GH post-receptor signaling pathway²⁴⁵, e.g., a genetic variant in *STAT5B*, *IGFALS* or *IGF1*. A serum IGF-1 in the upper half of the reference range or above in a short child can be caused by an IGF1-receptor (*IGF1R*) deletion or variant²⁴⁶, a *PAPPA2* variant⁶, SRS, Temple syndrome or Floating-Harbor syndrome²⁴⁷. If an *IGFALS* defect is likely, serum ALS can be tested in a specialized laboratory.

Biochemical screening may be limited to serum sodium, potassium, creatinine, calcium, phosphorus, alkaline phosphatase, and a blood gas or bicarbonate in children <3 years of age¹⁹⁴.

Metabolic acidosis and hyper/hypokalemia can be observed in patients with renal tubular acidosis²⁴⁸. Alterations in serum calcium, phosphate and/or parathyroid hormone levels may indicate a genetic mineral metabolism disorder such as hypoparathyroidism, pseudohypoparathyroidism, or hypophosphatemic rickets²⁴⁹. Phosphate concentrations are higher in children than adults, and an age based normal range should be used. A concentration of < 1.0 mmol/L in growing children is always abnormal. Patients with 22q11.2 deletion syndrome may present with hypocalcemia, cytopenia or GH deficiency²⁵⁰. In several countries, liver function tests are part of laboratory screening; increased liver enzymes, coupled with an elevated lipid profile, metabolic acidosis and hypoglycemia could indicate a glycogen storage disease²⁵¹. However, the extreme rarity of these disorders in children with isolated SS can be a reason to omit these determinations from the screening panel for financial reasons¹⁹⁴.

Urinalysis has been advised in many textbooks as part of the screening. Though the level of evidence is low ¹⁹⁴, in many centers a urine dipstick analysis is carried out for proteinuria and glycosuria. Theoretically, abnormalities in acid-base homeostasis and electrolytes, as well as abnormal urinalysis, can be found in chronic renal disease of which some have a known genetic cause²⁵².

Supplementary Table 2 presents a list of potential components of laboratory screening that can be considered.

1173 Supplementary Table 2. Potential components of laboratory screening

Category	Test	Clue for	Clue for secondary	Comment (e.g.
		primary growth disorder	growth disorder	efficacy/cost)
Hematology	Hb, Ht, erythrocytes,	Fanconi	Haemoglobinopathy,	
	cell indices	anemia, Kabuki syndrome	celiac disease, IBD	
	Inflammation markers	,	IBD	Possibly limit to >10 yrs
	(leukocytes, CRP, ESR)			if BMI SDS decreases
Biochemistry	Na, K, creatinine		Renal disorder	
	Ca, P, Alkaline		Metabolic bone	
	phosphatase, PTH		disorders	
	Blood gas (acid-		Renal tubular	Possibly limit to age<3
	balance)		acidosis	yrs
	Liver function tests		Glycogen storage	
	(AST and ALT or full liver panel		disease	
	Glucose			
Immunology	Anti-TTG IgA, total IgA		Celiac disease	
Endocrine	IGF-1		Low: GHD, GHI,	Less sensitive than
			malnutrition	IGFBP-3 if <3 yrs
			High: IGF1R	
			haploinsufficiency	
	IGFBP-3		GHD, GHI	Less sensitive than IGF-1 if >3 yrs.
	FT4, TSH		Hypothyroidism	
Urinalysis	Proteinuria, glucosuria		Renal disorders and	
	(dipstick)		urinary tract	
			infections	
Feces	Calprotectin		IBD	^a Possibly limit to >10 yrs
				if BMI SDS decreases or
				in the presence of GI
				symptoms
Genetic	Karyotype,	Turner		Traditionally tested by
	microarray,	syndrome,		karyotyping all short
	ES,	CNVs,		girls. With newer
	GS	uniparental		techniques higher
	DNA methylation	disomy and		diagnostic yield
		monogenic		
		causes		
		epigenetic		
	All hady mass indays CUD a	disorders		

Abbreviations: BMI, body mass index; GHD, growth hormone deficiency; GHI, growth hormone insensitivity; IBD, inflammatory bowel disease; ES, exome sequencing; GS, whole genome sequencing

Since IBD is rare before the age of 10 years, a previous guideline 194 advised to measure feces calprotectin from that age in children with decreasing BMI SDS. Reference data are available from 4-16 years 253 .

Supplementary Information 13. Genetic causes of congenital hypopituitarism

Supplementary Table 3 summarizes phenotypes of congenital hypopituitarism (CH) and their population frequency and lists the most commonly identified genes associated with each of these phenotypes. **Supplementary Table 4** summarizes the genes currently associated with CH and their mode of inheritance.

Variants within the same gene, usually involved in early hypothalamo-pituitary development, may give rise to variable clinical manifestations of CH. For example, variants in *GLI2*, which is one of the most frequently identified genes associated with CH, may be associated with isolated growth hormone deficiency (IGHD), combined pituitary hormone deficiency (CPHD), and holoprosencephaly (HPE), respectively²⁵⁴. The severity and manifestation of CH in some patients may be due to oligogenicity, whereby variants in more than one gene are required for phenotypic expression. We therefore recommend caution in interpretation of genetic findings that are not recessively inherited, particularly those variants that are variably penetrant, and in the communication of these findings to families for genetic counselling.

Other genes may be associated with more specific clinical features, such as *POUIF1* recessive and dominant variants which are associated with GH, TSH and prolactin deficiencies, with a small but structurally normal pituitary gland on imaging ^{255,256}.

ES and GS have led to the identification of variants in a broad range of genes involved in transcription, translation, signaling, splicing, cilia formation and function, and more recently, fatty acid metabolism^{244,257}. While current literature suggests a low overall frequency of functionally significant genetic variants (10%)²⁵⁸, with some studies showing higher frequencies of variants in some genes depending on the cohort of patients screened, it is likely that this approach will lead to the identification of further novel genes implicated in this clinical presentation.

1202 Supplementary Table 3: Congenital hypopituitarism phenotypes and their population frequency

Congenital hypopituitarism phenotype	Frequency	Description	Genes associated
Combined pituitary hormone deficiency (CPHD) without midline defects	1/4000	Deficiencies in 1 or more of the 7 pituitary hormones: GH, TSH, LH, FSH, PRL, ACTH, AVP	LHX3, LHX4, PROP1, POU1F1, HESX1, RNPC3, FGF8, SOX3, OTX2, GLI2, ANOS1, AVP
Isolated growth hormone deficiency (IGHD)	1/4000 - 1/10,000	The most common isolated deficiency - short stature, delayed growth velocity and skeletal maturation	GH1, GHRHR, RNPC3, HESX1, OTX2, SOX3, POU1F1
Septo-optic dysplasia (SOD)	1/10,000	Optic nerve hypoplasia (ONH), midline neuroradiological abnormalities. Structural HP abnormalities with endocrine deficits	SOX2, OTX2, HESX1, FGF8, FGFR1, ANOS1, TCF7L1
Holoprosencephaly (HPE)	1/10,000 - 1/20,000	Incomplete cleavage of the prosencephalon, affecting both the forebrain and the face: Alobar (no forebrain division) Semilobar (some separation) Lobar (complete separation) Microcephaly, hypotelorism, a single central maxillary incisor, cleft lip and/or palate	SHH, GLI2, ZIC2, SIX3, TGIF1, PCTH1, FGF8 Sub-microscopic deletions at a number of loci

Abbreviations: ACTH, adrenocorticotropic hormone; AVP, arginine vasopressin; FSH, follicle-stimulating hormone; GH, growth hormone; HP, hypothalamo-pituitary; LH, luteinizing hormone; PRL, prolactin; TSH,

1205 thyroid-stimulating hormone;

1206 <u>Supplementary Table 4. Genes associated with congenital hypopituitarism*</u>

Gene with	<u>Phenotype</u>	<u>Inheritance</u>
pathogenic		
variants	LILLING COD	W P d a d
ANOS1	HH/KS; SOD	X-linked
ARNT2	CPHD, congenital abnormalities of the kidneys and urinary tract	Recessive
CDON	PSIS	Dominant
EIF2S3	GHD, TSHD, Glucose dysregulation, MEHMO syndrome	X-linked
FASN	Hypopituitarism, Hypoparathyroidism, Sensorineural hearing loss, retinal dystrophy	De Novo
FGF8	HH/KS; HPE	Dominant/Recessive (HPE)
FGFR1	HH/KS, SOD	Dominant
FOXA2	CPHD, HI, childhood-onset diabetes, choroidal coloboma, biliary atresia (cardiac/endoderm-derived organ abnormalities)	Dominant
GH1	IGHD Type IA	Recessive
	IGHD Type IB	Recessive
	IGHD Type II	Dominant
GHRHR	IGHD Type IB	Recessive or Dominant (rare)
GHSR	Isolated partial GHD	Dominant
GLI2	HPE, IGHD/CPHD, polydactyly, single central incisor	Dominant: haploinsufficiency
GPR161	PSIS	Recessive
HESX1	IGHD, CPHD, SOD	Dominant or Recessive
IFT172	GHD, retinopathy, metaphyseal dysplasia, renal failure (ciliopathies)	Compound heterozygous
IGSF1	TSHD, hypoprolactinemia, transient GHD; usually with macroorchidism	X-linked, (female carriers may have TSHD)
KCNQ1	GHD, maternally inherited gingival fibromatosis	Dominant
LHX3	CPHD, short neck with limited rotation	Recessive
LHX4	CPHD, Chiari malformation, cerebellar abnormalities, respiratory distress	Dominant or Recessive
L1CAM	GHD, arthrogryposis, hydrocephalus	X-linked
MAGEL2	GHD, ACTHD, arthrogryposis (joint contractures), AVPD, Schaaf-Yang syndrome (SHFYNG)	Maternally imprinted or de novo
OTX2	IGHD, CPHD, SOD, anophthalmia/microphthalmia, retinal dystrophy	Dominant: haploinsufficiency or dominant negative
PCSK1	AVPD, IAD, GHD, TSHD, malabsorption	Dominant, Compound heterozygous
PNPLA6	Oliver–McFarlane and Laurence–Moon syndrome; GH and gonadotrophin deficiencies	Recessive
POMC	IAD; early-onset obesity and red hair pigmentation	Recessive
POU1F1	GHD, TSHD and ACTHD	Dominant or Recessive
PROKR2	HH/KS	Recessive

PROP1	CPHD, pituitary tumors	Recessive
RAX	Anophthalmia/microphthalmia, AVPD, CPHD, and Cleft	Recessive
	Palate	
RNPC3	IGHD/CPHD	Recessive
ROBO1	PSIS	Dominant
SOX2	HH, anophthalmia/microphthalmia, learning difficulties,	Dominant
	hypothalamo-pituitary tumors	
SOX3	GHD, CPHD, absent infundibulum, persistent	X-linked GOF or LOF
	craniopharyngeal canal	
TBC1D32	CPHD, GHD, oral-facial-digital syndrome (OFDS)	Recessive
TCF7L1	SOD	Dominant

*This list contains genes that are associated with GH deficiency. It does not include isolated deficiencies of other pituitary hormones, i.e. TSH, LH, FSH, PRL, ACTH, AVP and prolactin.

Abbreviations: ASD, autism spectrum disorder; AVPD, arginine vasopressin deficiency; CPHD, combined pituitary hormone deficiency; GHD, growth hormone deficiency; HH, hypogonadotropic hypogonadism; HI, congenital hyperinsulinism; HPE, holoprosencephaly; IAD, isolated adrenocortical deficiency; IGHD, isolated growth hormone deficiency; KS, Kallmann syndrome; MEHMO, mental retardation, epileptic seizures, hypogonadism with hypogenitalism, microcephaly and obesity; PSIS, pituitary stalk interruption syndrome; SOD, septo-optic dysplasia; TSHD, thyroid-stimulating hormone deficiency.

Supplementary Information 14. Genetic causes of other disorders in the GH-IGF-1 axis

Supplementary Table 5 shows a summary of the clinical features of syndromes leading to complete or partial insensitivity to GH or IGFs. Genes along the GH-IGF axis documented to be associated with growth failure (height SDS below -2.0) and GH insensitivity are listed. Birth size appropriate for gestational age (AGA) indicates post-natal growth failure; birth size not AGA ("-") indicates growth failure that starts in utero. Post-natal growth failure ranges from severe ("+") to mild/moderate ("-") within each gene, depending on the impact of the genetic defect on structure and function of the protein encoded by the gene. Key genes in which defects perturb response to GH and/or production of IGF-1, include the growth hormone receptor (GHR), defects in GH signal transduction (STAT5B), IGF-1 production (IGF1; QSOX2), IGF-1 transport (IGFALS), IGF-1 bioavailability (PAPPA2), and IGF-1 action (IGF1R). STAT3 and IGF2 defects lead to growth failure which is independent of GH actions and IGF-1 production. Genetic defects along the GH-IGF axis can be associated with multiple co-morbidities which are indicated as "+" or "-", but not listed as co-morbidities vary widely, depending on the defective gene.

Supplementary Table 5. Summary of phenotypic and biochemical features in the range of genetic defects along the GH-IGF axis causing GH insensitivity.

	GHR		GHR STATE		STAT3 (GOF)	I(#F1		IGF2	IGFALS	PAPPA2	IGF1R		QSOX2
	AR	AD	AR	AD	AD	AR	AD	ADp	AR	AR	AR	AD	AR
Birth - AGA	+	+	+	+	-/+	-	-/+	-	+/-	+/-	-	-	+
Severe growth failure	+	+/-	+	+/-	+/-	+	+/-	+	-	-	+	-/+	+/-
Midface hypoplasia	+	+/-	+/-	+/-	-	-	-	-	-	-	+	-/+	-
Other facial dysmorphism	-	-	-	-	-	+	-	+	-	-	+	-/+	-/+
Deafness	-	-	-	-	-	+/-	+/-	-	-	-	+/-	-/+	-
Microcephaly	-	-	-	-	-	+	-	-	-	+/-	+	-/+	-
Bone age delay	+	+	+	+	+/-	+	-	+	+	+	+	+	-
Intellectual delay	-	-	-	-	-	+	-	-	-	-	+	-/+	-/+
Developmental delay	-/+	-/+	-/+	-/+	-	+	+	-/+	-	+	+	-/+	-/+
Puberty delay	+	-	+	+/-	na	-	-	-	+	+	-/+	-/+	na
Immune deficiency	-	-	+	+	+	-	-	-	-	-	-	-	+
Eczema	-	-	+	+	+/-	-	-	-	-	-	-	-	+
Hypoglycemia	-/+	-	-	-/+	-	-	na	na	-	-	-	-	-
Hyperinsulinemia	-	-	-	-	-	+/-	na	na	+	+	-/+	-/+	-
IGF-1	\	√/n	\	√/n	√/n	√/n	√/n	n/↓	V	↑	↑	n/↑	n/↓

IGFBP-3	\downarrow	√/n	\downarrow	√/n	√/n	n	n	n	V	↑	n/↑	n	n
IGFALS	4	√/n	\downarrow	√/n	√/n	n	n	n	\downarrow	↑	↑	n	na
GH	↑	↑/n	1	∱/n	√/n	n/↑	n/↑	n	↑	↑	↑	n/↑	n/↑
GHBP deficiency	+/-	-	-	-	-	-	-	-	-	-	-	-	na
Other comorbidities	+	-	+/-	-	+	+	-	+	-	-	+	-/+	+

Supplementary information 15. Examples of epigenetic processes that stably alter gene expression patterns and/or transmit the alterations at cell division

Cytosine methylation

The human genome harbors more than 100 genes that are expressed from either the paternal or the maternal allele only. DNA methylation is the mainstay of establishing imprinting marks on either paternal or maternal alleles²⁵⁹. One feature of the complexity of genetic imprinting is that it works in a tissue-specific manner. For example, Gs-alpha from the guanine nucleotide-binding protein, alpha stimulating (GNAS) locus on chromosome 20q13 is only maternally expressed in the renal proximal tubule, thyroid, pituitary, and ovary and certain endocrine tissues, while it is expressed biallelically in most other tissues²⁶⁰.

Certain genes are either biallelically expressed or imprinted in a time dependent manner. For example, *IGF2* is biallelically expressed in the fetal brain during the first trimester while it is expressed predominantly from the paternal allele in other tissues²⁶¹. In adulthood, some brain regions (i.e. hypothalamus and globus pallidus) show paternal monoallelic expression of *IGF2*, whereas others (i.e. pons) show biallelic expression of *IGF2*²⁶².

Finally, individual genes often produce several transcripts²⁶³, which can show either imprinted or non-imprinted expression patterns. Silver-Russell syndrome, Temple syndrome, Prader-Willi syndrome, and pseudohypoparathyroidism (PHPIa and PPHP) are imprinting disorders characterized by severe SS.

<u>Post-translational modification of histone proteins and remodeling of chromatin</u>

Histones undergo extensive posttranslational modifications, including methylation, acetylation, and phosphorylation which affects chromatin structure and gene expression. For example, Sirtuin 6 (SIRT6) is a NAD+-dependent histone deacetylase that targets acetylated H3K9 and

acetylated H3K56 and is expressed in proliferating and hypertrophic chondrocytes in the growth plate. Sirt6 knockout mice show an increased resting zone thickness and reduced proliferative and hypertrophic zones²⁶⁴.

RNA-based mechanisms

MicroRNAs are short, non-coding RNAs of approximately 22 bases that regulate gene expression and are involved in many processes including chondrocyte differentiation in the growth plate. A skeletal dysplasia has been associated with a gain-of-function mutation in the skeletal specific miRNA-140 in two unrelated families²⁶⁵. The clinical implications of fine epigenetic tuning of growth plate physiology are still largely unknown and the introduction of epigenetics and transcriptomics in the evaluation of children with SS of unknown origin will expectedly elucidate the underlying cartilage molecular abnormalities leading to a conclusive diagnosis and a better categorization of SS conditions. Besides microRNAs, long non-coding RNAs (IncRNAs) may also play a role in the regulation of linear growth²⁶⁶.

We predict that in the coming decade the rapidly developing knowledge of the genetic and epigenetic causes of SS will lead to more accurate molecular diagnosis and personalized therapies.

1271	Refere	ences
1272 1273 1274	1.	Finken MJJ, Van Der Steen M, Smeets CCJ, et al. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. <i>Endocr Rev</i> . 2018;39(6):851-894. doi:10.1210/ER.2018-00083
1275 1276 1277	2.	Hokken-Koelega ACS, van der Steen M, Boguszewski MCS, et al. International Consensus Guideline on Small for Gestational Age: Etiology and Management From Infancy to Early Adulthood. <i>Endocr Rev</i> . 2023;44(3):539-565. doi:10.1210/ENDREV/BNAD002
1278 1279 1280	3.	Freire BL, Homma TK, Funari MFA, et al. Multigene sequencing analysis of children born small for gestational age with isolated short stature. <i>J Clin Endocrinol Metab</i> . Published online January 2, 2019. doi:10.1210/jc.2018-01971
1281 1282 1283	4.	Dantas NCB, Funari MFA, Lerário AM, et al. Identification of a second genetic alteration in patients with SHOX deficiency individuals: a potential explanation for phenotype variability. <i>Eur J Endocrinol</i> . 2023;189(3):387-395. doi:10.1093/EJENDO/LVAD128
1284 1285	5.	Colares Neto GDP, Alves CDAD. Demystifying Skeletal Dysplasias: A Practical Approach for the Pediatric Endocrinologist. <i>Horm Res Paediatr</i> . 2025;98(2):214-225. doi:10.1159/000536564
1286 1287	6.	Argente J, Pérez-Jurado LA. Genetic causes of proportionate short stature. <i>Best Pract Res Clin Endocrinol Metab</i> . 2018;32(4):499-522. doi:10.1016/j.beem.2018.05.012
1288 1289 1290	7.	Homma TK, Freire BL, Honjo Kawahira RS, et al. Genetic Disorders in Prenatal Onset Syndromic Short Stature Identified by Exome Sequencing. <i>J Pediatr</i> . 2019;215:192-198. doi:10.1016/J.JPEDS.2019.08.024
1291 1292 1293	8.	Rezende RC, Menezes de Andrade NL, Branco Dantas NC, et al. Exome Sequencing Identifies Multiple Genetic Diagnoses in Children with Syndromic Growth Disorders. <i>Journal of Pediatrics</i> . 2024;265. doi:10.1016/j.jpeds.2023.113841
1294 1295 1296 1297 1298	9.	Cohen P, Rogol AD, Deal CL, et al. Consensus statement on the diagnosis and treatment of children with idiopathic short stature: a summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. <i>J Clin Endocrinol Metab</i> . 2008;93(11):4210-4217. doi:10.1210/JC.2008-0509
1299 1300 1301	10.	Plachy L, Petruzelkova L, Dusatkova P, et al. Analysis of children with familial short stature: who should be indicated for genetic testing? <i>Endocr Connect</i> . 2023;12(10). doi:10.1530/EC-230238
1302 1303 1304	11.	Yengo L, Vedantam S, Marouli E, et al. A saturated map of common genetic variants associated with human height. <i>Nature</i> . 2022;610(7933):704-712. doi:10.1038/S41586-022-05275-Y

Baron J, Sävendahl L, De Luca F, et al. Short and tall stature: a new paradigm emerges. *Nat Rev*

Unger S, Ferreira CR, Mortier GR, et al. Nosology of genetic skeletal disorders: 2023 revision.

Endocrinol. 2015;11(12):735-746. doi:10.1038/nrendo.2015.165

Am J Med Genet A. 2023;191(5):1164-1209. doi:10.1002/AJMG.A.63132

1305

1306

1307

1308

12.

13.

1309 1310 1311	14.	Zhao Q, Zhang M, Li Y, et al. Molecular diagnosis is an important indicator for response to growth hormone therapy in children with short stature. <i>Clinica Chimica Acta</i> . 2024;554. doi:10.1016/j.cca.2024.117779
1312 1313 1314	15.	Strande NT, Riggs ER, Buchanan AH, et al. Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. <i>Am J Hum Genet</i> . 2017;100(6):895-906. doi:10.1016/j.ajhg.2017.04.015
1315 1316 1317 1318	16.	Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. <i>Genetics in Medicine</i> . 2015;17(5):405-423. doi:10.1038/gim.2015.30
1319 1320 1321	17.	Reuter C, Chun N, Pariani M, Hanson-Kahn A. Understanding variants of uncertain significance in the era of multigene panels: Through the eyes of the patient. <i>J Genet Couns</i> . 2019;28(4):878-886. doi:10.1002/JGC4.1130
1322 1323 1324	18.	Slavin TP, Manjarrez S, Pritchard CC, Gray S, Weitzel JN. The effects of genomic germline variant reclassification on clinical cancer care. <i>Oncotarget</i> . 2019;10(4):417-423. doi:10.18632/ONCOTARGET.26501
1325 1326	19.	Fowler DM, Rehm HL. Will variants of uncertain significance still exist in 2030? <i>Am J Hum Genet</i> . 2024;111(1):5-10. doi:10.1016/j.ajhg.2023.11.005
1327 1328	20.	Gropman AL, Adams DR. Atypical Patterns of Inheritance. <i>Semin Pediatr Neurol</i> . 2007;14(1):34-45. doi:10.1016/j.spen.2006.11.007
1329 1330	21.	Deltas C. Digenic inheritance and genetic modifiers. <i>Clin Genet</i> . 2018;93(3):429-438. doi:10.1111/CGE.13150
1331 1332	22.	Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. <i>Front Genet</i> . 2022;13. doi:10.3389/FGENE.2022.920390
1333 1334 1335	23.	Mackay DJG, Gazdagh G, Monk D, et al. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. <i>Clin Epigenetics</i> . 2024;16(1). doi:10.1186/S13148-024-01713-Y
1336 1337 1338	24.	Montalbano A, Juergensen L, Roeth R, et al. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency. <i>EMBO Mol Med</i> . 2016;8(12):1455-1469. doi:10.15252/EMMM.201606623
1339 1340	25.	Lin YJ, Cheng CF, Wang CH, et al. Genetic Architecture Associated With Familial Short Stature. J Clin Endocrinol Metab. 2020;105(6):1801-1813. doi:10.1210/CLINEM/DGAA131
1341 1342 1343	26.	Lu T, Forgetta V, Wu H, et al. A Polygenic Risk Score to Predict Future Adult Short Stature Among Children. <i>J Clin Endocrinol Metab</i> . 2021;106(7):1918-1928. doi:10.1210/CLINEM/DGAB215
1344 1345 1346	27.	Shelley JP, Shi M, Peterson JF, Van Driest SL, Simmons JH, Mosley JD. A polygenic score for height identifies an unmeasured genetic predisposition among pediatric patients with idiopathic short stature. <i>Genome Med.</i> 2025;17(1). doi:10.1186/S13073-025-01455-3
1347 1348	28.	Miller DT, Lee K, Abul-Husn NS, et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of

1349 1350		Medical Genetics and Genomics (ACMG). <i>Genetics in Medicine</i> . 2023;25(8). doi:10.1016/j.gim.2023.100866
1351 1352	29.	Kohler JN, Turbitt E, Biesecker BB. Personal utility in genomic testing: a systematic literature review. <i>Eur J Hum Genet</i> . 2017;25(6):662-668. doi:10.1038/EJHG.2017.10
1353 1354 1355 1356	30.	Marin G, Domené HM, Barnes KM, Blackwell BJ, Cassorla FG, Cutler GB. The effects of estrogen priming and puberty on the growth hormone response to standardized treadmill exercise and arginine-insulin in normal girls and boys. <i>J Clin Endocrinol Metab</i> . 1994;79(2):537-541. doi:10.1210/JCEM.79.2.8045974
1357 1358 1359	31.	Backeljauw PF, Andrews M, Bang P, et al. Challenges in the care of individuals with severe primary insulin-like growth factor-I deficiency (SPIGFD): an international, multi-stakeholder perspective. <i>Orphanet J Rare Dis.</i> 2023;18(1). doi:10.1186/S13023-023-02928-7
1360 1361 1362	32.	Miccoli M, Bertelloni S, Massart F. Height Outcome of Recombinant Human Growth Hormone Treatment in Achondroplasia Children: A Meta-Analysis. <i>Horm Res Paediatr</i> . 2016;86(1):27-34. doi:10.1159/000446958
1363 1364 1365	33.	Walenkamp MJE, Robers JML, Wit JM, et al. Phenotypic Features and Response to GH Treatment of Patients With a Molecular Defect of the IGF-1 Receptor. <i>J Clin Endocrinol Metab</i> . 2019;104(8):3157-3171. doi:10.1210/JC.2018-02065
1366	34.	Binder G, Rappold GA. SHOX Deficiency Disorders.; 1993.
1367 1368 1369	35.	Giacomozzi C. Genetic Screening for Growth Hormone Therapy in Children Small for Gestational Age: So Much to Consider, Still Much to Discover. <i>Front Endocrinol (Lausanne)</i> . 2021;12. doi:10.3389/FENDO.2021.671361
1370 1371	36.	Sybert VP, McCauley E. Turner's syndrome. <i>N Engl J Med</i> . 2004;351(12):1227-1238. doi:10.1056/NEJMRA030360
1372 1373	37.	Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. <i>The Lancet</i> . 2013;381(9863):333-342. doi:10.1016/S0140-6736(12)61023-X
1374 1375 1376 1377	38.	Miller DT, Lee K, Gordon AS, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG). <i>Genetics in Medicine</i> . 2021;23(8):1391-1398. doi:10.1038/s41436-021-01171-4
1378 1379 1380	39.	Watson MS. ACMG policy statement: updated recommendations regarding analysis and reporting of secondary findings in clinical genome-scale sequencing. <i>Genet Med</i> . 2015;17(1):68-69. doi:10.1038/GIM.2014.151
1381 1382	40.	Braverman G, Shapiro ZE, Bernstein JA. Ethical Issues in Contemporary Clinical Genetics. <i>Mayo Clin Proc Innov Qual Outcomes</i> . 2018;2(2):81-90. doi:10.1016/j.mayocpiqo.2018.03.005
1383 1384 1385	41.	Hattori A, Katoh-Fukui Y, Nakamura A, et al. Next generation sequencing-based mutation screening of 86 patients with idiopathic short stature. <i>Endocr J.</i> 2017;64(10):947-954. doi:10.1507/ENDOCRJ.EJ17-0150
1386 1387 1388	42.	Hauer NN, Popp B, Schoeller E, et al. Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature. <i>Genetics in Medicine</i> . 2018;20(6):630-638. doi:10.1038/gim.2017.159

1389 1390 1391	43.	Fan X, Zhao S, Yu C, et al. Exome sequencing reveals genetic architecture in patients with isolated or syndromic short stature. <i>J Genet Genomics</i> . 2021;48(5):396-402. doi:10.1016/J.JGG.2021.02.008
1392 1393 1394	44.	Ahn J, Oh J, Suh J, et al. Next-generation sequencing-based mutational analysis of idiopathic short stature and isolated growth hormone deficiency in Korean pediatric patients. <i>Mol Cell Endocrinol</i> . 2022;544. doi:10.1016/j.mce.2021.111489
1395 1396 1397	45.	Tompson SW, Merriman B, Funari VA, et al. A Recessive Skeletal Dysplasia, SEMD Aggrecan Type, Results from a Missense Mutation Affecting the C-Type Lectin Domain of Aggrecan. <i>Am J Hum Genet</i> . 2009;84(1):72-79. doi:10.1016/j.ajhg.2008.12.001
1398 1399 1400	46.	Gleghorn L, Ramesar R, Beighton P, Wallis G. A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. <i>Am J Hum Genet</i> . 2005;77(3):484-490. doi:10.1086/444401
1401 1402 1403	47.	Nilsson O, Guo MH, Dunbar N, et al. Short stature, accelerated bone maturation, and early growth cessation due to heterozygous aggrecan mutations. <i>J Clin Endocrinol Metab</i> . 2014;99(8):E1510-8. doi:10.1210/jc.2014-1332
1404 1405 1406	48.	Gkourogianni A, Andrew M, Tyzinski L, et al. Clinical Characterization of Patients With Autosomal Dominant Short Stature due to Aggrecan Mutations. <i>J Clin Endocrinol Metab</i> . 2017;102(2):460-469. doi:10.1210/jc.2016-3313
1407 1408 1409	49.	Gerver WJM, Gkourogianni A, Dauber A, Nilsson O, Wit JM. Arm Span and Its Relation to Height in a 2- to 17-Year-Old Reference Population and Heterozygous Carriers of ACAN Variants. <i>Horm Res Paediatr</i> . 2020;93(3):164-172. doi:10.1159/000508500
1410 1411 1412	50.	Hauer NN, Sticht H, Boppudi S, et al. Genetic screening confirms heterozygous mutations in ACAN as a major cause of idiopathic short stature. <i>Sci Rep.</i> 2017;7(1). doi:10.1038/S41598-017-12465-6
1413 1414 1415	51.	Steen M Vander, Pfundt R, Maas SJWH, Bakker-VanWaarde WM, Odink RJ, Hokken-Koelega ACS. ACAN Gene Mutations in Short Children Born SGA and Response to Growth Hormone Treatment. <i>J Clin Endocrinol Metab</i> . 2017;102(5):1458-1467. doi:10.1210/JC.2016-2941
1416 1417 1418 1419	52.	Liang H, Miao H, Pan H, et al. Growth-promoting therapies may be useful in short stature patients with nonspecific skeletal abnormalities caused by acan heterozygous mutations: Six Chinese cases and literature review. <i>Endocrine Practice</i> . 2020;26(11):1255-1268. doi:10.4158/EP-2019-0518
1420 1421 1422	53.	Xu D, Sun C, Zhou Z, et al. Novel aggrecan variant, p. Gln2364Pro, causes severe familial nonsyndromic adult short stature and poor growth hormone response in Chinese children. BMC Med Genet. 2018;19(1). doi:10.1186/S12881-018-0591-Z
1423 1424 1425	54.	Muthuvel G, Dauber A, Alexandrou E, et al. Treatment of Short Stature in Aggrecan-deficient Patients With Recombinant Human Growth Hormone: 1-Year Response. <i>J Clin Endocrinol Metab</i> . 2022;107(5):E2103-E2109. doi:10.1210/CLINEM/DGAB904
1426 1427 1428	55.	Muthuvel G, Dauber A, Alexandrou E, Tyzinski L, Hwa V, Backeljauw P. Treatment of Short Stature in Aggrecan-deficient Patients With Recombinant Human GH: 3-year Response. <i>J Endocr Soc.</i> 2024;8(12). doi:10.1210/JENDSO/BVAE177

1429 56. Nenna R, Turchetti A, Mastrogiorgio G, Midulla F. COL2A1 Gene Mutations: Mechanisms of 1430 Spondyloepiphyseal Dysplasia Congenita. Appl Clin Genet. 2019;12:235-238. 1431 doi:10.2147/TACG.S197205 1432 57. Savarirayan R, Bompadre V, Bober MB, et al. Best practice guidelines regarding diagnosis and 1433 management of patients with type II collagen disorders. Genetics in Medicine. 1434 2019;21(9):2070-2080. doi:10.1038/s41436-019-0446-9 1435 58. Gregersen PA, Savarirayan R. Type II Collagen Disorders Overview.; 1993. 1436 59. Sentchordi-Montané L, Benito-Sanz S, Aza-Carmona M, et al. High prevalence of variants in 1437 skeletal dysplasia associated genes in individuals with short stature and minor skeletal 1438 anomalies. Eur J Endocrinol. 2021;185(5):691-705. doi:10.1530/EJE-21-0557 1439 60. Andrade NLM, Funari MF de A, Malaquias AC, et al. Diagnostic yield of a multigene sequencing 1440 approach in children classified as idiopathic short stature. Endocr Connect. 2022;11(12). doi:10.1530/EC-22-0214 1441 1442 61. Chen M, Miao H, Liang H, et al. Clinical Characteristics of Short-Stature Patients With Collagen 1443 Gene Mutation and the Therapeutic Response to rhGH. Front Endocrinol (Lausanne). 2022;13. 1444 doi:10.3389/FENDO.2022.820001 1445 62. Plachy L, Dusatkova P, Maratova K, et al. Familial Short Stature-A Novel Phenotype of Growth Plate Collagenopathies. J Clin Endocrinol Metab. 2021;106(6):1742-1749. 1446 doi:10.1210/CLINEM/DGAB084 1447 1448 63. Dagoneau N, Benoist-Lasselin C, Huber C, et al. ADAMTS10 mutations in autosomal recessive 1449 weill-marchesani syndrome. Am J Hum Genet. 2004;75(5):801-806. doi:10.1086/425231 1450 64. Marzin P, Rondeau S, Alessandri JL, et al. Weill-Marchesani syndrome: natural history and 1451 genotype-phenotype correlations from 18 news cases and review of literature. J Med Genet. 1452 2024;61(2):109-116. doi:10.1136/JMG-2023-109288 1453 65. Asgari S, Luo Y, Akbari A, et al. A positively selected FBN1 missense variant reduces height in 1454 Peruvian individuals. Nature. 2020;582(7811):234-239. doi:10.1038/S41586-020-2302-0 1455 66. De Bruin C, Finlayson C, Funari MFA, et al. Two Patients with Severe Short Stature due to a FBN1 Mutation (p.Ala1728Val) with a Mild Form of Acromicric Dysplasia. Horm Res Paediatr. 1456 1457 2016;86(5):342-348. doi:10.1159/000446476 1458 67. Legare JM. Achondroplasia.; 1993. 1459 68. Trotter TL, Hall JG. Health supervision for children with achondroplasia. *Pediatrics*. 1460 2005;116(3):771-783. doi:10.1542/PEDS.2005-1440 1461 69. Mettler G, Fraser FC. Recurrence risk for sibs of children with "sporadic" achondroplasia. Am J 1462 Med Genet. 2000;90(3):250-251. 1463 70. Harada D, Namba N, Hanioka Y, et al. Final adult height in long-term growth hormone-treated 1464 achondroplasia patients. Eur J Pediatr. 2017;176(7):873-879. doi:10.1007/s00431-017-2923-y 1465 71. Savarirayan R, Tofts L, Irving M, et al. Once-daily, subcutaneous vosoritide therapy in children 1466 with achondroplasia: a randomised, double-blind, phase 3, placebo-controlled, multicentre 1467 trial. Lancet. 2020;396(10252):684-692. doi:10.1016/S0140-6736(20)31541-5

1468 1469	72.	Savarirayan R, De Bergua JM, Arundel P, et al. Oral Infigratinib Therapy in Children with Achondroplasia. <i>N Engl J Med</i> . 2025;392(9):865-874. doi:10.1056/NEJMoa2411790
1470 1471	73.	Bober MB, Bellus GA, Nikkel SM, Tiller GE. <i>Hypochondroplasia</i> . University of Washington, Seattle; 1993. Accessed September 4, 2019. http://www.ncbi.nlm.nih.gov/pubmed/20301650
1472 1473	74.	Kant SG, Cervenkova I, Balek L, et al. A novel variant of FGFR3 causes proportionate short stature. <i>Eur J Endocrinol</i> . 2015;172(6):763-770. doi:10.1530/EJE-14-0945
1474 1475 1476	75.	Pinto G, Cormier-Daire V, Le Merrer M, et al. Efficacy and safety of growth hormone treatment in children with hypochondroplasia: comparison with an historical cohort. <i>Horm Res Paediatr</i> . 2014;82(6):355-363. doi:10.1159/000364807
1477 1478 1479	76.	Çetin T, Şıklar Z, Kocaay P, Berberoğlu M. Evaluation of Efficacy of Long-term Growth Hormone Therapy in Patients with Hypochondroplasia. <i>J Clin Res Pediatr Endocrinol</i> . 2018;10(4):373-376. doi:10.4274/jcrpe.0043
1480 1481 1482	77.	Dauber A, Zhang A, Kanakatti Shankar R, et al. Vosoritide treatment for children with hypochondroplasia: a phase 2 trial. <i>EClinicalMedicine</i> . 2024;71:102591. doi:10.1016/j.eclinm.2024.102591
1483 1484 1485	78.	Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. <i>Science</i> . 1996;273(5277):974-977. doi:10.1126/science.273.5277.974
1486 1487 1488	79.	Pantel J, Legendre M, Cabrol S, et al. Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature. <i>J Clin Invest</i> . 2006;116(3):760-768. doi:10.1172/JCI25303
1489 1490 1491	80.	Punt LD, Kooijman S, Mutsters NJM, et al. Loss-of-Function GHSR Variants Are Associated With Short Stature and Low IGF-I. <i>J Clin Endocrinol Metab</i> . 2025;110(5):e1303-e1314. doi:10.1210/CLINEM/DGAF010
1492 1493	81.	Mizuhashi K, Ono W, Matsushita Y, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. <i>Nature</i> . 2018;563(7730):254-258. doi:10.1038/s41586-018-0662-5
1494 1495 1496	82.	Amano K, Densmore MJ, Lanske B. Conditional Deletion of Indian Hedgehog in Limb Mesenchyme Results in Complete Loss of Growth Plate Formation but Allows Mature Osteoblast Differentiation. <i>J Bone Miner Res.</i> 2015;30(12):2262-2272. doi:10.1002/jbmr.2582
1497 1498 1499	83.	Kobayashi T, Soegiarto DW, Yang Y, et al. Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. <i>J Clin Invest</i> . 2005;115(7):1734-1742. doi:10.1172/JCI24397
1500 1501 1502	84.	St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. <i>Genes Dev.</i> 1999;13(16):2072-2086. doi:10.1101/gad.13.16.2072
1503 1504 1505	85.	Maeda Y, Nakamura E, Nguyen MT, et al. Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone. <i>Proc Natl Acad Sci U S A</i> . 2007;104(15):6382-6387. doi:10.1073/pnas.0608449104
1506 1507	86.	Gao B, Guo J, She C, et al. Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1. <i>Nat Genet</i> . 2001;28(4):386-388. doi:10.1038/ng577

1508 1509	87.	Temtamy SA, Aglan MS. Brachydactyly. <i>Orphanet J Rare Dis</i> . 2008;3:15. doi:10.1186/1750-1172-3-15
1510 1511 1512	88.	Sentchordi-Montané L, Benito-Sanz S, Aza-Carmona M, et al. Clinical and Molecular Description of 16 Families With Heterozygous IHH Variants. <i>J Clin Endocrinol Metab</i> . 2020;105(8). doi:10.1210/clinem/dgaa218
1513 1514 1515	89.	Hellemans J, Coucke PJ, Giedion A, et al. Homozygous mutations in IHH cause acrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses in hands and hips. <i>Am J Hum Genet</i> . 2003;72(4):1040-1046. doi:10.1086/374318
1516 1517 1518	90.	Ozyavuz Cubuk P, Duz MB. Acrocapitofemoral dysplasia: Novel mutation in IHH in two adult patients from the third family in the literature and progression of the disease. <i>Eur J Med Genet</i> . 2021;64(11):104343. doi:10.1016/j.ejmg.2021.104343
1519 1520 1521	91.	Mortier GR, Kramer PPG, Giedion A, Beemer FA. Acrocapitofemoral dysplasia: an autosomal recessive skeletal dysplasia with cone shaped epiphyses in the hands and hips. <i>J Med Genet</i> . 2003;40(3):201-207. doi:10.1136/jmg.40.3.201
1522 1523 1524	92.	Vasques GA, Funari MFA, Ferreira FM, et al. IHH Gene Mutations Causing Short Stature With Nonspecific Skeletal Abnormalities and Response to Growth Hormone Therapy. <i>J Clin Endocrinol Metab</i> . 2018;103(2):604-614. doi:10.1210/jc.2017-02026
1525 1526 1527	93.	Díaz-González F, Sentchordi-Montané L, Lucas-Castro E, Modamio-Høybjør S, Heath KE. Variants in both the N- or C-terminal domains of IHH lead to defective secretion causing short stature and skeletal defects. <i>Eur J Endocrinol</i> . 2024;191(1):38-46. doi:10.1093/ejendo/lvae072
1528 1529 1530	94.	Chen Y, Yin M, Lu Y, et al. Short stature with brachydactyly caused by a novel mutation in the IHH gene and response to 4-year growth hormone therapy: a case report. <i>Transl Pediatr</i> . 2024;13(5):856-863. doi:10.21037/tp-23-578
1531 1532	95.	Miller DT, Freedenberg D, Schorry E, et al. Health Supervision for Children With Neurofibromatosis Type 1. <i>Pediatrics</i> . 2019;143(5). doi:10.1542/peds.2019-0660
1533 1534 1535	96.	Bergqvist C, Servy A, Valeyrie-Allanore L, et al. Neurofibromatosis 1 French national guidelines based on an extensive literature review since 1966. <i>Orphanet J Rare Dis.</i> 2020;15(1):37. doi:10.1186/s13023-020-1310-3
1536 1537 1538	97.	Ono K, Karolak MR, Ndong J de la C, Wang W, Yang X, Elefteriou F. The ras-GTPase activity of neurofibromin restrains ERK-dependent FGFR signaling during endochondral bone formation. <i>Hum Mol Genet</i> . 2013;22(15):3048-3062. doi:10.1093/hmg/ddt162
1539 1540 1541	98.	Karolak MR, Yang X, Elefteriou F. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation. <i>Hum Mol Genet</i> . 2015;24(9):2552-2564. doi:10.1093/hmg/ddv019
1542 1543 1544	99.	Giraud JS, Bièche I, Pasmant É, Tlemsani C. NF1 alterations in cancers: therapeutic implications in precision medicine. <i>Expert Opin Investig Drugs</i> . 2023;32(10):941-957. doi:10.1080/13543784.2023.2263836
1545 1546	100.	Perrino MR, Das A, Scollon SR, et al. Update on Pediatric Cancer Surveillance Recommendations for Patients with Neurofibromatosis Type 1, Noonan Syndrome, CBI

1547 1548		Syndrome, Costello Syndrome, and Related RASopathies. <i>Clin Cancer Res.</i> 2024;30(21):4834-4843. doi:10.1158/1078-0432.CCR-24-1611
1549 1550 1551	101.	Hegedus B, Yeh TH, Lee DY, Emnett RJ, Li J, Gutmann DH. Neurofibromin regulates somatic growth through the hypothalamic-pituitary axis. <i>Hum Mol Genet</i> . 2008;17(19):2956-2966. doi:10.1093/hmg/ddn194
1552 1553 1554	102.	Vassilopoulou-Sellin R, Klein MJ, Slopis JK. Growth hormone deficiency in children with neurofibromatosis type 1 without suprasellar lesions. <i>Pediatr Neurol</i> . 2000;22(5):355-358. doi:10.1016/s0887-8994(00)00123-5
1555 1556 1557	103.	Regala C, Cavaco D, Maciel J, et al. Endocrine manifestations in a paediatric cohort of 181 patients with neurofibromatosis type 1. <i>Eur J Endocrinol</i> . 2025;193(2):216-222. doi:10.1093/ejendo/lvaf147
1558 1559 1560	104.	Kyritsi EM, Hasiotou M, Kanaka-Gantenbein C. Partial empty sella syndrome, GH deficiency and transient central adrenal insufficiency in a patient with NF1. <i>Endocrine</i> . 2020;69(2):377-385. doi:10.1007/s12020-020-02351-z
1561 1562 1563	105.	Lee TSJ, Chopra M, Kim RH, Parkin PC, Barnett-Tapia C. Incidence and prevalence of neurofibromatosis type 1 and 2: a systematic review and meta-analysis. <i>Orphanet J Rare Dis</i> . 2023;18(1):292. doi:10.1186/s13023-023-02911-2
1564 1565	106.	Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. <i>Arch Neurol</i> . 1988;45(5):575-578.
1566 1567 1568	107.	DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. <i>Pediatrics</i> . 2000;105(3 Pt 1):608-614. doi:10.1542/peds.105.3.608
1569 1570 1571	108.	Carmi D, Shohat M, Metzker A, Dickerman Z. Growth, puberty, and endocrine functions in patients with sporadic or familial neurofibromatosis type 1: a longitudinal study. <i>Pediatrics</i> . 1999;103(6 Pt 1):1257-1262. doi:10.1542/peds.103.6.1257
1572 1573 1574	109.	Soucy EA, van Oppen D, Nejedly NL, Gao F, Gutmann DH, Hollander AS. Height assessments in children with neurofibromatosis type 1. <i>J Child Neurol</i> . 2013;28(3):303-307. doi:10.1177/0883073812446310
1575 1576 1577	110.	Clementi M, Milani S, Mammi I, Boni S, Monciotti C, Tenconi R. Neurofibromatosis type 1 growth charts. <i>Am J Med Genet</i> . 1999;87(4):317-323. doi:10.1002/(sici)1096-8628(19991203)87:4<317::aid-ajmg7>3.0.co;2-x
1578 1579	111.	Szudek J, Birch P, Friedman JM. Growth in North American white children with neurofibromatosis 1 (NF1). <i>J Med Genet</i> . 2000;37(12):933-938. doi:10.1136/jmg.37.12.933
1580 1581 1582	112.	Santoro C, Perrotta S, Picariello S, et al. Pretreatment Endocrine Disorders Due to Optic Pathway Gliomas in Pediatric Neurofibromatosis Type 1: Multicenter Study. <i>J Clin Endocrinol Metab</i> . 2020;105(6). doi:10.1210/clinem/dgaa138
1583 1584 1585	113.	Cambiaso P, Galassi S, Palmiero M, et al. Growth hormone excess in children with neurofibromatosis type-1 and optic glioma. <i>Am J Med Genet A</i> . 2017;173(9):2353-2358. doi:10.1002/ajmg.a.38308

1586 1587	114.	Neurofibromatosis Type 1. <i>J Pediatr</i> . 2025;278:114440. doi:10.1016/j.jpeds.2024.114440
1588 1589 1590	115.	Charoenngam N, Wattanachayakul P, Jaroenlapnopparat A, Ungprasert P, Chenbhanich J. Bone Mineral Density in Neurofibromatosis Type 1: A Systematic Review and Meta-Analysis. <i>Calcif Tissue Int.</i> 2023;113(2):166-174. doi:10.1007/s00223-023-01094-z
1591 1592 1593	116.	Kaspiris A, Vasiliadis E, Iliopoulos ID, et al. Bone mineral density, vitamin D and osseous metabolism indices in neurofibromatosis type 1: A systematic review and meta-analysis. <i>Bone</i> 2024;180:116992. doi:10.1016/j.bone.2023.116992
1594 1595	117.	Fisher MJ, Blakeley JO, Weiss BD, et al. Management of neurofibromatosis type 1-associated plexiform neurofibromas. <i>Neuro Oncol</i> . 2022;24(11):1827-1844. doi:10.1093/neuonc/noac146
1596 1597 1598	118.	Cunha KSG, Barboza EP, Fonseca EC da. Identification of growth hormone receptor in plexiform neurofibromas of patients with neurofibromatosis type 1. <i>Clinics (Sao Paulo)</i> . 2008;63(1):39-42. doi:10.1590/s1807-59322008000100008
1599 1600 1601	119.	Friedrich RE, Keiner D, Hagel C. Expression of insulin-like growth-factor-1 receptor (IGF-1R) in peripheral nerve sheath tumors in neurofibromatosis type 1. <i>Anticancer Res</i> . 2007;27(4A):2085-2090.
1602 1603 1604	120.	Tornese G, Faleschini E, Matarazzo L, et al. Relapse and metastasis of atypical teratoid/rhabdoid tumor in a boy with neurofibromatosis type 1 treated with recombinant human growth hormone. <i>Neuropediatrics</i> . 2015;46(2):126-129. doi:10.1055/s-0034-1393706
1605 1606 1607	121.	Bartels CF, Bükülmez H, Padayatti P, et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. <i>Am J Hum Genet</i> . 2004;75(1):27-34. doi:10.1086/422013
1608 1609 1610	122.	Lorget F, Kaci N, Peng J, et al. Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. <i>Am J Hum Genet</i> . 2012;91(6):1108-1114. doi:10.1016/j.ajhg.2012.10.014
1611 1612 1613	123.	Ornitz DM, Marie PJ. Fibroblast growth factor signaling in skeletal development and disease. Genes Dev.Cold Spring Harbor Laboratory Press. 2015;29(14):1463-1486. doi:10.1101/gad.266551.115
1614 1615 1616	124.	Simsek-Kiper PO, Urel-Demir G, Taskiran EZ, et al. Further defining the clinical and molecular spectrum of acromesomelic dysplasia type maroteaux: a Turkish tertiary center experience. <i>J Hum Genet</i> . 2021;66(6):585-596. doi:10.1038/s10038-020-00871-0
1617 1618 1619	125.	Olney RC, Bükülmez H, Bartels CF, et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. <i>J Clin Endocrinol Metab</i> . 2006;91(4):1229-1232. doi:10.1210/jc.2005-1949
1620 1621 1622 1623	126.	Vasques GA, Amano N, Docko AJ, et al. Heterozygous Mutations in Natriuretic Peptide Receptor-B (<i>NPR2</i>) Gene as a Cause of Short Stature in Patients Initially Classified as Idiopathic Short Stature. <i>J Clin Endocrinol Metab</i> . 2013;98(10):E1636-E1644. doi:10.1210/jc.2013-2142
1624 1625	127.	Hannema SE, van Duyvenvoorde HA, Premsler T, et al. An Activating Mutation in the Kinase Homology Domain of the Natriuretic Peptide Receptor-2 Causes Extremely Tall Stature

1626 1627		Without Skeletal Deformities. <i>J Clin Endocrinol Metab</i> . 2013;98(12):E1988-E1998. doi:10.1210/jc.2013-2358
1628 1629 1630	128.	Hisado-Oliva A, Garre-Vázquez AI, Santaolalla-Caballero F, et al. Heterozygous <i>NPR2</i> Mutations Cause Disproportionate Short Stature, Similar to Léri-Weill Dyschondrosteosis. <i>J Clin Endocrinol Metab</i> . 2015;100(8):E1133-E1142. doi:10.1210/jc.2015-1612
1631 1632 1633	129.	Plachy L, Dusatkova P, Maratova K, et al. NPR2 Variants Are Frequent among Children with Familiar Short Stature and Respond Well to Growth Hormone Therapy. <i>J Clin Endocrinol Metab</i> . 2020;105(3). doi:10.1210/CLINEM/DGAA037
1634 1635 1636	130.	Ke X, Liang H, Miao H, et al. Clinical Characteristics of Short-Stature Patients With an NPR2 Mutation and the Therapeutic Response to rhGH. <i>J Clin Endocrinol Metab</i> . 2021;106(2):431-441. doi:10.1210/clinem/dgaa842
1637 1638 1639	131.	Hanley PC, Kanwar HS, Martineau C, Levine MA. Short Stature is Progressive in Patients with Heterozygous NPR2 Mutations. <i>J Clin Endocrinol Metab</i> . 2020;105(10):3190-3202. doi:10.1210/CLINEM/DGAA491
1640 1641	132.	Stavber L, Gaia MJ, Hovnik T, et al. Heterozygous NPR2 Variants in Idiopathic Short Stature. Genes (Basel). 2022;13(6). doi:10.3390/genes13061065
1642 1643 1644	133.	Ke X, Liang H, Miao H, et al. Clinical Characteristics of Short-Stature Patients With an NPR2 Mutation and the Therapeutic Response to rhGH. <i>J Clin Endocrinol Metab</i> . 2021;106(2):431-441. doi:10.1210/clinem/dgaa842
1645 1646 1647	134.	Vasques GA, Hisado-Oliva A, Funari MFA, et al. Long-term response to growth hormone therapy in a patient with short stature caused by a novel heterozygous mutation in NPR2. <i>J Pediatr Endocrinol Metab</i> . 2017;30(1):111-116. doi:10.1515/jpem-2016-0280
1648 1649 1650 1651	135.	Clayton P, Bonnemaire M, Dutailly P, et al. Characterizing short stature by insulin-like growth factor axis status and genetic associations: results from the prospective, cross-sectional, epidemiogenetic EPIGROW study. <i>J Clin Endocrinol Metab</i> . 2013;98(6):E1122-30. doi:10.1210/jc.2012-4283
1652 1653 1654	136.	Chen H, Zhang S, Sun Y, et al. Novel pathogenic NPR2 variants in short stature patients and the therapeutic response to rhGH. <i>Orphanet J Rare Dis.</i> 2023;18(1). doi:10.1186/S13023-023-02757-8
1655 1656 1657	137.	Tartaglia M, Kalidas K, Shaw A, et al. PTPN11 mutations in noonan syndrome: Molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. <i>Am J Hum Genet</i> . 2002;70(6):1555-1563. doi:10.1086/340847
1658 1659 1660	138.	Bertola DR, Castro MAA, Yamamoto GL, et al. Phenotype-genotype analysis of 242 individuals with RASopathies: 18-year experience of a tertiary center in Brazil. <i>Am J Med Genet C Semin Med Genet</i> . 2020;184(4):896-911. doi:10.1002/ajmg.c.31851
1661 1662 1663	139.	Yang L, Zhang C, Wang W, et al. Pathogenic gene screening in 91 Chinese patients with short stature of unknown etiology with a targeted next-generation sequencing panel. <i>BMC Med Genet</i> , 2018:19(1):212, doi:10.1186/s12881-018-0730-6

1664 1665 1666	140.	Cappa M, d'Aniello F, Digilio MC, et al. Noonan Syndrome Growth Charts and Genotypes: 15-Year Longitudinal Single-Centre Study. <i>Horm Res Paediatr</i> . Published online July 22, 2024:1-13. doi:10.1159/000540092
1667 1668 1669	141.	Stagi S, Ferrari V, Ferrari M, Priolo M, Tartaglia M. Inside the Noonan "universe": Literature review on growth, GH/IGF axis and rhGH treatment: Facts and concerns. <i>Front Endocrinol (Lausanne)</i> . 2022;13:951331. doi:10.3389/fendo.2022.951331
1670 1671	142.	Aftab S, Dattani MT. Pathogenesis of Growth Failure in Rasopathies. <i>Pediatr Endocrinol Rev</i> . 2019;16(Suppl 2):447-458. doi:10.17458/per.vol16.2019.ad.pathogenesisrasopathies
1672 1673 1674	143.	Verhoeven W, Wingbermühle E, Egger J, Van der Burgt I, Tuinier S. Noonan syndrome: psychological and psychiatric aspects. <i>Am J Med Genet A</i> . 2008;146A(2):191-196. doi:10.1002/ajmg.a.32115
1675 1676	144.	Perrino F, Licchelli S, Serra G, et al. Psychopathological features in Noonan syndrome. <i>Eur J Paediatr Neurol</i> . 2018;22(1):170-177. doi:10.1016/j.ejpn.2017.09.009
1677 1678	145.	Cornwall JW, Green RS, Nielsen JC, Gelb BD. Frequency of aortic dilation in Noonan syndrome. Am J Cardiol. 2014;113(2):368-371. doi:10.1016/j.amjcard.2013.09.034
1679 1680	146.	Bertola DR, Carneiro JDA, D'Amico EA, et al. Hematological findings in Noonan syndrome. <i>Rev Hosp Clin Fac Med Sao Paulo</i> . 2003;58(1):5-8. doi:10.1590/s0041-87812003000100002
1681 1682 1683	147.	Draaisma JMT, Drossaers J, van den Engel-Hoek L, Leenders E, Geelen J. Young children with Noonan syndrome: evaluation of feeding problems. <i>Eur J Pediatr</i> . 2020;179(11):1683-1688. doi:10.1007/s00431-020-03664-x
1684 1685 1686	148.	Jorge AAL, Edouard T, Maghnie M, et al. Outcomes in growth hormone-treated Noonan syndrome children: impact of PTPN11 mutation status. <i>Endocr Connect</i> . 2022;11(4). doi:10.1530/EC-21-0615
1687 1688 1689	149.	Marchini A, Ogata T, Rappold GA. A Track record on SHOX: From basic research to complex models and therapy. <i>Endocr Rev.Endocrine Society</i> . 2016;37(4):417-448. doi:10.1210/er.2016-1036
1690 1691	150.	Belin V, Cusin V, Viot G, et al. SHOX mutations in dyschondrosteosis (Leri-Weill syndrome). <i>Nat Genet</i> . 1998;19(1):67-69. doi:10.1038/NG0198-67
1692 1693 1694	151.	Malaquias AC, Scalco RC, Fontenele EGP, et al. The sitting height/height ratio for age in healthy and short individuals and its potential role in selecting short children for SHOX analysis. <i>Horm Res Paediatr</i> . 2013;80(6):449-456. doi:10.1159/000355411
1695 1696 1697	152.	Joustra SD, Kamp GA, Stalman SE, et al. Novel Clinical Criteria Allow Detection of Short Stature Homeobox-Containing Gene Haploinsufficiency Caused by Either Gene or Enhancer Region Defects. <i>Horm Res Paediatr</i> . 2019;92(6):372-381. doi:10.1159/000507215
1698 1699	153.	Binder G. Short stature due to SHOX deficiency: genotype, phenotype, and therapy. <i>Horm Res Paediatr</i> . 2011;75(2):81-89. doi:10.1159/000324105
1700 1701	154.	Ross JL, Scott C. J, Marttila P, et al. Phenotypes Associated with SHOX Deficiency. <i>J Clin Endocrinol Metab</i> . 2001;86(12):5674-5680. doi:10.1210/JCEM.86.12.8125

1702 1703 1704	155.	Kosho T, Muroya K, Nagai T, et al. Skeletal features and growth patterns in 14 patients with haploinsufficiency of SHOX: implications for the development of Turner syndrome. <i>J Clin Endocrinol Metab</i> . 1999;84(12):4613-4621. doi:10.1210/jcem.84.12.6289
1705 1706 1707	156.	Dantas NCB, Funari MFA, Vasques GA, et al. Adult Height of Patients with SHOX Haploinsufficiency with or without GH Therapy: A Real-World Single-Center Study. <i>Horm Res Paediatr</i> . 2022;95(3):264-274. doi:10.1159/000524374
1708 1709 1710	157.	Rappold G, Blum WF, Shavrikova EP, et al. Genotypes and phenotypes in children with short stature: clinical indicators of SHOX haploinsufficiency. <i>J Med Genet</i> . 2007;44(5):306-313. doi:10.1136/JMG.2006.046581
1711 1712 1713 1714	158.	Blum WF, Crowe BJ, Quigley CA, et al. Growth hormone is effective in treatment of short stature associated with short stature homeobox-containing gene deficiency: Two-year results of a randomized, controlled, multicenter trial. <i>J Clin Endocrinol Metab</i> . 2007;92(1):219-228. doi:10.1210/jc.2006-1409
1715 1716 1717	159.	Blum WF, Ross JL, Zimmermann AG, et al. GH treatment to final height produces similar height gains in patients with SHOX deficiency and Turner syndrome: results of a multicenter trial. <i>J Clin Endocrinol Metab</i> . 2013;98(8):E1383-92. doi:10.1210/jc.2013-1222
1718 1719 1720	160.	Wang SR, Jacobsen CM, Carmichael H, et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) gene as a cause of short stature. <i>Hum Mutat</i> . 2015;36(4):474-481. doi:10.1002/humu.22773
1721 1722 1723	161.	Wakeling EL, Brioude F, Lokulo-Sodipe O, et al. Diagnosis and management of Silver-Russell syndrome: first international consensus statement. <i>Nat Rev Endocrinol</i> . 2017;13(2):105-124. doi:10.1038/NRENDO.2016.138
1724 1725 1726	162.	Gunay-Aygun M, Schwartz S, Heeger S, O'Riordan MA, Cassidy SB. The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. <i>Pediatrics</i> . 2001;108(5):E92. doi:10.1542/peds.108.5.e92
1727 1728	163.	Li X, Yao R, Chang G, et al. Clinical Profiles and Genetic Spectra of 814 Chinese Children With Short Stature. <i>J Clin Endocrinol Metab</i> . 2022;107(4):972-985. doi:10.1210/CLINEM/DGAB863
1729 1730 1731	164.	Tomizawa S ichi, Sasaki H. Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. <i>J Hum Genet</i> . 2012;57(2):84-91. doi:10.1038/jhg.2011.151
1732 1733 1734	165.	Lee YL, Bouwman AC, Harland C, et al. The rate of de novo structural variation is increased in in vitro-produced offspring and preferentially affects the paternal genome. <i>Genome Res</i> . 2023;33(9):1455-1464. doi:10.1101/gr.277884.123
1735 1736	166.	van Buuren S. Growth charts of human development. <i>Stat Methods Med Res</i> . 2014;23(4):346-368. doi:10.1177/0962280212473300
1737 1738 1739	167.	Joustra SD, van der Plas EM, Goede J, et al. New reference charts for testicular volume in Dutch children and adolescents allow the calculation of standard deviation scores. <i>Acta Paediatr</i> . 2015;104(6):e271-8. doi:10.1111/apa.12972
1740 1741	168.	Lawaetz JG, Hagen CP, Mieritz MG, Blomberg Jensen M, Petersen JH, Juul A. Evaluation of 451 Danish boys with delayed puberty: diagnostic use of a new puberty nomogram and effects of

1742 1743		oral testosterone therapy. <i>J Clin Endocrinol Metab</i> . 2015;100(4):1376-1385. doi:10.1210/jc.2014-3631
1744 1745 1746	169.	Davenport ML, Punyasavatsut N, Stewart PW, Gunther DF, Sävendahl L, Sybert VP. Growth failure in early life: an important manifestation of Turner syndrome. <i>Horm Res.</i> 2002;57(5-6):157-164. doi:10.1159/000058376
1747 1748	170.	Ranke MB, Pflüger H, Rosendahl W, et al. Turner syndrome: spontaneous growth in 150 cases and review of the literature. <i>Eur J Pediatr</i> . 1983;141(2):81-88. doi:10.1007/BF00496795
1749 1750	171.	Witt DR, Keena BA, Hall JG, Allanson JE. Growth curves for height in Noonan syndrome. <i>Clin Genet</i> . 1986;30(3):150-153. doi:10.1111/J.1399-0004.1986.TB00587.X
1751 1752 1753	172.	Hisado-Oliva A, Ruzafa-Martin A, Sentchordi L, et al. Mutations in C-natriuretic peptide (NPPC): a novel cause of autosomal dominant short stature. <i>Genetics in Medicine</i> . 2018;20(1):91-97. doi:10.1038/gim.2017.66
1754 1755	173.	Dauber A, Rosenfeld RG, Hirschhorn JN. Genetic Evaluation of Short Stature. <i>J Clin Endocrinol Metab</i> . 2014;99(9):3080-3092. doi:10.1210/jc.2014-1506
1756 1757 1758 1759	174.	Alatzoglou KS, Turton JP, Kelberman D, et al. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. <i>J Clin Endocrinol Metab</i> . 2009;94(9):3191-3199. doi:10.1210/jc.2008-2783
1760 1761 1762	175.	Wit JM, Oostdijk W, Losekoot M, van Duyvenvoorde HA, Ruivenkamp CAL, Kant SG. MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature. <i>Eur J Endocrinol</i> . 2016;174(4):R145-73. doi:10.1530/EJE-15-0937
1763 1764 1765	176.	Collett-Solberg PF, Jorge AAL, Boguszewski MCS, et al. Growth hormone therapy in children; research and practice - A review. <i>Growth Horm IGF Res.</i> 2019;44:20-32. doi:10.1016/j.ghir.2018.12.004
1766 1767 1768	177.	Azzi S, Salem J, Thibaud N, et al. A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. <i>J Med Genet</i> . 2015;52(7):446-453. doi:10.1136/jmedgenet-2014-102979
1769 1770	178.	Geraedts EJ, van Dommelen P, Caliebe J, et al. Association between head circumference and body size. <i>Horm Res Paediatr</i> . 2011;75(3):213-219. doi:10.1159/000321192
1771 1772	179.	Zenker M. Clinical overview on RASopathies. <i>Am J Med Genet C Semin Med Genet</i> . 2022;190(4):414-424. doi:10.1002/ajmg.c.32015
1773 1774 1775	180.	Clayton PE, Hanson D, Magee L, et al. Exploring the spectrum of 3-M syndrome, a primordial short stature disorder of disrupted ubiquitination. <i>Clin Endocrinol (Oxf)</i> . 2012;77(3):335-342. doi:10.1111/j.1365-2265.2012.04428.x
1776 1777 1778	181.	Karvonen M, Saari A, Hannila ML, Lönnqvist T, Dunkel L, Sankilampi U. Elevated head circumference-to-height ratio is an early and frequent feature in children with neurofibromatosis type 1. <i>Horm Res Paediatr</i> . 2013;79(2):97-102. doi:10.1159/000347119
1779 1780	182.	Sari E, Bereket A, Yeşilkaya E, et al. Anthropometric findings from birth to adulthood and their relation with karyotpye distribution in Turkish girls with Turner syndrome. <i>Am J Med Genet A</i> .

2016;170A(4):942-948. doi:10.1002/ajmg.a.37498

1782 1783 1784	183.	Ioannides Y, Lokulo-Sodipe K, Mackay DJG, Davies JH, Temple IK. Temple syndrome: improving the recognition of an underdiagnosed chromosome 14 imprinting disorder: an analysis of 51 published cases. <i>J Med Genet</i> . 2014;51(8):495-501. doi:10.1136/jmedgenet-2014-102396
1785 1786 1787	184.	Oostdijk W, Idkowiak J, Mueller JW, et al. PAPSS2 deficiency causes androgen excess via impaired DHEA sulfationin vitro and in vivo studies in a family harboring two novel PAPSS2 mutations. <i>J Clin Endocrinol Metab</i> . 2015;100(4):E672-80. doi:10.1210/jc.2014-3556
1788 1789 1790	185.	Hawkes CP, Mostoufi-Moab S, McCormack SE, Grimberg A, Zemel BS. Sitting Height to Standing Height Ratio Reference Charts for Children in the United States. <i>Journal of Pediatrics</i> . 2020;226. doi:10.1016/j.jpeds.2020.06.051
1791 1792 1793 1794	186.	Tanner JM, Whitehouse RH, Hughes PC, Carter BS. Relative importance of growth hormone and sex steroids for the growth at puberty of trunk length, limb length, and muscle width in growth hormone-deficient children. <i>J Pediatr</i> . 1976;89(6):1000-1008. doi:10.1016/s0022-3476(76)80620-8
1795 1796 1797	187.	Prader A, Largo RH, Molinari L, Issler C. Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. <i>Helv Paediatr Acta Suppl</i> . 1989;52:1-125.
1798 1799 1800 1801	188.	Fredriks AM, van Buuren S, van Heel WJM, Dijkman-Neerincx RHM, Verloove-Vanhorick SP, Wit JM. Nationwide age references for sitting height, leg length, and sitting height/height ratio, and their diagnostic value for disproportionate growth disorders. <i>Arch Dis Child</i> . 2005;90(8):807-812. doi:10.1136/adc.2004.050799
1802 1803 1804	189.	de Arriba Muñoz A, Domínguez Cajal M, Rueda Caballero C, Labarta Aizpún JI, Mayayo Dehesa E, Ferrández Longás Á. Sitting height/standing height ratio in a Spanish population from birth to adulthood. <i>Arch Argent Pediatr</i> . 2013;111(4):309-314. doi:10.5546/aap.2013.eng.309
1805 1806	190.	Bundak R, Bas F, Furman A, et al. Sitting height and sitting height/height ratio references for Turkish children. <i>Eur J Pediatr</i> . 2014;173(7):861-869. doi:10.1007/s00431-013-2212-3
1807 1808 1809	191.	Zhang Y qin, Li H. Reference charts of sitting height, leg length and body proportions for Chinese children aged 0-18 years. <i>Ann Hum Biol</i> . 2015;42(3):223-230. doi:10.3109/03014460.2014.934283
1810 1811 1812	192.	Turan S, Bereket A, Omar A, Berber M, Ozen A, Bekiroglu N. Upper segment/lower segment ratio and armspan-height difference in healthy Turkish children. <i>Acta Paediatr</i> . 2005;94(4):407-413. doi:10.1111/j.1651-2227.2005.tb01909.x
1813 1814 1815	193.	Song SH, Balce GCE, Agashe MV, et al. New proposed clinico-radiologic and molecular criteria in hypochondroplasia: FGFR 3 gene mutations are not the only cause of hypochondroplasia. <i>Am J Med Genet A</i> . 2012;158A(10):2456-2462. doi:10.1002/ajmg.a.35564
1816 1817 1818	194.	Wit JM, Kamp GA, Oostdijk W. Towards a Rational and Efficient Diagnostic Approach in Children Referred for Growth Failure to the General Paediatrician. <i>Horm Res Paediatr</i> . 2019;91(4):223-240. doi:10.1159/000499915

Kanof ME, Lake AM, Bayless TM. Decreased height velocity in children and adolescents before

the diagnosis of Crohn's disease. *Gastroenterology*. 1988;95(6):1523-1527.

doi:10.1016/s0016-5085(88)80072-6

1819 1820

1822 1823 1824	196.	Sawczenko A, Sandhu BK, Logan RF, et al. Prospective survey of childhood inflammatory bowel disease in the British Isles. <i>Lancet</i> . 2001;357(9262):1093-1094. doi:10.1016/s0140-6736(00)04309-9
1825 1826	197.	Cezard JP, Touati G, Alberti C, Hugot JP, Brinon C, Czernichow P. Growth in paediatric Crohn's disease. <i>Horm Res</i> . 2002;58 Suppl 1:11-15. doi:10.1159/000064759
1827 1828 1829	198.	Timmer A, Behrens R, Buderus S, et al. Childhood onset inflammatory bowel disease: predictors of delayed diagnosis from the CEDATA German-language pediatric inflammatory bowel disease registry. <i>J Pediatr</i> . 2011;158(3):467-473.e2. doi:10.1016/j.jpeds.2010.09.014
1830 1831 1832 1833	199.	Mul D, Grote FK, Goudriaan JR, de Muinck Keizer-Schrama SMPF, Wit JM, Oostdijk W. Should blood gas analysis be part of the diagnostic workup of short children? Auxological data and blood gas analysis in children with renal tubular acidosis. <i>Horm Res Paediatr</i> . 2010;74(5):351-357. doi:10.1159/000314967
1834 1835 1836	200.	Vlaardingerbroek H, Joustra SD, Oostdijk W, de Bruin C, Wit JM. Assessment of Nutritional Status in the Diagnostic Evaluation of the Child with Growth Failure. <i>Horm Res Paediatr</i> . 2024;97(1):11-21. doi:10.1159/000530644
1837 1838 1839	201.	Santonicola A, Wieser H, Gizzi C, Soldaini C, Ciacci C. Associations between Celiac Disease, Extra-Gastrointestinal Manifestations, and Gluten-Free Diet: A Narrative Overview. <i>Nutrients</i> . 2024;16(12). doi:10.3390/nu16121814
1840 1841 1842	202.	Canton APM, Costa SS, Rodrigues TC, et al. Genome-wide screening of copy number variants in children born small for gestational age reveals several candidate genes involved in growth pathways. <i>Eur J Endocrinol</i> . 2014;171(2):253-262. doi:10.1530/EJE-14-0232
1843 1844 1845	203.	Wit JM, van Duyvenvoorde HA, van Klinken JB, et al. Copy number variants in short children born small for gestational age. <i>Horm Res Paediatr</i> . 2014;82(5):310-318. doi:10.1159/000367712
1846 1847 1848 1849	204.	Inzaghi E, Deodati A, Loddo S, et al. Prevalence of copy number variants (CNVs) and rhGH treatment efficacy in an Italian cohort of children born small for gestational age (SGA) with persistent short stature associated with a complex clinical phenotype. <i>J Endocrinol Invest</i> . 2022;45(1):79-87. doi:10.1007/s40618-021-01617-1
1850 1851	205.	Bens S, Haake A, Richter J, et al. Frequency and characterization of DNA methylation defects in children born SGA. <i>Eur J Hum Genet</i> . 2013;21(8):838-843. doi:10.1038/ejhg.2012.262
1852 1853 1854 1855	206.	Meyer R, Begemann M, Hübner CT, et al. One test for all: whole exome sequencing significantly improves the diagnostic yield in growth retarded patients referred for molecular testing for Silver-Russell syndrome. <i>Orphanet J Rare Dis.</i> 2021;16(1):42. doi:10.1186/s13023-021-01683-x
1856 1857 1858	207.	Alhendi ASN, Lim D, McKee S, et al. Whole-genome analysis as a diagnostic tool for patients referred for diagnosis of Silver-Russell syndrome: a real-world study. <i>J Med Genet</i> . 2022;59(6):613-622. doi:10.1136/jmedgenet-2021-107699
1859 1860	208.	Fang D, Li X, Zhang Z, et al. Clinical profiles and molecular genetic analyses of 98 Chinese children with short statures. <i>Front Genet</i> . 2024;15. doi:10.3389/FGENE.2024.1364441

1861 209. Nikkel SM, Dauber A, de Munnik S, et al. The phenotype of Floating-Harbor syndrome: clinical characterization of 52 individuals with mutations in exon 34 of SRCAP. Orphanet J Rare Dis. 1862 1863 2013;8:63. doi:10.1186/1750-1172-8-63 1864 Srivastava S, Cole JJ, Cohen JS, et al. Survey of the Landscape of Society Practice Guidelines for 210. 1865 Genetic Testing of Neurodevelopmental Disorders. Ann Neurol. 2024;96(5):900-913. 1866 doi:10.1002/ANA.27045 1867 211. Maharaj A V, Ishida M, Rybak A, et al. QSOX2 Deficiency-induced short stature, gastrointestinal dysmotility and immune dysfunction. Nat Commun. 2024;15(1):8420. 1868 1869 doi:10.1038/s41467-024-52587-w 1870 212. Butler MG, Miller BS, Romano A, et al. Genetic conditions of short stature: A review of three 1871 classic examples. Front Endocrinol (Lausanne). 2022;13:1011960. 1872 doi:10.3389/fendo.2022.1011960 1873 Yang-Li D, Fei-Hong L, Hui-Wen Z, et al. Recommendations for the diagnosis and management 1874 of childhood Prader-Willi syndrome in China. Orphanet J Rare Dis. 2022;17(1):221. 1875 doi:10.1186/s13023-022-02302-z 1876 214. Walenkamp MJE, Karperien M, Pereira AM, et al. Homozygous and heterozygous expression of a novel insulin-like growth factor-I mutation. J Clin Endocrinol Metab. 2005;90(5):2855-1877 1878 2864. doi:10.1210/jc.2004-1254 1879 215. Murillo-Cuesta S, Rodríguez-de la Rosa L, Cediel R, Lassaletta L, Varela-Nieto I. The role of 1880 insulin-like growth factor-I in the physiopathology of hearing. Front Mol Neurosci. 2011;4:11. 1881 doi:10.3389/fnmol.2011.00011 1882 216. Margot H, Boursier G, Duflos C, et al. Immunopathological manifestations in Kabuki syndrome: 1883 a registry study of 177 individuals. Genet Med. 2020;22(1):181-188. doi:10.1038/s41436-019-0623-x 1884 1885 217. Saettini F, Herriot R, Prada E, et al. Prevalence of Immunological Defects in a Cohort of 97 1886 Rubinstein-Taybi Syndrome Patients. J Clin Immunol. 2020;40(6):851-860. 1887 doi:10.1007/s10875-020-00808-4 1888 218. Stewart DM, Tian L, Notarangelo LD, Nelson DL. X-linked hypogammaglobulinemia and 1889 isolated growth hormone deficiency: an update. Immunol Res. 2008;40(3):262-270. 1890 doi:10.1007/s12026-007-0028-9 1891 219. Chinn IK, Xie Z, Chan EC, et al. Short stature and combined immunodeficiency associated with 1892 mutations in RGS10. Sci Signal. 2021;14(693). doi:10.1126/scisignal.abc1940 1893 220. Ricci S, Abu-Rumeileh S, Campagna N, et al. Case Report: A child with NFKB1 1894 haploinsufficiency explaining the linkage between immunodeficiency and short stature. Front Immunol. 2023;14:1224603. doi:10.3389/fimmu.2023.1224603 1895 1896 221. Fabre A, Marchal S, Barlogis V, et al. Clinical Aspects of STAT3 Gain-of-Function Germline 1897 Mutations: A Systematic Review. J Allergy Clin Immunol Pract. 2019;7(6):1958-1969.e9. 1898 doi:10.1016/j.jaip.2019.02.018

Kanakatti Shankar R. Immunological Profile and Autoimmunity in Turner Syndrome. Horm Res

Paediatr. 2020;93(7-8):415-422. doi:10.1159/000512904

1899

1900

222.

1901 1902 1903	223.	Klammt J, Neumann D, Gevers EF, et al. Dominant-negative STAT5B mutations cause growth hormone insensitivity with short stature and mild immune dysregulation. <i>Nat Commun</i> . 2018;9(1):2105. doi:10.1038/s41467-018-04521-0
1904 1905 1906	224.	Blasco M, Quiroga B, García-Aznar JM, et al. Genetic Characterization of Kidney Failure of Unknown Etiology in Spain: Findings From the GENSEN Study. <i>Am J Kidney Dis</i> . 2024;84(6):719-730.e1. doi:10.1053/j.ajkd.2024.04.021
1907 1908 1909	225.	Gravholt CH, Andersen NH, Christin-Maitre S, et al. Clinical practice guidelines for the care of girls and women with Turner syndrome. <i>Eur J Endocrinol</i> . 2024;190(6):G53-G151. doi:10.1093/EJENDO/LVAE050
1910 1911	226.	Faienza MF, Meliota G, Mentino D, et al. Cardiac Phenotype and Gene Mutations in RASopathies. <i>Genes (Basel)</i> . 2024;15(8). doi:10.3390/genes15081015
1912 1913 1914	227.	Jhang WK, Choi JH, Lee BH, Kim GH, Yoo HW. Cardiac Manifestations and Associations with Gene Mutations in Patients Diagnosed with RASopathies. <i>Pediatr Cardiol</i> . 2016;37(8):1539-1547. doi:10.1007/s00246-016-1468-6
1915 1916	228.	Yoon JH, Hwang S, Bae H, et al. Clinical and molecular characteristics of Korean patients with Kabuki syndrome. <i>J Hum Genet</i> . 2024;69(9):417-423. doi:10.1038/s10038-024-01258-1
1917 1918 1919	229.	Dimopoulos K, Constantine A, Clift P, et al. Cardiovascular Complications of Down Syndrome: Scoping Review and Expert Consensus. <i>Circulation</i> . 2023;147(5):425-441. doi:10.1161/CIRCULATIONAHA.122.059706
1920 1921 1922	230.	Yılmaz Uzman C, Gürsoy S, Özkan B, et al. Clinical features and molecular genetics of patients with RASopathies: expanding the phenotype with rare genes and novel variants. <i>Eur J Pediatr</i> 2024;184(1):108. doi:10.1007/s00431-024-05825-8
1923	231.	Murray PG, Clayton PE. Disorders of Growth Hormone in Childhood.; 2000.
1924 1925	232.	Begemann M, Zirn B, Santen G, et al. Paternally Inherited IGF2 Mutation and Growth Restriction. <i>N Engl J Med</i> . 2015;373(4):349-356. doi:10.1056/NEJMoa1415227
1926 1927 1928	233.	Brioude F, Oliver-Petit I, Blaise A, et al. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. <i>J Med Genet</i> . 2013;50(12):823-830. doi:10.1136/jmedgenet-2013-101691
1929 1930	234.	Joustra SD, Joustra SD, Isik E, et al. Genetic Findings in Short Turkish Children Born to Consanguineous Parents. <i>Horm Res Paediatr</i> . 2025;98(5):532-542. doi:10.1159/000539696
1931 1932 1933	235.	Amaratunga SA, Tayeb TH, Dusatkova P, et al. High yield of monogenic short stature in children from Kurdistan, Iraq: A genetic testing algorithm for consanguineous families. <i>Genet Med</i> . 2025;27(2):101332. doi:10.1016/j.gim.2024.101332
1934 1935 1936	236.	Gonçalves FT, Fridman C, Pinto EM, et al. The E180splice mutation in the GHR gene causing Laron syndrome: witness of a Sephardic Jewish exodus from the Iberian Peninsula to the New World? <i>Am J Med Genet A</i> . 2014;164A(5):1204-1208. doi:10.1002/ajmg.a.36444
1937 1938 1939	237.	Jorge AAL, Funari MF, Nishi MY, Mendonca BB. Short stature caused by isolated SHOX gene haploinsufficiency: update on the diagnosis and treatment. <i>Pediatr Endocrinol Rev</i> . 2010;8(2):79-85.

1940 1941	238.	Vasques GA, Arnhold IJP, Jorge AAL. Role of the natriuretic peptide system in normal growth and growth disorders. <i>Horm Res Paediatr</i> . 2014;82(4):222-229. doi:10.1159/000365049
1942	239.	Haldeman-Englert CR, Hurst AC, Levine MA. Disorders of GNAS Inactivation.; 1993.
1943 1944 1945	240.	Mantovani G, Bastepe M, Monk D, et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international Consensus Statement. <i>Nat Rev Endocrinol</i> . 2018;14(8):476-500. doi:10.1038/S41574-018-0042-0
1946 1947 1948	241.	Clement ND, Duckworth AD, Baker ADL, Porter DE. Skeletal growth patterns in hereditary multiple exostoses: a natural history. <i>J Pediatr Orthop B</i> . 2012;21(2):150-154. doi:10.1097/BPB.0b013e32834dd21f
1949 1950	242.	Kutler DI, Singh B, Satagopan J, et al. A 20-year perspective on the International Fanconi Anemia Registry (IFAR). <i>Blood</i> . 2003;101(4):1249-1256. doi:10.1182/blood-2002-07-2170
1951 1952 1953	243.	Hage C, Gan HW, Ibba A, et al. Advances in differential diagnosis and management of growth hormone deficiency in children. <i>Nat Rev Endocrinol</i> . 2021;17(10):608-624. doi:10.1038/s41574-021-00539-5
1954 1955	244.	Gregory LC, Dattani MT. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. <i>J Clin Endocrinol Metab</i> . 2020;105(6). doi:10.1210/CLINEM/DGZ184
1956 1957	245.	Laron Z, Werner H. Laron syndrome - A historical perspective. <i>Rev Endocr Metab Disord</i> . 2021;22(1):31-41. doi:10.1007/s11154-020-09595-0
1958 1959 1960	246.	Mastromauro C, Giannini C, Chiarelli F. Short stature related to Growth Hormone Insensitivity (GHI) in childhood. <i>Front Endocrinol (Lausanne)</i> . 2023;14:1141039. doi:10.3389/fendo.2023.1141039
1961 1962 1963	247.	Homma TK, Freire BL, Honjo R, et al. Growth and Clinical Characteristics of Children with Floating-Harbor Syndrome: Analysis of Current Original Data and a Review of the Literature. Horm Res Paediatr. 2019;92(2):115-123. doi:10.1159/000503782
1964 1965	248.	Palmer BF, Kelepouris E, Clegg DJ. Renal Tubular Acidosis and Management Strategies: A Narrative Review. <i>Adv Ther</i> . 2021;38(2):949-968. doi:10.1007/s12325-020-01587-5
1966 1967	249.	Gattineni J. Inherited disorders of calcium and phosphate metabolism. <i>Curr Opin Pediatr</i> . 2014;26(2):215-222. doi:10.1097/MOP.000000000000064
1968	250.	McDonald-McGinn DM, Hain HS, Emanuel BS, Zackai EH. 22q11.2 Deletion Syndrome.; 1993.
1969 1970 1971	251.	Massese M, Tagliaferri F, Dionisi-Vici C, Maiorana A. Glycogen storage diseases with liver involvement: a literature review of GSD type 0, IV, VI, IX and XI. <i>Orphanet J Rare Dis</i> . 2022;17(1):241. doi:10.1186/s13023-022-02387-6
1972 1973	252.	Joly D, Béroud C, Grünfeld JP. Rare inherited disorders with renal involvement-approach to the patient. <i>Kidney Int</i> . 2015;87(5):901-908. doi:10.1038/ki.2014.432
1974 1975	253.	Roca M, Rodriguez Varela A, Carvajal E, et al. Fecal calprotectin in healthy children aged 4-16 years. <i>Sci Rep.</i> 2020;10(1):20565. doi:10.1038/s41598-020-77625-7
1976 1977 1978	254.	Aouchiche K, Charmensat C, Morgane P, et al. Phenotype and genotype of 23 patients with hypopituitarism and pathogenic GLI2 variants. <i>Eur J Endocrinol</i> . 2025;192(2):110-118. doi:10.1093/ejendo/lvaf015

1979 1980 1981	255.	Pfäffle RW, DiMattia GE, Parks JS, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. <i>Science</i> . 1992;257(5073):1118-1121. doi:10.1126/science.257.5073.1118
1982 1983 1984	256.	Turton JPG, Reynaud R, Mehta A, et al. Novel mutations within the POU1F1 gene associated with variable combined pituitary hormone deficiency. <i>J Clin Endocrinol Metab</i> . 2005;90(8):4762-4770. doi:10.1210/jc.2005-0570
1985 1986 1987 1988	257.	Gregory LC, Krywawych S, Rahman S, Lagos CF, Eaton S, Dattani MT. A complex multisystem disorder including hypopituitarism and hypoparathyroidism, associated with mutation in the gene encoding fatty acid synthase (FASN). <i>Metabolism</i> . 2025;168:156256. doi:10.1016/j.metabol.2025.156256
1989 1990 1991	258.	Gregory LC, Cionna C, Cerbone M, Dattani MT. Identification of genetic variants and phenotypic characterization of a large cohort of patients with congenital hypopituitarism and related disorders. <i>Genet Med.</i> 2023;25(9):100881. doi:10.1016/j.gim.2023.100881
1992 1993	259.	Eggermann T, Monk D, de Nanclares GP, et al. Imprinting disorders. <i>Nat Rev Dis Primers</i> . 2023;9(1):33. doi:10.1038/s41572-023-00443-4
1994 1995	260.	Linglart A, Maupetit-Méhouas S, Silve C. GNAS -Related Loss-of-Function Disorders and the Role of Imprinting. <i>Horm Res Paediatr</i> . 2013;79(3):119-129. doi:10.1159/000348516
1996 1997	261.	Sélénou C, Brioude F, Giabicani E, Sobrier ML, Netchine I. IGF2: Development, Genetic and Epigenetic Abnormalities. <i>Cells</i> . 2022;11(12). doi:10.3390/cells11121886
1998 1999	262.	Pham N V, Nguyen MT, Hu JF, Vu TH, Hoffman AR. Dissociation of IGF2 and H19 imprinting in human brain. <i>Brain Res.</i> 1998;810(1-2):1-8. doi:10.1016/s0006-8993(98)00783-5
2000 2001	263.	Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. <i>Nat Rev Genet</i> . 2022;23(11):697-710. doi:10.1038/s41576-022-00514-4
2002 2003	264.	Piao J, Tsuji K, Ochi H, et al. Sirt6 regulates postnatal growth plate differentiation and proliferation via Ihh signaling. <i>Sci Rep.</i> 2013;3:3022. doi:10.1038/srep03022
2004 2005	265.	Grigelioniene G, Suzuki HI, Taylan F, et al. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. <i>Nat Med.</i> 2019;25(4):583-590. doi:10.1038/s41591-019-0353-2
2006 2007	266.	Allou L, Balzano S, Magg A, et al. Non-coding deletions identify Maenli IncRNA as a limb-specific En1 regulator. <i>Nature</i> . 2021;592(7852):93-98. doi:10.1038/s41586-021-03208-9