

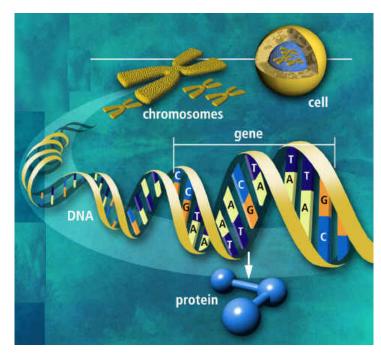
Next generation sequencing: Paradigm shift in genetic testing

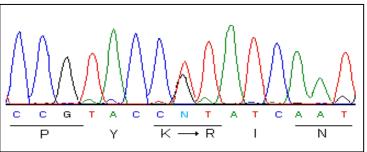
Joris Veltman, PhD

Department of Human Genetics
Radboud University Nijmegen Medical Centre
Nijmegen, The Netherlands
j.veltman@gen.umcn.nl

& diagnostics!

"Progress in science depends on new techniques, new discoveries, and new ideas, probably in that order."


- Sydney Brenner, 2002 Nobel Prize Winner



Finding the genetic causes of disease

- Diploid human genome consists of ~6 billion nucleotides
- A mutation at 1 position can result in disease
- Two individuals differ at
 ~3 million nucleotide positions

How can we reliably identify and interpret these variants in individual patients?

Challenges in genetic diagnostics

- Clinically diagnosing genetic disease is an art, ordering the right genetic test is difficult
- Single gene tests are laborious to set-up & expensive
- Diseases can be caused by different types of genetic variation, requiring different tests
- The genetic cause of 1000s of rare diseases is unknown
- Common diseases are genetically heterogeneous & their genetic causes are largely unknown

No genetic diagnosis for majority of diseases Role of genetics in medicine is limited

Need for simple, cheap & effective genetic diagnosis

Next generation sequencing: Simple, cheap & effective?

Important:

- Accuracy
- Speed
- Price

Genome sequence with all variation

Lessons learned from exome sequencing in disease gene identification

- Exome sequencing is a robust approach that can be highly automated
- It is not difficult to interpret the data if you ask the right question and have bioinformatic expertise
- Success rate of exome sequencing 70-80%, determined largely by the quality of clinical collection & sequencing
- Sporadic diseases have become amenable to genetic disease research, no need for families!
- De novo mutations; Important cause of sporadic disease

Gilissen et al. EJHG 2012

Diagnostic next generation sequencing

Where can NGS make the most difference now?
 Monogenic diseases with locus heterogeneity!
 ID, blindness, deafness, movement disorders, mitochondrial disease, heriditary cancers etc.

- What approach: target genesets, exome or genome?
 - Set of disease genes is rapidly expanding
 - Exome sequencing is a generic test, allows most flexibility Genome sequencing not high-throughput & affordable yet

Which NGS-test to choose: Targeted assays vs. Exome

Targeted

- Develop per (group of) diseases
- Can be optimized for "perfect" disease gene screening
- Higher throughput
- Needs to be updated regularly
- Interpretation only once
- Only data on selected genes
- No incidental findings
- Cheaper as a single test
- More easy interpretation
- Lower diagnostic yield per test

Exome

- Generic test for all diseases
- May miss causative mutations in known disease genes
- Lower throughput
- Less updating required
- Data interpreted repeatedly
- Normal variation accumulates
- Chance for incidental findings
- More expensive as a single test
- More follow-up required
- Higher diagnostic yield per test
 Nelen & Veltman, Pharmacogenomics 2012

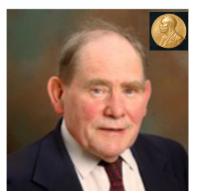
Human Genetics Nijmegen

NGS in diagnostics: The time is now!

This ESHG!

- Cockburn (Leeds): targeted BRCA1&2, TP53 etc. >1400 reports
- Matthijs (Leuven): targeted BRCA1&2, 1500 reports
- Dean (Bristol): targeted seq hypercholesterolemia genes, reports?
- Bergmann (Ingelheim): targeted seq cilia-related genes, reports?
- Black (Manchester): targeted RP-genes, validation phase
- Biesecker (NIH, Bethesda): diagnostic exome seq, 580 reports
- Nelen (Nijmegen): diagnostic exome seq, 300 reports
- Stray-Petersen (Oslo, Houston): diagnostic exome seq, reports?

Some personal thoughts


- Do not only set-up tests for one or two years, try to look a bit further down the road if possible
- Don't wait for tests to become perfect, optimization will have to happen during the implementation phase
- Europe can lead in this effort because of excellent link between research and diagnostics
- Proceed with care, openly discuss bottlenecks for reaching long-term goals, develop joint strategies
- Involve all stakeholders early in the process
- Genome sequencing will be the dominant diagnostic test in 5-10 years time

New Frontiers Symposium 2012

Personal Genomics

Sydney Brenner

James Lupski

Nicholas Katsanis

John Burn

Stylianos Antonarakis

Richard Durbin

Peter Holland

Jose Luis Gomez-Skarmeta

Nijmegen, NL December 3&4 2012

Registration now open

Major challenges for clinical implementation of exomes & genomes

- NGS-sequencing is imperfect, technology needs to improve, costs need to go down
- Affordable & large-scale data storage
- User-friendly software to interpret enormous amounts of data
- International data sharing to improve understanding
- Appropriate counseling with informed consent
- Additional challenge: Dealing with "incidental findings"
- Approach towards re-analysis of negative exomes/genomes
- Education/training of laboratory personnel & clinicians
- Need to evaluate and demonstrate clinical utility
- Need for practical guidelines in a clinical setting