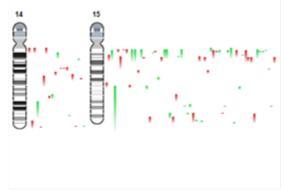

Array in daily practice promises and pitfalls Technical state of the art

Joris Vermeesch

K.U.Leuven

May 2011, ESHG, Amsterdam, The Netherlands


Postnatal diagnosis of patients with MCA/ID

POLICY

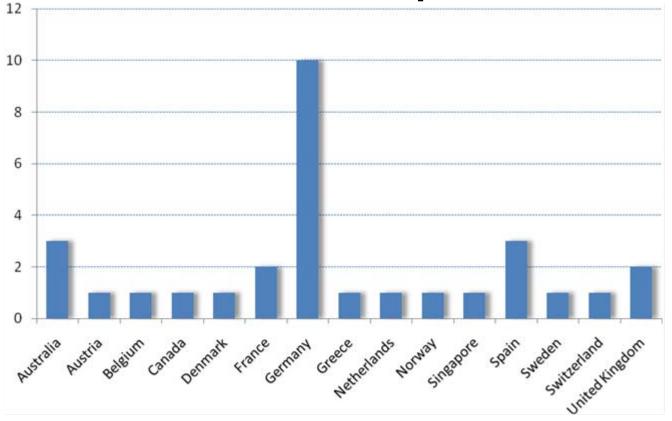
Guidelines for molecular karyotyping in constitutional genetic diagnosis

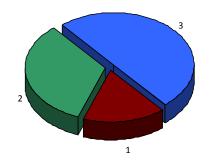
Joris Robert Vermeesch^{*,1}, Heike Fiegler², Nicole de Leeuw³, Karoly Szuhai⁴, Jacqueline Schoumans⁵, Roberto Ciccone⁶, Frank Speleman⁷, Anita Rauch⁸, Jill Clayton-Smith⁹, Conny Van Ravenswaaij¹⁰, Damien Sanlaville¹¹, Philippos C Patsalis¹², Helen Firth¹³, Koen Devriendt¹ and Orsetta Zuffardi⁶

Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies

David T. Miller,^{1,*} Margaret P. Adam,^{2,3} Swaroop Aradhya,⁴ Leslie G. Biesecker,⁵ Arthur R. Brothman,⁶ Nigel P. Carter,⁷ Deanna M. Church,⁸ John A. Crolla,⁹ Evan E. Eichler,¹⁰ Charles J. Epstein,¹¹ W. Andrew Faucett,² Lars Feuk,¹² Jan M. Friedman,¹³ Ada Hamosh,¹⁴ Laird Jackson,¹⁵ Erin B. Kaminsky,² Klaas Kok,¹⁶ Ian D. Krantz,¹⁷ Robert M. Kuhn,¹⁸ Charles Lee,¹⁹ James M. Ostell,⁸ Carla Rosenberg,²⁰ Stephen W. Scherer,²¹ Nancy B. Spinner,¹⁷ Dimitri J. Stavropoulos,²² James H. Tepperberg,²³ Erik C. Thorland,²⁴ Joris R. Vermeesch,²⁵ Darrel J. Waggoner,²⁶ Michael S. Watson,²⁷ Christa Lese Martin,² and David H. Ledbetter^{2,*}

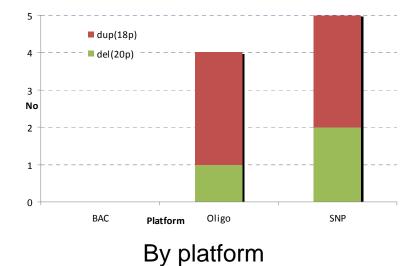
First external quality control scheme




The European Molecular Genetics Quality Network

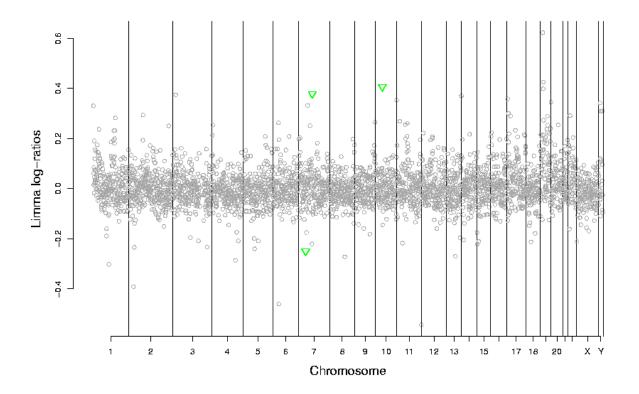
First external quality control scheme in 2010

30 Participants


Genotyping errors in 6 labs!

Missed dup(18p) and del(20p)

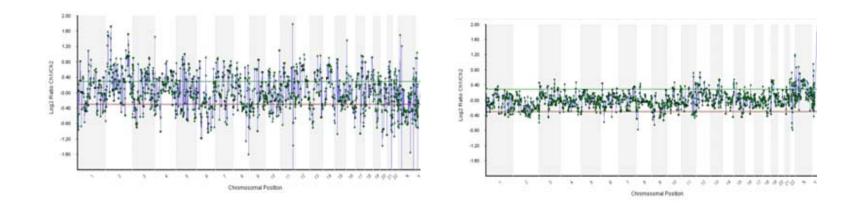
Missed dup(18p)


Missed del(20p)

Sizes:

- 9.3 Mb duplication
- 1.7 Mb deletion

Technical aspects


Is this a normal or an abnormal molecular karyotype?

Answer depends on premises:

- Technical premises
 - Array quality
 - Thresholding/statistics ?
 - Reference sample
- Biological premises
 Polymorphisms?

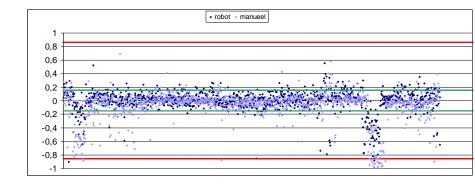
Standard deviation

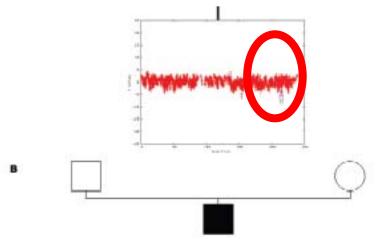
Problem: number of false positives dependens on variation of intensity ratios

Different treshholding methods

- Floating Segmentation algoritms
- Hidden Markov
- CNAT,CNAG
- But every method has its limits..

Due to statistics


Chromosome Section				
40,472	233,496	579 07Kb	426,521	619,546
Î.				
				•
2				
				<u> </u>
• :	11		:	
1				
3				


Due to biology

- Paralogous sequences
- Sequence variation
- Underlying rearrangements

-

Dynamic range

Factors influencing dynamic range:

- BAC amplification quality
- Hybridisation conditions
- CotI quality

•.....

Reference material

- DNA from normal individual
 - Who's normal?

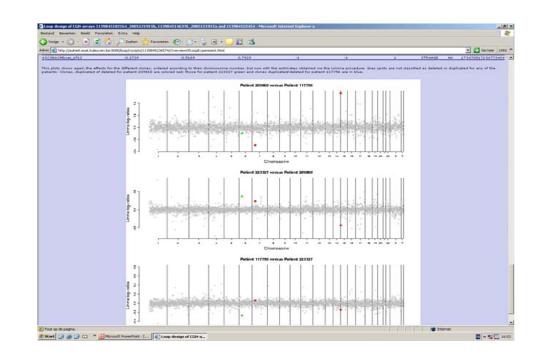
• DNA from a mixture of individuals


- How many?
- Which?
- Value?

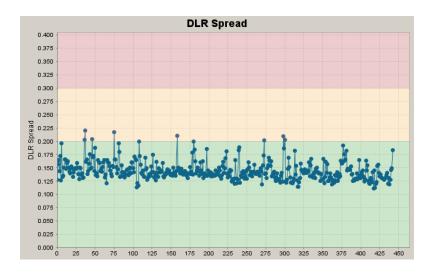
• DNA from other patients

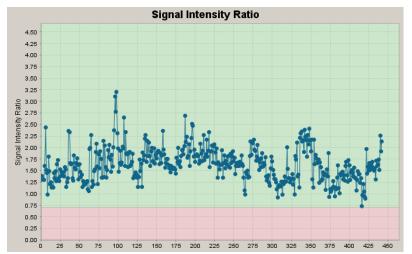
- When?
- Three way hybridisations
- DNA from same individual (for acquired disorders only)

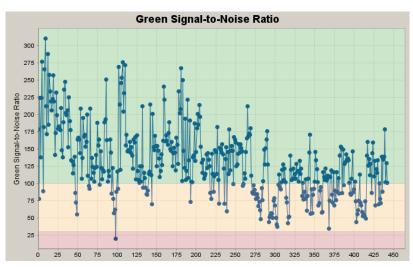
Loopdesign



Patient C Patient B

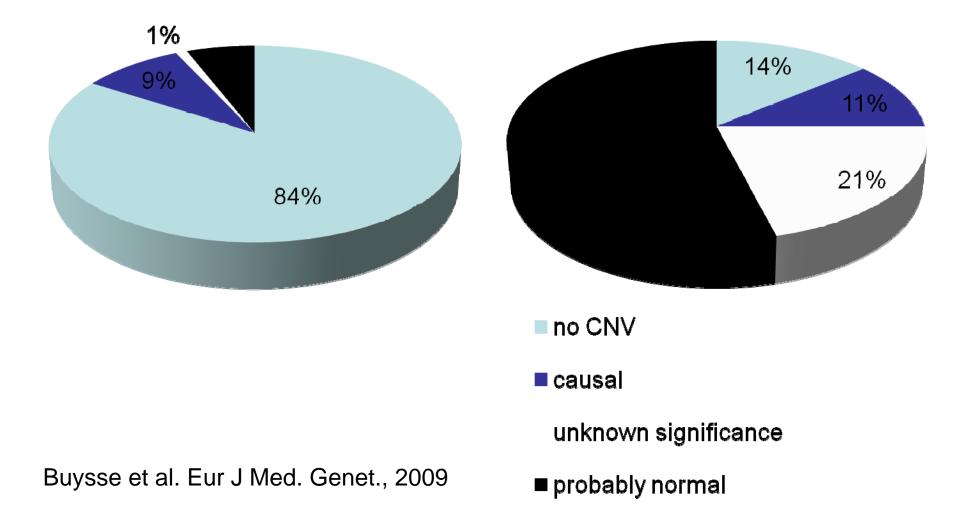

I Only patients with different phenotypes


Cy3 → Cy5


- Patient A → Patient C Patient B → Patient A
- Patient C → Patient B



Longitudinal QA is important

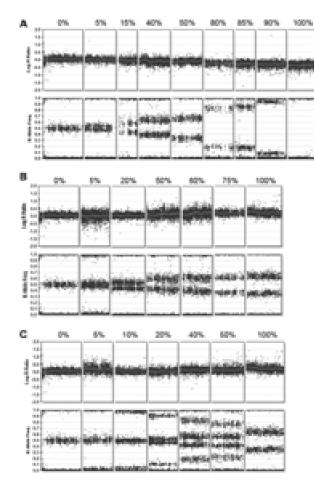


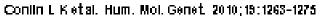
Practical technical issues

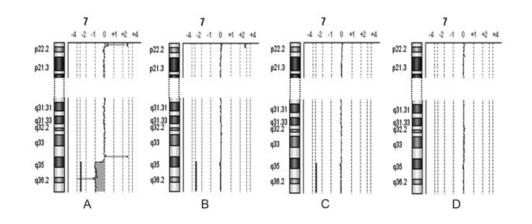
- Ideal resolution?
- Degree of mosaicism one can/needs to be able to detect?
- To SNP or not to SNP?
- Is conventional cytogenetics still necessary?

1 Mb BAC array

44 K oligonucleotide array

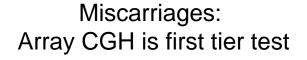

Is there a clinical valid minimum resolution?




Buysse et al., Eur J Med. Genet., 2009

Itsara et al., 2010: Rare CNVs smaller than 200 kb are equally frequent in control and patient population

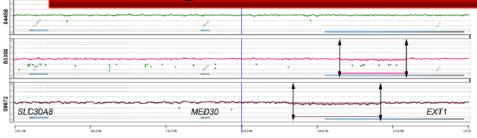
mosaicism

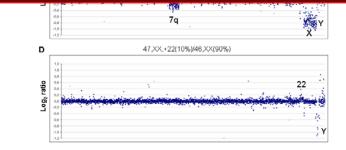

CGH partial profiles of chromosome 7 in patient 1. A) Patient's 100% DNA. B) Synthetic mosaicism at 10% level, C) 8%, D) 7%. Valli *et al. Molecular Cytogenetics* 2011 **4**:13

Clinical utility/validity

1A

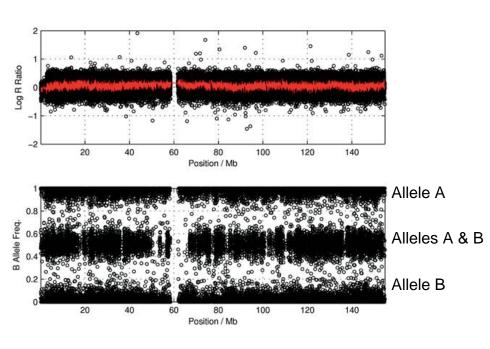
Tiling Resolution Array-CGH Shows That Somatic Mosaic Deletion of the *EXT* Gene is Causative in *EXT* Gene Mutation Negative Multiple Osteochondromas Patients

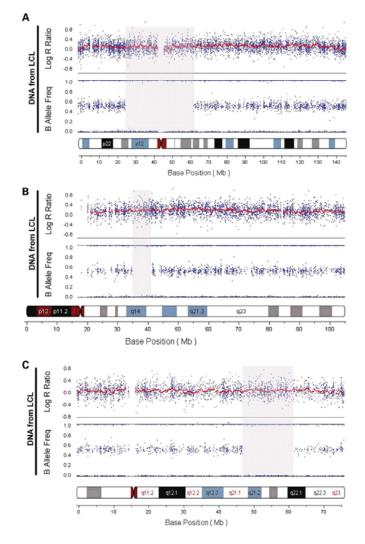




45,X(30%)/46,XX(70%)

Károly Szuhai^{1#}, Ivy Jennes^{3#}, Danielle de Jong¹, Judith V.M.G. Bovée², Malgorzata Wiweger², Wim Wuyts^{3#}, and Panorea C.W. Hospathorn^{2#}


Is there a minimum degree of mosaicism detection diagnostic labs must guarantee?

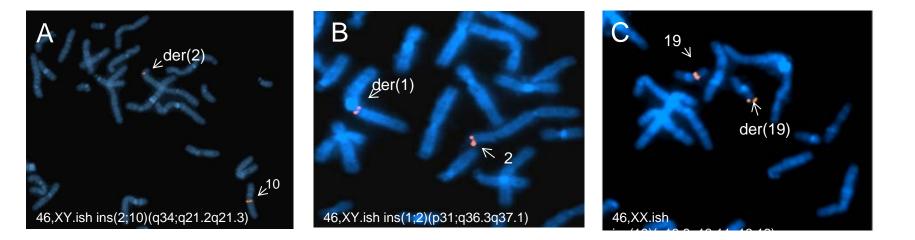


Robberechts et al., Gen. Med.. 2009

To SNP or not to SNP

Simon-Sanchez J et al. Hum. Mol. Genet. 2007;16:1-14

Clinical Utility/validity?


- Increased power to detect deletions/duplications
- Extra power to detect (low grade) mosaicism
- Ability to detect regions of homozygosity

 (but is this clinically relevant/usefull?)
- Information on UPDs
 - (but what is the frequency? Can UPD be deduced from the phenotype?)
- Information on origin of CNV

- (clinically not relevant...?)

Need for cytogenetic follow-up?

insertional translocations underlie approximately 2.1% of the apparently *de novo,* interstitial CNVs!
Parental testing is warranted! Can only be detected by FISH!

Nowakowska et al., submitted

Need for cytogenetic follow-up?

Pericentromeric imbalance

•Could be due to presence of marker

Mosaicism

•Determine degree of mosaicism/confirmation

•Parental follow-up for terminal deletions and

duplications

•could be due to balanced translocation in parents.

Parental follow-up in miscarriages/prenatal/postnatal trisomies of acrocentric chromosomes

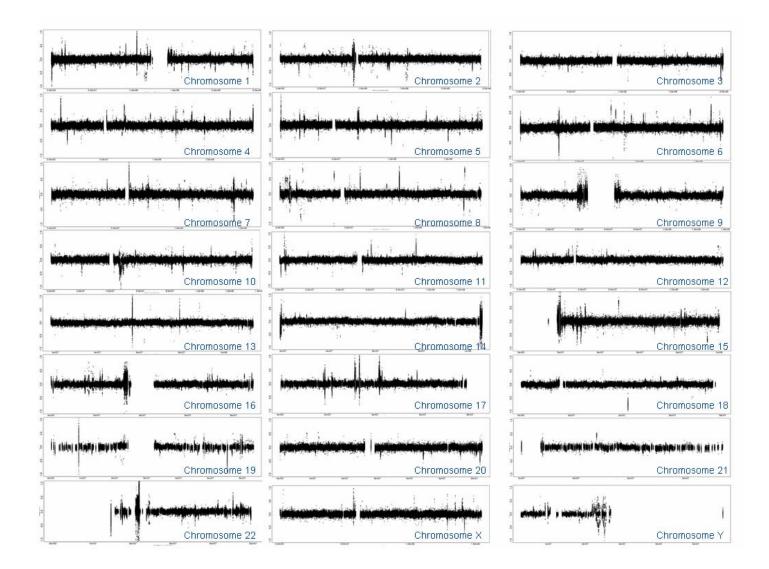
• could be due to Robertsonian translocations in parents.

Parental follow-up for de novo non-recurrent translocations

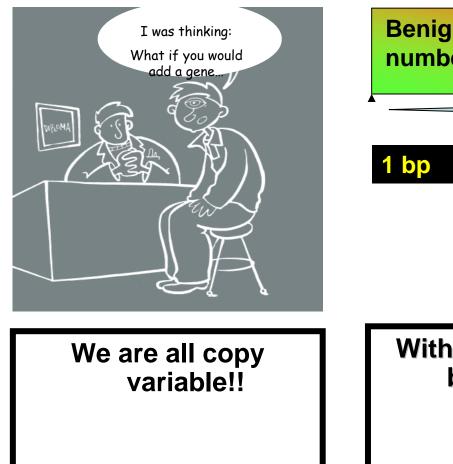
• could be due to insertional translocation

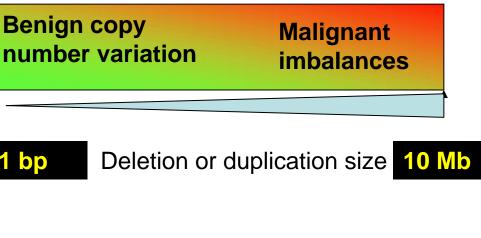
Clinical utility (2008-...)

- Traditional constitutional cytogenetic applications:
 - yes! Mental retardation/ multiple congenital anomalies: yes! Prenatal? (clinical issues?) yes! Miscarriages? (mosaicisms?) — Other medical disciplines? yes! Neurology/ Psychiatry? — Autism Schizophrenia Yes! Isolated heart defects? ? Multifactorial diseases? _ Infectious diseases • Gastrointestinal diseases ? Monogenic diseases? — – … All medical disciplines?


Clinical VALIDITY?

Clinical significance of anomaly?


- Traditional constitutional cytogenetic applications: •
 - Mental retardation/ multiple congenital anomalies:
 - For larger (>1 Mb) CNVs High (~75%) For smaller CNVs (<200 kb) Low Prenatal? (clinical issues?) (>1 Mb) High Abnormal ultrasound Low Normal ultrasound Miscarriages? (mosaicisms?) High chromosomal aneuploidies ٠ Low Small imbalances Other medical disciplines? Low Autism? Low Neurology/ Psychiatry? Isolated heart defects? Multifactorial diseases?
 - All medical disciplines?


—

We are all copy variable

Clinical VALIDITY? Clinical significance of anomaly?

With ever increasing resolution, the boundary between bening and pathogenic CNVs becomes blurred!

The challenge: Which imbalances are causal for the phenotype?

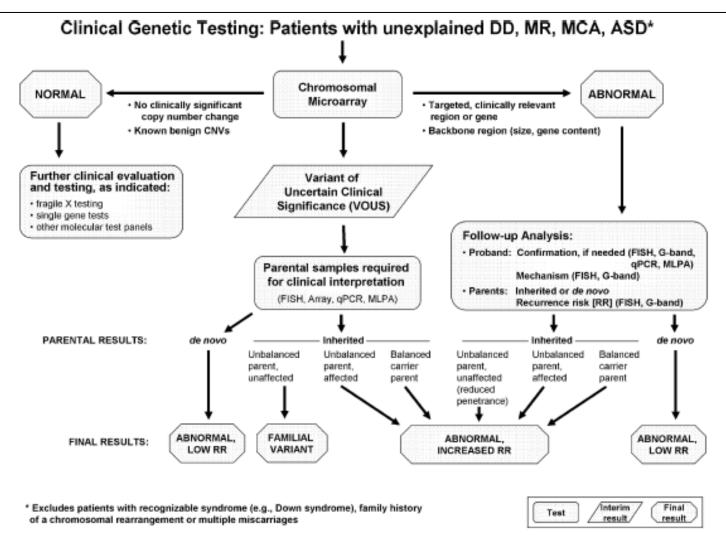


Figure 3. Algorithm for CMA Testing in Patients with Unexplained DD, MR, MCA, and ASD

Miller et al., Am.J.Hum.Gen. 2010

The challenge: Which imbalances are causal for the phenotype?

Conventional wisdom:


Recurrent imbalances with same phenotype are causal

The larger the size, the more likely causal

Population embedded CNVs are benign

Inherited imbalances are benign while *de novo* imbalances are causal

Identifying recurrent imbalances and phenotypes

Limitations

- Little information on CNVs associated with prenatal phenotypes
- As a consequence, for many CNVs the outcome is unclear

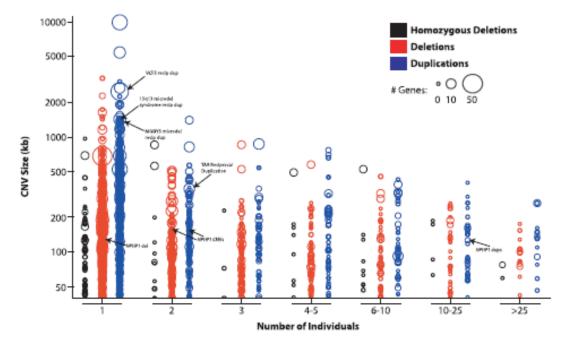
Solutions

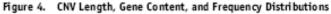
Large scale collection of all genotypes & phenotypes!

• Require submission of phenotype and genotype to public repository upon publishing.

The challenge: Which imbalances are causal for the phenotype?

Conventional wisdom:


Recurrent imbalances with same phenotype are causal


The larger the size, the more likely causal

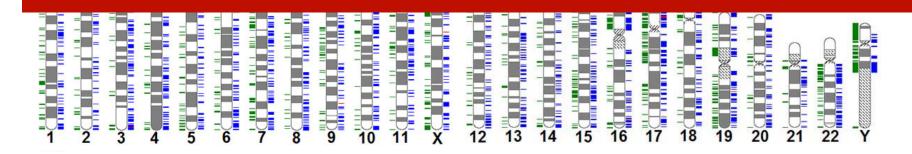
Population embedded CNVs are benign

Inherited imbalances are benign while *de novo* imbalances are causal

The challenge: Which imbalances are causal for the phenotype?



CNVs were plotted according to event type (color), length (y axis), frequency in the population (x axis, number of individuals from n = 2493), and number of RefSeq genes affected (circle size). To facilitate comparison across different platforms, events from different individuals were considered the same if their putative break points were within 50 kb of one another. CNVs related to previously reported disease-causing variants are highlighted.


154 The American Journal of Human Genetics 84, 148-161, February 13, 2009

Size alone is not a good determinant!

Genome variation Database: Map all "benign" variation

Databases of genomic variants have only limited value in clinical assessment

Database of genomic variants May 2008

• Redon et al. Nature, 2008

Mendelian CNVs: a paradigm shift in (cyto)genetics

Inherited apparently benign CNVs CAN cause disease

"Mendelian CNVs" is the term coined here to indicate benign CNVs which can cause disease dependent on either copy number state, inheritance pattern or genetic and environmental background.

Mendelian CNVs: New wine in old bottles

- Autosomal recessive
- Autosomal dominant
- X-linked
- Imprinted CNVs
- Variable expressivity and incomplete penetrance

The challenge: Which imbalances are causal for the phenotype?

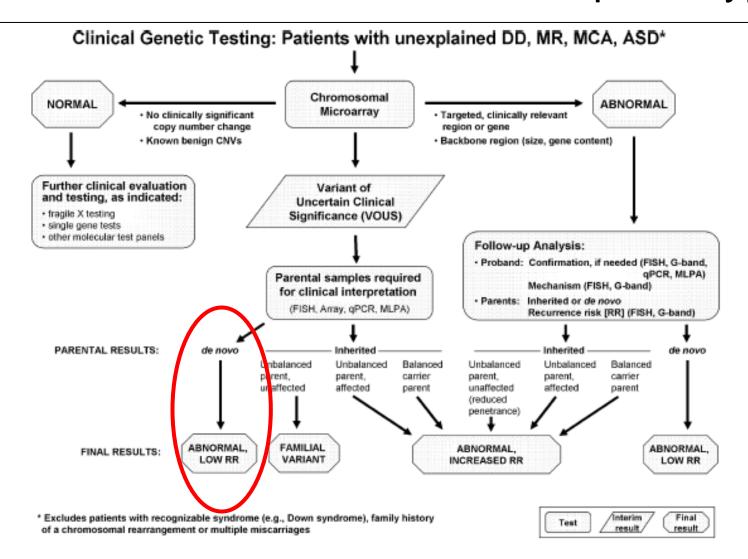
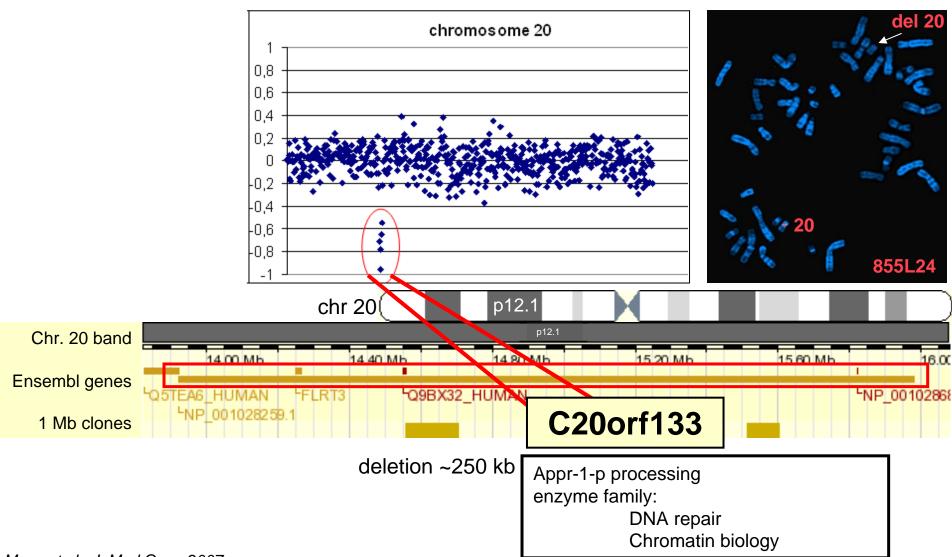
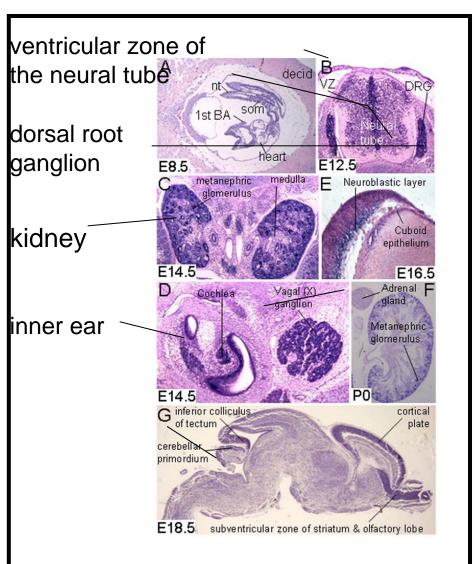



Figure 3. Algorithm for CMA Testing in Patients with Unexplained DD, MR, MCA, and ASD

Miller et al., Am.J.Hum.Gen. 2010


De novo deletion in C20orf133 cause for Kabuki syndrome?

Maas et al., J. Med.Gen., 2007

C20orf133

conservation among different species

Homo Pan Hacaca Hus Xenopus Danio		P 10000000P P 1000000P P 10000000P		1 222 YL 1 222 YL 1 222 YL	DYIPL SILS DYVPL SILS DYVSLSTILS	K C G K C G K C G K C S G K S S S	ON CONTO TS ON CONTO TS ON CONTO A	SOVERSLTER SOVERSLTER OMPRESSER OVERSLER	VSIYRGDIT VSIYRGDIT VSIYRGDIT VS <mark>F</mark> YKGDIT	LEVDATUNAJ LEVDATUNAJ LEVDATUNAJ LEVDATUNAJ LEVDATUNAJ LEIDATUNAJ	MASLLGGG MASLLGGG MASLLGGG MTSLLGGG	DVDGCIHRJ DVDGCIHRJ DVDGCIHRJ DVDGCIHRJ	UNGE CELL	120 SC ML GC SC ML GC SC ML GC SC ML GC SC SL GC SC SL GC	: 1 : 1 : 1	23 23 23 23 21 14
Homo Pan Macaca Mus Xenopus Danio	:	TGRAKITCGYDL ETGRAKITCGYDL	PARYVIHTVO PARYVIHTVO PARYVIHTVO PARYVIHTVO	DIADONING DIADONING DIADONING DIADONITP	160 STATEL NCY STATEL NCY STATEL NCY STATEL NCY NCOLLINGY SCREDIES ST	KSSLELVED KSSLELVED	INIRSVAFPCI	LSTGIYGFPN LSTGIYGFPN LSTGIYGFPN	EPAAVIALS EPAAVIALS EPAAVIALC EPAAVVALT	TIRENAACH TIRENAACH TIRENAACH TIRENAACH TIRENAACH TIRENAACH TUREFUSIC PI TUGENIESSIGT	EVDRIIFC EVDRIIFC EVDRIIFC EVDRIIFC	/FLEVDFKI /FLEVDFKI /FLEVDFKI /FLEVDFKI	Vigaalei Vigaalei Vigaalei Vigaalei Vigaalei Vigaalei	FFSID FFSUD FFPUD FFPUDGGD	: 2 : 2 : 2 : 2	43 43 43 43 44 34
Homo Pan Hacaca Hus Xenopus Danio	:	- B SES VE - B SES VE - B SES VE - B C-T ADD DEC KGDSDE N PRKED CKS	DOS BOSEGLEPKO BOSEGPEPKO BOTEG	LSPPHKKSK LSPPHKKSK	80 AKKPECSKHS AKKPESSKDS GDEEDGDEDG	ENG EE ENG EE SE ENG EE SE ESG EE KPQS PM	000 0377 8 080 0377 8 060 0377 8 060 0374 8 060 0374 8 060 0374 8 060 0374 8 060 0374 8 060	ODA ODA ODA OBA OBAGGLRFL PAPD	LENLLGLIH	CUNTUIU CUNTUIU CUNTUIU CUNTIPU SPDEEYSA UPHDSQK	PA BAU PA BAU PA DKA BEATCNT	CROEDSA CROEDSA /HROEDSA MTAMSLET	DSITE DNITE DNITE DNIVE	CCEVIDHSV CCEVIDHSV DSDHITHSV SSPAIDPLK	: 3 : 3 : 3 : 3 : 3	49 64 23
Homo Pan Hacaca Hus Xenopus Danio		380 RDDDHPDGQETS CDDDHPDGQETS CDDDHPDGQETS CDQELPNGQETS EGRESEARITGE DEGELNICKCOP	TENEIRI T TENEIRI T ARSECRT_A KISVEPETP	SQSSYH SQSSYH SPSSSH PEDARMT	T	ELSNOTAN ELASNOTAN DLSPNOTAJ EKSQESTIST	TIV OF P TIV KP P TIV CP P TIV OF P TIV TS PK-	TDDQ BKE TDDQ BKE IDDQ AQE SGET DLD	EKAPGE TP EKAPGE TP CEAQGK AP DSEEPS VQ	460 MPGKS GS I MPGKS GS I VPGKS GSMI AVFAIS GSMI EIASPSNE G DEVNA DKS	LENTPG D LENTPG D LENTPG D LENTPG D LENTPG D COESDPK	/ENNSQVD) /DNN	CVNDPTE	A SQQEDQLIA	: 4	09
Homo Pan Macaca Mus	:	500 GAQDEAN: QENGT GAQDEAN: QENGT GAQDEAN: QENGT GVNEPTESLOEDL	K- : 425 K- : 476													

Mus : CVNEPTESLQEDLQ- : 475 Xenopus : DINDDAN A----- : 418 Danio : PPNSEDC/CKNSAQE : 452

genetics

Exome sequencing identifies *MLL2* mutations as a cause of Kabuki syndrome

Sarah B Ng^{1,7}, Abigail W Bigham^{2,7}, Kati J Buckingham², Mark C Hannibal^{2,3}, Margaret J McMillin², Heidi I Gildersleeve², Anita E Beck^{2,3}, Holly K Tabor^{2,3}, Gregory M Cooper¹, Heather C Mefford², Choli Lee¹, Emily H Turner¹, Joshua D Smith¹, Mark J Rieder¹, Koh-ichiro Yoshiura⁴, Naomichi Matsumoto⁵, Tohru Ohta⁶, Norio Niikawa⁶, Deborah A Nickerson¹, Michael J Bamshad^{1–3} & Jay Shendure¹

Sequencing of MLL2 shows de novo mutation in this patient!!

An estimated 1 out of 5 CNVs between 60 & 500 kb are benign!

Itsara et al., Genome Research, 2010

- De novo CNV mutation rate: 2.5/100 live births
- An fourfold increase of de novo CNVs in autism spectrum patients

•=> 1/5 de novo CNVs is benign

For smaller CNVs this frequency is likely higher!

Van Ommen al. Nature Gen. 2005:

- Extrapolation of the frequency of CNVs in the Duchenne Muscular Dystrophy
- •1 deletion every 8 generations and a duplication of 1/50 generations

Needs for the community

Evidence based CNV data

Curated database for pathogenic and benign CNVs?

Needs for bioinformatic support

The quantity of information cannot be reproducibly interpreted and requires bioinformatic support

抗 Cartagenia Bench

	Lab shortcuts			Clinic shortcuts	;	Settings and Help				
Naar Folders	Upload a file	Filter and label	Patiënten	Advanced search	Report generator	Administration	Gebruikersinstellingen	Afmelden		
	E	M		0 ;0	I					
Array-CGH	Next-Gen Sequencing	Locus- specific assays	Manage CNV sets	Genome annotation	Array request and referral	Users and access rights	Project management	Manage CNV labels		
			SD	NCBI	HI KAKA		20-17	?		
Naar			to DECIPHER	to NCBI	Share within		Create Helpdesk	Hulp		
isdai					consortium		ticket			

Gereedschapskist

Thanks to

Centrum Menselijke Erfelijkheid

- Jean Pierre Fryns
- Koen Devriendt
- Hilde Van Esch
- Thomy de Ravel
- Hilde Peeters
- Eric Legius
- Gert Matthijs

