European Human Genetics Conference
In conjunction with the
European Meeting on Psychosocial Aspects of Genetics
and the
German Society of Human Genetics

June 23 - 26, 2012
NCC Ost, Nürnberg, Germany

Abstracts
Committees – Board - Organisation

European Society of Human Genetics

<table>
<thead>
<tr>
<th>ESHG Office</th>
<th>Executive Board 2011-2012</th>
<th>Scientific Programme Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>President</td>
<td>Chair</td>
</tr>
<tr>
<td></td>
<td>Jörg Schmidtke., DE</td>
<td>Brunhilde Wirth, DE</td>
</tr>
<tr>
<td></td>
<td>Vice-President</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milan Macek Jr., CZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>President-Elect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stanislas Lyonnet, FR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Secretary-General</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gunnar Houge, NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deputy-Secretary-General</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helena Kääriäinen, FI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treasurer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Andrew Read, UK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Executive Officer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jerome del Picchia, AT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Board Members</th>
<th>Liaison Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agnes Bloch-Zupan, FR</td>
<td>Jean-Jacques Cassiman, BE</td>
</tr>
<tr>
<td>Martijn Breuning, NL</td>
<td>Martina Cornel, NL</td>
</tr>
<tr>
<td>Anne Cambon-Thomsen, FR</td>
<td>Ros Hastings, UK</td>
</tr>
<tr>
<td>Nina Canki-Klain, HR</td>
<td>Thomas Liehr, DE</td>
</tr>
<tr>
<td>Ana Carrió, ES</td>
<td>Tayfun Ozcelik, TR</td>
</tr>
<tr>
<td>Jean-Jacques Cassiman, BE</td>
<td>Jörg Schmidtke, DE</td>
</tr>
<tr>
<td>Domenico Coviello, IT</td>
<td>Heather Skirton, UK</td>
</tr>
<tr>
<td>Dian Donnai, UK</td>
<td>GertJan B. van Ommen, NL</td>
</tr>
<tr>
<td>Gerry Evers-Kiebooms, BE</td>
<td>Brunhilde Wirth, DE</td>
</tr>
<tr>
<td>Peter Kroisel, AT</td>
<td></td>
</tr>
<tr>
<td>Dorit Lev, IL</td>
<td></td>
</tr>
</tbody>
</table>

Further information on structure and organisation can be found on the website www.eshg.org

Future European Human Genetics Conferences

European Human Genetics Conference 2013
Paris, France
June 8 - 11, 2013

European Human Genetics Conference 2014
Milano, Italy
June 21 - 24, 2014
ESHG Spoken Presentations

Plenary Lectures...PL1.1 – PL5.1 4
Concurrent Symposia...S01.1 – S16.3 7
Educational Sessions...ES1.1 – ES8.2 14
Concurrent Sessions...C01.1 – C18.6 16

ESHG Posters

P01. Genetic counseling, including Psychosocial aspects, Genetics education, Genetic services, and Public policy ..P01.01 – P01.37 43
P02. Clinical genetics and Dysmorphology ...P02.001 – P02.265 50
P03. Cytogenetics ..P03.001 – P03.145 105
P04. Reproductive genetics ...P04.01 – P04.58 133
P05. Prenatal and perinatal genetics ...P05.01 – P05.70 143
P06. Cancer genetics ...P06.001 – P06.218 157
P07. Cancer cytogenetics ...P07.01 – P07.34 201
P08. Statistical genetics, includes Mapping, linkage and association methods ..P08.01 – P08.45 208
P09. Complex traits and polygenic disorders ..P09.001 – P09.142 218
P10. Evolutionary and population genetics, and Genetic epidemiologyP10.01 – P10.59 248
P15. Laboratory and quality management ...P15.01 – P15.15 357

ESHG Published Abstracts 360

EMPAG Abstracts

Spoken presentations
EMPAG Plenary Lectures ...EPL1.1 – EPL7.6 417
EMPAG Workshops ..EW1 - EW2 426

Posters
EP1 Psychosocial issues in neurodegenerative diseasesEP1.01-03 427
EP2 Communicating genetic information ..EP2.01-07 427
EP3 Reproductive decision making ...EP3.01-02 429
EP4 Living with genetic disease ...EP4.01-03 429
EP5 Psychosocial issues in cancer genetics ...EP5.01-12 430
EP6 Education and professional development ..EP6.01-08 433
EP7 Access to genetic services ..EP7.01-03 434
EP8 Ethical issues ...EP8.01-06 435

Indices

Keyword Index ... 437
Author Index ... 452

Abstracts with a presentation number highlighted in gray are talks of Young investigator Candidates
Abstracts with a presentation number highlighted in blue are ESHG Poster Award Candidates
Abstracts with a presentation number highlighted in green are within the Best Scored Posters

www.eshg.org
to, chromothripsis - a novel role for the ‘guardian of the genome’. In addition, our findings are of relevance for clinical management and personalized medicine, since TP53 germline mutations represent an “actionable” genetic variant. Neuronal cancer screening in TP53 germ-line mutation carriers can lead to a survival benefit. Furthermore, in patients with known Li-Fraumeni syndrome, administration of high-dose radiotherapy or DNA-damaging chemotherapy has to be thoroughly weighed against the potential of these modalities of readily inducing secondary malignancies.

PL1.3 Myocardial infarction: common disease, common variants, common mechanisms
H. Schunkert
Lübeck, Germany.

The primary manifestation of coronary disease occurs often suddenly and unexpectedly in form of myocardial infarction. Thus, the prediction of silent atherosclerotic alterations in coronary arteries is a highly relevant medical need. Recent genomic research identified numerous genetic variants that associate with a higher prevalence of coronary disease. At present, association with coronary artery disease has been demonstrated at more than 40 chromosomal locations with risk alleles increasing relative risk by 8–25% per allele. Moreover, genetic variants primarily affecting cardiovascular risk factors such as hypertension or LDL cholesterol were shown to affect the risk of coronary disease as well.

This enormous progress has been facilitated by genome-wide association studies. By nature, these studies focus on frequent alleles. Thus, the alleles that have been identified to increase the risk of coronary disease are also relatively frequent in our population, i.e. allele frequencies range between roughly 10–90%. As a consequence, virtually all individuals of our population carry a variable degree of genetic predisposition. More recently, the focus turned to rare variants with more profound effects. In this regard, the domain of human genetics, i.e. family based research and counseling, received more attention - once again. The presentation will address how this information can be utilized for a better understanding of disease mechanisms as well as for genomic prediction of coronary artery disease.

PL2.1 Genome sequencing of childhood medulloblastoma brain tumors links chromothripsis with TP53 mutations - a discovery with clinical implications
J. O. Korbel, P. Lichter, S. Pfister;
European Molecular Biology Laboratory, Heidelberg, Germany, DKFZ, Heidelberg, Germany.

Somatic structural variations typically occur progressively during tumor development. Recent findings, however, suggest an alternative mechanism, involving genome shattering and reshuffling (“chromothripsis”), the underlying mechanistic basis of which is unknown. In the context of the International Cancer Genome Consortium (ICGC) Pediatric Brain Tumor Project (www.pedbrainumor.org), whole-genome sequencing of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a patient with a germline TP53 mutation (Li-Fraumeni syndrome) revealed massive, complex rearrangements resulting from chromothripsis. Integrating TP53 status with genomic rearrangement data in additional medulloblastomas revealed a striking association between TP53 mutation and chromothripsis in SHH-MBs. Unexpectedly, five seemingly sporadic SHH-MB patients with chromothripsis harbored TP53 germline mutation. Our analysis of additional tumor entities substantiated a link between TP53 mutation and chromothripsis, beyond general genomic instability. Among these, we observed a strong association between somatic TP53 mutations and chromothripsis in acute myeloid leukemia, and an increased occurrence of chromothripsis in LiFraumeni Syndrome-associated malignancies other than medulloblastoma. Our findings implicate p53 in the initiation of, or cellular response to, chromothripsis - a novel role for the ‘guardian of the genome’. In addition, our findings are of relevance for clinical management and personalized medicine, since TP53 germline mutations represent an “actionable” genetic variant. Neuronal cancer screening in TP53 germ-line mutation carriers can lead to a survival benefit. Furthermore, in patients with known Li-Fraumeni syndrome, administration of high-dose radiotherapy or DNA-damaging chemotherapy has to be thoroughly weighed against the potential of these modalities of readily inducing secondary malignancies.

PL2.2 KLHL3 and Cullin-3 mutations cause Familial Hyperkalemic Hypertension by impairing ion transport in the distal nephron

The combination of SHFM and long bone deficiency represents a distinct clinical entity termed SHFLD. Although six different loci/mutations (SHFM1-6) have been identified, due to the high prevalence of patients with SHFLD, the search for additional causal loci has been important. We carried out linkage analysis combined with whole exome sequencing in two informative French families and identified mutations in the KLHL3 gene. This gene encodes for an actin-binding protein that recruit substrates for the Cullin-3 Based ubiquitin-ligase complex. Direct sequencing of 47 additional cases revealed 11 inherited missense KLHL3 mutations in 16 families with dominant or recessive transmission. Analysis of the CUL3 gene revealed de novo splice-site mutations clustered around exon 9 and observed in younger and more severe cases. Three-dimensional structural modeling showed that the mutated KLHL3 residues are located within conserved motifs at the surface of the molecule, whereas all CUL3 mutants lead to a loss of 57 residues corresponding to a segment linking BTB and RING-binding motifs. The protein is expressed in the kidney in a domain coexpressing the Na+-Cl- cotransporter (NCC) and its inhibition by RNA interference leads to an increase of NCC expression at the cell membrane. We further showed that KLHL3 and NCC co-immunoprecipitate in HEK293T cells, suggesting that KLHL3 directly mediates a negative regulation of NCC expression, probably through ubiquitination.

In conclusion, we identify KLHL3 and CUL3 as members of a new pathway regulating ion transport in the distal nephron and thus blood pressure.

PL2.3 Duplications of BHLH49 are associated with ectodactyly and tibia hemimelia inherited in non-Mendelian fashion
S. Lohan1,2, S. C. Doelken1, S. Stricker2, C. W. Ockeloen3

Ectodactyly and tibia hemimelia are congenital malformations affecting the central rays of hands and feet. The combination of SHFM and long bone deficiency represents a distinct entity termed SHFLD. Although six different loci/mutations (SHFM1-6) have been identified, due to the high prevalence of patients with SHFLD, the search for additional causal loci has been important. We carried out linkage analysis combined with whole exome sequencing in two informative French families and identified mutations in the KLHL3 gene. This gene encodes for an actin-binding protein that recruit substrates for the Cullin-3 Based ubiquitin-ligase complex. Direct sequencing of 47 additional cases revealed 11 inherited missense KLHL3 mutations in 16 families with dominant or recessive transmission. Analysis of the CUL3 gene revealed de novo splice-site mutations clustered around exon 9 and observed in younger and more severe cases. Three-dimensional structural modeling showed that the mutated KLHL3 residues are located within conserved motifs at the surface of the molecule, whereas all CUL3 mutants lead to a loss of 57 residues corresponding to a segment linking BTB and RING-binding motifs. The protein is expressed in the kidney in a domain coexpressing the Na+-Cl- cotransporter (NCC) and its inhibition by RNA interference leads to an increase of NCC expression at the cell membrane. We further showed that KLHL3 and NCC co-immunoprecipitate in HEK293T cells, suggesting that KLHL3 directly mediates a negative regulation of NCC expression, probably through ubiquitination.

In conclusion, we identify KLHL3 and CUL3 as members of a new pathway regulating ion transport in the distal nephron and thus blood pressure.

www.ESHG.org
been associated with SHFM the underlying cause in a large number of cases is still unresolved. We performed array CGH in a SHF/M SHF/LD cohort which detected microduplications on chromosome 17p13.3, a locus previously associated with SHFM. The analysis revealed that this CNV serves as a susceptibility factor for a highly variable phenotype with reduced penetrance, particularly in females. Compared to other known causes 17p duplications appear to be the most frequent cause of SHFLD. A ~1.18kb minimal critical region was identified encompassing a single gene, BHLHA9, a putative basic-helix-loop-helix transcription factor. Whole mount in situ hybridization showed expression restricted to the limb bud mesenchyme underlying the apical ectodermal ridge (AER) in mouse and zebrafish embryos. Mouse models suggest that a defect of the central AER leads to the SHFM phenotype. Knock-down of bhlha9 in zebrafish resulted in shortening of the pectoral fins indicating a role of this gene in limb development. In summary, we demonstrate microduplications encompassing BHLHA9 associated with SHFLD and non-Mendelian inheritance characterized by a high degree of non-penetration with gender bias. Our finding shows that rare CNVs can serve as a susceptibility factor for congenital disease, a mechanism which may explain increased recurrence risk in conditions otherwise to be sporadic.

PL2.4 A novel molecular and functional mechanism predisposing to ototoxicity
E. Pohl1, O. Offenhäuser3, F. F. Ji3, T. Knaus1, A. G. Antonarakis1, M. Y. Apak5, P. Nürnberg2,10, M. van de Sluis1,2, P. D. Fiore1,3, H. Kremer2, B. Wolffaith1,3.
1Institute of Human Genetics, University Hospital Cologne, Cologne, Germany; 2Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; 31FOM, Fondazione Istituto FIRC di OncoLogia Molarelle, Milan, Italy; 4Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 5Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey; 6Welcome Trust Sanger Institute, Cambridge, Hinxton, United Kingdom; 7Institute of Genetics, University of Cologne, Cologne, Germany; 8Department of Otolaryngology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey; 9Unidad de Genética Molecular, Hospital Ramón y Cajal, Madrid, Spain; 10Cologne Centre for Genomics, University of Cologne, Cologne, Germany.

While our knowledge about molecular mechanisms underlying Mendelian forms of hearing loss tremendously increased over the last years, the genetic basis and pathogenesis for drug induced hearing impairment remains unclear. Aminoglycosides are the most commonly used antibiotics worldwide. Although highly effective, their use is restricted by side effects such as ototoxicity in a significant subset of patients. However, underlying pathogenesis and pharmacogenetic risk variants are largely unknown. Here we show that dysfunction of an actin remodeling protein (named here ARP) can result in a drug-inducible disturbance of actin dynamics and an irreversible hearing impairment in humans. By positional cloning, we identified a homozygous missense variant, p.L329P, in ARP as a cause of aminoglycoside-induced hearing impairment in a large consanguineous family from Turkey with 4 affected individuals. Complete ARP loss in knock out mice leads to hearing loss associated with shortened stereocilia. We demonstrate that the protein is a component of the tip complex that regulates stereocilia length and that it interacts with whirin. The mutation severely impairs this interaction in vitro. External biochemical studies showed that myosinXVA can stabilize the ARP-whirin interaction complex, and we show for the first time that kanamycin has a negative effect on this complex formation, which is even more pronounced in mutant complexes, thereby explaining the development of hearing loss in affected individuals after aminoglycoside treatment. Taken together, we link ototoxicity after aminoglycoside treatment to actin dynamics and this finding will help in devising strategies to counteract this severe side-effect of aminoglycosides.

PL2.5 Genome-wide and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis
1Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands; 2Netherlands Genomics Initiative–Sponsored by the Netherlands Consortium for Healthy Aging, Leiden, Netherlands; 3Laboratory for Skeletal development and Joint disorders, Division of Rheumatology, K.U. Leuven, Belgium; 4Academic Rheumatology, University of Nottingham, Nottingham City Hospital Nottingham, Nottingham, United Kingdom; 5Department of Twin Research and Genetic Epidemiology, St. Thomas’ Hospital, King’s College, London, United Kingdom; 6Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands; 7International Laboratory for Research on Animal Resources, Wageningen, United Kingdom; 8Health Sciences Research Institute, Warwick Medical School University of Warwick, Coventry, United Kingdom; 9Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, United Kingdom.

Hip osteoarthritis (HOA) is one of the most disabling and common joint disorders with a large genetic component which is, however, still ill defined. To date, genome-wide association studies (GWAS) in osteoarthritis (OA) and specifically in HOA have yielded only few loci, which is partly explained by the heterogeneity in OA definition. Therefore, we here focused on radiographically measured joint space width (JSW), a proxy for cartilage thickness and an important underlying intermediate trait for HOA. In a GWAS of 6,523 individuals on JSW of the hip, we identified the G-allele of rs12982744 on chromosome 19p13.3 to be associated with a 5% larger joint space width (P = 4.8×10⁻¹⁰). The association was replicated in 4,442 individuals from 3 UK-cohorts with an overall meta-analysis P value of 1.1×10⁻¹⁰. The SNP was also strongly associated with a 12% reduced risk for HOA (P = 1×10⁻¹⁰). The SNP is located in the DOT1L gene, which is an evolutionarily conserved histone modification enzyme. Immunohistochemical staining of DOT1L protein during mouse limb bud development supports a role for DOT1L in chondrogenic differentiation and adult articular cartilage. Silencing of DOT1L inhibited chondrogenesis. DOT1L knock-down reduces proteoglycan and collagen content, and mineralization during chondrogenesis. In the in vitro ATDC5 chondrogenesis model system, DOT1L interacts with TCF and Wnt signaling. These data are a further step to understand the role of Wnt-signaling during chondrogenesis and cartilage homeostasis. DOT1L may represent a therapeutic target for osteoarthritis.
the primary TGF-dependent event that drives disease including the ability of ERK antagonists to achieve phenotypic rescue. Despite this progress, our understanding of how fibrillin-1 deficiency initiates altered TGF activity remains incomplete, as does knowledge regarding events that culminate in tissue failure or that account for the wide intrafamilial variability in the severity of vascular disease. In attempt to refine our mechanistic understanding of disease pathogenesis (with a focus on aortic aneurysm), we have launched initiatives to identify environmental and genetic modifiers of MPS. Use of calcium channel blockers to mitigate hemodynamic stress resulted in a marked acceleration of aortic growth and rupture in mice with MPS and correlated with accentuation of ERK signaling. The deleterious consequences of this gene-by-environment interaction were abrogated using ERK antagonists. In a separate study, we identified a single major protective modifying locus for MPS coincident with the map position for MAPK34 (a major JNK and p38 kinase). Taken together, these data reinforce the concept that noncanonical TGF signaling is central to disease progression. Insights regarding initiating events derived from our demonstration that a congenital presentation of skin fibrosis (sclerodema) is caused by mutations in fibrillin-1 that specifically impair integrin binding to its RGD sequence. Mice harboring a RGD to RGE mutation in fibrillin-1 (causing an obligate loss of integrin binding) show dense dermal fibrosis in association with increased expression of an integrin subtype (αVβ3) known to activate TGFβ and ERK, and are protected from fibrosis by manipulations that mimic the interaction between fibrillin-1 and other integrins (e.g. 51). When stimulated with TGF, sclerodema fibroblasts show unique and marked activation of ERK when compared to control cells. This effect is prevented by treatment with an integrin 1-activating or 3-blocking antibody. These data suggest that 3 integrin not only augments TGF signaling, but also specifically influences the choice between the Smad and ERK cascades (favoring ERK), perhaps through a direct potentiating interaction between αvβ3 and TβRII. RGE mice also develop aortic aneurysm, providing an ideal system to test the hypothesis that loss of matricellular integrin-ligand interaction is an inciting event in the MPS aorta and to test integrin-targeted therapies.

PL3.2
Molecularly Targeted Treatments in Tuberous Sclerosis Complex (TSC)
P. de Vries, S. Struempermann,
University of Cape Town, Child & Adolescent Psychiatry, Cape Town, South Africa.

Until recently, no targeted treatments were available to individuals with genetic syndromes such as TSC. The evidence emerging from an increasing number of genetic disorders has, however, begun to challenge this irreversibility assumption, and is showing how an understanding of the neurobiological mechanisms underlying a syndrome can lead to biologically- or molecularly-targeted treatments. Advances in the molecular biology of tuberous sclerosis have shown that TSC is an mTOR (mammalian Target Of Rapamycin) overactivation syndrome, and phase III trials are currently underway for physical phenotypes of the disorder. The neuropsychiatric phenotype of TSC was presumed to be caused by the structural brain abnormalities and/or seizures seen in the disorder. However, over the last few years research has shown that there are also direct molecular pathways from genetic mutation to neurocognitive phenotypes. Molecularly-targeted treatments using mTOR inhibitors are showing great promise for the physical and neurological features of the disorder. Intriguingly, pre-clinical and early-phase clinical studies of neuropsychiatric phenotypes are suggesting that specific aspects of cognition or neurodevelopment might also be reversible, even in adults with the disorder. In this talk, we will follow the history of tuberous sclerosis complex from first description to molecularly targeted treatments.

PL3.3
Targeted treatments in Fragile X syndrome
1Service de Génétique Médicale, CHUV, Lausanne, Switzerland, 2Ihosipices Civils de Lyon, Université de Lyon and CNRS UMR 5230 (L2C), Lyon, France, 3Università Cattolica del Sacro Cuore, Cattedra di Neuropsichiatria Infantile, Roma, Italy, 4Università Cattolica del Sacro Cuore, Istituto di Genetica Medica, Roma, Italy, 5Neuroscience Discovery, Novartis Pharma AG, Basel, Switzerland, 6Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland.

Fragile X syndrome (FXS) is caused by expansion of a CGG repeat in the 5’ untranslated region of the fragile X mental retardation 1 (FMR1) gene. This mutation is associated with hypermethylation at the FMR1 promoter and subsequent transcriptional silencing. The absence of FMRP (FMR1 protein) at the synapse has many consequences, including up-regulation of metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. It has been postulated that this increased mGluR5 signal may be responsible for many of the clinical manifestations observed in fragile X syndrome. mGluR5 receptor antagonists have repeatedly been shown to rescue many phenotypes and endophenotypes in animal models of the fragile X syndrome. Comprehensive phenotype correction also occurs when treatment is administered later in the adult K0 mice. We examined whether a receptor subtype-selective inhibitor of mGluR5, AFQ056, improves the behavioral symptoms of FXS in a randomized, double-blind, two-treatment, two-period, crossover study of 30 male FXS patients aged 18 to 35 years. We detected no significant effects of treatment on the primary outcome measure, the Aberrant Behavior Checklist-Community Edition (ABC-C) score, at day 19 or 20 of treatment. In an exploratory analysis, however the patients with full FMR1 promoter methylation and no detectable FMR1 messenger RNA improved, as measured with the ABC-C, significantly more after AFQ056 treatment than with placebo (P < 0.001). If confirmed in larger and longer-term studies, these results suggest that blockade of the mGluR5 receptor in patients with full methylation at the FMR1 promoter may show improvement in the behavioral attributes of FXS.

PL4.1
Mendel Lecture
E. Eichler
Seattle, WA, United States.
No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

PL5.1
ESHG Award Lecture
P. Lichter,
Heidelberg, Germany.
No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.
Heterogeneous tumor revealed three distinct clonal subpopulations that re-

S01.2
Statistical analysis of rare variants in genome-wide association
studies of complex traits
A. Morris;
Oxford, United Kingdom.

No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

GWAS have mapped hundreds of risk loci for tens of complex diseases, in-
cluding inflammatory bowel disease (IBD). However, for most risk loci the
causative genes amongst positional candidates remain unknown.

We identified in the causative of causal genes, we have generated transcrip-
tome data for nine IBD-relevant cell types in more than 200 healthy indivi-
duals. We have mapped cis- and trans-eQTL in all cell types. We first quanti-
fied tissular overlap between eQTL as well as their tissue-specific degree of
coincidence with IBD risk loci.

We then used the ensuing eQTL information to pinpoint likely causative
genes in known risk loci as follows. It is becoming increasingly apparent
that a substantial proportion of inherited risk is due to regulatory variants
that alter the expression profile of the causative genes. In such cases, and
independently of the number of risk variants involved, disease association
profile (i.e. the combination of p-values exhibited by all variants in a risk
locus) and eQTL association profile are bound to be highly correlated in the
disease-relevant tissue. We have devised and characterized the behavior of
metrics that measure such correlations. These metrics are made indepen-
dent of known disease-associated coding SNPs mapping to the risk loci
of interest. We have used these metrics to prioritize candidate genes in the
118 known risk loci associated with Crohn’s disease and/or Ulcerative Colitis.

eQTL-informed high-throughput resequencing of candidates in large case-
control cohorts to confirm their causality is in progress. Latest results will
be presented.

S02.1
Copy number variation and selection during reprogramming
A. Nagr;
Toronto, ON, Canada.

No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

As a tumor evolves from a single cell, it acquires complex somatic mutations
and diverges to form distinct lineages of clones. This intratumor heterogenei-
ty confounds basic research and clinical diagnosis, because tools do not exist
to resolve it. To address this problem, we developed a single-cell sequencing
method to profile genomic copy number in individual tumor cells. We used
this method to profile hundreds of single cells from two triple-negative (ER-
PR- and Her2-) breast cancer patients. Analysis of 100 single cells from a
heterogeneous tumor revealed three distinct clonal subpopulations that re-

present sequential clonal expansions. Additional analysis of 100 single cells
from a homogeneous primary tumor and its liver metastasis indicated that
a single clonal expansion formed the primary tumor and seeded the meta-
stasy. In both primary tumors, we also identified an unexpectedly abundant
subpopulation of genetically diverse pseudodiploid” cells that do not travel
to the metastatic site. In contrast to the prevailing models of gradual tumor
progression, our data suggest that these tumors grew by punctuated clo-
nal expansions, in which hundreds of chromosomal rearrangements were
acquired in short bursts of evolution. Recently, we have also developed a
method to perform whole-genome sequencing of single cells. From this data
we can detect many classes of chromosomal mutations (point mutations,
indels and structural variants) at base-pair resolution in single cells. We are
using this tool to investigate several major areas of cancer biology including
invasion, metastasis and response to chemotherapy.

S02.3
Genomic instability in early stages of cancer development
A. C. Bester, E. Ozeri-Galai, B. Kerem;
Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel.

Chromosomal instability in early cancer stages is caused by stress on DNA
replication. The molecular basis for this replication perturbation was
unknown. We showed the replication dynamics in cells in which a regulator
of S-the effect of other oncogenes and of micronutrients on the replicati-
on dynamics and genomic instability. These results will be presented and
discussed.

The perturbed DNA replication in early stages of cancer development in-
duces chromosomal instability preferentially at fragile sites. However, the
molecular basis for this instability was unknown. We showed that already
under normal conditions, replication fork progression along the fragile site,
FRA16C, is slow and forks frequently stall at AT-rich sequences, leading to
activation of additional origins. Under mild replication stress, the frequency
of stalling at AT-rich sequences is further increased. Strikingly, unlike in the
entire genome, in FRA16C additional origins are not activated, suggesting
that all potential origins are already activated under normal conditions. We
further studied the replication dynamics of another fragile site FRA16D. The
results of this analysis will be presented and discussed. Altogether, our re-
results provide a mechanism explaining the replication stress sensitivity
of fragile sites and thus, the basis for genomic instability during early stages
of cancer.

S03.1
Epigenetic regulation of the circadian clock
P. Sassone Corsi;
Irvine, CA, United States.

No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

Epigenetic regulation of the circadian clock

P. Sassone Corsi;
Irvine, CA, United States.

No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

Epigenetics in diabetes
A. El-Osta;
Baker IDI Heart and Diabetes Institute, Melbourne, Australia.

No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

Epigenetics of the impact of early trauma on behavior across
generations
J. Bohacek;
Brain Research Institute, University/ETH Zürich, Zurich, Switzerland.

The development and expression of behaviors in mammals are strongly
influenced by environmental factors. When favorable and positive, these
factors can facilitate appropriate responses and normal behaviors, but
when aversive and stressful, they can lead to behavioral pathologies. Avers-
se and traumatic events early in life are particularly strong risk factors for
behavioral and psychiatric conditions such as depression, personality and
conduct disorders, and antisocial behaviors. Such disorders can not only
affect the individuals directly exposed to trauma, but can also be transmit-

www.eshg.org
tions in ribosomal DNA (rDNA) gene transcription. To investigate the developmental basis of TCS, we have generated a mouse model through germline mutation of Tcof1. Haploinsufficiency of Tcof1 results in marked apoptosis in the neuroepithelium leading to a deficiency of neural crest cells and resulting in severe craniofacial malformations. We have further demonstrated that Treacle is required cell autonomously for the formation and proliferation of neural crest cells and that Treacle elicits its role through regulating the production of mature ribosomes. Subsequently, we have demonstrated that haploinsufficiency of Tcof1 induces nuclear stress and p53 checkpoint activation which results in p53 stabilization and cyclin G1-mediated, cell-cycle arrest. Collectively, these perturbations underpin the tissue specificity of neuroepithelial apoptosis and nuclear cell hypoplasia characteristic of TCS. Importantly, chemical or genetic inhibition of p53 prevents cyclin G1-driven apoptotic elimination of neural crest cells and rescues the craniofacial abnormalities associated with mutations in Tcof1. Notably, recent evidence has indicated that a subset of TCS cases arise from mutations in two genes encoding subunits of RNA polymerases I and III, POLR1D and POLR1C, providing further evidence that TCS is a ribosomopathy.

S04.3 Human Facial Dysostoses
d

D. Wieczorek
Institut für Humangenetik, Universität Essen, Essen, Germany.

Human facial dysostoses can be subdivided into mandibulofacial (MFD) and acrofacial dysostoses (AFD). Both are characterized by hypoplasia of facial structures derived from the first and second branchial arches. In addition to facial findings AFDs include anomalies of the extremities. The best known MFD is the Treacher Collins syndrome, a monogenic disease caused by mutations of the TCOF1 gene, providing further evidence that TCS is a ribosomopathy.

S05.1 Alzheimer’s disease
J. Williams
Cardiff, United Kingdom.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.pdf for possible updates.
Bipolar affective disorder

S. Cichon
Bonn, Germany.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

Tailoring and implementing aCGH for prenatal diagnosis: experience from Hong Kong

R. K. W. Choy
Chinese University of Hong Kong, Hong Kong, China.

Microarray analysis has been recognized as a powerful diagnostic tool for detection of chromosome copy number aberrations in infants and children with congenital malformations and neurodevelopmental disabilities. Although microarray-based comparative genomic hybridization (aCGH) was not available at the time of the present study in the prenatal setting it has had a slower adoption rate. Based on the CNV abnormality rate detected from the recent NICHD sponsored multicentre trial and meta-analysis reported, aCGH is a more sensitive diagnostic test and adds incremental value to conventional karyotyping. There were also emerging evidences suggested that a targeted or lower resolution array appeared to be more appropriate for the detection of majority of clinically relevant chromosome copy number abnormalities while maintaining a low rate of results with unknown clinical significance. Our laboratory has been offering “one-stop” prenatal screening and diagnostic service using low resolution targeted array (aCGH; 4×4K) since 2009. In this study, we present a prospective follow-up study using pregnancy outcome as the end point to investigate the accuracy, efficacy, clinical advantages and shortcoming of prenatal diagnosis using targeted aCGH as compared to standard conventional chromosome analysis using microscopy and QF-PCR. A few cases neglected by aCGH but subsequently identified to have chromosomal or genetic abnormalities by other methods will be discussed.

Prenatal diagnosis: Challenges in the interpretation of high resolution genetic screening tests

K. Devriendt
Center for Human Genetics, UZ Leuven, Leuven, Belgium.

High resolution genetic screening tests based on array-CGH are being introduced in the prenatal setting. They significantly increase the detection of genetic variants with clinical implications. Several flow-charts exist for the interpretation of CNVs in postnatal setting. However, the clinical interpretation of CNVs in a prenatal setting is more challenging compared to a postnatal setting, since the clinical information needed to interpret CNVs is often incomplete, time is pressing and decisions taken are irreversible. In high risk pregnancies, e.g. (multiple) malformations detected on ultrasound, the added value of array-CGH is often limited, since decisions with regard to pregnancy management are already taken based on the detected anomalies. In contrast, array-CGH can have a major added value as a screening tool in low risk pregnancies, this has to be outweighed against the difficult issues such as CNVs with reduced penetrance, variable expressivity and phenotypic effects, unclassified CNV’s, incidental findings etc. The huge demand for prenatal screening raises by these difficulties cannot be met by most genetic centers. Also, one can question to what extent parents can take truly informed decisions, not only on taking a prenatal array-CGH test, but also taking decisions regarding pregnancy management if a variant is detected.

Get ready for the flood of fetal gene screening

H. T. Greely
Stanford, CA, United States.

Genomic sciences supported by ultra-high throughput technologies begin to change the landscape of medicine, disease prevention, and therapy. Development of genomic biomarkers guiding drug therapies has moved to the forefront of translation into clinical practice. The US FDA’s Table of Pharmacogenomic Biomarkers in Drug Labels (1) now contains >120 drug entries where evidence of a genetic effect has been described. However, confidence in the presented evidence and effect size with regards to drug response or toxicity vary over a wide range - from definitive clinical recommendations to ‘for information only’. While strong genetic factors predictive of adverse drug reactions move into clinical practice as biomarker tests, drug efficacy is typically multifactorial, with few tests capable of predicting outcomes – companion biomarker tests for targeted cancer chemotherapy a possible exception. Yet accurate prediction of positive response to therapy has the potential to improve drug therapy substantially, while much of the genetic variability in drug response genes has yet to be discovered. Our research focuses on expression genetics, based on the premise that regulatory variants (affecting transcription, RNA processing, and translation) are more prevalent than non-synonymous SNPs that alter protein function directly. I will present specific examples I have emerging opportunities and hurdles to translation of genetics/genomics into therapeutic advances. Supported by NIH U01 GM092655.

Clinical pharmagenomics: perspectives and limitations

M. Schwab
The Ohio State University, Columbus, OH, United States.

Pharmacogenomic Biomarkers in Drug Labels (1) now contains >120 drug entries where evidence of a genetic effect has been described. However, confidence in the presented evidence and effect size with regards to drug response or toxicity vary over a wide range - from definitive clinical recommendations to ‘for information only’. While strong genetic factors predictive of adverse drug reactions move into clinical practice as biomarker tests, drug efficacy is typically multifactorial, with few tests capable of predicting outcomes - companion biomarker tests for targeted cancer chemotherapy a possible exception. Yet accurate prediction of positive response to therapy has the potential to improve drug therapy substantially, while much of the genetic variability in drug response genes has yet to be discovered. Our research focuses on expression genetics, based on the premise that regulatory variants (affecting transcription, RNA processing, and translation) are more prevalent than non-synonymous SNPs that alter protein function directly. I will present specific examples I have emerging opportunities and hurdles to translation of genetics/genomics into therapeutic advances. Supported by NIH U01 GM092655.

Variation in drug disposition and response among patients is a major concern associated with many therapeutic agents used in all disciplines of medicine. The clinical relevance of variability is most evident with drugs that have a narrow therapeutic window (i.e., the dose used is close to the dose probably resulting in drug-related toxicity in most individuals). With increasingly information available from the Human Genome Project and the HapMap Project, pharmacogenomics aims to elucidate the genetic determinants of drug efficacy and toxicity. For instance, variants in genes that are relevant to ADME processes such as drug metabolizing enzymes, drug transporters and nuclear receptors have profound effects on patient outcome. Recent clinically important examples are pharmacogenomics of tamoxifen, a well established drug for treatment of postmenopausal breast cancer, and pharmacogenomics of clopidogrel, an antiplatelet drug. However, it is unlikely that one single gene will affect exclusively disease or treatment outcome, and therefore a more comprehensive approach will be to consider genetic polymorphisms in entire biological/ pharmacological pathways. Recently developed '-omics' approaches (e.g. genomics, transcriptomics, prote-
omics, metabolomics) will be helpful to identify further putative targets for better prediction of drug response and will complement each other. Array technologies (e.g. cDNA arrays, GWA), next generation sequencing and metabolomics have shown to be helpful for identifying novel genes, redefining disease diagnosis and predicting therapy response to specific drugs. Finally, non-genetic factors as well as epigenetics (e.g. methylation, miRNA) have to be considered more intensively in the future. Experimental as well as computational approaches are required to obtain holistic, mechanistic information on disease networks and drug response. Thus, only systems pharmacology allows the integration of the systems-level understanding of drug response with genome medicine to promote the idea of personalized medicine.

S07.3 Pharmacogenomics - Is it a hype really?
R.J. Guéguen
Leiden, Netherlands.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S08.1 Research about psychological issues related to genetic counselling and genetic testing: a personal view on past, present and future
G. Evers-Kiebooms
Department of Human Genetics, University of Leuven, Leuven, Belgium.

Notwithstanding the complex psychological risks faced by individuals at increased risk for developing genetic disease or for having offspring with genetic disease, psychological issues related to genetic risk, genetic counselling and genetic testing were hardly studied before 1980. Thereafter the attention for the psychological dimension increased rather slowly and moreover most studies were descriptive and did not use adequate control groups. In several countries the success of the human genome project also allowed the integration of the systems-level understanding of drug response with genome medicine to promote the idea of personalized medicine. The fact that the "teaching model" of genetic counselling dominated the "counselling model" for many years, resulted initially in psychological research that was mainly focused on cognitive aspects of genetic counselling (understanding of probabilistic information, recall of risks). Seymour Kessler played an important role in drawing the attention on genetic counselling as a complex communication process and on the factors involved in processing emotionally laden information, coping with genetic disease and communication about genetic issues within the family. The first part of the presentation is dedicated to a personal selection of research findings about the impact of genetic counselling as well as about directiveness versus non-directiveness.

The progress in diagnostic possibilities allowed the detection of more and more genetic diseases in adults or children, prenatally and even in the embryo. The second and major part of the presentation consists of a personal looking back on research about psychological aspects of prenatal testing, carrier testing and predictive testing. For each of the three types of genetic testing two major dimensions will be considered: decision making about testing and the psychological impact of testing. Where applicable in the context of predictive testing attention will also be paid to a third dimension: psychological issues involved in preventive health behavior or life style changes that may be induced by a genetic test result. The focus in this part of the presentation will be on predictive testing, prenatal testing and pre-implantation genetic diagnosis for Huntington's disease, with special attention for longitudinal studies evaluating the impact of the test result on the psychological well-being of the tested person and his or her partner and on subsequent family planning.

So far psychological research to delineate the challenges as well as the pitfalls of whole genome sequencing for predicting future health problems is very limited. Based on relevant research in psychological decision making and health psychology, mainly on risk perception, the consequences of information overload and differences in coping style, a few comments will be formulated in the closing part of the presentation.

S08.2 Risk Communication and Behaviour Change: Exploring the Chasm T. Marteau; Leonie Ennew, King's College, London, United Kingdom.

There is a strong belief held by the public, health care practitioners and science funders that using biomarkers and in particular genotypes will motivate behavior change to reduce the identified risks. This paper will present the result of a recently updated Cochrane Review which supports the conclusions of the original review (Marteau et al 2010) that communicating genetic risk information is unlikely to make much discernible impact upon the change in behaviour needed to reduce the high and rising rates of non-communicable diseases attributable to smoking, diet and physical inactivity.

This is in keeping with recent evidence from neuroscience and psychology that highlights the finding that much behaviour taking place outside of awareness. While the communication of genetic risk information is unlikely to form part of broader public health strategies to change health related behavior in order to improve population health, genetic and other biomarker-based risk information will continue to be given in some clinical contexts. The next generation of research in this latter context could usefully take as its starting points first, that there is nothing particularly motivating about biomarker risk information and second, that engagement in some programmes can change health-related behaviour.

Key references

S08.3 Psycho-onco-genetics: historical background and future challenges
E. M. A. Bleeker
The Netherlands Cancer Institute, Amsterdam, Netherlands.

‘Psycho-onco-genetics’ is the domain where psychology, oncology and genetics meet. A brief historical background of the three sciences is presented, followed by suggestions for future research.

Cancer is as old as mankind. In Western countries, first successful treatments for cancer were given between 1900 and 1950. In the 1960s, the taboo decreased and a cancer diagnosis was more openly communicated to the patient. At that time, psychology and psychiatry entered oncology. By the mid-seventies, the first psycho-oncological investigations studied issues like anxiety and depression. Questionnaires assessing ‘quality of life’ were developed in the 1980s and 1990s, to measure physical, social, and emotional wellbeing. In the 21st century, the screening of cancer patients for distress (‘the 6th vital sign’) is being advocated. Parallel to the developments in cancer treatment and psycho-oncology, the field of genetics developed. The hypothesis that a disease like breast cancer could be inherited was first time reported by Paul Broca in 1866. In 1953, Watson and Crick were among the first to report on the structure of DNA, and more important discoveries followed in the next decades. In the 1960s the first papers on genetic counseling for cancer appeared. A literature search on this topic revealed over 10,000 papers published since 1967, with a strong increase in the 1990s, when a number of genes associated with cancer syndromes were identified. Concerns were raised about the possible negative psychosocial impact of genetic testing and preventive surgery for (breast) cancer. In general, results did not support this concern. However, a number of questions still need to be answered. For example: are the currently used distress-questionnaires sufficiently sensitive to assess the specific problems encountered by the cancer patients? Are those who do not request counseling psychologically more vulnerable? To what extent should counselors play an active role in the communication of genetic test results to distant relatives of mutation carriers? What will be the best use of SNP’s in clinical practice, and how can we support counsellors with coping with these small elevated risks for cancer? How can we improve psycho-education about reproductive decision making such as prenatal and pre-implantation genetic diagnosis? In addition, a number of questions need to be answered when commercial genetic testing will arrive in Europe, making genetic testing accessible without the intervention of a trained genetic counselor.
S09.1
Opposing roles for IL-23 and IL-12 in maintaining occult cancer in an equilibrium state

M. W. Teng1, M. D. Vessely2, H. Dutre1, N. McLaughlin1, J. E. Towne1, R. D. Schreiber1, M. J. Smyth1

1Peter MacCallum Cancer Centre, Melbourne, Australia; 2Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; 3Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States; 4Inflammation Research, AMGEN Incorporated, Seattle, WA, United States.

The detailed mechanism controlling the equilibrium phase of cancer immune editing that results in immune-meditated dormancy of cancer remains to be delineated. Here, we investigate the length of the equilibrium phase during immune control of methylcholanthrene (MCA) induced cancers and extend these observations to aging cancer prone p53 mutant mice. We also demonstrate, for the first time, the critical and opposing roles of IL-23 and IL-12 in maintaining cancer cells in a state of immune-mediated dormancy. Over a series of experiments, inhibition of IL-23p19 was shown to reduce the malignant potential of lesions established by MCA inoculation, while inhibition of IL-12/23p40 enhanced tumor growth. Furthermore, agonistic anti-CD40 antibody treatment mimicked the effects of anti-IL-23p19 mAb treatment. Other cytokines such as IL-4, IL-17, TNE, and IPNδβ, which are known to play important roles either in MCA tumorigenesis or in the elimination phase of cancer immune editing did not play critical roles in maintaining the equilibrium phase. Taken together, these data indicate opposing roles for IL-23 and IL-12 in determining the outgrowth versus dormancy of occult neoplasia and suggest a potential long-term danger in using IL-12/23p40 antibodies for treating human autoimmune inflammatory disorders.

S09.2
Paracrine and Autocrine Signals Induce and Maintain Mesenchymal and Stem-Cell States in the Breast

C. Scheel;
Helmholtz Center Munich, German Research Center, for Environmental Health, Neuherberg, Germany.

The epithelial-mesenchymal transition (EMT) has been associated with the acquisition of motility, invasiveness, and self-renewal traits. During both normal development and tumor pathogenesis, this change in cell phenotype is induced by contextual signals that epithelial cells receive from their microenvironment. The signals that are responsible for inducing an EMT and maintaining the resulting cellular state have been unclear.

We describe three signaling pathways, involving transforming growth factor (TGF)-beta and canonical and noncanonical Wnt signaling, that collaborate to induce activation of the EMT program and thereafter function in an autocrine fashion to maintain the resulting mesenchymal and stem cell-like state. Importantly, the downregulation of endogenously synthesized inhibitors of autocrine signals by epithelial cells enables the induction of the EMT program. Conversely, disruption of autocrine signaling by added inhibitors of these pathways inhibits migration and self-renewal in primary human mammary epithelial cells and reduces tumorigenicity and metastasis by their transformed derivatives.

Our results indicate that ongoing autocrine signaling is required for maintenance of mesenchymal and stem cell traits both in primary and transformed mammary epithelial cells. At the same time, given the appropriate signaling context, these factors act in a paracrine manner that allow the derivation of mesenchymal and stem cell-like cells in both primary and transformed populations of mammary epithelial cells that do not display these attributes. In the long run, our observations may provide the basis for efficiently inducing differentiated epithelial cells to pass through an EMT and enter into a SC state without relying on genetic alteration. Such an approach may eventually be of great utility in the area of regenerative medicine. Acting in a paracrine fashion to maintain the resulting mesenchymal and stem cell-like state, these factors may contribute to the basis for the recently discovered clinical significance of EMT in the cancers.

S09.3
Microsatellite instability and cancers: From biology to clinics

A. Colonna, A. Dastot;
Inserm, Team ‘Microsatellite Instability and Cancer’, Paris, France.

Recently, we identified a mutated form of HSP110 (HSP110DE9) in a subset of colorectal cancer (CRC), i.e. CRC displaying microsatellite instability (MSI) (Dordor et al., Nat. Med. 2011). The human tumour phenotype referred to as MSI is frequent, being associated with inherited neoplasms (Lynch syndrome) and with 10-15% of sporadic colon, gastric and endometrial cancers.

Unpublished results we recently obtained show that HSP110 is frequently mutated in human MSI neoplasms regardless of their primary location. Heat shock proteins (HSPs) are necessary for cancer cell survival. The HSP110DE9 mutant is the first HSP inhibitor produced endogenously by the cancer cell. It is generated from an aberrantly spliced mRNA and lacks the HSP110 substrate binding domain. HSP110DE9 expression is observed at variable levels in MSI cancer cells and tightly correlates with the size of allelic deletions in a T17 DNA repeat located in HSP110 intron 8. HSP110DE9 impaired both the normal cellular localization of HSP110 and its interaction with other HSPs, thus abrogating the chaperone activity and anti-apoptotic function of HSP110 in a dominant negative manner. Forced overexpression of HSP110DE9 causes the sensitization of cells to anticancer agents such as oxaliplatin and 5-fluorouracil regardless of their microsatellite status. Importantly, these in vitro results have clinical significance, since MSI CRC highly expressing HSP110DE9 due to large T17 deletions show significantly longer relapse-free survival and response to chemotherapy compared to those with a low ratio (Collura et al., Submitted). More generally, we suspect HSP110 mutation to constitute a first step towards understanding of the clinical behaviour of colorectal, gastric and endometrial MSI tumours that have been reported to show an improved prognosis and possibly a different response to chemotherapeutic agents.

S10.1
Estimation of the human mutation rate by whole-genome sequencing

L. Jorde1, C. D. Huff2;
1Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, United States; 2Anderson Cancer Research Center, Houston, TX, United States.

Whole-genome sequences of related individuals in large pedigrees provide new opportunities and challenges for disease-gene discovery. They also permit direct estimates of sex-specific human mutation rates. We have analyzed whole-genome sequence data from 21 individuals in a 5-generation pedigree that was ascertained because of autosomal dominant transmission of cardiac septal defects. We used our VAAST software package to identify the disease-causing mutation. VAAST incorporates pedigree information and the observed inheritance pattern with information about genetic variation in a control population and amino acid substitution severity under a unified likelihood analysis framework. The variable responsible for septal defects in the family is a known missense mutation in the GATA4 gene that had been previously identified through traditional linkage analysis. In our whole-genome analysis of the septal defect phenotype, the GATA4 gene was highly significant (Bonferroni corrected p-value = 0.9x10^(-7)), and no other gene reached statistical significance. To estimate the male-specific intergenerational mutation rate, we identified novel single nucleotide variants (SNVs) that were absent in a father but were present on the paternal chromosome of one of the father’s offspring. We identified 12 de novo mutations in approximately 600 Mb of sequence data, with estimated false-positive and false-negative rates of less than 1x10^-3. We estimated a male-specific, intergenerational mutation rate that is approximately five times greater than the female-specific mutation rate. This result agrees well with estimates based on phylogenetic comparisons. It is also consistent with our mutation rate estimates based on a three-generation kindred in which two members of the third generation have Miller syndrome.

S10.2
Fragile genomes generate more de novo mutations

E. Eicher;
Seattle, WA, United States.

No abstract received as per date of publication. Please check the programme plan at http://www.eshg.org/abstracts2012.html for possible updates.

S10.3
De Novo Mutations in Neurodevelopmental disorders

G. A. Rouleau1, J. Michaud2;
1Centre of Excellence in Neurosciences of Université de Montréal, Centre Hospitalier de l’Université de Montréal, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.

INTRODUCTION: Schizophrenia (SCZ), autism spectrum disorders (ASD) and intellectual deficiency (ID) are common, devastating and poorly treated neuropsychiatric brain developmental disorders. The wide spectrum of symptoms such clinical variability in these disorders suggest a complex genetic etiology, which is consistent with the numerous loci thus far identified by linkage, copy number variation and association studies. Although heritability in all three disorders may be as high as ~80%, the genes responsible for much
of this heritability remain to be identified. Based on the observed reduced reproductive fitness, the relatively uniform world wide incidence, the increased risk of disease with increasing paternal age and the phenotypic complexity of each disease, we, and others, hypothesized that a fraction of this missing heritability may be the result of the occurrence of de novo mutations affecting any of a large number of genes. In order to test this hypothesis we first sequenced over 400 synaptic genes in 148 subjects with SCZ, 148 subjects with ASD and 96 subjects with ID. Many likely de novo mutations were identified - these plus relevant functional studies will be presented.

Next we sequenced the exomes of SCZ, ASD and ID probands, plus their parents, identifying numerous additional de novo mutations (DNMs). In addition, 1/4 of identified DNMs are nonsense mutations, which is more than what is expected by chance. Interestingly, some of the identified genes, such as SHANK3, show deleterious de novo mutations in patients from the three disease cohorts, suggesting close biological overlap in these disorders. Our study supports the notion that DNMs may account for some of the missing heritability SCZ, ASD and ID while providing a list of genes possibly involved in disease pathogenesis.

S11.1 Genetic basis of primary microcephaly
C. G. Woods; Cambridge, United Kingdom.

Primary Microcephaly can be inherited as a dominant and recessive disorder. Dominant genes are KIF11, and others to be reported. For KIF11 heterozygosity appears to be the mutational mechanism. Recessive genes are MICROCPEHALIN, WDR62, CEP58, ASPM, CPAP, STIL and CEP63, with others to be reported. The mutational mechanism is null mutations - non-sense, splicing and frame-shifting INDELS. The exception being WDR62, where missense mutations are found, but non-sense mutations additionally cause cerebral dysplasia. All the Primary Microcephaly genes encode proteins involved in mitosis. One is involved in the timing of entry into mitosis, others in the mitotic spindle and the remainder in centrosome and centriole function during mitosis. These processes are ubiquitous, but it remains unexplained why it is only the brain that is affected. Furthermore, no unifying mechanism has yet emerged to explain how these particular mitotic apparatus proteins interact to modulate brain growth.

S11.2 Clinical aspects of primary microcephaly
A. Verloes; Paris, France.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S11.3 DNA repair and microcephaly
B. Wolinka; Köln, Germany.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S12.1 Molecular classification of primary lymphedema
P. Ostergaard; St. George’s University of London, London, United Kingdom.

We have demonstrated that stringent phenotyping can be helpful in gene identification. Building on 12 years of experience in our Primary Lymphoedema Clinic at St George’s Hospital, London, an updated classification of this condition has been proposed by Connell et al (2012, Clin Genet). This new tool has been useful in our research department and we have had success in identifying genes for Primary Lymphoedema using this rigorous phenotyping combined with linkage analysis, Sanger sequencing and/or Whole Exome Sequencing. In this talk, the classification pathway for Primary Lymphoedema will be presented together with the latest genes we have discovered such as GJC2, GATA2 and KIF11.

S12.2 Mouse models of lymphedema
T. Petrova; Epalinges, Switzerland.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S12.3 Therapeutic trials in lymphedema
K. Alitalo; Helsinki, Finland.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S13.1 Exome sequencing in sporadic autism spectrum disorders
J. Shendure; Seattle, WA, United States.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S13.2 Autism genetics: at the crossroads of genomics and cognitive neuroscience
D. H. Geschwind; Los Angeles, CA, United States.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S13.3 Large-scale dissection of molecular networks and mechanisms underlying Intellectual Disability Disorders
A. Schenck; Nijmegen, Netherlands.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S14.1 Identification of cis- and trans-regulatory variation modulating microRNA expression levels
S. Antonarakis; Geneva, Switzerland.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S14.2 Interrogating the RNA heterogeneity within cellular compartments
R. Gaiats; Center for Genomic Regulation, Barcelona, Spain.

The unfolding of the instructions encoded in the genome is triggered by the transcription of DNA into RNA, and the subsequent processing of the resulting primary RNA transcripts into functional mature RNAs. RNA is thus the first phenotype of the genome, mediating all other phenotypic changes at the organism level caused by changes in the DNA sequence. While current technology is too primitive to provide accurate measurements of the RNA content of the cell, the recent development of Massively Parallel Sequencing Instruments has dramatically increased the resolution with which we can monitor cellular RNA. Using these instruments, the ENCODE project has surveyed the RNA content of multiple cell lines and subcellular compartments. The results of these surveys underscore pervasive transcription, as well as great RNA heterogeneity between and within cells. Comparison of RNA surveys with other genome wide epigenetic surveys such as those of binding sites for Transcription Factors, or of Histone modifications reveals a very tightly coupling between the different pathways involved in RNA processing, transcription and splicing in particular.
S14.3 Transcribed dark matter: meaning or myth?
C. Ponting; Oxford, United Kingdom.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S15.1 LRPS in bone
M. Warman; Boston, MA, United States.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S15.2 Acromelic dysplasia and TGFbeta signaling
V. Cormier-Daire; Paris, France.

The acromelic dysplasia group includes four disorders namely Weill-Marchesani Syndrome (WMS), Gelocephalysia Dysplasia (GD), Acromelic dysplasia (AD) and Myhre syndrome (MS), all characterized by severe short stature, short extremities, restricted joint mobility, thick skin and pseudomuscular build. They are distinct by additional features and their pattern inheritance. WMS is characterized by the presence of dislocation of microspherophakia and has autosomal dominant or recessive mode of inheritance. GD is the more severe one, resembling a syndrome disorder with a progressive cardiac valvular thickening, tip toe walking, tracheal stenosis, bronchopulmonary insufficiency and often an early death. AD has an autosomal dominant mode of inheritance, distinct facial and skeleton features (a hoarse voice and internal notch of the femoral head). Finally, MS is sporadic, characterized by prognathism, deafness, developmental delay, thickened calvarium, and large vertebrae with short and long pedicles.

We first identified mutations in Fibrillin1 (FBN1) in the dominant form of WMS and then mutations in A Disintegrin-like And Metalloproteinase domain with Thrombospondin type I repeats 10 (ADAMTS10) in the recessive form of WMS. The function of ADAMTS10 is unknown but these findings support a direct interaction between ADAMTS10 and FBN1.

We then identified mutations in ADAMTS2 in the recessive form of GD and a hot-spot of mutations in FBN1 in the dominant form of GD and in AD (exon 41–42, encoding TGFβ binding protein-like domain 5 (TBS5) of FBN1). The function of ADAMTS2 is unknown. Using a yeast double hybrid screen, we identified Latent TGFβ Binding Protein 1 as a partner of ADAMTS2. We found an increased level of active TGFβ in the fibroblast medium from patients with FBN1 or ADAMTS2 mutations and an enhanced phosphorylated SMAD2 level, allowing us to conclude at an enhanced TGFβ signaling in GD and AD. Finally, a direct interaction between ADAMTS2 and FBN1 was demonstrated suggesting a dysregulation of FBN1/ADAMTS2/ TGFβ interrelationship as the underlying mechanism of the short stature phenotypes.

To identify the gene responsible for MS, we performed exome sequencing in 2 MS and selected SMAD4 as a candidate gene. We identified de novo nonsense mutations, all involving Isoleucine residue at position 500, in the MH2 domain of SMAD4 in a total of 20 MS patients. In MS fibroblasts, we found decreased ubiquitination level of SMAD4 and increased level of SMAD4 supporting a stabilization of SMAD4 protein. Functional SMAD4 is required for decreased ubiquitination level of SMAD4 and increased level of SMAD4 supporting TGFβ target genes supporting impaired TGFβ driven transcriptional control in MS.

All together, our findings support a direct link between the short stature phenotypes and the TGFβ signaling. However, the finding of enhanced TGFβ signaling in Marfan phenotypes suggest the existence of yet unknown mechanisms regulating TGFβ action, possibly including tissue specific modulations. Finally, remembering the severity of GD, our ultimate goal is the design of drugs that can selectively inhibit this pathway.

S15.3 Osteogenesis imperfecta
B. Lee; Baylor College of Medicine and Howard Hughes Medical Institute, Houston, TX, United States.

Over the past several years, a discovery of new genes causing osteogenesis imperfecta (OI) has provided exciting new insights into bone biology and the pathogenesis of brittle bone disease. At the same time, therapeutic studies in the area of osteoporosis have led to study of osteoporosis drugs in osteogenesis imperfecta. Most have focused on the use of anti-resorptive approaches such as intravenous bisphosphonates. More recently studies focused on anabolic therapies such as intermittent parathyroid hormone have been performed in adults with OI. The different clinical and diagnostic endpoints for these studies will be reviewed and potential new therapies informed by pathophysiological discoveries on these new OI genes will be discussed.

S16.1 To Tell or Not to Tell - How should we handle incidental findings obtained in the course of genome sequencing?
C. Netzer; Universität Köln, Medizinische Fakultät - Uniklinik Köln, Institut für Humangenetik, Köln, Germany.

Next-generation sequencing (NGS) technologies have revolutionized genetic research within a few years and may very soon become part of routine clinical testing. There is a growing debate about the question whether incidental genetic findings about disease susceptibilities should be reported to the patients or research participants in all cases, in special cases, or not at all. The answer to this question is crucial for the informed-consent procedure and for the work-up of NGS data-sets. In this talk, some real-life examples of incidental genetic findings will be presented to illustrate the multiple dimensions of the problem. Possible solutions will be discussed with the audience.

S16.2 Biobanks: should individuals be informed of findings from biobank studies? Can informed consent be realized?
A. Cambon-Thomsen; Toulouse, France.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

S16.3 Informed consent in non-invasive prenatal diagnosis
H. Strange, Z. Deans, A. Newson; ESRC Centre for Economic and Social Aspects of Genomics (Cesagen), Cardiff, United Kingdom.

Non-invasive prenatal diagnosis (NIPD) offers the opportunity for exciting changes to prenatal screening and diagnosis. It can give definitive results reliably at an early stage of pregnancy and without the miscarriage risk associated with invasive testing. NIPD is already used within the UK for fetal sexing for women at high risk of sex-linked disorders, and in routine screening for fetal RHD in D negative pregnant women. It is also available in the USA and China as advanced screening test for trisomy 21. While the technology advances quickly, there is a need to examine carefully how the introduction of NIPD into public clinics and the private sphere might affect women and couple’s capacity for making informed decisions. The presentation starts by outlining reasons to safeguard a fully informed decision-making process, as far as is possible. This is followed by highlighting three key areas in which the process of informed decision-making might be affected by the introduction of NIPD. These are: prenatal screening programmes; direct-to-consumer testing; possible expansion to genome-wide sequencing.

Prenatal screening programmes: Against the background concern that prenatal screening and testing programmes have become ‘routinised’, evidence suggests that, with the apparent ease of NIPD and without any associated risk of miscarriage, healthcare professionals may regard informed decision-making as less important for NIPD.

Direct-to-consumer testing: Any test that is partially carried out at home raises concerns about consent, pressure, and possible coercion by individuals and companies. Direct-to-consumer testing also presents logistical challenges for making sure the results are communicated accurately and are properly understood and interpreted by the recipient.

Possible expansion to genome-wide sequencing: Although not yet clinically available, if NIPD were to be offered for whole genome sequencing, this would present a significant challenges to traditional models of informed consent procedures.
ES1.1 Molecular Genetic Analysis in Complex Diseases
M. Nöthen; Bonn, Germany.
No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

ES1.2 Turning discovery into prediction
C. van Duijn; Rotterdam, Netherlands.
No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

ES2.1 Blistering Diseases
L. Bruckner-Tuderman; Freiburg, Germany.
No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

ES2.2 Ichthyosis
J. Fischer; Institut für Humangenetik, Universitätsklinikum Freiburg, Freiburg, Germany.
The epidermis forms the outermost, protective layer of the skin and func-
tions as the essential barrier of the body against dehydration, mechanical
insults, and the intrusion of microbes, toxins, and allergens. Ichthyoses
comprise a clinically and genetically heterogeneous group of disorders of
keratinization/cornification characterized mainly by abnormal skin scaling
over the whole body; some patients present with severe symptoms, inclu-
ding a confluent membrane at birth. The main skin phenotypes are lamellar
ichthyosis and congenital ichthyosiform erythroderma. Most ichthyoses are
inherited genetic disorders, in which gene defects (mutations) lead to an
impaired epidermal permeability barrier. Genetic analyses have elucidated
numerous associations between gene mutations and the presence of an
ichthyosis phenotype. Here we will present an update on the main genetic
forms of ichthyoses.

ES3.1 How to get published in the European Journal of Human Genetics
G. van Ommen; Leiden, Netherlands.
No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

ES4.1 The Family’s Experience of a Genetic Disorder
S. McDaniel; Rochester, NY, United States.
No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

ES4.2 Using systemic ideas in Genetic Counsellors’ group supervision
T. O’Neill; North Manchester CANS, Central Manchester University Hospitals NHS Foundation
Trust, Manchester, United Kingdom.
The presenter, a Consultant Family Therapist working in child and Ade-
scent Mental Health, will describe the use of a Reflecting Team format in
the supervision of Genetic Counsellors. Reflecting Teams have been used in
family therapy since Tom Andersen and his colleagues in Norway introdu-
ced them in the 1980’s. Giving clients the opportunity to see and hear the
therapy team talk about clients’ dilemmas remains a widely used practice in
contemporary family therapy.
The method has also been applied to other teaching, training and supervisi-
on situations because of the potential advantages such as presenting feed-
back in a non-threatening manner and offering a multitude of perspectives
and new ideas and it is for these reasons that the presenter has applied the
approach to supervision with Genetic Counsellors. The presenter will ex-
plain some of the background to this approach and the practicalities of its
application illustrated by reference to anonymised cases discussed in the
supervision.

ES5.1 Array CGH and applications
L. Feuk; Uppsala, Sweden.
No abstract received as per date of publication. Please check the program-
me planner at http://www.eshg.org/abstracts2012.0.html for possible up-
dates.

ES5.2 Next Generation Sequencing and Applications
I. G. Gut; Centro Nacional de Análisis Genomico, Barcelona, Spain.
Nucleic acid sequencing has been the workhorse of genome research from
the very beginning in the late 80’s. Classical Sanger sequencing was used
for the Human Genome Sequencing project and was successively refined
and finally used with automated capillary gel electrophoresis separation.
The first sequence of the human genome was generated using exclusively
this technology (Lander et al. Nature 2001, Venter et al. Science 2001). In
2005 nucleic acid sequencing saw a paradigm shift with the introduction of
the Genome Sequencer from Roche and was shortly followed by other 2nd
generation sequencers from Illumina, LifeTechnologies and Helicos. 2nd ge-
generation sequencers rely on the preparation of random physically separated
arrangements of individual fragments of the input nucleic acid, followed by
cyclical base additions to the random array and high resolution imaging. 2nd
generation sequencers are combinations of high-resolution imaging instru-
ments and microfluidic devices. 2nd generation sequencers are the main tool
used in large-scale projects such as the 1000 Genomes, the International
Cancer Genome Consortium (IGCC), the International Human Epigenome
 Consortium (IHEC) and will play an important role in the International Rare
Disorder Research Consortium (IRDrBC).
However, development of sequencing methods has not stopped at 2nd ge-
generation. Several instruments have been introduced, that move beyond in
their characteristics. Detection systems are shifting from optical detection
to electrical detection. I would characterise true 3rd generation as a method
that does not rely on a replication method, such as primer extension or oli-
gonucleotide ligation, for sequence determination, and delivers long clonal
reads. Methods such as the GridION System from Oxford Nanopore Techno-
lologies fall into this category. Even 4th generation sequencing methods are
already showing on the horizon with developments of the EU-funded FP7
project READNA (www.cng.fr/READNA). A 4th generation sequencing me-
thod would allow the determination of nucleic sequences cell-by-cell within
a histological section.

ES6.1 Clinical and genetic heterogeneity of amyotrophic lateral sclerosis
M. Sabatelli; Department of Neurology, Pol. ‘A. Gemelli’; Università Cattolica del Sacro Cuore, Rome,
Italy.
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder
involving upper and lower motor neurons. Within definite ALS, variants are
recognized based on the age of onset, site of localization of first signs, rate
of progression of the disease, relative mix of upper and lower motor neuron
deficits and the presence of fronto temporal dementia (FTD). The question
of whether ALS is a single disease with variable expression or different di-
seases with heterogeneous causes still remains unsolved.
Most ALS cases are sporadic (SALS) while familial ALS (FALS) account for
about 5% of total cases. Over the last 20 years the pathogenic role of ge-
nes such as SOD1, TARDBP, FUS, C9ORF72, OPTN, ATXN2, VCP, ANG and
UBQLN-2 has emerged and mutation in these genes have been identified in
ES7.1 Next generation sequencing goes diagnostic: First experiences
L. Bieseker; National Human Genome Research Institute, NIH, Bethesda, MD, United States.

Medicine is being challenged by the DNA sequencing revolution. Next generation (NGS) has led to a precipitous drop in costs, making clinical sequencing of the genome or exome comparable in cost to other diagnostic tests. The question before us is how we can harness this technology to benefit patients. As we, we do not know which medical scenarios are appropriate for NGS, nor how we should work with patients and their families to communicate the results. To address these questions, research is needed to develop an evidence base upon which we can create practice standards. We developed the ClinSeq™ pilot project to explore these questions. The goals of this project are to enroll 1,000 subjects, initially focusing on cardiovascular disease, apply NGS technologies, and pilot approaches to consent, data analysis, and return of results.

The initial analyses of ClinSeq™ have shown that subjects have good abilities to understand the sequencing research through informed consent. They are eager to undergo sequencing and receive results, both for their own benefit as well as to benefit science. They are highly motivated, willing to engage in follow-up research to correlate genotype and phenotype. We began our analyses by screening 572 exomes for highly penetrant mutations leading to nerve and pressure palsies (n=3). Most of these have been returned to the subjects with medical and genetic counseling. In total, we have detected and communicated the results. To address these questions, research is needed to treat patients with apparent sporadic disease. The same genes may act as either Mendelian genes in FALS or low-penetrance risk alleles in SALS. This challenges the current indication for DNA analysis only in cases with a known family history of ALS.

ES7.2 BRCA1 and 2 diagnostics
G. Matthijs; Leuven, Belgium.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

ES8.1 Huntington
A. Durr; Paris, France.

No abstract received as per date of publication. Please check the programme planner at http://www.eshg.org/abstracts2012.0.html for possible updates.

ES8.2 Myotonic dystrophy: complex variants in a complex disorder
D. G. Monckton; University of Glasgow, Glasgow, United Kingdom.

Myotonic dystrophy is an autosomal dominant disorder presenting a wide range of symptoms frequently including cataracts, heart conduction defects, insulin insensitivity and hypersomnia, along with muscular atrophy and myotonia. Disease severity is extremely variable and the disorder displays striking anticipation progressing from the mild late onset form to congenital disease in as little as three generations. The most common form of myotonic dystrophy, type 1, is caused by the expansion of a CTG repeat in the 3′ untranslated region of the DMPK gene. The CTG tract ranges from 5 to ~40 repeats in the general population. Patients inherit from 50 to 1,000+ repeats, with longer alleles associated with earlier age at onset. The expanded repeat is highly unstable and nearly always increases when transmitted from one generation to the next, explaining the anticipation observed. The expanded repeat is also unstable in the soma in a process that is age-dependent, tissue-specific and expansion-biased, with particularly large expansions in the affected tissues. Although the majority of DM1 patients present with a pure expanded CTG repeat array, recent evidence has revealed that a subset of patients carry alleles with variant repeats. These variant repeats stabilise the array and are associated with milder symptoms. Pathogenesis appears to be primarily caused by the gain of function of the DMPK transcript containing a large CUG tract that remains trapped within foci in the nucleus and disturbs the function of two families of RNA splicing factors that leads to genome-wide dysregulation of alternative splicing. In particular, mis-splicing of the CLC1 chloride channel gene appears to be associated directly with myotonia and mis-splicing of the insulin receptor gene with insulin insensitivity. Exciting recent developments suggest that the RNA gain of function defect may be alleviated using antisense oligonucleotides paving the way for new treatments in this devastating disorder.
COI.1 Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome

D. A. Koolen, J. M. Kramer, K. Neveling, W. M. Nillesen, H. L. Moore-Barton, F. V. Elmslie, A. Toutain, J. Aimie, V. Malani, A. Chau-Hui Tsai, S. W. Cheung, C. Gillissen, E. P. P. Verwiebe, T. Feucht, E. M. F. P. Bongers, H. Scheffer, L. E. L. M. Vissers, A. P. M. de Broe, H. G. Brunner, J. A. Veltman, A. Scheneck, H. G. Intenma, R. B. A. de Vries, Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, South West Thames Regional Genetics Service, St. George’s, London, United Kingdom. Department of Medical Genetics, CHRU Hôpital Brestovent, Tours, France, INSERM U597 and Department of Genetics, Hôpital Necker-Enfants Malades, Paris, France, Hospital Hôpital-Enfants Malades, Paris, France, The Children’s Hospital, Section of Clinical Genetics and Metabolism, Denver, CO, United States, Medical Genetics Laboratories, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States, Department of Epidemiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands.

The 17q21.31 microdeletion syndrome is characterized by intellectual disability (ID), hypotonia, facial dysmorphism, epilepsy, and congenital malformations. The recurrent deletion encompasses five known genes, CRHR1, IMP3, MAPT, STH, and KANSL1, in addition to four putative genes. We identified two atypical de novo deletions encompassing only part of MAPT and KANSL1 in two children with ID and typical features of the 17q21.31 microdeletion syndrome. Next, we selected 16 individuals with core features of the 17q21.31 microdeletion syndrome. Sanger sequencing revealed no pathogenic changes in MAPT. However, sequence analysis of KANSL1 did reveal two heterozygous mutations, a nonsense mutation and a splice site mutation, both predicted to cause loss-of-function. KANSL1 is a widely expressed gene encoding a member of the highly conserved NSL complex. This complex contains, among others, the H4K16 acetyltransferase KAT8.

To explore the effect of haploinsufficiency of KANSL1 on gene expression levels, we performed whole transcriptome (mRNA) sequencing using EBV-transformed cell lines of the individual with the KANSL1 splice site mutation and three individuals with the classical 17q21.31 deletion. Functional annotation clustering of genes that were differentially expressed in all samples compared to controls revealed enrichment of genes involved in neuronal processes. Further evidence that KANSL1 has a function in neurons is provided by our studies in Drosophila. Tissue-specific knockdown of wab (fly orthology of KANSL1) in the mushroom bodies was sufficient to cause a 25% reduction in learning ability (P<0.05).

In conclusion, our findings demonstrate that haploinsufficiency of KANSL1 is sufficient to cause the classical 17q21.31 microdeletion syndrome phenotype.

COI.2 Mutations in the KIAA1267 gene cause the 17q21.31 deletion syndrome

M. Zollino, D. Orteschi, M. Murdolo, S. Lattante, P. Chiurazzi, G. Marangi, G. Neri, Catholic University, Rome, Italy.

The chromosome 17q21.31 deletion syndrome is a genomic disorder usually associated to a recurrent chromosome deletion, recently restricted to a 160-274 kb segment on 17q21.31, including only three genes, MAPT, STH, and KIAA1267. A question to be still addressed is whether this condition is a contiguous gene syndrome or a monogenic disorder. MAPT has been considered the major candidate gene, however no productive mutations have been identified so far. Starting from the hypothesis that a single gene mutation in undeleted patients could affect either one gene residing within the deletion interval, or another gene participating in a shared molecular pathway, we performed exome sequencing of one undeleted patient and both parents. A de novo heterozygous nonsense mutation within exon 6 of the KIAA1267 gene (OMIM *612452) was identified and validated by Sanger sequencing: c.1816T, p.R606X. This result prompted us to sequence KIAA1267 in a second undeleted patient, in which a de novo heterozygous frameshift mutation introducing a premature stop codon was detected within exon 15 (c.2785_2786delG, p.R929GfsX44). Both patients presented with a full chromosome 17q21.31 deletion syndrome phenotype, including intellectual disability, highly distinctive facial features, failure to thrive in infancy, hypotonia, motor delay, and a friendly behavior. We consider that chromosome 17q21.31 deletion syndrome is a single gene disorder, caused by haploinsufficiency of KIAA1267. Knowledge of the major causal gene will broaden the diagnostic spectrum of the 17q21.31 deletion syndrome, and will accelerate the understanding of its molecular pathogenesis.
are due to strongly hyperphosphorylating somatic TIE2 mutations, we hypothesized that BRIN may also be part of the spectrum of TIE2-mediated phenotypes.

To test this, we screened the coding region of TIE2 by direct sequencing of genomic DNA and cDNA from the affected lesions of 14 patients. In 16 tissues from 10 patients, we identified mutations leading to amino acid changes, absent in the blood DNA from patients as well as in cDNA from control tissues. These changes occur at highly conserved residues, and are not found in dbSNP. In contrast to VMCs and VMs, BRINs predominantly show double (c.7) mutations, suggesting a phenotype-genotype correlation. They cause ligand-independent receptor hyperphosphorylation in vitro. These results unequivocally demonstrate that BRINs are caused by post-zygotic activating TIE2 mutations.

CO1.5
Serin diet relieves symptoms of Hereditary Sensory and Autonomic Neuropathy type 1A caused by a c.992 C>T, p.(Ser331Phe), mutation in SPTCL1

B. W. Rautenstrauss1,2, E. Wilchowski1, E. Holinski-Feder1, T. Hornemann1, 3
1Friedrich-Baur-Institute, Munich, Germany; 2Medizinisch Genetisches Zentrum, Munich, Germany; 3Georg-August-University, Göttingen, Germany; 4University Zürich, Zürich, Switzerland.

Hereditary sensory and autonomic neuropathies (HSAN) are a genetically and clinically heterogeneous group of disorders associated with sensory dysfunction. HSAN1 is a dominantly inherited sensorimotor axonal neuropathy. The patient has 3 healthy siblings and healthy parents. Symptoms: Coinciding with the start of ambulation motor disabilities; generalized hypoesthesia; reduced walking distance; unstable gait; multiple falls; no mental retardation; MRI studies of the brain were normal; reduced pain sensitivity; recurrent traumatic and thermal injuries of feet, hands and elbows; disturbed wound healing; ulcerated foot tips; unnoticed fracture of a metatarsal bone; at the age of 9 years: bilateral leuconychia due to juvenile cataract; cataract surgery; repeated ulcers of the cornea, poor healing tendency; complete retinal detachment (right eye); nerve biopsy: marked wasting of myelinated fibres, axial damage; axonal motor and sensory neuropathy. Finally a de novo c.992 C>T, p.(Ser331Phe), mutation in the SPTCL1 gene was identified. This mutation turns the sphingolipid synthesis to neurotoxic lipids in this patient as well as in cell cultures. A serin diet (400mg/kg bodyweight) developed in an animal model (SPTCL1 mutation p.(Cys133Trp)) resulted after 3 months in an overall improvement: ameliorated growth of bone; at the age of 9 years: bilateral leuconychia due to juvenile cataract; cataract surgery; repeated ulcers of the cornea, poor healing tendency; complete retinal detachment (right eye); nerve biopsy: marked wasting of myelinated fibres, axial damage; axonal motor and sensory neuropathy.

CO1.6
SMA patients show concordant responses to valproic acid from blood to neurons while nonresponsiveness is facilitated by CD36

L. Garbes1, L. Hesser1, J. Schrenk1, L. Hoeker3, T. Bauer3, C. Mueller3, J. Dimon1, M. Petzin1, O. Brustele3, R. Heller1, B. Wirth1
1Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; 2Institute of Pharmacology, University of Cologne, Cologne, Germany; 3Vierer Inc., South San Francisco, CA, United States; 4Institute of Reconstructive Neurobiology, Life & brain, Bonn, Germany.

Proximal spinal muscular atrophy (SMA) is the number one genetic killer of infancy. SMA is caused by functional absence of SMN1 leading to progressive degeneration of spinal α-motoneurons. Currently, no cure for SMA is available. Therapeutic approaches are focusing on SMN2, since its copy number mainly modifies disease severity. Recently, we have been able to show that the anti-epileptic drug valproic acid (VPA) increases SMN levels in vitro, ex vivo as well as in VPA-treated SMA patients. A pilot clinical trial with VPA revealed that 1/3 of the patients responded positively to VPA treatment, while for 2/3 either no response or even the opposite effect was detected. To elucidate mechanisms underlying VPA-nonresponsiveness, we collected fibroblasts lines from >30 SMA patients undergoing VPA-treatment. We demonstrated that response to VPA was concordant in about 65% between blood and fibroblasts. Furthermore, by generating GABAergic neurons from fibroblast-derived iPS cells, we showed that similar response to VPA is retained even in the CNS neurons. This is the first proof that response to a potential SMA drug is concordant between blood, fibroblasts and neurons. Moreover, by transcripome-wide u-array we identified increased expression of CD36, a known LIFC-translocase, as the pivotal factor suppressing positive response to VPA.

Our data provide first evidence that monitoring VPA response in fibroblasts is indeed feasible to infer response in CNS neurons. Furthermore, CD36 was identified as the crucial protein suppressing response to VPA. This is of major implication also for other diseases treated with VPA such as epilepsy or migraine.

CO2.1
KIAA1797/FOCAD encodes a novel focal adhesion protein with tumor suppressor function in gliomas

A. Brockschmidt1, D. Trust1, J. Peterszel1, K. Zimmermann1, M. Ehrler1, H. Grassmann1, P. Pfenning1, A. Waha1, D. Wohlbier1, F. Brockschmidt1, M. Jugold1, A. Hoischen4, C. Kalla1, A. Waha1, G. Seifert4, P. Knolle6, E. Latz17,18, V. H. Hans4,19, W. Wick4,19, A. Pfeifer4, P. Angeli1, H. Peterziel1,2
1Human Genetics, University of Bonn, Bonn, Germany; 2Transduction and Growth Control, German Cancer Research Center, Heidelberg, Germany; 3Pharmacology and Toxicology, University of Bonn, Bonn, Germany; 4Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany; 5Neuropathology, University of Bonn, Bonn, Germany; 6Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; 7Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany; 8Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands; 9Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; 10Cellular Neurosciences, University of Bonn, Bonn, Germany; 11Innate Immunity; University of Bonn, Bonn, Germany; 12Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, United States; 13Neuropathology, Evangelisches Krankenhaus Bielefeld gGmbH, Bielefeld, Germany; 14Neurooncology, University of Heidelberg, Heidelberg, Germany; 15Human Genetics, Hannover Medical School, Hannover, Germany.

In a strategy to identify novel genes involved in glioma pathogenesis by molecular characterization of chromosomal translocation breakpoints, we identified the KIAA1797 gene, encoding a protein with an as yet undefined function, to be disrupted by a 7.94-translocation in a primary glioblastoma culture. Array-based comparative genomic hybridization detected deletions involving KIAA1797 in around half of glioblastoma cell lines and glioblastomas investigated. Quantification of mRNA levels in human tissues demonstrated highest KIAA1797 expression in brain, reduced levels in all glioblastoma cell lines and most glioblastomas, and similar levels in glioblastoma nuclei by analysis of different hippocampal regions from a muri-ne brain. Antibodies against KIAA1797 were generated and showed similar protein levels in cortex and subcortical white matter of human brain, while levels were significantly reduced in glioblastomas as with KIAA1797 deletion. By immunofluorescence of astrocytoma cells, KIAA1797 co-localized with vinculin in focal adhesions. Physical interaction between KIAA1797 and vinculin in astrocytoma cells was identified. This mutation turns the sphingolipid synthesis to neurotoxic lipids in this patient as well as in cell cultures. A serin diet (400mg/kg bodyweight) developed in an animal model (SPTCL1 mutation p.(Cys133Trp)) resulted after 3 months in an overall improvement: ameliorated growth of bone; at the age of 9 years: bilateral leuconychia due to juvenile cataract; cataract surgery; repeated ulcers of the cornea, poor healing tendency; complete retinal detachment (right eye); nerve biopsy: marked wasting of myelinated fibres, axial damage; axonal motor and sensory neuropathy.

Second hematologic malignancies in non- syndromic children without familial history for cancer may be mistaken for relapses or therapy-related malignancies. Recently, we identified 8 T-cell acute lymphoblastic leukemia (T-ALL) patients with two fully discordant consecutive leukemias based on TCR rearrangements and DNA copy number aberrations, strongly suggesting predisposition (J.Clin.Oncol.2011). Here, we performed exome sequencing on leukaemic and complete remission samples from four of these patients in order to identify predisposing mutations.

Exome sequencing was performed on DNA from 95 patients, including 2 patients from 16 families. Knowledge of conserved and intronic variants as well as variants called in <20% of the reads were excluded. We identified and validated between one and six somatic variants per leukemia sample, the majority of which affected known T-ALL genes, such as PTEN, FBXW7 and PHF6. None of these were shared between two consecutive leu-
kemic samples, which confirms that samples are clonally unrelated and thus represent independent second leukemias. With respect to genetic predisposition, we focused on recurrently affected and known T-ALL associated genes. In three patients we identified highly conserved missense variants in TYK2, RANBP17, and TIAL1, respectively. TYK2 belongs to the family of Janus kinases, which play a role in the pathogenesis of several hematologic malignancies. The TYK2 variant G761V is located in a highly conserved region of the pseudokinase-like domain, which is frequently affected in the homologous JAK2 kinase in precursor B-cell leukemias. In conclusion, we confirmed that consecutive leukemic presentations in patients with late T-ALL recurrences may be discordant and, thus, represent independent leukemia occurrences, most likely caused by predisposing germline mutations.

C02.3 Somatic GATA2 zinc finger 1 mutations are exclusively associated with bi-allelic CEBPA mutations in acute myeloid leukemia (AML) and disrupt the capacity of GATA2 to enhance CEBPA-mediated activation of transcription

P. A. Greif1, D. Dufour2, N. Konstantid1, B. Kostyrko1, E. Zellmeier1, B. Tiazu1, T. Sturm1, T. Bieger1, M. Dohmen1, P. Dierge1, K. Hoffner1, A. Hauser1, A. Graf1, S. Kreul1, H. Blum1, M. P. Kahadisa2, S. Schneider1, E. Holder1, J. Schneider1, M. Stanulla1, J. Braas1, M. C. Sauerland2, W. E. Berdel1, B. J. Woermann1, W. Hiddemann1, H. Spiewak1, M. K. Becher1-6
1Department of Internal Medicine 3, Ludwig Maximilians Universität (LMU) München, München, Germany, 2Clinical Cooperative Group Leukemia, Helmholtz Zentrum München, München, Germany, 3Present address: Hematology - Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran, 4Department of Pediatrics, University Hospital Schlethof-Nolstettz, Kiel, Germany, 5Department of Biochemistry at the Gene Center, Ludwig Maximilians Universität (LMU) München, München, Germany, 6Science Computing, Gene Center, Ludwig Maximilians Universität (LMU) München, München, Germany, 7Institute of Biostatistics and Clinical Research, Universität Münster, Münster, Germany, 8Department of Medicine A - Hematology, Oncology and Pneumology, Universität Münster, Münster, Germany, 9German Society of Hematology and Oncology, Berlin, Germany.

Cytogenetically normal acute myeloid leukemia (CN-AML) with biallelic CEBPA gene mutations (biCEBPA) represents a distinct disease entity with a favourable clinical outcome. So far, it is not known if other genetic interactions cooperate with biCEBPA mutations during leukemogenesis. To identify additional mutations, we performed whole exome sequencing of five biCEBPA patients and detected somatic GATA2 zinc finger 1 (ZF1) mutations in 2 out of 5 cases. Both GATA2 and CEBPA are transcription factors crucial for hematopoietic development. Inherited or acquired mutations in both genes have been associated with leukemogenesis. Further mutational screen detected novel GATA2 ZF1 mutations in 13 of 33 biCEBPA positive CN-AML patients (13/33: 39.4%). No GATA2 mutations were found in 38 CN-AML patients (13/33: 39.4%). In reporter gene assays, all tested GATA2 ZF1 mutants showed reduced capacity to enhance CEBPA-mediated activation of transcription, suggesting that the GATA2 ZF1 mutations may collaborate with biCEBPA mutations to deregulate target genes during malignant transformation. We thus provide evidence for a genetically distinct subgroup of CN-AML. The specific association of mutations affecting two interacting regulators of hematopoiesis suggests a novel concept for leukemogenesis: The simultaneous mutational targeting of two transcription factors that function in the same differentiation pathway in AML.

C02.4 Integrated genomic and epigenomic profiling of TP53 and non-TP53 Li-Fraumeni syndrome (LFS) tumors reveals multiple and shared hits in the p53 network

R. Krah1, B. Zhang1, X. Hu1, J. W. Wong1, D. C. Wilson1, K. A. Buggerly1, N. E. Navin1, L. Strong1, L. L. Buchinski1
1Uni Texas MD Anderson Cancer Center, Houston, TX, United States.

Li-Fraumeni Syndrome (LFS) is a prototypic, clinically and genetically heterogeneous inherited cancer syndrome. Most cases (>70%) are due to dominant, variably penetrant, germline mutations in the tumor suppressor gene TP53. In TP53 and non-TP53 LFS, there is evidence for risk heterogeneity within and between families. While TP53 mutations predispose LFS patients, they do not appear to be sufficient and additional genetic and epigenetic “hits” are necessary for tumorigenesis. To identify second somatic hits as downstream drivers of p53-mediated tumorigenesis, we performed genomic and epigenomic profiling of primary soft tissue sarcomas, osteosarcomas and matching constitutional samples of 10 LFS patients (6 with, 4 without TP53 mutations). We also performed whole genome sequencing of a subset of tumor/normal pairs with an inherited TP53 mutation. Although we observed chromothripsis in a subset of tumor samples, it was independent of TP53 mutation status. Integration of the observed genetic genomic and epigenomic alterations into the extended p53 and p16/ RB pathways revealed multiple and shared hits (irrespective of p53 status or tumor type), in numerous p53 and transcriptional targets and interacting proteins (e.g., ATM, CDKN1A, CDKN2A, CHK1, PTEN, MDM2/4). Identification of recurrent somatic alterations in p53-network genes in independent LFS tumors is remarkable. This indicates that p53 defects alone (due to inherited mutations) are not sufficient and that additional hits in genes with p53-associated functions are not redundant but rather are a necessary part of LFS tumorigenesis. Recurrent somatic alterations cooperating with p53 in LFS tumors appear to cluster in a limited number of cellular pathways.

C02.5 Leupaxin mediates cytoskeleton remodeling in prostate cancer cells

S. Dierks1, S. von Hardenberg1, T. Schmidt1, F. Burdel1, S. Rauflous1
1Department of Human Genetics, Göttingen, Germany.

The focal adhesion protein leupaxin (LPXN) is overexpressed in prostate cancer (PCa). Recently, we showed that LPXN is involved in the progression of PCa via deregulation of p120CTN. In the present study we analyzed the LPXN-mediated adhesive and cytoskeletal changes during PCa progression. After downregulation of LPXN expression we could show an unambiguous reduced adhesiveness of PCa cells PC-3 and DU 145. LPXN knockdown resulted in a reduced cell surface area and reduced formation of focal adhesion sites in these cells. Interestingly, we found decreased expression of small GTPase RaHoA and increased expression of Rac1. Furthermore, the expression pattern of several integrins was deregulated after LPXN knockdown, specifically β1-integrin expression was downregulated.

To identify a candidate protein that mediates the cytoskeletal changes after LPXN knockdown, we performed a Yeast-two-Hybrid screen. The actin binding protein cadlensom (CaD) was identified as a putative interaction partner of LPXN. Co-immunoprecipitation and a proximity ligation assays confirmed the interaction of LPXN with CaD. Furthermore, we demonstrated that CaD expression is upregulated in PCa cells and that knockdown of CaD by RNA interference leads to an increased migration and invasion, whereas no changes in proliferation were detected. Interestingly, we found that knockdown of LPXN lead to a decrease in phosphorylated, inactive CaD (pCaD) but total CaD levels remained unaffected. Subsequently, low levels of pCaD resulted in reduced migration of PCa cells. Taken together our present results indicate that LPXN mediates cytoskeletal changes during PCa progression through the regulation CaD phosphorylation.

C02.6 Clinical Application of Next Generation Sequencing Technology for the Detection of Clinically Actionable Mutations

Y. Wen1, E. Fang1, Y. Li1, G. Douglas1, C. E. Carmack1, M. M. Li2
1Baylor College of Medicine, Houston, TX, United States.

Next-generation sequencing (NGS) technologies have significantly accelerated the identification of cancer-causing mutations. However, the clinical application of NGS technologies to detect cancer gene mutations has been extremely limited. We have assessed the performance of a novel NGS technology that merges multiplex PCR with ion semiconductor sequencing in our clinical diagnostic laboratory. The test interrogates 739 common mutations in 46 cancer genes including many clinically actionable mutations concurrently. First, we studied 12 tumor samples including 4 archived FFPE, 4 blood/bone marrow, and 4 cell line samples with known mutations to evaluate the sensitivity and specificity of the test. We then studied 34 de-identified, archived FFPE tumor samples of unknown genotype to further evaluate the efficacy of the test. Using this technology, we successfully identified all known mutations previously detected by Pyrosequencing or Sanger sequencing technologies. Multiple serial dilution studies showed that the test could detect mutations at frequencies as low as 5% with 99% confidence. For the samples of unknown genotype, we detected 29 COSMIC mutations in 22 samples. Analysis of the variant call data showed that a minimum of 100X coverage is required in order to detect mutations at 1% frequency or above; a minimum 300K final library reads are necessary in order to minimize/eliminate amplification dropout. Our experience demonstrated that this
targeted NGS test can effectively detect hundreds of cancer gene mutations with input DNA as low as ten nanograms, turn around time as short as two days, and significantly lower cost compared to traditional Sanger sequencing.

C03.1

Arm to Leg Transformation in Humans associated with CNVs at the PITX1 locus

1Institute for Medical Genetics and Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany; 2Max-Planck-Institute for Molecular Genetics, Berlin, Germany; 3IRCSS, San Giovanni Battista and CSS: Mendel Institute, Rome, Italy; 4Department of Biopathology, Tor Vergata University, Rome, Italy; 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany; 6Department of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy; 7Jucaranda Hospital, Muckleneuk, Pretoria, South Africa.

Here we report three non-related families in which affected individuals show features of an arm-to-leg transformation. On X-ray examination, the distal humerus was broadened and the olecranon was missing thus resembling the shape of the femur. The hands were mediadly deviated and in the wrist a fusion of the triquetral and pisiform formed a structure similar in shape to the calcaneus of the ankle. Furthermore, attachments of the tendons were abnormal. We mapped the condition to a 5 Mb region on the long arm of chromosome 5 (5q31.1) but were not able to identify a coding mutation. Next we screened the linkage interval for CNVs by custom high-resolution array CGH analysis which detected a microdeletion 400 kb 5′ of PITX1. A similar deletion was identified in a second family. A third family did not show the deletion but, suspecting a balanced structural variation, we performed whole genome sequencing in one individual. Using a bioinformatic approach focused on the PITX1 genomic region we identified a translocation with the breakpoint located 3′ of the deletions detected in the other cases. PITX1 is a transcription factor known to determine hindlimb identity. Based on previous mouse work, the genomic rearrangements are likely to result in a misexpression of PITX1 in the forelimb thus causing a partial arm-to-leg transformation. The structural variations identified are likely to remove active PITX1 forelimb suppressor or insulator elements and relocate forelimb enhancer elements into the gene desert neighbouring the PITX1 gene.

C03.2

Microduplications Upstream of MSX2 are Associated with a Phenocopy of Cleidocranial Dysplasia

C. E. Ott1, B. Hein2, S. Lohani2, A. M. Hongeboom3, N. Foulad1, J. Grünhagen1, S. Stricker2, P. Villavicencio-Lorn2, E. Klopocki2, S. Mundlos2

1Institute for Medical Genetics and Human Genetics, Charité – Universitätsmedizin Berlin, Berlin, Germany; 2Research Group Developmental Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany, 3Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.

Here we describe two unrelated individuals with microduplications upstream of MSX2. MSX2 is another transcription factor known to play important roles underlying genetic cause remains unresolved in about 25% of cases. Besides the 4q22.3 deletion described here, similar deletions have been observed in the蟹hanus pigmentosus family. Using an innovative exome sequencing strategy, in affected individuals from a consanguineous Turkish family with autosomal recessive Osteogenesis Imperfecta (OI) associated with an increased bone mineralization density, we identified a causative homozygous missense mutation, p.Gly212Arg, in the novel OI gene BMP1. The mutation is located within the signal peptide and we provide evidence for an impaired secretion and alteration in post-translational modification of the mutant protein. To determine the underlying molecular pathogenesis, we show that hypomorphic bmp1 zebrafish mutants present with delayed osteogenesis, defects in bone formation, recurrent fractures in fin rays, and osteopetrosis in vertebrae, which during larval stages develops into a significant high bone mass phenotype in these mutants. Further screening of patients with OI identified a second homozygous mutation, p.Asp294Val, in BMP1. Interestingly, the index patient of this family presented with a classical severe form of OI with drastically reduced bone density. The mutation is located nearby the proteolytic domain of BMP1 suggesting a different pathogenetic mechanism. Ongoing functional studies of both mutations will offer novel insights into the underlying pathogenetic mechanisms and will show how structural variations identified at CNP1 mutations lead to variable bone phenotypes in patients with OI. Taken together, we present a novel genetic cause for a high mineralization OI phenotype, describe the functional mechanism, and provide evidence for a genotype-phenotype correlation in patients with BMP1 mutations.

C03.4

Increased sensitivity to DNA damage in a recessive form of Weaver syndrome caused by functional loss of an E3 ubiquitin ligase

G. Yigit1, P. Fercin1, L. F. dentist, N. Biggershausen1, B. Kayserili2, E. Brown3, R. Wirth3, P. Frontort4, A. Küchler5, V. Gommer-Daize6, D. Wieczorek7, B. Wallinck8

9Institute of Human Genetics, University of Cologne, Köln, Germany; 1Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany; 2Gazi University Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey, 3Department of Medical Genetics, Radboud Medical Center, Nijmegen, The Netherlands, 4Department of Medical Genetics, Istanbul University, Istanbul, Turkey, 5Pediatric Genetics Unit, Department of Pediatrics, Aarhus University, Aarhus, Denmark, 6Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, Netherlands, 7Department of Human Genetics and Genomic Medicine, University Hospital of Southampton Foundation Trust, Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom.

Cleidocranial Dysplasia (CCD) is an autosomal dominant skeletal disorder characterized by hypoplastic or absent clavicles, increased head circumference, large fontanels, dental anomalies, and short stature. Although CCD is usually caused by mutations leading to haploinsufficiency of MSX2, the underlying genetic cause remains unresolved in about 25% of cases. Besides RUNX2, MSX2 is another transcription factor known to play important roles during many developmental processes including tissue organogenesis, craniofacial and limb development. Here we describe two unrelated individuals with microduplications upstream of MSX2 on chromosome 5q35.2. One of the affected individuals presented with a phenoypathy of CCD. In addition to a classical CCD phenotype the other affected individual had a complex synpolydactyly of the hands and postaxial polydactyly of the feet which have so far never been reported in association with CCD or copy number variations (CNVs) on 5q35.2. The microduplication overlap in a ~219 kb region that contains several highly conserved non-coding elements which are likely to be involved in CCD2 gene regulation. Functional analyses using viral overexpression in chicken cells demonstrated that the inhibitory effect of MSX2 overexpression on mineralization can not be ameliorated by forced Runx2 expression. Our results indicate that CNVs affecting non-coding regions upstream of a gene can cause developmental defects, and that the resulting phenotype can be distinct from those caused by point mutations or CNVs encompassing the corresponding gene. Taken together, our findings reveal an additional mechanism for the pathogenesis of CCD, particularly with regard to the spatiotemporal regulation of MSX2.
Abstracts - European Human Genetics Conference 2012

C03.5 Mutations at a single codon in HOMAD 2 homology domain of SMAD4 cause Myhre syndrome
C. M. R. Carvalho1, M. B. Ramonick1,2, D. Pelálván3,4, S. Cheung5, L. M. Franc6, J. W. Belmont7, H. Y. Zoghbi1,2
1Clinical Genetics, Children’s Hospital, Boston, Massachusetts, USA, 2Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA, 3Department of Pediatrics, Texas Children’s Hospital, Houston, Texas, USA, 4Department of Pediatrics, Texas Children’s Hospital, Houston, Texas, USA, 5Department of Pediatrics, Texas Children’s Hospital, Houston, Texas, USA, 6Texas Children’s Hospital, Houston, Texas, USA, 7Department of Pediatrics, Texas Children’s Hospital, Houston, Texas, USA.

C04.1 High frequency of indels at the breakpoint junctions of MECP2 duplication rearrangements strongly support replicative-based mechanisms
C. M. R. Carvalho1, M. B. Ramonick1,2, D. Pelálván3,4, S. Cheung5, L. M. Franc6, J. W. Belmont7, H. Y. Zoghbi1,2
1Clinical Genetics, Children’s Hospital, Boston, Massachusetts, USA, 2Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA, 3Department of Pediatrics, Texas Children’s Hospital, Houston, Texas, USA, 4Department of Pediatrics, Texas Children’s Hospital, Houston, Texas, USA, 5Department of Pediatrics, Texas Children’s Hospital, Houston, Texas, USA, 6Texas Children’s Hospital, Houston, Texas, USA, 7Department of Pediatrics, Texas Children’s Hospital, Houston, Texas, USA.

C04.2 How to deal with genomic imbalances in the imprinted region 11p15.5: Insights in the complex regulation of two imprinting domains
T. Eggemann1, M. Bogemann1, M. Gagie2, A. Dufke1, J. Sper1, J. Sper2, S. Spengler3
1University Hospital, Aachen, Germany, 2University Hospital, Tübingen, Germany, 3University Hospital, Bonn, Germany.

Duplications or deletions affecting the imprinting control region 1 or 2 (ICR1/2) in 11p15.5 have been reported for both growth retardation and overgrowth. However, due to the complexity of the 11p15.5 imprinting regions, the interpretation of copy number variations (CNVs) is difficult. The clinical outcome in 11p15.5 CNV carriers is influenced by the size, the breakpoint positions, their parental origin and the imprinting status of the affected genes. We report 11p15.5 CNVs in 35 patients (28 duplications and 7 deletions) involving 11p15.5. The analysis of the breakpoints of the duplications and deletions showed that 90% were intragenic and 10% intergenic. The genomic imbalances were associated with gene-poor regions and characterized by Copy number gain in Xq28 including MECP2 is the most commonly identified subtelomeric CNV in patients with developmental delay and associated clinical findings. To date, we have collected a cohort of 65 patients with CNV including MECP2. Previous analyses derived from high-resolution comparative genomic hybridization arrays (aCGH) revealed the frequent occurrence of complex rearrangements within our patient cohort in 27% of cases. Here we studied 31 patients carrying duplications including MECP2 in whom we were able to accomplish DNA sequencing for each of the rearrangement breakpoint junction. Surprisingly, DNA sequencing unveiled the presence of complexities in up to 50% of the rearrangements. All complex alterations have at least one breakpoint within or flanking the low copy repeats (LCRs) supporting our hypothesis that such LCRs stimulate those rearrangements. The most striking observation, however, was the high frequency (42%) of small insertions and deletions (indels) observed at/or flanking the breakpoint junctions, none of which were found present in dbSNP (built 135). This observation strongly supports a role for replication-based mechanisms underlining such rearrangements as break-induced replication (BIR) was recently shown to increase the rate of frameshift mutations in yeast. In addition, SNP genotyping revealed absence of heterozygosity (AOH) within the altered genomic region strongly suggesting that the MECP2 duplication is mainly an intrachromosomal event. In summary, our results add to a growing body of data documenting a role for a DNA replication mechanism in complex genomic rearrangements associated with genomic disorders.
CO4.3 Nonlinear and nonrandom genome organization of SNRPN, UBEB3A, and GABRB3 in the normal human nucleus by three-color 3D-fluorescence in situ hybridization

K. Kawaiwara1, H. Tanabe2, T. Wada2, S. Saitoh3, Y. Fukushima1, K. Wakui1
1Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
2The Graduate University for Advanced Studies (Sokendai), Hayama, Japan
3Kagawa Women’s Medical Center, Tokyo, Japan

Higher-order chromatin organization and spatial arrangement of genomic region within the nuclear space seems to play an important role in genome function via epigenetic mechanisms in the human nucleus. The aim of this study was to search for the new evidence related to genomic organization and function. We investigated the spatial positioning of three target regions containing the SNRPN, UBEB3A, and GABRB3 genes mapped on chromosome 14p12, which is reported to be a region of frequent interphase nuclei of normal human cells. The three target regions were not arranged linearly in most of the cells analyzed, and GABRB3 was positioned closer to SNRPN than UBEB3A at a high proportion differently from genomic map. In addition, the distances from SNRPN to UBEB3A (SU) and from UBEB3A to GABRB3 (UG) between the alleles in each cell were different in both distances, and the SU ratio (longer/shorter SU distance between alleles) was larger than the UG ratio (longer/shorter UG distance between alleles). Moreover, the distances between the regions were different between the SU and UG regions on each chromosome in each nucleus. Thus, our results indicated that SNRPN, UBEB3A, and GABRB3 have a nonlinear and nonrandom curved spatial positioning in principle, but there were some differences between the alleles and between the regions in the nucleus. These observations of structural differences in normal human cells might be reflected the status of gene as the SNRPN gene is known to have paternal-only expression.

CO4.4 Age-related somatic structural changes in the nuclear genome of human blood cells

1Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
2Department of Biostatistics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
3Department of Pathology and Immunology, University of Nebraska Medical Center, Omaha, NE, United States
4Department of Human Genetics, University of Washington, Seattle, WA, United States

We routinely perform genome wide SNP array analysis as the first-line diagnostic test for patients with intellectual disability and/or congenital anomalies and in prenatal diagnosis in case of structural ultrasound anomalies. In addition to de novo (6.5%), rare inherited (9.1%) or X-linked (0.8%) copy number variations (CNVs), we observed a significantly increased percentage of homozygosity in patients (6.1%) which subsequently led to the identification of pathogenic mutations in recessive disease genes, uniparental disomies, or low-mosaic aneuploidy in several patients. A mosaic finding was detected in 22 of 6,500 patients and in seven mothers of a total of 1,874 parents. In November 2011, we switched from the Affymetric 250K SNP array to the CytoScan HD array platform which further enhanced the resolution, improved the detection of mosaic imbalances and also enabled us to detect clinically relevant, mosaic, copy neutral allelic imbalances in an additional three patients. The percentage of mosaicism (CNV, aneuploidy or allelic imbalance) often differed between tissue samples of mesodermal or endodermal origin from each of these individuals. In two patients such tissue-dependent differences were shown to change over time.

CO4.6 Modelling neurogenetic impairment in Down syndrome using induced pluripotent stem cells from monosomy twins discordant for trisomy 21

Y. Hibaoui1, J. Grad2, M. S. Rainville3, A. Letourneau4, S. Dhaour1, S. Gimelli1, M. F. Pelle1, P. Bén4, S. E. Antonarakis3, A. Fe1
1Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, Geneva, Switzerland
2Department of Medical Genetics, University of Geneva Medical School and Geneva University Hospitals, Geneva, Switzerland
3Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
4Service de gynécologie obstétrique, Hôpital Fribourg - Hôpital cantonal, Fribourg, Switzerland

Down syndrome (DS), caused by trisomy 21, is the most common chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Here, we report the generation and the characterization of induced pluripotent stem cells (iPSCs) derived from monosomy twins discordant for trisomy 21: Twin-N-iPSCs for the normal and Twin-DS-iPSCs for the DS-affected iPSCs. We hypothesize that these samples were ideal to study the effect of the supernumerary chromosome 21, since the rest of the genome is identical between the two samples. Karyotype and high-resolution array-based comparative genomic hybridization analysis, confirmed the chromosomal constitution of these iPSCs. Transcriptome analysis by mRNA-Seq and flow cytometry in the expression of genes that impact on DS features. In vivo differentiation of Twin-DS-iPSCs revealed an abnormal teratoma formation in NOD-SCID mice. In vitro, Twin-DS-iPSC-derived neurospheres showed a reduced number of neuroprogenitor cells (NPCs). When NPCs were further cultured to mature into neurons, we found structural changes in the architecture and density of neural populations together with alterations in the expression of genes involved in lineage specification in neurogenesis and brain development. Furthermore, we provide novel evidence that the increased expression and activity of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A protein underlie these defects. In conclusion, these findings establish these iPSCs as unique cellular models to study the detailed mechanisms involved in the pathogenesis of DS and design new therapies.
C05.1
RNA-based functional profiling of loci from blood lipid genome-wide association studies
H. Runz1,2, B. K. Cornes3,4, J. Dupuis3, J. R. Meigs4, A. Morris2, J. Prokopczak2,3, H. Wainio1,2; 1Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 2Department of Evolutionary Biology, Genetic Section, University of Ferrara, Ferrara, Italy, 3General Medicine Division, Massachusetts General Hospital, Boston, MA, United States, 4Department of Medicine, Harvard Medical School, Boston, MA, United States, 5Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States, 6Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.

Genome-wide association studies (GWAS) are powerful tools to unravel genomic loci associated with common traits and complex human disease. However, GWAS only rarely reveal information on the exact genetic elements and pathogenic events underlying an association. In order to extract functional information from association studies, the genetics and biology of follow-up studies on a phenotypic level are required. Here we address these limitations by applying RNAi to analyze >100 candidate genes within 55 loci identified by GWAS as associated with blood lipid levels, coronary artery disease and/or myocardial infarction for a function in regulating cholesterol levels in cells. The genes were knocked-down with siRNAs and the consequences on cellular free cholesterol (FC) and the efficiency of LDL-internalization into cells were quantified using automated microscopy and multiparametric image analysis. We will show evidence that loss-of-function of a surprisingly high number of the trait-associated genes affected LDL-uptake, FC, or both. For several genes without previously known lipid-regulatory roles the functional effects upon gene knockdown closely correlated with altered LDL-receptor levels. By providing strong evidence for disease-relevant functions of lipid trait-associated genes our study demonstrates that quantitative, cell-based RNAi is a scalable strategy for a systematic, unbiased detection of functional effectors within GWAS loci.

C05.2
Accumulation of common genetic variants influences lipid levels in patients with T2D and improves prediction of hypercholesterolemia
S. M. Williams1, A. Hofman, B. A. Oostra1, C. M. van Duijn1, A. Isaacs1; Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands.

A large proportion of type 2 diabetes (T2D) patients have dyslipidemia, an important cause of micro- and macrovascular complications. A recent GWAS in the general population identified 95 common genetic variants associated with lipid levels. To obtain insight into the genetics underlying diabetic dyslipidemia, genotype scores approximating the additive effects of those variants were calculated for each major lipid class (total cholesterol, TC; high-density lipoprotein cholesterol, HDL; low-density lipoprotein cholesterol, LDL; and triglycerides, TG) in individuals with/without T2D in the Rotterdam Study (n = 7735) and Erasmus Rucphen Family Study (n = 2313). Adjusted for age, sex and BMI, all four genotype scores were significantly associated with lipid levels in both non-diabetics and diabetics. The genotype scores for HDL, LDL, and TG were also used to predict hypercholesterolemia. The area under the ROC curve (AUC) for the genotype scores was 0.69 (0.64-0.71) in non-diabetics and 0.72 (0.69-0.76) in diabetics, which was better than the predictive ability of age, sex and BMI (AUC = 0.65). In conclusion, genotype scores derived from common lipid variants are associated with lipid levels not only in the general population, but also in patients with T2D and can, especially in diabetics, predict improvement of hypercholesterolemia. These data suggest that the role of common variation may be modified in the context of diabetes.

C05.3
Detailed metabolic and genetic characterization of known lipid loci T. Tukkainen1,2, J. Kettunen1,2, A. J. Kangas1, L. Lyytikainen1, P. Soininen1, A. Sarrieu3, E. Tikkanen1,4, P. F. O’Reilly1, M. J. Savolainen1, K. Kaski1, A. Poussa1, A. Jula1, E. Lehtimäki1, M. Kähönen1,2, J. Välimäki1, M. Taskinen1, M. Jauhiainen4, J. G. Eriksson4,4, S. Raitakari1,4, V. Salomaa1, M. Järvelin1,2, M. Perola1, A. Palotie1,2, M. Ala-Korpela1, S. Ripatti1,4; 1Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland, 2Computational Medicine Research Group, Institute of Clinical Medicine, University of Oulu, Oulu, Finland, 3Department of Epidemiology and Biostatistics, Imperial College, London, United Kingdom, 4Department of Chronic Disease Prevention, National Institute of Health and Welfare, Helsinki, Finland, 5Department of Clinical Chemistry, University of Turku, Turku, Finland, 6Department of Biostatistics, University of Helsinki, Helsinki, Finland, 7Department of Population, Health and Disease, University of Eastern Finland, Kuopio, Finland, 8Department of Internal Medicine, University of Oulu, Oulu, Finland, 9Department of Biomedical Engineering and Computational Science, Aalto University School of Science, Espoo, Finland, 10Department of LifeCourse and Services, National Institute of Health and Welfare, Oulu, Finland, 11Department of Clinical Physiology, University of Tampere, Tampere, Finland, 12Department of Medicine, University of Turku, Turku, Finland, 13Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland, 14Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland, 15Vaasa Central Hospital, Vaasa, Finland, 16Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland, 17Department of Clinical Physiology, Turku University Hospital, Turku, Finland, 18Institute of Health Sciences, University of Oulu, Oulu, Finland, 19Department of Medical Genetics, University of Helsinki, Helsinki, Finland, 20Department of Human Genetics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom.

The exact functions and causative variants remain largely unknown for the 95 genetic loci that are identified to associate with levels of TC, LDL-C, HDL-C or TG. We identified new metabolic or genetic associations (p<5×10−8) for 30 of the 95 lipid loci by further characterizing the loci utilizing extensive serum metabolite profiles, including a broad panel of lipoprotein subclasses and tens of other serum metabolites obtained via NMR spectroscopy, and a dense set of 440,807 directly genotyped and imputed variants around the previously identified lead SNPs in 8330 Finnish individuals.

In the majority of the loci the more detailed metabolic measurements appeared to better describe the underlying biology than the conventional lipids. In four loci, including PLTP and LIPC, the directions of associations to small and large HDL particles were the opposite, pinpointing the diversity of HDL subclasses not captured in the routine measurement of HDL-C. Also, 14 loci had associations beyond the individual lipoprotein measures, including the APOAI locus where a marker known to associate with CAD was associated with serum lactate (p = 3.79×10−13). Additionally, in 27 loci we identified SNPs with a stronger association than the previously reported markers, and twelve loci, including APOB and LIPC, had two or more independent associations with the metabolites.

Wide metabolite profiling combined with the dense set of SNPs provided insight into the metabolic and genetic architecture underlying the known lipid loci. Further understanding of these processes may open up new possibilities to understand mechanisms involved in atherosclerosis and other metabolic conditions.

C05.4
Estimating the fraction of established metabolic trait loci with discernible pleiotropic effects I. Marzullo1, B. R. Cornes2, J. Dupuis3, J. R. Meigs4, A. Morris2, J. Prokopczak2,3, H. Wainio1,2; 1Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 2Department of Evolutionary Biology, Genetic Section, University of Ferrara, Ferrara, Italy, 3General Medicine Division, Massachusetts General Hospital, Boston, MA, United States, 4Department of Medicine, Harvard Medical School, Boston, MA, United States, 5Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States, 6Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.

Genetic variation influences human quantitative trait levels and risk of metabolic disease. The patterns of trait association observed in genome-wide association studies (GWAS) at individual cardio-metabolic risk-loci are highly variable and allicic heterogeneity is often observed for association within and between traits. The Cross-Consortia Pleiotropy Group was formed to investigate the patterns of multi-trait associations across the genome for cardio-metabolic traits. We aimed to estimate the fraction of established GWAS loci associated with more than one cardio-metabolic trait showing strong (r2>0.8), moderate (r2=0.2) or linkage disequilibrium (LD) or evidence of allelic heterogeneity between associated variants. We evaluated 271 SNPs representing associations from published GWAS meta-analyses (Nov2010) in Europeans of 20 quantitative and two disease phenotypes from six cardio-metabolic trait consortia. We identified 106 regions associated with multiple traits, defined as sets of adjacent variants located less than 500kb apart. We used LD estimated from 1000 Genomes CEU data. Across the 106 regions defined by SNPs of interest, we observed 49 (30%) containing the same SNP associated with more than one trait. Of these, 37 contain SNPs associated with highly correlated traits, e.g. lipids and obesity. Of the remaining regions, 38 (23%) contain variants in strong LD and 30 (19%) contain variants in moderate LD, and 46 (28%) regions contain variants in only modest LD (r2>0.2). Our results highlight that a substantial proportion of metabolic trait loci incorporate complex patterns of multi-trait allelic heterogeneity, suggesting that statistical approaches that model epidemiological correlations between phenotypes may increase power and resolution of gene-mapping efforts.
C05.5 Dysfunctional NO signaling due to a double mutation in GUCY1A3 and CCT7 identified by whole exome sequencing increases risk for myocardial infarction
1Universität zu Lübeck, Lübeck, Germany, 2Klinik und Poliklinik für Innere Medizin II, Universitätshospital Kiel, Kiel, Germany, 3Universität zu Lübeck, Lübeck, Germany, 4Addenbrooke’s Hospital, Cambridge, UK, 5Universität zu Lübeck, Lübeck, Germany, 6Institut für Humangenetik, Lübeck, Germany.

Myocardial infarction is a life-threatening disease, which results from sudden atherothrombotic occlusion of a coronary artery. Most cases of MI occur sporadically but in rare cases the disease accumulates in families. Here we show by using exome sequencing in such family the identification of heterozygous mutations (p.Leu163Pher4 and p.Ser25Leu) in two functionally related genes, GUCY1A3 and CCT7, in 7 and 11 out of 15 affected family members, respectively. Single-locus linkage-analysis revealed no significant LOD score, however two-locus linkage-analysis considering both mutations revealed a significant maximum LOD score of 5.68. Moreover, a GWAS of 2.82K MI or CAD cases and 75K controls identified a signal across the GUCY1A3 locus (P=1.72x10-8 for rs7692387). While GUCY1A3 encodes the alpha1 subunit of soluble guanylyl cyclase (sGC), CCT7 a member of the chaperonin containing TCP1 complex (TRiC/CCT), which, among other functions, stabilizes sGC. This enzyme generates cGMP upon stimulation with nitric oxide (NO) and thereby pacifies platelets among other functions. Moreover, it has been previously demonstrated that in-vitro sGC activity is severely impaired by the GUCY1A3 and CCT7 mutations. Platelets from double mutation carriers contained less sGC protein and consequently a reduced NO-induced cGMP formation. Moreover, in mice deficient for the alpha1 sGC protein subunit thrombosis formation in the microcirculation in-vivo upon local trauma was accelerated. In conjunction, we linked mutations in GUCY1A3 and CCT7; encoding two functionally related proteins, to MI, associated a common variant in one of the genes to the same disease, and propose defective sGC dependent NO signaling as a mechanism leading to MI.

C06.1 The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2
C. Cucu, M. Venturi, S. Sajjadi1, L. Vives, P. H. Sudmant1
1University of Bari, Bari, Italy, 1Department of Genome Sciences, University of Washington, Seattle, WA, United States.

We have used RNA-sequencing to profile the transcriptome of 17 European-descent individuals in a three generation pedigree. Each individual has a sequenced genome using Complete Genomics technologies. We assess the de novo mutation rate using this extended pedigree. Furthermore, we report patterns of linkage with expressed transcripts to describe the effects of rare and common variants in this cohort. This provides us with an estimate of the functional de novo rate and further allows us to dissect the impact of structural versus single nucleotide polymorphisms. Using techniques we have previously reported (Montgomery, Nature, 2010), we assess allele specific expression (ASE) and now identify variants identical-by-descent and the subsequent heritability of ASE.

C06.2 Genome-wide search for gender different genetic loci for human anthropometric traits: Methods and results from genome-wide meta-analyses across 270,000 Individuals
1Public Health and Gender Studies, Institute of Epidemiology and Preventive Medicine, 2Regenstrief Institute, Indianapolis, IN, USA, 3Institute of Medical Genetics, University of Oxford, Oxford, UK, 4Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland, 5Swiss Institute of Bioinformatics, 6Department of Epidemiology and Pharmacogenomics, SINS, Amsterdam, the Netherlands, 7Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.

Our results underscore the importance of sex-stratified analyses in order to illustrate a sexually dimorphic genetic underpinning for anthropometric traits. To more systematically detect further sexually dimorphic loci, we conducted sex-specific genome-wide association analyses of 46 studies (60,586 men, 73,137 women) and followed-up the results in 48 independent studies (62,395 men, 7,465 women) within the GIANT consortium. Each study tested the association of 2.8M SNPs and 9 phenotypes: height, weight, body mass index (BMI), waist and hip circumference, waist-hip ratio (WHR), the latter three with and without adjustment for BMI. Opted to detect signals with association in only one sex, we controlled sex-specific P-values at 5% false-discovery-rate (FDR) and as such selected 348 independent signals. A follow-up yielded 7 hits with significant (<5% FDR) replication sex-difference P-values: (a) 6 women-specific loci without any effect in men, including 3 novel (near MAP3K1, HSD17B4, PPARG) and 3 previously established (near GBRA1, COBL1, VIL1) loci; and (b) one previously published locus (near ADAMTS9) with a less pronounced effect in men. Of particular interest is the PPARG region, well-known for its role in type 2 diabetes therapy, which showed a women-specific association with WHR adjusted for BMI. A second approach to search for sex-differences was particularly powered to detect signals with association in both sexes and with opposite effect direction. This method, however, did not yield any signals.

Our results underscore the importance of sex-stratified analyses in order to illustrate a sexually dimorphic genetic underpinning for anthropometric traits.

C06.3 Analysis of structural variation in the Genome of the Netherlands (GoNL) project
E. North1, I. M. Heid1,11; J. S. van der Lee2, A. Abdellaoui5, J. S. van der Lee2; J. S. van der Lee2
1Department of Epidemiology, School of Public Health, 6, H. Mei8, K. Ye4; 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, 3Institute of Medical Genetics, University of Oxford, Oxford, UK, 4Department of Epidemiology, School of Public Health, 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6, H. Mei8, K. Ye4; 7,8, C. M. Lindgren9, K. E. North6
9Institute of Epidemiology, University of Oxford, Oxford, UK, 10Department of Epidemiology, School of Public Health, 11Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States.

The Genome of the Netherlands (GoNL) is a national collaboration that aims to characterize genetic variations in the Dutch population of 250 families. Here we report on the pilot results of the structural variation analysis for 18 families. Our analysis employs several methodologies for detection of different types and sizes of ranges variations. Using GATK Unified Genotyper, we identified 1,459,968 small indels of which 23% are novel compared to 1000 Genomes phase 1 data, and 86% overlap with Pindel’s short indel calls. In silico functional analysis is indicates that 819...
Variation in transcription factor binding among humans has not been performed. We have examined genome-wide variation in transcription factor binding in different individuals and a chimpanzee using chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq). The binding sites were identified in the chimpanzee and compared to those in human haploid genomes. The differences in binding relative to our closest evolutionary neighbor suggest a high level of divergence in binding relative to our closest evolutionary neighbor. Our results indicate that many differences in individuals occur at the level of TF binding and provide insight into the genetic events responsible for these differences.
C07.2

Exome sequencing in the clinic: diagnostic-driven analysis of exome sequencing data

Exome sequencing has great potential in genetic diagnostics, particularly if used for strong heterogeneous diseases where diagnostic yield is currently low. The analysis and interpretation of exome data in diagnostics has specific challenges with respect to quality control, the possibility of incidental findings, and allowing for easy and flexible interpretation. We now have implemented a routine diagnostic exome sequencing workflow.

Six heterogeneous diseases are interrogated by exome sequencing: Intellectual Disability (‘de novo’ strategy), Blindness, Deafness, Movement disorders, Oncogenetics, OXPHOS diseases (disease gene package). The patient and/or legal representative need to sign an IC before exome sequencing can be requested by the clinical geneticist. It includes an agreement for sequencing their exome and subsequent reporting of all medically relevant findings, including possible findings not related to the initial enquiry. Sequence variants detected can be analyzed using a diagnostic-oriented GUI that automatically limits genetic findings to the relevant genomic loci for a disease, and allows interpretation using predefined filter schemes.

The results of a cohort of 300 patients (including 100 ID patients) will be presented. Data analysis shows a median coverage of 67x per exome. With the analysis still ongoing, disease gene package analysis detects on average 378 variants with 2 to 18 private non-synonymous variants per patient. The ‘de novo’ approach for ID demonstrates its potential with ~25% of the ID-patients having causal mutations identified in known ID-genes.

This represents the first in-use approach to establish a genetic diagnosis of patients by exome sequencing.

C07.3

Next Generation Sequencing in Mainstream Diagnostic Genetic Testing: Two years experience and over 1400 Patient Reports

We have established Next Generation Sequencing (NGS) at the core of diagnostic molecular genetic testing in Leeds. The first service developed was for breast cancer gene screening, and around 1000 reports have been issued since the first in March 2010. Since then, further NGS services have been developed systematically - some were formerly analysed by Sanger sequencing and transformation has brought considerable benefits including reduced costs and improved turnaround time. Enhanced productivity has provided scope to make continued developments and introduce new diagnostic services, widening benefits to new patient groups. The Leeds repertoire of NGS services so far includes breast cancer (BRCA1&2), HPV (3 genes), chiasmaticoymota (9 genes), Marfan syndrome (FBNI), Loeys-Dietz syndrome (TGFBR1&2), hypertrophic cardiomyopathy (4 genes), Li Fraumeni syndrome (TP53), Aicardi-Goutieres syndrome (5 genes), and FAP1 (APC). All current services follow standardised protocols which are conducted in parallel and incorporate long range PCR to target the genes of interest, robotics and automated library construction. Sequencing is on the Illumina platform and results are processed using NextGENe software. Data handling is facilitated by customised spreadsheets which include quality checks and assist with assessment of variants.

Already, around two thirds of our molecular workflow is based on NGS technology (measured by UK workload units). But significant transformations in next generation sequencing are underway. We will present our experience and over 1400 patient reports identified in known ID-genes.

We will discuss 'de novo' mutations and accurate genotyping from pedigree NGS data, which is challenging, especially at low or intermediate depth of coverage. New probabilistic model to compute the most likely genotype combination within the individuals' genotypes using all the available information, including their familial relationship and population allele frequency.

C07.4

Doubly heterozygous LMNA and TTN Mutations Revealed by Exome Sequencing in a Severe Form of Dilated Cardiomyopathy

Mutations in multiple genes are associated with dilated cardiomyopathy (DCM), a progressive heart failure syndrome characterized by a dilated left ventricle and decreased contractility. While DCM is the most common cause of heart failure in adults, the identification of the disease-causing gene in <50% of cases (intragenic mutations in cardiomyopathy genes) suggests that many cases remain to be identified. Exome sequencing can be a powerful tool for this task.

In familial DCM cases, genetic causes are often inherited through autosomal dominant patterns. However, an increasing number of cases are identified with no familial relationship and a more complex inheritance pattern. The most common disease-causing gene is LMNA, encoding lamin A. Mutations in LMNA cause a variety of disorders, including lipodystrophy, cardiovascular disease, and muscle and neuronal disorders. The TTN gene encodes titin, a large sarcomeric protein. Mutations in TTN have been associated with dilated cardiomyopathy.

In our study, we performed exome sequencing in a severely affected patient with DCM. The patient had significant left ventricular dilation and impaired systolic function. The sequence analysis did not reveal any pathogenic variants in the known DCM genes. However, upon careful interpretation of the sequence data, we identified a novel mutation in LMNA (p.K219T) and a previously described mutation in TTN (p.L4855F). These findings suggest a genetic cause of DCM in this patient and highlight the potential of exome sequencing in identifying rare genetic variants associated with DCM.

The results of a cohort of 300 patients (including 100 ID patients) will be presented. QC, cases, and pitfalls will be discussed. Data analysis shows a significant increase in the number of non-synonymous variants per patient. The de novo approach for ID demonstrates its potential with ~25% of the ID-patients having causal mutations identified in known ID-genes.

This represents the first in-use approach to establish a genetic diagnosis of patients by exome sequencing.

C07.5

Trio-aware variant calling for accurate genotyping and de novo mutation detection

De novo mutations are crucial for understanding the genetic basis of complex diseases and for identifying new disease genes. However, the identification of de novo mutations is challenging, especially at low or intermediate depth of coverage. Trio-sequencing is a powerful approach for accurate genotyping and de novo mutation detection.

In this study, we present a trio-aware variant calling algorithm that accurately identifies de novo mutations with high sensitivity and specificity. We used data from trios with and without familial relationship and population allele frequency.

The results of a cohort of 300 patients (including 100 ID patients) will be presented. QC, cases, and pitfalls will be discussed. Data analysis shows a significant increase in the number of non-synonymous variants per patient. The de novo approach for ID demonstrates its potential with ~25% of the ID-patients having causal mutations identified in known ID-genes.

This represents the first in-use approach to establish a genetic diagnosis of patients by exome sequencing.

C07.6

The Diagnostic Mutation Database (DMuDB). Collecting, managing and publicising clinical variant data

M. Cornell, A. Devereau, NGRI, Manchester, United Kingdom.

DMuDB was established by NGRI Manchester to collect and share genetic variants identified by UK molecular diagnostic laboratories. To date over 41,000 variants from 15,000 patient referrals have been submitted.

The database’s remit has now expanded to accept members and data from European Molecular Quality Network (EMQN) member diagnostic laboratories worldwide on a subscription basis.

Variant data in DMuDB have been generated as part of a clinical diagnosis rather than research. Therefore, access has been limited to those involved...
in genetic testing for patient diagnosis. However it is recognised that there may be benefits to the clinical community in allowing wider access. For example, the sharing of BRCA1 and BRCA2 data with the ENIGMA consortium could improve the classification of variants of unknown significance. The need to balance these benefits against the need for confidentiality needs to be recognised.

We have been investigating the use of the Cafe Varioome system to publicise diagnostic variants and allow discovery by interested third parties while controlling access. This has helped highlight issues that will need to be resolved for future sharing of variant data. At the same time, the Human Variome Project (HVP) is developing a worldwide model for sharing variant data collected using country nodes and distributing it to gene/disease specific databases and to central databases, e.g., at NCBI and EBI.

We discuss the issues raised in publicising and sharing data and how the DMDaDB/Cafe Varioome model relates to the HVP country node model of variants in genetic testing for patient diagnosis. However it is recognised that there may be benefits to the clinical community in allowing wider access. For example, the sharing of BRCA1 and BRCA2 data with the ENIGMA consortium could improve the classification of variants of unknown significance. The need to balance these benefits against the need for confidentiality needs to be recognised.

C08.3 Systematic assessment of the immune system by genetic mapping of quantitative dimensions

S. Sanna1, M. Steri2, G. Solé3, G. Sidor4, M. F. Iurra3, E. Busonero3, E. Reinier5, M. Devl6, S. Lui7, F. Virdis3, A. Multa3, M. Marcelli7, R. Avanzi7, A. Angius2, C. M. Jones8, D. Schlessinger2, G. R. Abecasis9, V. Ordi3, E. Forti10, F. Cucca11, D. Regulacio Genomica, Grup de Recerca en Informatica Biomedica, Barcelona, Spain; 3Department of Science Biomedicine, Università di Sassari, Sassari, Italy; 4Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States; 5CRAN, GSP group, Pula, Italy; 6CRAN, AGCT group, Pula, Italy; 7Laboratory of Genetics, NIA, Baltimore, MD, United States.

Genome-wide association scans (GWAS) have identified hundreds of regions associated with immune diseases, but identification of the specific causal variants and clarification of the underlying functional mechanisms remain a great challenge. Better genetic and phenotypic resolution in GWAS, integrating sequencing data and assessing the immune system’s various components, can improve our understanding of such loci and lead to novel discoveries. Here we have used polychromatic flow cytometry to evaluate quantitative trait loci (QTL) for quantitative variation of 2,716 markers genotyped on the DNA of the majority of lymphocyte cell populations (T and B cells, Natural Killer cells, regulatory T cells, dendritic cells, and their subsets) as well as T cell maturation, in 16,282 volunteers of the SardiNIA project by polychromatic flow cytometry. Heritability estimates showed that the genetic component accounts for >40% of the phenotypic variation for most of the traits. Samples were genotyped with Affymetrix arrays as well as MetaChip and ImmunoChip, and ~14 Million variants were imputed from a reference panel of 1,656 haplotypes deriving from 828 Sardinian samples sequenced at 3x average coverage. We performed a GWAS for each trait and observed, overall, 101 independent variants at 58 loci (1x10-202<P<1x10-8). Notably, our results include the previously reported association at the Type 1 Diabetes DKK1 LRR2 gene (rs942013) and 132 CD25 levels on CD4+ memory T cells (P<1x10-11). Another five loci have been previously associated with immune and non-immune pathways, illustrating the relevance of the approach for the identification of immune-related genetic factors in both health and disease.
Mapping genetic and epigenetic factors influencing human hippocampal gene expression

L. Priebe1, C. Wolf, M. Alexander2, N. Karbali, P. Ferhoutst, H. Fricblich, O. Stegle1, A. Kriegel, T. Sander, D. Casamaro, M. Matthesse3, B. Pütz, A. Hillmer1, A. Altman1, N. Knappe4,5, J. Nister1, M. Nöthen1,6, B. Müller-Mhysock, S. Wich1,2,3,4,5,6
1Department of Genomics, Life & Brain Center, Bonn, Germany, Institute of Human Genetics, University of Bonn, Bonn, Germany, 2Statistical Genetics, Max Planck Institute for Biomedical Research, Tübingen, Germany, 3Cologne Center for Genomics, University of Cologne, Cologne, Germany, 4Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States, 5Genome Technology & Biology Group, Genome Institute of Singapore, Singapore, 6Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany, 7Clinic of Neurosurgery, University of Bonn, Bonn, Germany, 8German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany, 9Institute of Neuroscience and Medicine (INM-1), Structural and Functional Genomics, University of Cologne, Cologne, Germany, 10Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany.

Several studies have investigated the effects of genetic variation on gene expression (expression quantitative trait loci, eQTLs) in peripheral tissue, cell lines, or post-mortem brain tissue. eQTL studies from pre-mortem, fresh-frozen brain samples would be highly interesting but are hampered by the restricted accessibility of such samples. At the University of Bonn, we have access to a unique sample of pre-mortem human hippocampus samples originating from surgery of treatment-resistant epilepsy patients. To systematically study the influence of eQTLs in a total of 146 hippocampal samples, we generated whole-genome SNP (Illumina Human660W) and gene expression (Illumina HumanHT-12v3). In addition to the conventional data analysis, we applied a new “hidden factor” analysis that identifies and corrects for unknown confounding factors in the data and thus diminishes the false-positive and false-negative eQTL rate (PEER, https://github.com/PMBbs/peef/wikid). Fifteen hidden factors were identified and used as co-variates for expression analysis. We detected 78 trans-regulating (>1 Mb between SNP and probe) eQTLs that withstand Bonferroni correction for multiple testing. Moreover, 1,925 cis-regulating (≤1 Mb distance) eQTLs remained significant after permutation-based Westfall-Young correction. In an additional step, we extended our analysis to the systematic investigation of the influence of DNA methylation on gene expression. Genome-wide methylation measurement was performed using Illumina’s new HumanMethyla- tion450 array which interrogates more than 485,000 methylation sites. To our knowledge, this study is the first to integrate genotype, expression and methylation data from pre-mortem brain tissue and will provide a valuable resource for the functional interpretation of genetic and epigenetic sites, in particular those associated with brain diseases.

A gene-co-regulation network based on 80,000 samples allows for accurate prediction of gene function

J. Kurspalmen1,2, C. Meermann, H. Wexra, C. Wijmeniga, L. Franke1, University Medical Center Groningen, Groningen, Netherlands.

High-throughput DNA microarray technology now provides us with a detailed view of the human transcriptome under different biological conditions. The increasing amount of publicly available microarray data helps in identifying and predicting genes that contribute to the same biological processes. To create a gene co-regulatory model of the human transcriptome, enabling the prediction of gene function, we analyzed 55,000 human, 17,000 mouse and 6,000 rat Affymetrix microarray datasets from the Gene Expression Omnibus. We created an integrated three-species gene network with 20,000 unique human genes and developed a principal component based statistical algorithm to predict function for individual genes. We benchmarked the algorithm against several pathway databases (including Gene Ontology, KEGG, BioCarta and Reactome) and observed that gene function could be generally predicted very well. For over 75% of all 20,000 genes we could predict at least one significant pathway association, function or protein localization. Furthermore, predictions could be made for over 50% of the 5,004 genes that currently lack any known function. These results indicate that through the integration of many gene expression arrays biological knowledge can be obtained, even for those genes for which currently nothing is known.

The Skeleton project: towards a community-driven knowledge curation platform for skeletal dysplasias

T. Casanova1,2, C. Le Goff1, A. Abhyankar3, C. Klein1, E. Kinning4, A. Guerrot5, P. Pachot6, A. Dumonm7, G. Casamayor8, C. Thalamond7, P. Nitschke9, J. Casanova10, M. Le Merrer11, A. Municic12, V. Cormier-Daire13; 1INSERM U781, Université Paris Descartes, Paris, France, 2Department of Clinical Genetics, C.H.U. de Rouen, Rouen, France, 3St. Giles Lab of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States, 4The Ferguson-Smith Centre for Clinical Genetics Royal Hospital for Sick Children, Glasgow, United Kingdom, 5Department of Clinical Genetics, C.H.U. de Rouen, Rouen, France, 6Department of Medical Pediatrics, C.H.U. de Rouen, Rouen, France, 7Department of Endocrinology, C.H.U. de Rouen, Rouen, France, 8Resection Branch, The Rockefeller University, New York, NY, United States, 9Endocrinologie gynecologie diabetologie pediatrique, Université Paris Descartes, Paris, France, 10Lab of Human Genetics of Infectious Diseases, University of Quebec at Montreal, Montreal, Quebec, Canada, 11Department of Medical Genetics, University of Queensland, Brisbane, Australia.

The generation of a comprehensive description of all human diseases and its interconnections in a universal, computer-readable format (the “Phenome”) is the next frontier in human genetics. Major hurdles include the enormous amount of information to capture and the non-standardized and often ambiguous nature of current clinical terminology. The Skeleton project aims to develop a comprehensive phenotype database for the skeletal dysplasia domain by tapping into the collective knowledge and patient data available around the world and making it accessible in a standardized format. To this aim, we have transformed the current Nosology of Genetic Skeletal Disorders into an ontology. We then created a collaborative editing platform that allows the scientific community to collate their collective knowledge into an online encyclopedia of skeletal dysplasias. Finally, we have created an online repository that allows clinicians worldwide to submit detailed clinical information on patients with skeletal dysplasias and to share this data in anonymised form and in a standardised manner with the scientific community. The systematic use of ontologies and other semantic web technologies ensures a high level of connectivity within the project and with existing biomedical databases, allowing complex querying and computer-assisted reasoning. For example, we have implemented a diagnostic algorithm that suggests diagnoses based on clinical features. The performance of this prototype already matches the diagnostic accuracy of non-expert clinicians. We hope that the Skeleton platform will become the prototype of phenotype databases for other rare diseases.

Exome sequencing identifies PDE4D mutations as another cause of acrodysostosis

C. Michot1, C. Le Goff, A. Goldenberg2, A. Abhyankar3, C. Klein1, E. Kinning4, A. Guerrot5, P. Pachot6, A. Dumon7, G. Casamayor8, C. Thalamond7, P. Nitschke9, J. Casanova10, M. Le Merrer11, A. Municic12, V. Cormier-Daire13; 1INSERM U781, Université Paris Descartes, Paris, France, 2Department of Clinical Genetics, C.H.U. de Rouen, Rouen, France, 3St. Giles Lab of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States, 4The Ferguson-Smith Centre for Clinical Genetics Royal Hospital for Sick Children, Glasgow, United Kingdom, 5Department of Clinical Genetics, C.H.U. de Rouen, Rouen, France, 6Department of Medical Pediatrics, C.H.U. de Rouen, Rouen, France, 7Department of Endocrinology, C.H.U. de Rouen, Rouen, France, 8Resection Branch, The Rockefeller University, New York, NY, United States, 9Endocrinologie gynecologie diabetologie pediatrique, Université Paris Descartes, Paris, France, 10Lab of Human Genetics of Infectious Diseases, University of Quebec at Montreal, Montreal, Quebec, Canada, 11Department of Medical Genetics, University of Queensland, Brisbane, Australia.

Acrodysostosis (MIM 101800)) is a dominantly inherited condition associating 1) a skeletal dysplasia characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, advanced bone maturation and short stature 2) resistance to multiple hormones 3) moderate to mild intellectual disability. Differential diagnoses include Albright hereditary osteodystrophy and pseudopseudohypoparathyroidism due to loss of function mutations in GNAS (α-stimulatory subunit of the G-protein). Recently, a recurrent mutation in the PKRAR1A has been identified in 3 individuals with acrodysostosis and resistance to multiple hormones (p.Arg368X). Studying ten unrelated acrodysostosis cases, we identified de novo PKRAR1A mutations in 5/10 (p.Arg368X mutation in 4/10 and p.Tyr373His mutation in 1/10). We then performed exome sequencing in 2/5 remaining cases and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV CAMP-specific phosphodiesterase, regulating CAMP concentration. We finally identified heterozygous PDE4D mutations in 4/5 cases. All mutations occurred de novo in all 4 cases. Neither PDE4D nor PKRAR1A mutations were found in one adult patient with characteristic skeletal features but no hormone resistance or facial dysostosis.

Splitting our series based on the disease causing gene revealed interesting genotype-phenotype correlations. Indeed, the four patients carrying PDE4D mutations shared characteristic features, namely midface hypoplasia with the canonical nasal hypoplasia and moderate intellectual disability. No
C09.3 Primary hypothyroid osteoarthropathy and isolated digital clubbing are caused by mutations in the prostaglandin transporter encoding gene SLC22A4

W. Seeger1, J. Kühnisch1, B. Täsävä1, C. Specker1, A. Brouwers1, D. Horn1,2
1Institute of Vegetative Anatomy, Berlin, Germany, 2Institute of Medical Genetics and Human Genetics, Berlin, Germany, 3Max-Planck-Institute for Molecular Genetics, Berlin, Germany, 4Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul University, Istanbul, Turkey, 5Dept. of Rheumatology & Clinical Immunology, Centre for Internal Medicine, Klinikum Essen Südst, Essen, Germany, 6Dept. of Internal Medicine, Gelderse Vallei Hospital, Ede, Netherlands.

Primary hypothyroid osteoarthropathy (PHO) is a rare hereditary condition, which is characterized by digital clubbing, periositis, arthropathy, pachydermia, and hyperhidrosis. Recently, mutations within the gene HPGD encoding the prostaglandin E2 (PGE2) catalyzing enzyme 15-hydroxyprostaglandin dehydrogenase were found to cause PHO. Here, we analyzed PHO patients lacking mutations in HPGD for mutations in genes involved in prostaglandin metabolism namely: PTGS1, PTGS2, PGES, PTGES2, PTGES3, PTGER1, PTGER2, PTGER3, PTGER4, SLCO2A1, SLC03A1, SLC04A1, PTGDR and PTGER2. In three unrelated families we identified hetero- and homozygous mutations in the homologous anion transporter family 2A1 (SLC22A4) gene (MIM ID *604160, chromosome 3q21) as putative cause for isolated digital clubbing and PHO, respectively. Mutations in SLC22A41 comprise a homozygous insertion c830_831insC, resulting in a premature stopcodon at p.Phe276HisX182; a homozygous missense mutation c1670T>C introducing an amino acid substitution p.Phe557Ser and a heterozygous nonsense mutation c754C>T resulting in p.Arg252X. SLC22A4 encodes the prostaglandin transporter (PGT), which is involved in carrier-mediated re-uptake of PGE2 across the plasma membrane for metabolic clearance of prostaglandins. Consequently, in patients with mutations in SLC22A4, elevated PGE2 levels induce the PHO phenotype as well as isolated digital clubbing. By phenotypic correlation of hitherto identified SLC22A4 mutations, we found an incomplete penetrance of isolated digital clubbing in homozygotes, suggesting the threshold effect of impaired GPR35 gene expression defining disease progression and severity. In summary, our study establishes mutations in SLC22A4 as further molecular determinant of PHO and digital clubbing supporting the importance of PGE2 metabolism for bone, joint and skin physiology.

C09.4 Comprehensive genome wide CNV screening in 47 individuals with VATER/VACTERL association

A. C. Hilger1,2, M. Drakenberg1,2, T. Pennispude1, W. Winkler1, C. Schramm3, G. Dvorachek4,5, E. Bartelé6, H. Engels1, A. Zink1, F. Degenhardt1, E. Schmiedeke4, D. Schmidt1, A. Brouwers1, D. Ludwig1, H. Reuters1
1Institute of Human Genetics, University of Bonn, Bonn, Germany, 2Department of Genetics, Life & Brain Center, University of Bonn, Bonn, Germany, 3Developmental Genetics Department, Max Planck Institute for Molecular Genetics, Berlin, Germany, 4Department of Pediatric Surgery and Urology, Center for Child and Adolescent Health, Hospital Bremen-Mitte, Bremen, Germany, 5Department of Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany, 6Department of Pediatric Surgery, Campus Virchow Clinic, Charite University Hospital Berlin, Germany, 7Department of Pediatric Surgery, Klinikum Schwabing, Technische Universität München, München, Germany, 8Department of Pediatric Surgery, University of Heidelberg, Heidelberg, Germany, 9Institute for Medical Informatics, Biometry, and Epidemiology, University of Duisburg-Essen, Essen, Germany, 10Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany, 11Department of Neonatology, Children’s Hospital, University of Bonn, Bonn, Germany.

The VATER/VACTERL association is used as an acronym for the combination of at least three of the following congenital anomalies: vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheosophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). The causes of the VATER/VACTERL association are likely to be heterogeneous, with individual environmental or genetic risk factors still being largely unknown. In the present study we aimed to identify copy number variants (CNVs) that contribute to VATER/VACTERL association. Molecular karyotyping, utilizing 1,134,514 SNPs SNPs (single nucleotide polymorphisms), was performed to screen 47 individuals with VATER/VACTERL association and their parents for causative de novo events. To identify potential CNVs, the SNP fluorescence intensity were analyzed with QuantSNP using an Objective-Bayes Hidden-Markov model for calling putative CNVs. Genes which were located in regions of rearrangements were prioritized by expression data in mice. Three de novo microduplications were identified involving chromosomal region 1q41, 2q37.3, and 8q24.3. Mice expression data suggest GPR35 and EPPK1 as candidate genes for the VATER/VACTERL association. Currently, no genes are systematically sequenced in the complete sample to identify high-penetrance mutations involving small sequence changes.

C09.5 Comprehensive clinical and molecular analysis of 12 families with type I recessive cutis laxa

1Center for Medical Genetics, University Hospital of Ghent, Ghent University, Ghent, Belgium, 2Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States, 3Department of Anatomy and Cell Biology, McGuire University College, Montreal, QC, Canada, 4Department of Dermatology, Faculty of Medicine, Algeria, Algeria, 5Service of Medical Genetics, Centre Hospitalier Un, Lille, France, 6Department of Medical Genetics, Osaka University Hospital, Osaka, Japan, 7Department of Medical Genetics, Ghent University Hospital, Ghent, Belgium, 8Department of Pediatrics, General Hospital of Llerenda, Badajoz, Spain, 9Department of Clinical Genetics, St George’s University of London, London, United Kingdom, 10Department of Dermatopathology University Hospital of Liege, Liege, Belgium, 11Division of Medical Genetics, Children’s Hospital, University of Pittsburgh, Pittsburgh, PA, United States, 12Division of Pulmonary and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States, 13Centre de Génétique Humaine, Université de Franche-Comté, Besancon, France.

Autosomal recessive cutis laxa type I (ARCL type I) is characterized by generalized cutis laxa with pulmonary emphysema and/or vascular complications. Rarely, mutations can be identified in the FBXL4 or FBXL5 genes. Recently, FBXL4 mutations have been implicated in a similar phenotype. Studying FBXL4, FBXL5 and LTBP4 in 12 families with ARCL type I, we found bi-allelic FBXL5 mutations in 2 probands, whereas 6 probands harbored biallelic mutations in LTBP4. No mutations were identified in FBXL4. FBXL5 and LTBP4 mutations cause a very similar phenotype associated with severe pulmonary emphysema, in the absence of vascular tortuosity or aneurysms. Gastro-intestinal and genitourinary tract involvement seems to be more severe in patients with LTBP4 mutations. Functional studies showed that most premature termination mutations in LTBP4 result in severely reduced mRNA and protein levels. This correlated with increased transforming growth factor beta (TGFβ) signaling. However, one mutation, c.4127dupC, escaped nonsense-mediated decay. The corresponding mutant protein (p.R1377KX27) caused altered binding to fibrillin-1 and loss of binding to fibronectin, leading to an abnormal morphology of microfibrils in fibroblast cultures, while retaining normal TGFβ signalling. We conclude that LTBP4 mutations are more prevalent than FBXL5 mutations in ARCL type I. LTBP4 mutations cause multi-locus loss of function and gain of function mechanisms.

C09.6 Discriminative features in three cutis laxa syndromes; Gerodermatosis Osteodeystroplasia, Cutis laxa type IIA, Cutis laxa type IIB

A. Lassusne, S. Wust1, B. Bozogmy2, M. Karminijad2, B. Fischer1, Th. Thaissense Gardeitch3, E. Morova4, Karmenijad-Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran, 6Max Planck Institute, Berlin, Germany, 7Radboud University Nijmegen Medical Center, Nijmegen, Netherlands.

Gerodermatosis osteodeystroplasia (GO), cutis laxa type IIA and IIB are autosomal recessive conditions with cutis laxa as the main clinical feature. It has been difficult to differentiate these conditions solely based on clinical features. In the past few years with the identification of genes responsible for these conditions, it is easier to classify the patients with cutis laxa. Some of the patients initially diagnosed with Gerodermatosis osteodeystroplasia, or wrinkly skin syndrome turned out to have mutations in PIRC1 or ATP6V0A2 gene. We present 13 patients with genetically confirmed mutations in GORAB, ATP6V0A2 and PIRC1 genes confirming GO, Cutis laxa type IIA and IIB respectively. We elaborate on clinical features that are similar and different in these three conditions, which can be helpful in differentiating between these syndromes. These three conditions have cutis laxa of trunk, wrinkling of dorsum of hand and feet, hyperluxity, pes planus and congenital dislocation of hip and deve.
C10.1 Genomic instability in 25,000 cancer samples: A limited number of copy number aberration configurations

L. Feuks, R. Feusi, G. te Meerman, J. Karjalainen, W. Westra, C. Wijmenga
Department of Genetics, University Medical Center Groningen, 9700 AB, Groningen, Utrecht, Netherlands.

Genomic instability is one of the hallmarks of cancer. However, so far genomic instability has only been systematically investigated in a limited number of individuals.

To overcome this we reanalyzed Affymetrix gene expression data of a heterogeneous set of 25,000 human cancer samples. We observed that the majority of expression variation among these samples could be attributed to physiological, metabolic and cell-type specific variation. However, by applying principal component analysis we could correct all samples for these differences. After correction we observed that most genes showed very strong dosage-sensitivity to copy number alterations, permitting us to reconstruct a gene-like copy number aberration profiles for each of the 25,000 cancer samples.

Subsequent analysis of the deletions and duplications revealed that a few combinations of certain deletions and duplications occur very often, irrespective of the particular type of cancer. This indicates the presence of strong selective forces, resulting in the survival of those cancer cells with particular cytogenetic aberrations.

The characterization of the different cytogenetic aberration configurations are very different: Different classes of genes are affected in different configurations, which suggests that therapeutic intervention might improve by tailoring this to the type of cytogenetic aberration configuration that is relevant for each individual cancer sample.

C10.2 Deep intronic APC mutations explain a substantial proportion of patients with familial or early onset adenomatous polyposis

1,2 Institute of Human Genetics, University of Bonn, Bonn, Germany, 3Medizinische Klinik - Campus Innenstadt, Klinikum der LMU, Munich, Germany, 4MGZ - Center of Medical Genetics, Munich, Germany, 5Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany.

In up to 50% of patients with colorectal adenomatous polyposis no germline mutation in the currently known genes APC causing Familial Adenomatous Polyposis (FAP) or MUTYH, causing MUTYH-associated polyposis (MAP), can be identified by routine diagnostics. To uncover aberrant transcripts pointing to pathogenic deep intronic variants, we performed a systematic APC mRNA analysis in 125 apparently unrelated mutation negative patients.

Overall, we identified 11 reproducible aberrant transcripts in 10 patients (8% of whole study cohort; 30% of familial cases; 21% of patients with early onset manifestation). In eight of these patients two different out-of-frame insertions into intact exons (pseudogenes) were found. Sequencing of the aberrant bands revealed a 167 bp insertion from intron 4 in five families with a shared founder haplotype and a 83 bp insertion from intron 10 in three patients, caused by the heterozygous germline mutations c.532-941_+533insA, c.1408+731C>T, or c.1408+735A>T, respectively. All mutations are supposed to activate cryptic splice sites. On cDNA level complete skipping of exon 9 was observed in two patients and a complex insertion/deletion rearrangement in another patient.

In conclusion, we identified a few deep intronic hotspots and founder mutations contributing substantially to the APC mutation spectrum, cDNA analysis and/or target sequencing of certain intronic regions should be considered as an additional mutation discovery approach in polyposis patients in whom no germline APC or MUTYH mutation was identified so far, particularly in patients with autosomal dominant pattern of inheritance and/or early onset disease.

C10.3 A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer

1Genome Institute of Singapore, Singapore, Singapore, 2Duke-NUS Graduate Medical School, Singapore, Singapore, 3Singapore General Hospital, Singapore, Singapore, 4Altaa University Graduate School of Medicine, Akita, Japan, 5National University Institute of Singapore, Singapore, Singapore, 6National Cancer Centre Singapore, Singapore, Singapore, 7University of Malaya, Kuala Lumpur, Malaysia, 8National University Hospital Health System, Singapore, Singapore, 9Jichi Medical University, Tochigi, Japan, 10Toho University Omori Medical Center, Tokyo, Japan, 11University of Bonn, Bonn, Germany, 12Singapore National Eye Centre, Singapore, Singapore, 13Aichi Cancer Center, Tokyo, Japan.

Tyrosine kinase inhibitors (TKI) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small cell lung cancer (EGFR NSCLC). However, the depth and duration of responses are heterogeneous, suggesting the existence of genetic modifiers of response. Using paired-end DNA sequencing, we discovered a common intronic deletion polymorphism in the gene encoding BCL2-like 11 (BIM). BIM is a pro-apoptotic member of the BCL2 family of proteins, and its upregulation is required for TKIs to induce apoptosis in kinase-driven cancers. The polymorphism switched BIM splicing from exon 4 to exon 3, encoding for BIM lacking exon 4, thereby locking the pro-apoptotic BCL2-homology domain 3 (BH3). The polymorphism was sufficient to confer intrinsic TKI resistance in CML and EGFR NSCLC cell lines, a resistance that could be overcome with BH3-mimetic drugs. Importantly, individuals with CML and EGFR NSCLC harboring the polymorphism experienced significantly inferior TKI responses. Our results offer an explanation for the heterogeneity of TKI responses, and suggest the possibility of personalizing therapy with BH3-mimetics to overcome BIM polymorphism-associated resistance.

C10.4 The impact of a cancer family history on ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.

Purpose: To study the effect of a family history of breast/ovarian cancer on the lifetime risk and age at diagnosis of ovarian cancer in BRCA1 and BRCA2 mutation carriers.

Patients and Methods: A prospective single center cohort study including a consecutive series of 1846 women from 367 different BRCA1/2 families, followed-up between 1996 and 2011. The occurrence and age of diagnosis of breast and ovarian cancer in all available family members was recorded. Cox-regression analysis was applied to assess the correlation between age related occurrence of ovarian cancer and the presence and the age at diagnosis of breast and ovarian cancer within the family.

Results: In total 263 ovarian cancer cases were diagnosed. Among BRCA2 mutation carriers, the risk of ovarian cancer was significantly higher with relatives with ovarian cancer before age 50: HR=2.34, (95% CI=1.18-4.64, p=0.02) with first-degree affected relatives and HR=2.11 (95% CI=1.12-3.98, p=0.02) with first- or second-degree affected relatives. Family histories with breast cancer reduced ovarian cancer risk, especially in BRCA2 families: HR=0.47 (95% CI=0.34-0.67) in BRCA1 and HR=0.29 (95% CI=0.17-0.51) in BRCA2, p<0.01.

Conclusion: Our findings indicate that family histories including early age ovarian cancer may double the risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers.

C10.5 Combined whole genome, exonic and transcriptomic sequencing identifies recurrently mutated genes in Burkitt lymphomas.

J. Richter1, M. Schlesner1, E. Leicht1, B. Burkhartsh1, S. Hoffmann1, M. Szczepanski1, M. Kreuz2, D. Lenze3, S. Bernhardt4, M. Rosowski5, J. Howlett5, C. Lawerenz5, N. Jäger5, B. Hutter5, D. Langerberger5, O. Ammerpohl1, H. Binder6, A. Borhadi6, B. Brères1, A. Christoph5, F. Scherpelz6, M. Demuth6, K. Börm7, E. Leich3, B. Burkhardt4, S. Hoffmann5, W. Klapper1, J. Korbel8, M. Hummel8, R. Wagener1, T. Zenz9,10, L. Trümper11.
1 Department of Hematology, University of Lübeck, Lübeck, Germany, 2Klinikum - Campus Innenstadt, Klinikum der LMU, Munich, Germany, 3Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany.

In conclusion, we identified a few deep intronic hotspots and founder mutations contributing substantially to the APC mutation spectrum, cDNA analysis and/or target sequencing of certain intronic regions should be considered as an additional mutation discovery approach in polyposis patients in whom no germline APC or MUTYH mutation was identified so far, particularly in patients with autosomal dominant pattern of inheritance and/or early onset disease.
High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease

C. Potter1, D. Huntegger1, S. Coutant1, A. Rowlett-Long2, D. Wallen1, S. Bousreau3, S. Legačić4, C. Paquet1, B. Bomsib1, J. Pariente1, C. Thomas-Anterion1, A. Michon1, B. Croisille1, F. Etchavy-Bouy6, C. Berr1, J. Dartigues4, P. Amouyel4, H. Dauchel1, C. Bouteleux-Bretonnière1, L. Thauvin1, T. Frelbourg1, J. Lambert1, D. Campion1, 2,11L79, Rouen, France, 2Inserm, U085, Paris, France, 3EA1046, Lille Nord University Hospital, Lille, France, 4Inserm, U825, Toulouse, France, 5University Hospital Nord, Saint Etienne, France, 6UMR-S975 AP-HP, Paris, France, 7University Hospital, Groupe Hospitalier Est, Bron, France, 8Angers University Hospital, Angers, France, 9Inserm, U888, Montpellier, France, 10Inserm, U087, Bordeaux, France, 11Inserm, U744, Lille, France, 12LITIS, EA 4108, Rouen, France, 13Nantes University Hospital, Nantes, France, 14Dijon University Hospital, Dijon, France.

Performing exome sequencing in 14 autosomal dominant early-onset Alzheimer disease (ADEOAD) index cases without mutation on known genes (APP, PSEN1 and PSEN2), we found that in 5 patients the SORL1 gene harbored unknown nonsense (n=1) or missense (n=4) mutations. These mutations were not retrieved in 1500 controls of same ethnic origin. In a replication sample including 15 ADEOAD cases, two unknown non-synonymous mutations (one missense, one nonsense) were retrieved, thus yielding to a total of 7/29 unknown mutations in the combined sample. Using in silico predictions, we conclude that these 7 private mutations are likely to have a pathogenic effect. SORL1 encodes the Sortilin-related receptor LR11/SORLA, a protein involved in the control of APP protein production. Our results suggest that besides the involvement of the APP and PSEN genes, further genetic heterogeneity, involving another gene of the same pathway is present in ADEOAD.

C1.1.2 Combination of positional cloning and new generation sequencing identifies two novel genes in spastic paraplegia involved in lipid metabolism

G. Stevanin1,2, C. Tessor1,2, M. Navarre3, M. A. M. Salih4, R. Rossignol5, M. Zaki6, F. Lamar6, A. Bouhoucha1, F. Santorelli1, J. A. Droit, E. Giraud3, R. Schulte4, S. El Maali5, M. Kohiriri5, M. Z. Seidhamed1, N. Boulam1, M. Guas1, D. Zelenka1, L. Orlandi1, G. Guyapay1, L. Scholla4, A. Durr5,1, F. Mochel1,2, J. Lavie5, A. Benomar8, C. Goizet5, J. Gleeson1,2, A. Brice4,5,6,7

1Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière (Inserm / UPMC UMR_S975, CNRS 7225), Pitíé-Salpêtrière Hospital, Paris, France, 2APHP, Dpt of Genetics and Cytogenetics, Pitíé-Salpêtrière Hospital, Paris, France, 3Ecole Pratique des Hautes Etudes, Paris, France, 4King Saud University, Riyadh, Saudi Arabia, 5Université de Bordeaux, Bordeaux, France, 6National Research Institute, Cairo, Egypt, 7APHD, Service de Biochimie, Pitíé-Salpêtrière Hospital, Paris, France, 8Hôpital des Spécialités, Rabat, Morocco, 9IRCCS Fondazione Stella Maris, Calambrone - Pisa, Italy, 10University of Tuebingen, Tuebingen, Germany, 11Armée Forces Hospital, Riyadh, Saudi Arabia, 12Inserm, U807 Forces Hospital, Riyadh, Saudi Arabia, 13Centre National de Génotypage, Evry, France, 14Genoscope, Evry, France, 15Hadassah-Hebrew University Medical Center, Jerusalem, Israel, 16University of California, San Diego, CA, United States.

Hereditary spastic paraplegias are heterogeneous neurological disorders. Known causative genes account for the majority of dominantly inherited cases, but for less than 40% of the recessive forms. We previously mapped the SPG28 locus in a Moroccon family to chromosome 14. Capture and next generation sequencing of all exons of the SPG28 interval allowed us to identify a homoyogous truncating mutation in the DDHD1 gene, encoding for a phosphatidic acid (PA)-preferring phospholipase Ati that was shown to segregate with the disease in patients. In 2 Saudi-Arabian families, genome wide linkage studies mapped a new disease locus, SPG49, to chromosome 4. Classical Sanger sequencing of the 22 assigned genes allowed us to identify a missense mutation in the CYP2U1 gene, encoding for extra hepatic cytochrome P450 protein. The mutation segregates in patients in the 2 families, while 2 other mutations were identified in the same gene, including a frameshift mutation in a kindred from Egypt. All mutations were absent in large series of healthy unrelated controls. The SPG28 and SPG49 mutations were associated with a decreased mitochondrial respiratory rate in patient lymphoblasts. Interestingly, these 2 new genes are involved in the same metabolic pathway related to lipid metabolism, paving the way for a better understanding of the mechanisms involved in these diseases. Our study underlines the power of next generation sequencing combined with linkage data in rare and genetically heterogeneous disorders.
C1.13 Exome sequencing reveals causal gene for spinocerebellar ataxia 19
A. Duarte1, J. Jeziorska1, M. Fokkens2, M. Meijers3, J. Schellhaas4, H. Hagemeijer5, B. Kuisters2, W. den Dunnen1, C. Verspaget6, B. van de Worgemen7, N. Bodeau8, H. Kremen9, R. Sinke10, D.S. Verbeek11
1UMCG, University of Groningen, Groningen, Netherlands; 2Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands; 3Medisch Spectrum Twente, Enschede, Netherlands; 4Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands; 5Institute of Neurology, London, United Kingdom; 6European Human Genetics Conference 2012, Jerusalem, Israel; 7Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands; 8European Human Genetics Conference 2012, Jerusalem, Israel; 9Felsenstein Medical Research Center, Tel Hashomer, Israel; 10Western Galilee Hospital, Naharia, Israel, 11Technion-Israel Institute of Technology, Haifa, Israel.

Spinocerebellar ataxia type 19 (SCA19) is characterized by a late-onset, slowly progressive, mild cerebellar ataxia, postural head tremor, myoclonic movements, and cognitive impairment. In 2002, we mapped the SCA19 disease gene to chromosome region 1p21-q21 in a Dutch family. This candidate region contained ~500 genes, but prioritized candidate gene sequencing yielded no success.

In a further attempt to identify the disease gene, we performed exome sequencing in two patients of the SCA19 family originally studied. After quality control and other exclusion criteria, we validated 5 missense mutations in potentially interesting candidates. After screening 400 Dutch controls, only one missense mutation remained unique for all SCA19 patients in the family (n=12). In addition, we screened the coding region of this candidate gene in 200 Dutch ataxia cases and identified two more families with missense mutations that had been reported before. All of these mutations change highly conserved amino acids.

Immunohistochemistry in SCA19 autopsy cerebellum showed a significant loss of Purkinje cells and altered localization of the mutant protein. Analysis of mRNA and protein levels showed increased expression in patient cerebellum compared to controls. The different mutations alter the subcellular localization of the SCA19 protein and lead to reduced protein stability. We were able to rescue the mislocalization of the mutant proteins and increase their protein stability by co-expressing auxiliary subunits. Whether these mutations induce a gain- or loss-of-function is now being investigated.

The identification of new SCA genes remains important as they advance our understanding of the disease etiology.

C1.14 Defective presynaptic choline transport underlies hereditary motor-neuropathy
K.E. S. Barwick1, J. Wright1, S. Al-Turki1, M. M. McEntagart2, A. Nair1, A. Al-Memar2, H. Moutarde1, M. Reilly3, K. Dick1, A. Baggett1, R. Blakey4, M. Hurley5, A. L. Croshaw4
1St. George’s University of London, London, United Kingdom; 2Vanderbilt University School of Medicine, Nashville, TN, United States; 3Wellcome Trust Sanger Institute, Cambridge, United Kingdom; 4St. George’s Hospital, London, United Kingdom; 5UCL Institute of Neurology, London, United Kingdom.

The neuromuscular junction (NMJ) is a specialized synapse with a complex molecular architecture that serves to achieve reliable transmission between the nerve terminal and muscle fibre. Using linkage analysis and whole-exome sequencing of DNA samples from subjects with distal hereditary motor neuropathy (dHMN) type VI, we identified a mutation in the presynaptic choline transporter (CHT, SLC5A7), a critical determinant of synaptic acetylcholine (ACh) synthesis and release at the NMJ. This dominantly-segregating, CHT-null mutation in 23 unrelated EDMD patients was validated by using linkage analysis and whole-exome sequencing of DNA samples from subjects with distal hereditary motor neuropathy (dHMN) type VII, we identified a mutation in the presynaptic CHT (CHT , SLC5A7), a critical determinant of synaptic acetylcholine (ACh) synthesis and release at the NMJ. This dominantly-segregating, CHT-null mutation in 23 unrelated EDMD patients in combination with retinal dystrophy which carried conspicuously large homozygous disease (c.156-2A>G) in two siblings of a consanguineous family, and homozygous missense mutations (p.Arg1777Trp and p.Gln182Arg) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are likely pathogenic. Clinical assessment revealed CRD in four individuals, and RP with early macular involvement in two individuals. The two CRD siblings with the c.156-2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies and demonstrate the power of next-generation sequencing combined with homogyzosity mapping to identify new disease genes.

C1.15 Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal recessive cone-rod dystrophy and retinitis pigmentosa with early macular involvement
K. Neve1ng1, A. Exadra-Cacazzo1, S. Kohl1, E. Banin2, Y. Rotenreich3, D. Sharor4, T.C. Falik-Zaccaria5, J. Hing1, R. Roepman6, B. Wissing1, S. J. Fletteroo6, D.A. Mans1, E. A. M. Blokland7, M. P. Relean8, S. J. Gijs8, R. A. C. van Huet8, R. W. J. Collin8, M. Schefter9, J. A. Velten9, E. Zrenner1, A. I. den Holland10, B.J. Klevering9, F.P. M. Cremers1
1Goldschlager Eye Research Institute, Tel Hashomer, Israel; 2Western Galilee Hospital, Naharia, Israel; 3Technion-Israel Institute of Technology, Haifa, Israel; 4Technion-Israel Institute of Technology, Haifa, Israel; 5Vanderbilt University; 6Felsenstein Medical Research Center, Tel Hashomer, Israel; 7Western Galilee Hospital, Naharia, Israel; 8University of Tuebingen, Tuebingen, Germany; 9Hadasah-Hebrew University Medical Center, Jerusalem, Israel; 10Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands; 11European Human Genetics Conference 2012, Jerusalem, Israel; 12European Human Genetics Conference 2012, Jerusalem, Israel; 13Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands; 14University of Tuebingen, Tuebingen, Germany; 15Institute of Neurology, London, United Kingdom.

The molecular basis for primary hereditary hypertriglyceridemia has been identified in fewer than 5% of cases. We describe a hitherto unreported autosomal recessive condition manifesting as severe but transient infantile hypertriglyceridemia and fatty liver followed by hepatic fibrosis. We identified the mutated gene responsible for this condition in 10 individuals originating...
from the same isolated highly inbred population. A single large continuous segment of homozygosity on chromosome 12q13.12 containing 35 OMIM genes was identified in the affected individuals using SNP array-based homozygosity mapping. Candidate gene sequencing revealed a homozygous splice-site mutation, c.2361-1G>C, in GPD1 which encodes glycerol-3-phosphate dehydrogenase 1. This mutation is predicted to result in a truncated protein lacking essential conserved residues including a functional site responsible for initial substrate recognition. Functional consequences of the mutation were evaluated by measuring intracellular concentrations of cholesterol and triglycerides as well as triglyceride secretion in HepG2 (hepatocellular carcinoma) human cells lines overexpressing normal and mutant GPD1 cDNA. Overexpression of mutant GPD1 resulted in increased secretion of triglycerides (P = 0.01), supporting the pathogenicity of the identified mutation. GPD1 mutation may lead to hypertriglyceridemia by limiting the conversion of glycerol-3-phosphate to dihydroxyacetone phosphate, and thus causing an increase in the amount of hepatic glycerol-3-phosphate available for triglyceride synthesis. The transient nature of the hypertriglyceridaemia in the individuals described in this study is consistent with the fact that rates of triglyceride secretion by hepatocytes are higher in neonates than in adults.

C12.2 Familial diarrhea syndrome caused by an activating GUCY2C mutation

T. Fiskerstrand1,2, N. Arash2, B. I. Haukanes1, R. T. Tronstad1,3, K. D. K. Pham1, S. Johansson1,2, B. Haavik1, S. L. Tender2, S. E. Levy2, D. Bruchman2, I. Bomar2, K. H. Biswas4, J. Atdahl2, N. Hovdenak2, S. S. Vineswaraswamy2, P. M. Knappskog1,3,4,5,6,7

1University of Bergen, Norway, 2Haukeland University Hospital, Bergen, Norway, 3Indian Institute of Science, Bangalore, India, 4HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States.

Chronic diarrhea is a frequent health problem, but knowledge about underlying etiologic mechanisms is insufficient, and treatment is often ineffective. Rare inherited diarrheas are usually severe recessive diseases. Here we describe the clinical picture and genetic cause of a novel autosomal dominant disease in 32 members of a Norwegian family. Their chronic diarrhea is of early onset, relatively mild, and may in some patients be mistaken for irritable bowel disease. However, the diarrhea is combined with increased susceptibility to inflammatory bowel disease, ileus and oesophagitis. We performed SNP-linkage analysis to identify a candidate region on chromosome 12. This region contained GUCY2C, encoding guanylyl cyclase C, an intestinal receptor for bacterial heat-stable enterotoxins. We identified a heterozygous missense mutation (c.2519G>T) in GUCY2C in all affected family members. Exome sequencing was performed to rule out the possibility of other rare variants in the candidate region. Functional studies of the mutant receptor in HEK293T cells showed markedly increased formation of cellular cGMP in response to endogenous ligands and toxin (ST). This may be a result of both the cystic fibrosis transmembrane conductance regulator (CFTR) and consequently increased secretion of chloride and water into the intestinal lumen, resulting in chronic diarrhea. In conclusion, increased guanylyl cyclase C signalling disturbs normal bowel function and seems to have a pro-inflammatory effect, either through increased chloride secretion or additional effects of elevated cellular cGMP. The importance of genetic variants in the guanylyl cyclase C/cGMP/CPT pathway for conditions like Crohn’s disease and irritable bowel syndrome should be further explored.

C12.3 Exome sequencing identifies nonsense mutations in AGK as a cause of Sengers syndrome

1TU Munich, Institute of Human Genetics, Munich, Germany, 2Department of Paediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria, 3Paediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria, 4Department of Neuroradiology and Neonatal Research Center, Charité University Medical Center, Berlin, Germany, 5Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria, 6Department of Pediatric Cardiology, University of Bonn, Bonn, Germany, 7Center for Metabolic Disorders, Charité University Medical Center, Berlin, Germany, 8Department of Clinical Chemistry, Städtisches Klinikum München, Munich, Germany, 9Department of Pediatrics and Pediatric Neurology, University Medicine Göttingen, Göttingen, Germany, 10Department of Pediatrics, University Hospital, Heidelberg, Heidelberg, Germany, 11Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic, 12Department of Neurology, Kinderspital Zürich, Zürich, Zürich, Switzerland, 13Molecular Bioenergetics, Medical School, Goethe-University Frankfurt, Frankfurt, Germany, 14Department of Pediatrics, Community Hospital Reutlingen, Reutlingen, Germany.

Next-generation sequencing has become the core technology for gene discovery in rare inherited disorders. However, the ability to discriminate between pathogenic and benign variants remains a challenge. We used complex I deficiency, one of the most common variants of mitochondrial diseases, as an example to assess the power of exome sequencing in combination with stepwise filtering of gene variants.

Ten unrelated individuals were selected for this study. The first filter criterion was "The presence of known pathogenic variants." This revealed homozygous mutations in NDUF53 and ACAD9 in two individuals. As second criterion was "The presence of two potentially pathogenic variants in the same structural gene of complex I," which discovered rare variants in NDUF58 in two unrelated individuals and in NDUF58, a hitherto unknown disease gene, in one patient. The third criterion "The expression level of the respective DNA region" in mitochondria of fibroblasts of two patients has rescued complex I activity and assembly, thus providing a functional validation of their pathogenicity. Using the third criterion "The presence of two potentially pathogenic variants in the same gene encoding a mitochondrial protein" we discovered in two patients loss-of-function mutations in MT-TMT. In three patients the molecular genetic correlate remained unclear and follow-up analysis is ongoing. Appropriate in silico filtering of exome sequencing data, coupled with functional validation of new disease alleles, is effective to rapidly identify disease-causative variants in known and new complex I-associated disease genes.

C12.4 Molecular diagnosis in mitochondrial complex I deficiency using next-generation sequencing

1TU Munich, Institute of Human Genetics, Munich, Germany, 2Department of Neuroradiology and Neonatal Research Center, Charité University Medical Center, Berlin, Germany, 3Department of Pediatrics, Paracelsus Medical University Salzburg, Salzburg, Austria, 4Department of Pediatric Cardiology, University of Bonn, Bonn, Germany, 5Center for Metabolic Disorders, Charité University Medical Center, Berlin, Germany, 6Department of Clinical Chemistry, Städtisches Klinikum München, Munich, Germany, 7Department of Pediatrics and Pediatric Neurology, University Medicine Göttingen, Göttingen, Germany, 8Department of Pediatrics, University Hospital, Heidelberg, Heidelberg, Germany, 9Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic, 10Department of Neurology, Kinderspital Zürich, Zürich, Zürich, Switzerland, 11Molecular Bioenergetics, Medical School, Goethe-University Frankfurt, Frankfurt, Germany, 12Department of Pediatrics, Community Hospital Reutlingen, Reutlingen, Germany.

Mitochondrial ribosome assembly defect underlies infantile-onset mitochondrial cardiomyopathy

1Mitochondrial Research Group The Medical School University of Newcastle upon Tyne, Newcastle, United Kingdom, 2Mitochondrial Research Group Institute of Ageing and Health The Medical School Newcastle University, Newcastle, United Kingdom, 3Karolinska University Hospital Stockholm, Stockholm, Sweden, 4Children’s Heart Centre, Royal Hospital for Children, Glasgow, United Kingdom, 5Department of Pediatrics, Turku University Hospital, Turku, Finland, 6Institute of Neurology, University College London, London, United Kingdom, 7Department of Genetics, University of Helsinki, Helsinki, Finland.

Mitochondrial diseases display a progressive course, often manifesting and deteriorating after infection or trauma. Here we investigated the molecular background of cardiomyopathy in siblings with combined deficiency of mitochondrial respiratory chain complexes I and IV. The first patient died at six months of age of cardiomyopathy and cardiac failure manifesting after a respiratory infection. The second patient is a teenager with a clinically stable, currently asymptomatic cardiomyopathy. Using whole-exome sequencing, we found both patients to have a homozygous missense mutation in a novel disease gene, MRPL44, which encodes for a protein component of the mitochondrial large ribosome subunit. The mutation affected a conserved...
C12.6 Different sequencing strategies in the analysis of new ENU-derived mouse models for metabolic bone disease

B. Lorenz-Degereux1, S. Sabrouski, S. Diener, E. Graf, T. Wieland, A. Benet-Pagés, S. Eck, B. Rathkolb1, J. Aguilar-Pimentel1, J. Calazada-Wack1, E. Wolff, M. Diellert, F. Neff, M. Irbäed de Angelis5, T. M. Strom7

- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Human Genetics, Neuherberg, Germany, 1Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg, Germany, 2LMU München, Chair for Molecular Animal Breeding and Biotechnology, Gene Center of the LMU München, München, Germany, 3Klinikum Rechts der Isar der TU München, Klinik für Dermatologie und Allergologie am Biederstein, München, Germany, 4Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Pathology, Neuherberg, Germany, 5TU München, Lehrstuhl für Experimentelle Genetik, München, Germany, 6Klinikum Rechts der Isar der TU München, Institute of Human Genetics, München, Germany, 7Münchner Klinik für Kinder und Jugendliche, Munich, Germany.

Animal models are required to understand the molecular mechanisms of metabolic bone disorders in which imbalances of bone metabolism and mineralization lead to a variety of different phenotypes. Within a large-scale genome-wide Munich ENU (N-ethyl-N-nitrosourea) Mutagenesis Project mutant mouse models for metabolic bone disease were identified using three blood parameters (total alkaline phosphatase activity [ALP], total calcium (Ca), and inorganic phosphate (Pi) levels) which are commonly used as biochemical markers in patients with metabolic bone disease. Here, we describe three different sequencing strategies, (1) a candidate gene approach, (2) whole chromosome sequencing, and (3) exome sequencing, to identify novel genes involved in phosphate homeostasis and bone metabolism. In two mutant mouse lines (BAP012, BAP042) we identified novel Phex alleles (Phex c.148A>T, Lys50* and c.2197T>C, p.Cys733Arg) by capillary sequencing of the candidate gene and extend the available mouse models for X-linked hypophosphatemia (XLH, OMIM 307800) to the number of 9. In two mutant mouse lines (BAP004, BAP005) the disease causing mutations were identified by linkage analysis, chromosome sorting and whole chromosome sequencing (BAP004: Jokl c.1933T>C, p.Ser645Pro and BAP005: Agrf1 c.815A>G, p.Try727Cys). In 20 mutant mouse lines and one C57BL/6J mouse exome sequencing using an exome capture kit from Agilent on a HiSeq2000 genome analyzer from Illumina. We identified in each mouse line between 3 and 42 SNVs (single nucleotide variants). We started with the evaluation of the different variants in mouse mutants and control cohorts and will present the data of the SNV evaluation.

C13.1 Mutations in PIGO, a member of the GPI anchor synthesis pathway, cause hyperphosphatasia with mental retardation syndrome

P. N. Krouwer1, Y. Murakami2, J. Hecht3, U. Krüger1, S. Holder4, G. Mortier5, B. delle Chiaie6, 8

1Charité, Berlin, Germany, 2Osaka University, Osaka, Japan, 3Berlin Branchend Center for Regenerative Therapies, Berlin, Germany, 4North West Thames Regional Genetics, Harrow, United Kingdom, 5Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany, 6Institute of Human Genetics, Klinikum Rechts der Isar der TU München, Munich, Germany, 7Max Planck Institute for the Study of Human History, Jena, Germany, 8Institute of Human Genetics, University of Vienna, Austria.

More than a hundred cell surface proteins are attached to the plasma membrane by covalent attachment to a glycophosphatidylinositol (GPI) anchor that is assembled in the endoplasmic reticulum (ER) and added to the C-terminus of the proteins. Biosynthesis of GPI anchors involves more than 30 different genes. Genetic defects in various components of the GPI pathway have been identified in a number of phenotypically diverse diseases. We have recently identified mutations in PIGO in individuals with hyperphosphatasia mental retardation (HPMR) syndrome, an autosomal recessive form of mental retardation with facial dysmorphism, seizures, brachytelephalangism and persistent elevated serum alkaline phosphatase (hyperphosphatasia). However, not all patients with HPMR syndrome harbor mutations in PIGO. The purpose of the current study was therefore to investigate the molecular etiology of HPMR syndrome in PIGO-negative patients and to establish a next-generation sequencing based screening approach for GPI pathway diseases.

We employed whole-exome sequencing of two siblings with HPMR and identified compound heterozygous PIGO mutations. Screening of further HPMR patients detected compound heterozygous PIGO mutations in another affected individual. The characteristic facial appearance, developmental delay, hypoplastic or even absent terminal phalanges including nails and hyperphosphatasia were present in all affected. In a cell based assay, two of the PIGO mutations had a deleterious effect on PIGO function. Furthermore, by Fluorescence-activated cell sorting analysis we demonstrated that PIGO is essential for GPI anchoring of attached proteins such as CD 59 and UPAR.

Our findings extend the range of reported phenotypes associated with GPI anchor synthesis defects.

C13.2 Identification of de novo variants in 51 sporadic patients with unspecific severe intellectual disability and 20 controls by exome sequencing

1Institute of Human Genetics, Helmholtz Zentrum München, Neuhberg, Germany, 2Institute of Human Genetics, University of Rostock, Rostock, Germany, 3Institute of Clinical Genetics, Universitätsklinikum Essen, Essen, Germany, 4Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany, 5Institute of Medical Genetics, University of Zurich, Zurich, Switzerland, 6Institute of Clinical Genetics, Technische Universität, Dresden, Germany, 7Institute of Human Genetics, Eberhard Karls Universität, Tübingen, Germany, 8Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany, 9Institute of Human Genetics, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, 10Institute of Epidemiology II, Helmholtz Zentrum München, Neuhberg, Germany, 11Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuhberg, Germany, 12Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 13Institute of Human Genetics, Universität Münster, Münster, Germany.

Due to the absence of morphological or positional clues, the etiology of severe intellectual disability (ID) remains elusive in the majority of patients. We analyzed 51 children (32 girls, 19 boys) with severe non-syndromal ID and their healthy parents for de novo SNVs and small indels by exome sequencing. 20 trios with children and/or parents affected by diabetes mellitus type 2 were investigated as controls. Exomes were enriched with SureSelect Human All Exon 50 Mb kits and sequenced to an average read depth of 100. We detected de novo non-synonymous variants in 84% of patients. The number per individual varied between 0 and 4. The average number was higher in the disease (1.4/individual) than in the control group (0.8/individual). Specifically, the disease group showed a considerably higher number of missense (43/individual) and frameshift indels (0.37/individual) than the control group (0.1/individual). 16 patients showed de novo mutations in the known ID genes IQSEC2, SATB2, SNCA, SCN8A, SETBP1, SLC2A1, STXBPI, SYNGAP1, TCFC4, and MECP2. We regarded at least 8 variants in 8 novel genes to be disease causing because they fulfilled 4 of the following criteria: mutation type (nonsense/splice/frameshift), location in regions known for de novo microdeletions, haploinsufficiency predictions, brain expression, and functional evidence. In summary, this study clearly demonstrates the power of exome sequencing in identifying a sizable fraction of disease causing mutations in both known and novel genes.

De novo variants

<table>
<thead>
<tr>
<th>Case variants</th>
<th>Controls n=20</th>
</tr>
</thead>
<tbody>
<tr>
<td>missense</td>
<td>54</td>
</tr>
<tr>
<td>nonsense</td>
<td>14</td>
</tr>
<tr>
<td>splice</td>
<td>5</td>
</tr>
<tr>
<td>frameshift</td>
<td>1</td>
</tr>
<tr>
<td>synonymous</td>
<td>12</td>
</tr>
</tbody>
</table>

C13.3 Dosage imbalance of nonsense-mediated mRNA decay factors is associated with intellectual disability

L. Ngow1, H. Kare2, J. Meokey2, L. Shaffer3, J. Gecz1,4

1Harvard University, Boston, MA, United States, 2Signature Genomics Laboratories, Spokane, WA, United States, 3SA Pathology, Adelaide, Australia.

Nonsense-mediated RNA decay (NMD) functions to degrade transcripts bearing premature stop codon and is a crucial regulator of gene expression. We implicated NMD and the UPF3B gene as the cause of various forms of
intellectual disability (ID) and various other psychiatric traits. In expanding our inquiry, we identified three patients with global developmental delay who carry deletions of the genomic regions encompassing the UPF2 gene, another important member of the NMD pathway. We hypothesized that loss of one allele of UPF2 and likely loss of other NMD factors impair NMD and is primarily expressed in neuropil regions of the hippocampus. To study the role of alphaPix/Arhgef6 in neuronal development and plasticity and gain insight into the pathogenic mechanisms underlying ID, we generated alphaPix/Arhgef6-deficient mice. Gross brain structure in these mice appeared to be normal, however, analysis of Golgi-Cox stained pyramidal neurons revealed an increase in both dendritic length and spine density in the hippocampus, accompanied by an overall loss in spine synapses. Early-phase long-term potentiation was reduced and long-term depression was increased in the CA1 hippocampal area of alphaPix/Arhgef6-deficient animals. Knockout animals exhibited impaired spatial and complex learning and less behavioral control in mildly stressful situations, suggesting that this model mimics the human ID phenotype. The structural and electrophysiological alterations in the hippocampus were accompanied by a significant decrease in active Rac1 and Cdc42, but not RhoA. In conclusion, we suggest that imbalance in activity of different Rho GTPases may underlie altered neuronal connectivity and impaired synaptic function and cognition in alphaPix/Arhgef6 knockout mice.

C13.6
The functional spectrum of SRGAP3 in cognitive development
C. Bacon1, V. Endris1, E. Stoeckli2, R. Walterite3, D. Bartsch1, G. Rappold1
1Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany; 2Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland; 3Department of Molecular Biology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.

Disruption in the SRGAP3 gene has been associated with abnormal cognitive function, srGAP3 is a member of the Slt-Robo medul- loidipin family and is implicated in repulsive axon guidance and neuronal migration through Slt-Robo medulloidipin activity, with its localization and less behavioral control in mildly stressful situations, suggesting that this model mimics the human ID phenotype. The structural and electrophysiological alterations in the hippocampus were accompanied by a significant decrease in active Rac1 and Cdc42, but not RhoA. In conclusion, we suggest that imbalance in activity of different Rho GTPases may underlie altered neuronal connectivity and impaired synaptic function and cognition in alphaPix/Arhgef6 knockout mice.

C13.4
A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function
M. S. Hussain, S. M. Baig1, S. Neumann1, S. V. Peche1, G. Nürnberg2, M. Farooq1, D. Ahmad1, T. Alk2, H. C. Hennes1, T. Technau1, A. Alt5, F. Frommolt2,5, H. Thiele1, A. J. Nogeis1, P. Nürnberg1,2
1Institute of Biochemistry, University of Cologne, Cologne, Germany; 2Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany; 3Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.

Autosomal recessive primary microcephaly (MCPH) is a rare congenital disorder of mental retardation, reduced brain and head size but usually without defects in cerebral corticial architecture and other syndromic abnormalities. MCPH is heterogeneous with 7 known loci: MCPH1-MCPH7. We sequenced the underlying genes code for centrosomal proteins. We collected 49 MCPH patients from Pakistan. Sequencing of ASPM and WDHD2, the two most frequently mutated genes, and exclusion of homozygous frameshift mutation in centrosomal protein 35 kDa (CEP135), located in the linkage interval on chromosome 4. Post-hoc whole-exome sequencing corroborated this mutation to be the causal variant. Immunostaining of CEP135 showed strong signals in the developing neuroepithelium of the cerebral cortex during embryonic stages E1.5 through E15.5. Fibroblasts obtained from one patient with primary open angle glaucoma (POAG) mapping to the GLC1F locus. This variant affects an exon splice enhancer site and alters mRNA splicing. The functional spectrum of SRGAP3 in cognitive development

C14.1
ASB10 variants are associated with open-angle glaucoma and silencing impair ocular outflow
F. Paus2, K. E. Keller1, M. Weissbach1, H. Sticht1, J. B. Sampson1, Y. Yang1, M. Zembo1, U. Schröder-Schuchardt1, C. V. Mardini1, F. Frezzotti5, P. Frezzotti5, B. Edmond1, P. L. Kramer1, E. Kramer1, A. Reil1, T. S. Scott1, M. K. Wirtz1
1University Hospital of Erlangen-Nuremberg, Erlangen, Germany, 2Oregon Health & Sciences University, Portland, OR, United States, 3University Eye Hospital Tübingen, Tübingen, Germany, 4University of Erlangen-Nuremberg, Erlangen, Germany, 5University Hospital of Siena, Siena, Italy, 6University Eye Hospital of Würzburg, Erlangen, Germany.

The molecular events responsible for obstruction of aqueous humor outflow and the loss of retinal ganglion cells in glaucoma, one of the main causes of blindness worldwide, remain poorly understood. We identified a synonymous variant, c.765C>T (Thr255Thr), in ankyrin repeats with primary open angle glaucoma (POAG) mapping to the GLC1F locus. This variant affects an exon splice enhancer site and alters mRNA splicing in lymphoblasts of affected family members. Systematic sequence analysis in two POAG patient groups (195 US and 977 German) and their respective controls (85 and 376) led to the identification of 26 amino acid changes in 70 patients (70 of 1172; 6%) compared with 9 in 13 controls (13 of 461; 2.8%; P = 0.008). MDA molecular modeling suggests that these missense variants change ASB10 net charge or destabilize ankyrin repeats. ASB10 mRNA and protein were found to be strongly expressed in trabecular meshwork, retinal ganglion cells and ciliary body. Silencing of ASB10 transcripts in perfused anterior segment organ culture reduced outflow facility by 50% compared with control-injected anterior segments (P = 0.02). In conclusion, genetic and molecular analyses provide evidence for ASB10 as a glaucoma-causing gene.
C14.2
Seven New Loci Associated with Age-Related Macular Degeneration

L. G. Fritsche1, W. Chen1, M. Schu1, L. B. Yasp,1 Y. Yuf1, The AMDGene Consortium; University of Michigan, Ann Arbor, MI, United States, 2University of Pittsburgh, Pittsburgh, PA, United States, 3University School of Medicine, Boston, MA, United States, 4Vanderbilt University Medical Center, Nashville, TN, United States, 5Tufts Medical Center, Boston, MA, United States.

Age-related macular degeneration (AMD) is a prevalent disease of complex aetiology and one of the leading causes of vision impairment in industrialized countries. To further understand genetic risk in AMD, genotyping was performed in 15 unselected AMD cases from 12 countries comprising the AMDGene Consortium in 2010. This endeavor brought together 15 genome-wide association studies comprising 7,650 advanced AMD cases and 5,182 controls of European and Asian ancestry. The meta-analysis revealed SNPs at 32 genomic loci with P < 10^-5 that were followed up in 18 additional studies consisting of 9,531 advanced AMD cases and 8,230 controls. In the joint analysis, a total of 19 loci reached genome-wide significance (P < 5x10^-8) which included all 12 previously established and the seven novel AMD loci (rs550060, rs544830, rs3760545, rs1065499, RAD51B (9x10^-11), MIR548A2 (5x10^-9), and B3GALTL (2x10^-8)). Pathway analyses of the 19 loci indicated an over-representation of genes involved in complement activity, lipid metabolism and inhibition of angiogenesis that is well placed within known AMD pathomechanisms. While the sensitivity analyses indicated that several loci had differences in disease risk between males and females, or in European and Asian ancestry or disease subgroups, the overall predictive value of these variants displayed similar effectiveness in all samples examined (0.69 < AUC < 0.79).

Our findings can guide future biological and genetic AMD studies, allow better classification of individuals at risk, and ultimately lead to improved disease treatment and prevention.

C14.3
Meningococcal disease and age-related macular degeneration are genetically related

F. Martín-Torres1, C. C. Khör1, V. J. Wright1, S. Davilía1, K. S. Lim1, A. Binder2, W. B. Bronstein1, D. Inwald1, S. Nade1, B. E. Setsu1, E. D. Carroll1, R. de Groot1, P. W. M. Hermans5, J. A. Hazelzet1, M. Emmens1, C. C. Lim1, W. J. Kuijper1, N. Martín-Torres1,2,1 L. Facho1,2,1, A. Vega1,2,1, W. Zenner1,2,1, S. Genoud1,2,1, A. Sonk1,2,1.

1Hospital Clinic de Sant Joan de Déu, University of Barcelona, Barcelona, Spain, 2Genotypic Research Group, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain, 3Genome Institute Singapore, Singapore, 4Department of Pediatrics, Division of Medicine, Imperial College London, London, United Kingdom, 5Research Computing, Genome Institute of Singapore, Singapore.

In meningococcal disease and age-related macular degeneration, the sensitivity of complement proteins impacts on the disease pathogenesis. In meningococcal disease, C1q and C3 play a major role. Interestingly, in age-related macular degeneration, several SNPs in the C1q and C3 genes were found to be associated with disease susceptibility.

C14.4
First genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci including one subtype-specific locus

K. Abholzer1, E. Mangold1, S. Hermes1, S. Nowak1,2, R. Reutter1,3, J. Becker1,2, R. Herber2,1, T. AlChwaa1,4, E. Nasser1,2, A. C. Böhmer3, M. Matthiesche2,4, M. A. Alblub2, S. Barsb1, N. Khuc1, J. C. Murray1, M. L. Marazita4, L. Rucinski5, A. F. Scott1, T. H. Bray1,5, F. Kramer1, T. F. Wienker5,6, R. F. Storger-Thuensin1,7,8, M. Rudin1,9, P. A. Messy1, A. Hoffmann1, G. Lang1, S. Cichon9, P. Prüpping3, M. Knip10, M. Nöthen11.

1Department of Genomics, Life&Brain Center, Bonn, Germany, 2Department of Human Genetics, University of Bonn, Bonn, Germany, 3Department of Oral and Maxillofacial Surgery, University of Göttingen, Göttingen, Germany, 4Department of Pediatrics, Children’s Hospital, University of Bonn, Bonn, Germany, 5Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States, 6Institute for Genomic Mathematics, University of Bonn, Bonn, Germany, 7Department of Pediatrics, Pediatric University School of Medicine, Bonn, MD, United States, 8Department of Craniofacial and Dental Genetics, School of Dental Medicine, Pittsburgh, PA, United States, 9Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD, United States, 10Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States, 11Department of Experimental and Diagnostic Medicine, Medical Genetics Unit, University of Ferrara, Ferrara, Italy, 12Orthodontic Unit, Dental Health School & University, Dundee, Dundee, United Kingdom, 13Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Brain, Genomic Imaging, Research Center Jülich, Jülich, Germany.

Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is one of the most common birth defects in humans. In the last years, the etiology of this phenotypically variable malformation, which involves both environmental and genetic factors, has been elucidated by the discovery of six genetic susceptibility loci in large genome-wide association studies (GWAS). To identify additional NSCL/P loci we conducted the first meta-analyses using the two largest GWAS on NSCL/P that are available to date. Our analyses confirmed all previously identified loci, and identified six new susceptibility regions for the European population (1p36, 2p21, 3p11.1, 8q21.3, 13q31.1, and 15q22).

Five of these loci were shown to also play a role in the Asian population. Analyses of the phenotypic subgroups NSCL (nonsyndromic cleft lip only) and NSCLP (nonsyndromic cleft lip with palate) revealed that a locus on chr. 13q31.1 was a strong susceptibility factor for NSCLP (rs8001641, P = 0.163, P_NSCLP = 6.51x10^-11; RRhet_NSCLP = 1.63 (95% CI: 1.28 - 2.07), RRhom_NSCLP = 2.41 (95% CI: 1.84 - 3.16). The present study is the first to identify a genome-wide significant locus that is specific for NSCL/P subtypes and emphasizes the potential of genetic studies when detailed clinical and/or phenotype information is available.

C14.5
Variants in RUNX3 contribute to susceptibility to psoriatic arthritis exhibiting common ground with ankylosing spondylitis

B. A. Schifflers1, C. K. Eick1, B. Böhm7, H. Betts2,13, W. J. Brucke2,13; A. Brandt4, E. Krendowycz9, J. Kuneleb8, R. Maneus5, M. Po1,5, H. J. Bruce1, W. A. Ryan1, E. Behrens1, B. Bohn1, H. Traupe1, L. Lohmann1, H. Wicke1,2, C. Gieger1,4, L. Klarefski1,7,5, D. Fitzgerald1, G. Ahlers1, N. McHugh1, G. Newell1, H. Barthardt6, A. Bartone6, A. Rein1.

1Human Genetics, University of Erlangen, Erlangen, Germany, 2Arthritis Research UK Epidemiology Unit, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom, 3Department of Biophysics, Centre of Excellence for Genomic Risk Assessment in Multifactorial and Complex Diseases, School of Medicine, University of Rome ‘Tor Vergata’ and Fondazione PTT ‘Polinico Tor Vergata’, Rome, Italy, 4Royal National Hospital for Rheumatic Diseases, Bath, United Kingdom, 5Department of Public Health and Clinical Medicine, Rheumatology, University Hospital Umeå, Umeå, Sweden, 6Department of Clinical Medicine, Institute of Moleculargenesis, Trinity College Dublin, Dublin, Ireland, 7Department of Rheumatology, Department of Internal Medicine II, Johann Wolfgang Goethe University, Frankfurt/M, Germany, 8Department of Dermatology, University of Münster, Münster, Germany, 9Department of Rheumatology, Rehabilitation Hospital, Bad Bentheim, Germany, 10Department of Genomics, Life&Brain Center, Bonn, Germany, 11Karolinska Institute, Stockholm, Sweden, 12Department of Rheumatology, St. Vincent’s University Hospital, University College Dublin (UCD) School of Medicine and Medical Science and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.

Psoriatic arthritis (PsA) is a common inflammatory joint disease distinct from other chronic arthritides and frequently accompanied by psoriasis vulgaris (PsV). In a first genome-wide association study (GWAS) we were able to identify several genetic risk factors. But even combined with previously identified factors, only a fraction of genetic contribution to disease is explained. Therefore we pursued further 16 loci from our GWAS with several SNPs showing association in the range of 5x10^-8 (= genome-wide significance level) < p-value < 1x10^-6 as well as one functional candidate.

20 of 21 SNPs at 18 loci were successfully genotyped in independent European cohorts of 1,748 PsA cases and 3,926 control probands, furthermore in...
a group of 961 German PsV patients. Association to RNU3X variant was re-
plicated and resulted in a combined (GWAS + replication) p-value of 1.52×10^-6 in a Cochran-Mantel-Haenszel test and an OR of 1.20 (1.11-1.29). Further analyses based on linkage disequilibrium at RNU3X could pinpoint the most significant initial SNP located in the first intron of one isoform. In the smaller patient group of PsV patients and corresponding German control individuals, p-value was 2.5×10^-5 and OR 1.22 (0.96-1.56), indicating also a role in skin manifestation of psoriasis. Our analyses suggest that variants in RNU3X contribute to susceptibility to PsA, a genetic factor already described to be associated with another spondyloarthritic, ankylosing spondylitis. RNU3X is a transcription factor involved in CD8 lymphocyte differentiation and therefore a good candidate for PsA and PsV as T-cell mediated diseases.

C14: Genome-Wide Association Analysis Identifies the MTHFR-CLCN6-NPPA-NPPB Gene Cluster as an Importance Influence on BNP Levels - Implications for the Use of BNP levels in the Diagnosis and Therapeutic Monitoring of Heart Failure.

1University College Dublin, Dublin, Ireland, 2Royal College of Surgeons in Ireland, Dublin, Ireland, 3Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom, 4Department of Cardiology, Imperial College Healthcare NHS Trust, London, United Kingdom, 5Blood Pressure Unit, Beaumont Hospital, Dublin, Ireland, 6Department of Cardiology, Imperial College Healthcare NHS Trust, London, Ireland.

Brain Natriuretic Peptide (BNP) levels provide insight into Left Ventricular (LV) filling pressures, and are therefore increasingly used in the diagnosis and management of heart failure.

We conducted a genome wide association study to identify genetic variants associated with BNP levels in 737 hypertensive Caucasian individuals. 319,000 SNPs were genotyped and an additional 1,972,462 SNPs were imputed from HapMap. Serum BNP levels were measured by immunoassay. LV filling pressures were measured using the echocardiographic derived ratio of early diastolic transmitral flow velocity to mitral annular velocity (E/E'). Linear regression analysis were adjusted for major cardiovascular risk factors. 17 SNPs spanning 150kb of MTHFR-CLCN6-NPPA-NPPB (MCNN) gene cluster were significantly associated with BNP levels. Median BNP levels for AA homozygotes, AG heterozygotes and GG homozygotes for the top-hit SNP (a MTHFR gene SNP), were 25, 32 and 34, respectively (p=4.9X10^-9). Despite no associations observed between these 17 SNPs and E/E', carriers of gene cluster variants were much more likely to have high BNP levels above the cut-off regarded as diagnostic of heart failure (>100 pg/ml). Results showed that inheritance of minor allele homozygotes (GG) had three times elevated BNP levels when compared to major allele homozygotes (AA) (7% versus 2%, p<0.01). This is the first study to demonstrate that genetic variants in the MCNN gene cluster influence BNP levels independently of LV filling pressures. Combining MCNN genotyping with BNP measurement is likely to improve the sensitivity and specificity of algorithms that use BNP levels in the diagnosis and management of heart failure.

C15.2 High yield of massive parallel exome sequencing in 25 families with autosomal recessive intellectual disability.

1Institute of Human Genetics, Erlangen, Germany, 2Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany, 3Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany, 4Institute of Human Genetics, University of Bonn, Bonn, Germany, 5Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, München, Germany.

To elucidate the genetics of autosomal recessive intellectual disability, we undertook systematic autozygosity mapping in 69 large, consanguineous families. We focused on 25 families with small candidate regions of 10 to 45 Mb. After enriching the exomes with the Agilent SureSelect kit (13 exomes, and 19 using the 150 Mb version enriching both pools), we undertook massive parallel sequencing on Solera or SOLiD. We were able to identify the causes of intellectual disability in 12 families. We described one new intellectual disability gene, AP451, and characterized the AP44 deficiency syndrome. Furthermore, in seven families we identified mutations (two in-frame deletions, two frameshifts, and three missense mutations) in EDC3, ENO2, c9orf4, FAR1, HM2G20A, PPP1A, and SPATA5. In silico analysis predicted pathogenic effects of the mutations, and frequencies in 280 ethnic matched controls were null. The functions of c9orf4 and SPATA5 are unknown, while all other genes are highly expressed in brain and functionally relevant. In addition, we clarified the etiology in four further families by identifying pathogenic mutations in the known genes AIH1, ALDHS1, GPR56, and HGNAT. As a consequence of the emerging thignt pool, only 67% of the exons were properly covered (i.e. at least 5x at >80% of the nucleotides). To identify the mutations in the rest of the families, ensuring complete and high coverage of all exons in the linkage regions, we designed targeted sequencing enriching sets (Agilent, SureSelect). Sequencing on SOLiD is ongoing.

C15.3 Brain malformation and clinical finding in autosomal recessive primary microcephaly: genotype - phenotype correlation.

1Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran, 2Max Planck Institute for Molecular Genetics, Berlin, Germany, 3Institut für Humangenetik, Universität Tübingen, Tübingen, Germany, 4Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.

Background: Autosomal recessive primary microcephaly (MCPH) has underlying genetic defects, of which some are defined to date. However, fewer studies till now have tried to answer the questions regarding the genetic defect in MCPH gene family and the specific brain architecture changes. Methods: From Iranian cohort of mentally retarded - intellectual disability (ID) patients, 51 families with autosomal recessive primary microcephaly in at least two members and modest neurological signs were selected and MRI was performed for the proband of each family. In the previous study, homogyzosity mapping coupled by sanger sequencing or next generation sequencing (NGS) were used to define underlying genetic defects. Results: Genetic defect was successfully defined in 13 out of 51 families. 4 novel genes were identified using NGS, two of which were responsible for syndromic (TMEM135, TAF2) and two for non-syndromic (CAPN10, ZBTB65) primary microcephaly. In at least two members and modest neurological signs were selected and MRI was performed for the proband of each family. In the previous study, homogyzosity mapping coupled by sanger sequencing or next generation sequencing (NGS) were used to define underlying genetic defects. Results: Genetic defect was successfully defined in 13 out of 51 families. 4 novel genes were identified using NGS, two of which were responsible for syndromic (TMEM135, TAF2) and two for non-syndromic (CAPN10, ZBTB65) primary microcephaly. In at least two members and modest neurological signs were selected and MRI was performed for the proband of each family. In the previous study, homogyzosity mapping coupled by sanger sequencing or next generation sequencing (NGS) were used to define underlying genetic defects.
C15.5 The utility of exome sequencing in Primary Immunodeficiency Diseases and Immunoregulatory Disorders

Section of Pediatric Allergy and Immunology, Baylor College of Medicine, Houston, TX, United States; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States, Allergy and Immunology, Texas Children's hospital, Houston, TX, United States, Department of Pediatrics, Oslo University Hospital, Oslo, Norway; University of Oslo, Oslo, Norway; Department of Rheumatology, Oslo University Hospital, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway.

Mutations in more than 200 different genes have been reported causing various primary immunodeficiency diseases (PIDs) including immunodeficiency/autoimmune disorders. Knowing the exact molecular genetic diagnosis is valuable to direct protocols for immunoreconstitution, immunotherapy, and prophylaxis, and may predict clinical outcomes. For combined T- and B-cell deficiencies and for isolated B-cell deficiencies, phagocyte disorders and defects in innate immunity there are multiple genes known to be causal, and patients with different immunodeficiencies may have overlapping immunological and clinical phenotypes.

We examined the utility of high throughput next generation DNA sequencing with exome capture in the diagnostic workup and research of PIDs, including SCID, severe autoinflammatory disorder, severe congenital neutropenia, hyper IgM syndrome, autosomal recessive agammaglobulinemia and other immunodeficiencies with known or unknown disease genes. Based on the clinical and immunophenotypical data, family history and knowledge from similar PID cases, we varied between using candidate gene testing with relevant known PID genes, triotesting (patient + parents) in the assumed de novo cases, or focused on genomic regions with unknown candidate genes in the assumed autosomal recessive cases when loss of heterozygosity or copy number variations had been found.

Pathological variants were detected in both well known and less characterized genes. We address the advantages and limitations of this approach i.e. regarding detection of low grade mosaicism. Our project illustrates the capability of targeted exome sequencing to efficiently identify novel variants in a large set of candidate genes, and reinforces the method’s clinical utility to identify causal variants of PIDs and other rare immunological disorders.

C15.6 Next generation sequencing of 105 genes associated with retinal dystrophy: A new era for diagnostic testing

G. C. Black, B. Mullaney, J. O'Sullivan, S. Bhaskar, G. Hall, J. Dickerson, S. Ramsden, Genetics Medicine, Manchester, United Kingdom.

Retinitis Pigmentosa (RP) is a group of highly genetically heterogeneous retinal dystrophies which lead to reduced vision and eventual blindness. RP affects approximately 1:3500 people in the UK. Current diagnostic testing is largely restricted to conventional Sanger sequencing of a small number of genes. As a result of its heterogeneity, RP was an ideal candidate to use a targeted enrichment next generation sequencing approach, technologies not previously utilised in a diagnostic setting, as the basis for a diagnostic service.

We describe our approach to the validation of the entire workflow (assay design, sample preparation, bioinformatic analysis and scientific analysis) of a next generation sequencing targeted enrichment of 105 genes known to cause RP or associated conditions. The process was validated using 50 patients. The validation process included: developing criteria for transcript choice during assay design, documenting laboratory sample processing, defining minimum coverage criteria, assigning quality and coverage thresholds for SNP and indel calling, defining criteria for filtering benign polymorphisms and assessing SNP concordance between next generation sequencing and Sanger sequencing.

We identified likely pathogenic mutations in 42% (21/50) of patients tested. We extended clinical testing to a wider range of RP referral types and improved detection rates across all patients. Furthermore we propose a model on which to base future validation of large scale next generation sequencing target enrichments in a diagnostic laboratory.

C16.1 Non-invasive prenatal detection of fetal autosomal aneuploidies using massively parallel sequencing: a collaborative study in Europe

V. Hofmann, M. Entezami, K. Haug, C. Blank, M. Wustemann, B. Schulze, G. Raabe-Meyer, S. Lange-Freitag, M. Schelling, E. Ostermayer, T. Burkhards, R. Zimmermann, M. Beck, T. Schleicher, V. Kamar, D. Schöner, S. Grimminger, M. Stumm; LifeCodeX AG, Konstanz, Germany; Zentrum für Pränataldiagnostik und Humangenetik, Berlin, Germany; Pränatal-Medizin und Genetik, Düsseldorf, Germany; Zentrum für Pränatalmedizin, Hannover, Germany; Praxis für Humangenetik, Hannover, Germany; Institut of Human Genetics, Technische Universität München, München, Germany; Praxis für Pränatale Diagnostik, München, Germany; Department of Obstetrics and Gynecology, Technische Universität München, München, Germany; Universitätsspital Zürich, Klinik für Geburtshilfe, Zürich, Switzerland, GATC Biotech AG, Konstanz, Germany.

Objectives: Recent advances in non-invasive prenatal diagnosis show that massively parallel sequencing (MPS) of maternal plasma DNA allows an accurate detection of common fetal aneuploidies. Here, we describe a large scale clinical study, which will be finished in March 2012. The aim of the study is to validate the diagnostic accuracy of our non-invasive prenatal test based on MPS for detecting fetal autosomal aneuploidies.

Method: Maternal blood samples were collected from more than 500 pregnant women prior to invasive prenatal procedures at 7 clinics located in Germany and Switzerland. The extracted maternal plasma DNA was analyzed using Illumina sequencing platform HiSeq2000 in a multiplexed fashion. For statistical analysis a z-score equation was used to distinguish samples with fetal aneuploidies from samples with a set of normal fetal chromosomes. The results of MPS analysis have been compared with the fetal karyotype obtained from chorionic villus sampling or amniocentesis.

Results: We will present the results of the collaborative, blinded study including sensitivity and specificity of the well-established non-invasive pre-sorted MPS for the detection of fetal aneuploidies. Their implementation in prenatal care of high risk pregnant women will decrease the use of invasive procedures. Further, meta-analyses of MPS for the detection of broader spectrum of fetal chromosomal abnormalities and fetal genomic imbalances.

C16.2 Further development and larger validation of non-invasive prenatal diagnosis for trisomies 21 using MedIP real time qPCR

C16.3 Analysis of PCR-based monogenic preimplantation genetic diagnosis (PGD) by follow up of untransferred embryos - A multi-center study

1Department of Molecular Medicine, University of Padua, Padua, Italy. 2Institute for Integrative Genomics, Vanderbilt University, Nashville, TN, United States.

PGD, an established reproductive alternative for couples with high-risk of transmitting a monogenic disorder, currently involves PCR-based methods. PCR protocols must be robust, sensitive and highly accurate, completely precluding any misdiagnosis. Misdiagnosis can be adverse (false negative or positive) and lead to the wrong advice, which is a big advantage of PCR-based diagnosis as it consists of only seven DMRs, simplifying the diagnostic assay and further reducing the cost. In conclusion, the MeDIP real time qPCR-based approach is an accurate, reliable NIPD test for Down syndrome. It is simple, fast and easy to perform in every genetic diagnostic lab worldwide as it does not require expensive equipment, software or special infrastructure.

Conclusions

Four missense mutations, absent in >1,000 controls, were identified in 4 IUFD cases (4%). The genetic variants detected in KCNQ1 (-A283T-R397W) and in the 1b splicing-isoform of KCNH2 (-R25W) were associated with markedy reduced I_{in} and I_{sp} current, respectively, consistent with in utero LQTS type 1 and 2. The mutation identified on SCN5A (-T220I), induced a significant reduction in the late I_{in} current, consistent with a BrS phenotype. Clinical Genetics

This study represents the largest cohort of stillbirths in which a molecular autopsy was performed. The results of this study highlight that 4% of unexplained fetal demise may be due to life-threatening arrhythmias secondary to underlying cardiac channelopathies, as LQTS or BrS.

C16.5 Metabolic programming of the epithome by intrauterine exposure to gestational diabetes

1Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany. 2Department of Bioinformatics, Julius Maximilians University, Wuerzburg, Germany. 3Teaching Hospital, Klinikum Werda-Meissen, Eschwege, Germany. 4Städtische Kliniken, Mönchengladbach, Germany. 5Institute of Human Genetics, University Medical Center Mainz, Mainz, Germany.

The offspring of women with gestational diabetes mellitus (GDM) are at greater risk of developing metabolic disorders later in life. Epigenetic processes such as DNA methylation are primary candidates when searching for mechanisms that can stably modulate gene expression and metabolic pathways due to fetal overnutrition. Umbilical cord blood and placenta tissue were obtained from 88 newborns of mothers with dietetically treated GDM, 98 with insulin-dependent GDM and 65 without GDM. Bisulphite pyrosequencing was used to study the methylation levels of seven imprinted genes involved in pre- and postnatal growth, four genes involved in energy metabolism, one anti-inflammatory gene, one tumor suppressor gene and one pherupotent gene. In addition, we examined global DNA methylation of the ALU, LINE1 and alpha-satellite repeat families. The maternally imprinted MEST gene and the non-imprinted glucocorticoid receptor NR3C1 gene as well as ALU repeats showed significantly decreased methylation levels in both GDM groups, compared with controls, in both analyzed tissues. Decreased blood MEST methylation was also observed in adults with severe obesity, compared with normal-weight controls. The fact that two of 14 analyzed genes and ALU repeats showed significant hypomethylation in both GDM mothers suggests that the effects are minor (in the order of several percentage points) but widespread. Epigenetic changes in children exposed to a hyperglycemic intrauterine environment provide a molecular link between GDM and life-long predisposition to metabolic disorders. Overall, our results support the idea that adverse early life conditions can have long-term effects on the epithome and phenotypic consequences.
C16.6 SPOC1 is involved in meiotic sex chromosome inactivation (MSCI)
C. Nellenbrecher1, A. Bördelein1, S. Lukasser1, S. Wolffhüfer1, A. Fitzner1, A. Ekici1, H. Scherberch1, A. Winterpacht2
1Institute of Human Genetics, Friedrich-Alexander-University, Erlangen, Germany, 2Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany.

Meiotic sex chromosome inactivation (MSCI) and meiotic silencing of unsynapsed chromatin (MSCUC) are two barely understood mechanisms responsible for transcriptional silencing of unsynapsed chromatin during male meiosis. It has been shown that both mechanisms are essential for normal spermatogenesis and fertility. Recently, we identified SPOC1 (PHAIF3) as a novel gene whose expression is negatively correlated with the survival time in patients with ovarian cancer: SPOC1 associates dynamically with chromatin in cells (probably via H3K4me3 binding) and plays a role in chromosome condensation and cell division. We demonstrated that male SPOC1−/− mice show pronounced hypoplasia of the testis with progressive loss of germ cells due to apoptosis in the pachytene stage. Here, we report data of microarray-based gene expression analyses performed with testis tissue from SPOC−/− strains and wild type controls. We identified a chromosomesspecific dysregulation of transcripts with a highly significant disproportionative number of X- and V-linked genes overexpressed in SPOC−/− tissue. These results were verified using qPCR. Together with the increased apoptosis rate observed during pachytene stage the microarray data strongly suggest an essential function of SPOC1 in meiotic sex chromosome inactivation (MSCI). The formation of the XY-body, the double strand break (DSB) formation/repair, as well as chromosome synopsis seems normal in the knockout tests, which suggests a direct epigenetic effect SPOC1 on X- and Y-linked genes. In conclusion, our data indicate that SPOC1 is a novel factor involved in MSCI, and is essential for the epigenetic control of male germ cell development.

C17.3 Bayesian multivariate phenotype modeling for genome-wide association studies.
V. Jochkova1, J. Marchini2, T. Spector2, C. Gieger3, W. Ouweneel4, N. Sarasani5
1University of Oxford, Oxford, United Kingdom, 2Department of Twin Research & Genetic Epidemiology, King’s College, London, United Kingdom, 3Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany, 4Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom.

The majority of genome-wide association studies have been carried out using a single binary or single quantitative trait as the phenotype of interest. For many traits several phenotypes may be available so it is natural to ask the question of how best to test for association in the presence of multiple phenotypes. We have developed a Bayesian model averaging approach with a parsimony inducing priors that allow the set of phenotypes to be partitioned into an associated and un-associated set. In this way we combine both model comparison and model selection. Additional properties are that we can look for correlations between the residuals of both the associated and un-associated phenotypes and allow for multiple cohorts to be analysed together. We have shown using simulated data that these methods lead to an increase in power to detect effects, over and above using single phenotype analysis, and are able to accurately uncover the true set of associated phenotypes. We will present results from a genome-wide association of eight hematological parameters collected on the TwinsUK, KORA and UKBS Common Control collection.

C17.4 Case-control maximum weighted bipartite matching in genome wide association studies.
A. Lacour1, C. Heraldi1, D. Drichel1, T. Vaitasababovich1, V. Schüller2, T. Becker1
1German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany, 2Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany.

Population stratification in samples of genome wide association studies give rise to large obliterations in the results of statistical tests. In order to correct for stratification effects we have implemented a pairwise case–control matching that is based on the identity-by-state matrix. We obtain a “maximum weighted bipartite matching” by making use of an improved Kuhn-Munkres „Hungarian“ algorithm which solves the assignment problem of weighted bipartite graphs in polynomial time.

A quality control on the matched pairs as well as a rematching of residual samples makes sure that we do not loose power due to reducing the sample size. In this way, the pairwise matching is extended to tiny clusters with at least one case and one control. Association P-values are obtained by within cluster case-control permutation. The matching can be performed both genome-wide and window-wise (localized matching). The latter will be applied to the analyses of rare variants, where one would expect that the amount of stratification vary according to

www.eshg.org
As it turns out, studies in this field have reached a statistical threshold of 5,000 and have observed that lipid levels can help predict future cardiovascular disease risk. To understand these downstream effects, we have performed eQTL mapping in 5,300 blood samples. This reveals downstream pathways related to intracellular membrane-bound organelles.

These results suggest a mechanism for regulation by coding variation, thereby pinpointing the causal SNPs. The evidence for the association of a TF source eSNP to its target, the higher is its rank. These results pinpoint a causal SNP within a TF — more so than other TFs. The targets of eSNP TFs are enriched for proteins sorted to the PPI network and study their topological properties.
Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on a severe unique dental phenotype that results in dentin dysplasia associated with major microdontia in the primary dentition, oligodontia in the permanent dentition, teeth shape/size abnormalities and thin enamel in a highly consanguineous family. Classical homozygosity mapping (GeneChip Human 250K SNP Affymetrix) revealed a unique zygote-specific 13q21.2–27c containing 70 genes. The two affected children were found to carry a homozygous mutation at the exon 1/intron border (c.841+1G>T) in the canonical- splice donor site of intron 1 of SMOC2 gene coding for the SPARC related modular calcium binding 2 matrix protein. The parents of both affected children were heterozygous for this mutation. The SMOC2 family is well conserved through evolution. Smoc2 gene is indeed expressed throughout mouse odontogenesis. The null homolog of smoc2 in zebrafish showed pharyngeal teeth that had abnormalities reminiscent of the human phenotype. Moreover, smoc2 deletion in zebrafish affected also the expression of three major odontogenesis genes: dlx2, bmp2, and pitx2.

The ultimate proof through whole exome sequencing failed to reveal the mutation because of insufficient coverage of the GC rich region containing the disease causative mutation.

C18.5 Mutations in ROGDI cause epileptic encephalopathy and amelogenesis imperfecta (Kohlschütter-Tönz syndrome)

A. S. Schlossig1, N. I. Wolf1, G. Fischer2, M. Fischer3, G. Stocker4, S. Pabinger5, A. Dander5, B. Steiner1, O. Tönz1, D. Koziotz2, E. Haberlandt3, A. Amberger4, B. Burwinke5, K. Wimmen1, C. Fauth1, C. Grond-Ginsbach4, M. J. Koch4, A. Deichmann5, C. von Kalle1, C. B. Rendsburg1, A. Kohlschütter-Tönz2, J. Zachow2, J. Wimmer1. 1Department of Human Genetics, Medical University Innsbruck, Innsbruck, Austria, 2Department of Child Neurology, University Medical Center, Amsterdam, Netherlands, 3Department of Child Neurology, University Heidelberg, Heidelberg, Germany, 4Department of Orthopaedics and Sports Medicine, University Heidelberg, Heidelberg, Germany, 5Department of Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany, 6Department of Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany, 7National Center for Tumor Diseases and Department Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands.

Kohlschütter-Tönz syndrome (KTS) is an autosomal recessive disease characterized by the combination of epilepsy, psychomotor retardation, and enamel defects. The molecular basis has not yet been elucidated. Here we report that KTS is caused by mutations in ROGDI. Using a combination of autosomal homozygosity mapping and exome sequencing we identified a homozygous frameshift deletion c.229_230del (p.Leu77Alafs*64) in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional individuals with KTS from two unrelated Austrian and Swiss families revealed homozygosity for a nonsense-mutation c.286G>T (p.Gln96*), and compound heterozygosity for the splice site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cyskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis.

C18.4 Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects

A. Bloch-Zanoni1, X. Jame1, E. Etraud2, E. Tavare3, Y. Lavagnet2, J. Mullier2, W. Geffroy4, J. Strauss1, V. Pelletier5, Y. Masere1, G. Pech2, H. Scharba1, G. Stoezet1, H. Donn1. 1University of Strasbourg, Faculty of Dentistry, Strasbourg, France, 2Reference Centre for Orodental Manifestations of Rare Diseases, Hôpitaux Universitaires de Strasbourg, 3Institute of Clinical Genetics, University Hospital Magdeburg, Magdeburg, Germany, 4Max Delbrück Center for Molecular Medicine, Berlin, Germany, 5Clinique vétérinaire, Bruxelles, Belgium.

Smoc2 is a yet uncharacterized member of the PNPLA protein family. These results provide insights into the localisation and the function of this member.
Fraser syndrome (FS) is an autosomal recessive malformation syndrome characterized by cryptophthalmos, syndactyly and urogenital defects. Thus far, mutations in FRAS1 and FREM2 have been identified as a cause of FS. Both FRAS1 and FREM2 encode extracellular matrix proteins that are essential for the adhesion between epidermal basement membrane and the underlying dermal connective tissues during embryonic development. Mutations in murine Grip1, which encodes a scaffolding protein that interacts with Fras1/Frem proteins, result in FS-like defects in mice. We therefore tested GRIP1 for genetic variants in FS families that did not have mutations in FRAS1 and FREM2. In three unrelated families GRIP1 mutations were found to segregate with the disease in an autosomal recessive manner (donor splice site mutation NM_021150.3:c.2113+1G>C in two families and a 4-bp deletion, NM_021150.3:c.1181_1184del in the third). RT-PCR analysis of the GRIP1 mRNA showed that the c.2113+1G>C splice mutation causes skipping of exon 17 leading to a frame shift and a premature stop of translation. The FS phenotype of the three probands presented here appears to be indistinguishable from the phenotype that results from mutations in FRAS1 or FREM2. This is in line with the assumption that Fras1, Frem2 and Grip1 are indispensable for the integrity of the Fras1/Frem protein complex, and that lack of one of the components leads to a defective complex. We conclude that mutations in GRIP1 cause classic FS in humans. Our findings expand the possibilities for diagnostic testing, carrier testing and early prenatal diagnosis for FS patients and their families.
P01.03 Reasons to participate to a biobank study: a systematic review

H. L. Noble1,2, K. Thyss3, E. Vermeulen4, M. M. Bergmann5, P. Borry6
1German Institute for Human Nutrition, Potsdam-Rohbrücke, Germany; 2K.U.Leuven, Leuven, Belgium; 3VU University Medical Centre, Amsterdam, Netherlands; 4The Netherlands Cancer Institute, Amsterdam, Netherlands.

The implementation of cohort biobank studies is intrinsically dependent on the successful recruitment of participants. Studies have shown that the decision to enrol is only partly influenced by the information provided during recruitment and mainly relies on individual attitudes and motivations. Cost-benefit analyses (which include the potential benefit of receiving information about one’s health) also play a significant role in the decision-making process. Whether the (potential) participant’s perception of benefit corresponds to what the researchers communicate in the informed consent procedure is a question that has received increased attention in the last years. Empirical studies addressing individuals’ motivations to enroll have been implemented in different biobank settings. For the scope of this review, we focus on the motivations expressed by apparently healthy and legally autonomous participants who actually took part to a biobank study.

To this end, three literature databases (PubMed, Embase and Web of Science) as well as Google Scholar have been searched with standardized keywords. To guarantee its systematic approach, the search had been done using the same string: by two different teams of authors. 157 articles considered relevant have then been read independently by four of the authors to decide on their inclusion in the review. The selected articles have been analyzed and their content has been coded and organized by themes independently by two of the authors. The outcome of this work is to provide a comprehensive overview of the reasons to participate to biobank studies as they appear in the literature up to now.

P01.01 Access to assessment of familial cancer risk by people from minority ethnic communities

A. M. Alfred, C. Lewis, N. Qureshi, J. Rai
1Genetic Alliance UK, London, United Kingdom; 2Division of Primary Care, University of Nottingham, Nottingham, United Kingdom.

Background: Patients from minority ethnic groups diagnosed with, or at risk of, cancer with a genetic component appear less likely to access screening and other services to assess their higher level of risk than the mainstream population in the UK.

Aim: To explore why people from minority ethnic groups with a significant family history of cancer are under-represented in NHS clinical genetics services to inform interventions and service development to improve quality of care, and review and dissemination of findings at stakeholder and community levels.

Methods: Qualitative study using semi-structured interviews and focus groups with: patients with direct experience of familial cancer risk assessment; and community members from Black Caribbean, South Asian, and White Irish communities with, or at familial risk of breast and ovarian, bowel, and prostate cancer; and clinical genetics and other key NHS staff. Transcripts were analysed using constant comparison of data and processes for validation and feedback on respondents.

Results: Data were generated with a purposeful sample of 58 respondents (15 patients, 20 community members, 23 health and other professionals). Some findings appeared common to all patients, but were amplified for people from minority ethnic communities, for example in relation to the challenges of sharing information and decision-making within families about cancer and genetic risk. Factors further preventing people being empowered to negotiate health services effectively, obtain appropriate referral or further assessment included: language barriers and cultural sensitivities relating to stigma; accessibility of family medical histories; and a non-directive emphasis in genetic counselling.

P01.02 Applying the Estonian Biobank to estimate the potential impact of genomic testing

L. Leitsalu-Moynihan1, T. Haller1, K. Fischer1, K. Lalli2, P. Ngi3, A. Metspalu4,5
1Estonian Genome Center, University of Tartu, Tartu, Estonia; 2University of Tartu, Tartu, Estonia; 3Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia; 4Estonian Biocentre, Tartu, Estonia.

The Estonian Biobank is a population-based biobank of the Estonian Genome Center of the University of Tartu with genotypic, phenotypic, and health information for over 5,000 participants aged 10 years and older. The age, sex, and geographical distribution of the cohort reflects the structure of the Estonian adult population. Besides promoting the development of genetic research, collecting health and genetic information from the Estonian population, the genome center aims to use the collected biobank data and results of as associated genetic research to improve public health. The health information has been collected by medical personnel with access to the electronic health records. The health data are expanded periodicaly through linking to national registries as well as through follow-up.

By having the genotypic and longitudinally collected health data for 5% of the Estonian adult population it is possible to estimate the impact of the genomic information on public health. We attempt to present what portion of the population would benefit from a specific genomic test for an actionable disease by studying the population allele frequencies of the markers associated with the disease and the impact of these markers in the context of the predictive value. This analysis can be done for a large number of diseases. We present it for the type 2 diabetes, hypertension, lactose intolerance, glaucoma, age related macular degeneration to demonstrate how a biobank with a comprehensive database can be applied to estimate the impact of genomic information. This approach is expected to be superior to the simulation studies.
the Cancer Genetic Clinic.

A total of 49 counselees completed a questionnaire on topics about knowledge, risk perception (RP), Perceived Personal Control (PPC), and anxiety for BC (Cancer Worry Scale).

The general risk for BC is overestimated by 63% of all counselees (mean 27.8%; SD 21.2), and the chance on having a BRCA1/2 mutation by 84% of the counselees with no mutation in the family (mean 44.2%; SD 26.1). The counsellee also show a low baseline knowledge level (BKL)(46%). Analysis between different groups of counselees showed that the low educated counsellee (LEC) have a poorer RP, and BKL than high educated counsellee (HEC). 81% of the LEC overestimated the general risk for BC, and the LEC have a significantly lower score on knowledge (33%) than HEC (62%) (p=0.001). The counselees have no low scores on the PPC-questionnaire (mean score 10.5) and were not anxious (mean score 30).

Counsellee, especially the low educated, have a poor RP and BKL prior to their first genetic consult. We expect that the implementation of the IHP will have a positive effect on RP and BKL, which results in a more active role of the counsellee.

PO1.06

Group Genetic Counseling for Cardiomyopathy patients is well accepted.

E. Otten1, E. Birnie1, A. V. Ranchor2, I. M. van Langen1;

1Clinical Genetics section, Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; 2Department of Health Psychology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.

Background: Group Genetic Counseling (GGC) may have benefits for counselees and counselors (more information, psychosocial support, increased efficiency), although its use has not yet been reported in cardiogenetics. We therefore set up GGC sessions for cardiomyopathy index patients.

Aim: To see whether the quality of care provided by GGC is acceptable to counselees.

Methods: GGC was offered in regional hospitals with few referrals of cardiomyopathy patients to our academic center in the past years. Sessions were led by two counselors: a clinical genetics expert and a group leader.

Patients completed questionnaires before and after counseling, measuring sociodemographics, Personal Perceived Control (PPC), State-Trait-Anxiety-Inventory (STAI), Clinical Genetics Satisfaction Indicator, etc.

Results: 53 patients and 36 relatives attended a course of eight GGC sessions. PPC scores (range 0-2) increased in 81% of patients, mean item score (SD): before 0.92 (0.54), after 1.29 (0.38). STAI scores (range 1-4) decreased in 51% of patients, mean item score (SD): before 1.89 (0.58), after 1.68 (0.49).

Conclusion: This is the first report of GGC being used for cardiomyopathy patients. On average, personal perceived control increased and anxiety was lowered. Mean changes in PPC and STAI were comparable to reports for group and individual counseling in oncogenetics. Satisfaction scores were high, patients reported their questions were answered during the sessions and they received no undesired information. Our study indicates GGC is well accepted. We will next investigate whether GGC is more efficient than individual counseling.

PO1.07

Progress of the Clinical Utility Gene Card initiative

A. Dierking, J. Schmidt;

Institute of Human Genetics, Hannover Medical School, Hannover, Germany.

As of January 2011, the Clinical Utility Gene Card (CUGC) project receives support by EuroGenet 2 and the European Society of Human Genetics. Based on this support the CUGC initiative can be continued, including the publication, in spring 2012, of the first set of guidelines having undergone updating.

CUGCs are disease-specific guidelines authored by international expert groups. Based on the ACEC framework they are dealing with the risks and benefits of the application of genetic tests in the clinical setting. Each document represents a balanced summary of the analytical and clinical validity, the clinical utility and cost-benefit issues. CUGCs offer quick guidance to all stakeholders, including clinicians, clinical geneticists, referrers, service providers and payers. Each CUGC is peer-reviewed and published by the European Journal of Human Genetics. CUGCs are also freely available on the websites of EuroGenest, the European Society of Human Genetics and Orphanet.

The feedback from the scientific community and the CUGC download rates are promising: the European Journal of Human Genetics counted between 600 and 1,500 downloads, with an average above 1,000, per gene card and year. From 2011 to 2013, 300 new CUGCs are planned to be established. To ensure that all published documents reflect the state-of-the-art, all published CUGCs are annually revised.

PO1.08

Developing a genetics-genomics education framework for midwives: a consensus approach using individual/family stories

E. T. Tonkin1, M. Kirk2, H. Skirton3;

1NHG National Genetics Education and Development Centre, University of Glamorgan, Pontypridd, United Kingdom, 2Plymouth University, Plymouth, United Kingdom.

Competence frameworks in genetics exist for UK health professionals and include a combined framework for nurses, midwives and health-visitors. As part of a review of this framework, the development of a set of competences specifically for the midwifery profession was seen as essential. A national consensus meeting was held involving midwives in practice and management, health-care educators, policy makers and lay representation (n=18). Electronic voting was used to capture opinions anonymously and stimulate discussion.

All but one attendee agreed that “good midwifery care is currently compromised by midwives’ level of genetic competence”. Individual/family and professional stories illustrating a range of experiences and conditions were reviewed and the content mapped to the original framework. Attendees looked for topics missing from the framework and considered whether any of the existing statements should be re-focused. Eight themes [ongoing-care, advocacy, multi-professional team, listening, timeliness, client knowledge, broad knowledge and key indicators [of disease]] were identified and, following discussion, voted on. All themes were to be included within existing statements.

Seven statements now set out the minimum level of competence that should be required of all midwives in the UK at the point of registration. With learning outcomes aligned to the stages of pre-registration training, and practice indicators, this framework will provide guidance to educators, practitioners and managers. The importance of genomics within healthcare is explicit and anticipating that the implementation of new knowledge and technology will impact the midwifery role, the team have endeavoured to ‘future-proof’ the framework.

PO1.09

Attitudes of health care professionals towards carrier screening for Cystic Fibrosis. A review of the literature

S. Janssens1, A. De Paepe2, P. Barry2;

1Centre for Medical Genetics, Ghent, Belgium, 2Center for Biomedical Ethics and Law, Leuven, Belgium.

Recently, commercial companies have started to offer preconceptional carrier tests directly to consumers. This increasing commercial offer creates the background which makes reflection necessary about the desirability to offer population carrier screening in the healthcare system. A positive attitude of potential providers is vital to the success of a screening program. Therefore, a literature review of the attitudes of healthcare professionals, focused on the attitudes towards carrier screening for Cystic Fibrosis (CF), was performed.

The databases Pubmed, Web of Science, as well as the interface Google Scholar, were searched for the period 1990-2011. Studies were selected if they were published in a peer reviewed journal in English and described the attitudes of potential providers toward carrier screening. Eleven studies were retrieved describing the attitudes toward carrier screening for CF Studies reported attitudes toward the best time for screening, the best setting to offer screening, the willingness to be involved in a screening program and the concerns about offering screening. Ten papers described a general attitude toward carrier screening. We can conclude that health care providers are willing to be involved in a carrier screening program, but there is need for appropriate education as well as adequate support. The prospect of an increasing number of genetic disorders for which screening becomes possible and the potential increasing demand for such screening in the future calls the need for further debate on the desirability of carrier screening, and relevant questions such as the conditions screened, the providers involved, the information provision and counseling.

PO1.10

The views of CF patient’s parents on genetic testing

V. L. Ilevshaykova1, L. Y. Ivanova1, E. A. Borzov2, I. V. Zhuravleva2, E. K. Ginter1;

1Research centre for medical genetics, Moscow, Russian Federation, 2Institute of Sociology of Russian Academy of Sciences, Moscow, Russian Federation.
Mandatory newborn screening for CF is spent in Russia since 2006. To estimate patient's parents opinion concerning genetic testing we have spent questionning 93 CF patient's parents. Majority of parents (90 %) have learnt about hereditary character of their child disease from the pediatrician, only 64 % of them have been referred to geneticist, and 49 % have been held DNA testing. However 90% respondents have consider that they have understood the information about repeated genetic risk for CF. However only 51% of them could correctly specify the value of recurrence risk of CF, and only 37 % of them could correctly attribute a risk category. Majority of respondents (82%) have consider that prenatal testing is very useful procedure and 65% of them wanted to use it. Only 1.1% of respondents have answered that they didn't want to terminate the CF foetus pregnancy. Acceptance of prenatal testing was correlated with the age and educational level of woman, whether or not she was referred for genetic counselling, and whether or not she has received an explanation about repeated risk.

P01.11 Diagnostic and counselling dilemmas in newborn screening for cystic fibrosis
V. Kružlová, A. Holábová, M. Baťačková, V. Skalská, T. Paskáčlová, J. Bartošová, L. Fila, V. Vondrušová, P. Depjeková, M. Macák Jr., F. Votavá, 1Department of Biology and Medical Genetics, Charles University – 2nd Faculty of Medicine and Faculty Hospital Motol, Prague, Czech Republic, 2Department of Pediatrics, Charles University – 2nd Faculty of Medicine and Faculty Hospital Motol, Prague, Czech Republic, 3Department of Pulmonology, Charles University – 2nd Faculty of Medicine and Faculty Hospital Motol, Prague, Czech Republic, 4Department of Pediatrics, Charles University – 3rd Faculty of Medicine and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic, Prague, Czech Republic.

Introduction: Newborn screening (NBS) for cystic fibrosis (CF) has been implemented as a nationwide immunoreactive trypsinogen (IRT)/DNA/IRT scheme in the Czech Republic since X/2009. DNA testing is associated with inherent drawbacks such as detection of infants with atypical mutations resulting in variable phenotypes.

Objectives: We evaluated a clinical status in individuals (from NBS and non-NBS group) carrying either R117H or D1152H allele in trans with another CF-causing mutation and utilized these data for CF-NBS and genetic counselling.

Methods: The Czech CF registry and an “in house” clinical-genetic database were used.

Results: Of 13 individuals with CF-causing mutations/R117H on a 7T background, 6 symptomatic adults (1 suffering from respiratory symptoms (RS), 1 from pancreatitis, 4 with azoospermia) and 1 child with RS were reported before implementation of CF-NBS. 1 adult with unknown clinical status was identified due to cascade screening. 5 infants were identified in CF-NBS with no clinical status. There has been no case with CF-causing mutation/R117H on a 5T background yet. Of 5 individuals with F508del/D1152H genotype, 2 children and 2 adults suffer from RS and 1 adult from pancreatitis and azoospermia. These cases were reported before implementation of CF-NBS and none from CF-NBS, so far.

Conclusions: Although phenotype in individuals with CF-causing mutation/R117H/D1152H genotype is usually mild, we follow consensus guidelines and monitor infants on a long-term basis. Although limited knowledge exists on phenotypes associated with D1152H, this mutation is considered to be CF-causing mutation and long-term follow up in a CF specialist is essential. Supported by CZ.1.05/3.1.00/02.0222.

Objective: In the Report of Panel 3 of the Macy Study, funded by the NIH and the American Dental Education Association “Knowledge, Skills, and Attitudes Needed for Oral Health Professionals to Care for Patients with Genetic Conditions” were outlined. The aim of this study is to investigate the genetic knowledge, skills and attitudes of West Virginia University School of Dentistry’s (WWU SOD) students utilizing this report as the source for the specific questions.

Methods: All dental students (195) were invited to participate by answering 16, primarily Likert style questions (1= Strongly Agree to 5= Strongly Disagree). Questions included Knowledge: of genetic transmission; molecular biology of the human genome; principals of population genetics; Skills: to perform a head/neck exam with special attention to signs of major genetic disorders; to recognize when to refer a patient for genetic screening testing, and counseling; Attitude: to understand the potential for genetics to contribute to the development of new approaches to prevention, diagnosis and treatment.

Results: 89 (45.6%) filled out questionnaires. When it came to Knowledge of transmission, biology of the human genome, principals of population genetics and Skills to perform a head/neck exam and when to refer, 54.2% 39.7%, 82.4% and 69.1% disagreed respectively. Attitude, however, revealed that 71.0% agreed they understand the potential for genetics to contribute to new approaches of disease.

Conclusion: Although baseline knowledge and skills of the WWU SOD students were lacking, the students recognized this new technology could potentially contribute to new approaches in prevention, diagnosis and treatment.

P01.13 Direct to consumer testing - a review of the available evidence L. Goldsmith1, L. Jackson2, H. Skirton3.
1Plymouth University, Plymouth, United Kingdom, 2Plymouth University, Taunton, United Kingdom.

As part of the EuroGenTest2 project, we are developing European guidelines of the consumer testing for potential consumers and health professionals. We conducted a series of systematic reviews focussed on consumers (17 papers), health professionals (four papers) and current recommendations and position statements (11 documents) to inform this process. Findings indicate a low level of awareness of direct-to-consumer genomic testing in both users and some health professionals. Consumers appeared motivated to purchase tests to obtain information to guide their own health management while some wanted to avoid disclosure of genetic risk to health professionals. Potential users expressed concerns about privacy, reliability of genomic tests and the nature of results. Many consumers preferred to discuss the test with a health professional before and after testing, while health professionals expressed concerns for the consumer such as misinterpretation of results and increased anxiety due to perceived risks. In the review of policies, more potential harms than benefits were cited. An area of concern was the overstatement of the actual predictive power or utility of the results. Strong recommendations were made about the need to involve health professionals and to regulate test quality. We conclude that there is public interest in direct-to-consumer genomic tests. However, while consumer autonomy may dictate freedom of choice in undertaking such tests, health services need to ensure that potential benefits are maximised and harms prevented. Further research into the impact of testing and the views of stakeholders is required to implement appropriate regulation, guidelines and education.

P01.14 "It's our DNA, we deserve the right to test!" A qualitative analysis of a petition for the right to access direct-to-consumer genetic testing without the intermediate of a health care professional Y. Sa1, I. C. Otto2, P. Barry3, H. C. Howard1, 1BGI, Beijing, China, 2University of Basel, Basel, Switzerland, 3KULeuven, Leuven, Belgium.

As a relatively new model of genetic test provision, the offer of direct-to-consumer (DTC) genetic testing (GT) has fueled a number of scientific, ethical and policy debates. Proponents of DTC GT claim that the benefits of such testing, and counseling. Many consumers preferred to discuss the test with a health professional before and after testing, while health professionals expressed concerns for the consumer such as misinterpretation of results and increased anxiety due to perceived risks. In the review of policies, more potential harms than benefits were cited. An area of concern was the overstatement of the actual predictive power or utility of the results. Strong recommendations were made about the need to involve health professionals and to regulate test quality. We conclude that there is public interest in direct-to-consumer genomic tests. However, while consumer autonomy may dictate freedom of choice in undertaking such tests, health services need to ensure that potential benefits are maximised and harms prevented. Further research into the impact of testing and the views of stakeholders is required to implement appropriate regulation, guidelines and education.

As a relatively new model of genetic test provision, the offer of direct-to-consumer (DTC) genetic testing (GT) has fueled a number of scientific, ethical and policy debates. Proponents of DTC GT claim that the benefits of such testing, and counseling. Many consumers preferred to discuss the test with a health professional before and after testing, while health professionals expressed concerns for the consumer such as misinterpretation of results and increased anxiety due to perceived risks. In the review of policies, more potential harms than benefits were cited. An area of concern was the overstatement of the actual predictive power or utility of the results. Strong recommendations were made about the need to involve health professionals and to regulate test quality. We conclude that there is public interest in direct-to-consumer genomic tests. However, while consumer autonomy may dictate freedom of choice in undertaking such tests, health services need to ensure that potential benefits are maximised and harms prevented. Further research into the impact of testing and the views of stakeholders is required to implement appropriate regulation, guidelines and education.
P01.15 Genomics and the prevention of antisocial behavior: A comparative ethical analysis

D. Horstkötter,1,2 R. Berghmans1, G. de Wert1
1Maastricht University, CAPHRI, Maastricht, Netherlands, 2Centre for Society and Genomics, Nijmegen, Netherlands.

Current research in the genomics (and neurobiology) of antisocial behavior (ASB) trigger great hopes and expectation concerning the development of new forms of early detection of children at risk and of targeted early prevention. Children as young as preschoolers, toddlers and babies are considered the most important target-group of such efforts. While scientific research progresses continuously, it is of great importance to pro-actively consider the social and ethical implications of potential applications. This presentation reflects on this development from an ethical point of view. It investigates whether and when it may be justified to expect that early detection and prevention is mainly for the good of those identified and intervened upon, what are relevant caveats and dangers and how both are to be balanced. Issues that will be discussed encompass increased support, empowerment and emancipation as well as dangers of stigmatization and labeling, surveillance and repression, privacy concerns, and possible negative impacts on children’s development and (self) perception.

However, unlike much other ELSI research, this presentation wants to avoid any kind of gene-exceptionalism. That is, it will argue that from an ethical point of view it is of secondary interest whether future prevention practices are informed by either new genomic or traditional social/psychological findings. Instead, the ethical evaluation should focus on the characteristics, specificities and conditions of use of any measure applied. To this end, the proposed ethical analysis of early prevention practices will be conducted in a comparative way.

P01.16 Poster for ESHG: Comprehensive embryo screening. Results from two focus group studies

K. Hens, W.J. Dondorp, G.M.W. de Wert; Maastricht University, Maastricht, Netherlands.

Genetic testing of embryos is done in two contexts, preimplantation genetic diagnosis (PGD) is done when one or both of the prospective parents are known carriers of a genetic disease, be it a Mendelian condition or a chromosomal translocation. Preimplantation genetic screening (PGS) is the screening of embryos from infertile or subfertile couples undergoing IVF to select the embryo which is most likely to lead to a successful pregnancy. The technique of PGS is not standard offered to couples, because it is still uncertain whether it really leads to improving implantation rates. However, with the introduction of microarray technology, and single cell whole genome sequencing, embryos could also be screened for Mendelian disorders, susceptibility genes and potentially non-medical traits. Hence, the aim of PGS may shift from choosing the best embryo for transfer in order to ensure a successful pregnancy, to choosing the embryo most likely to develop into a healthy child, to even selecting the “best child”. In order to understand the ethical questions arising from the introduction of comprehensive screening techniques in clinical practice, we have conducted two focus group studies. One study, which was performed in October 2011, explored the opinions of top scientists in the field of embryo testing regarding the technical possibilities and associated ethical questions. The other study, performed in March 2012, was conducted with gynecologists and genetic counselors and explored opinions about possible dilemmas and their solutions in IVF practice. This poster presents the major findings and conclusions of the two studies.

P01.17 Predictive genetic testing for Familial Adenomatous Polyposis (FAP) in young children

A.A. Kattendijk, M. den Heijer, I. van Kessel, A. Wagner; Erasmus Medical Centre, Rotterdam, Netherlands.

Objective. Predictive genetic testing for familial adenomatous polyposis (FAP) is routinely offered to children at-risk from the age of 10 years onwards. Because of absence of medical benefits, potential psychosocial harm and respect to the child’s autonomy, predictive testing for FAP at younger age is reluctant. As a result, there is a lack of experience in predictive testing of children at the young age.

Patients and methods. We evaluated 13 children from 8 families, tested for an APC mutation at the age younger than 10 years (the male to female ratio was 1:6:1; mean age was 6.4 years (2-9 years); 7 APC-carriers and 6 non-carriers). All parents were re-contacted and structurally interviewed.

Results. None of the contacted parents regretted the timing of genetic testing. Ten children were tested at the same moment with an older sibling.

The main reasons for testing were 1) testing all children in a family at the same moment (4:13); 2) a possibility to prepare a child for future surveillance (3:13); 3) certainty about the future (3:13). According to the parents none of the children showed changes of mental and physical health after testing.

Conclusion. Genetic testing for FAP at a young age is desired by some parents and is experienced as causing no harm. However, the effects of early genetic testing on children and their own experience should be evaluated in future studies.

A.mouroviere@erasusmc.nl

P01.18 Factors affecting the utilization of genetic counseling services among Arab Israeli women

R.A. Sharkia, S. Allin-Shalev; 1Beit-Berl College, Beit-Berl, Israel, 2Genetic Institute, Emeq Medical Center, Afula, Israel.

High rate of consanguineous marriages, underutilization of prenatal diagnosis services and low rate of pregnancy termination of an affected fetus are the main risk factors leading to high prevalence of infant morbidity and mortality in the Israeli Arab community. The purpose of genetic counseling services is to allow the pregnant couple having informed decisions about the pregnancy, by discussion of various diagnostic tests and preventive measures, expected to decrease congenital morbidity rate. The aim of the study was to identify the factors affecting the utilization of genetic counseling services in the ‘Triangle region’ of North Israel, among Arab pregnant women who were referred by their doctors for genetic counseling. In multivariate analysis, identified factors affecting women’s utilization of genetic counseling service were level of income, access to service, abortions in the past, attitudes towards genetic counseling and the level of religiosity. Easier access of genetic counseling services, abortions in the past and woman’s positive attitude toward genetic counseling were proved to be significant predictors to utilizing genetic counseling services. On other hand, low level income and the more religious families were the main factors associated with none utilizing genetic counseling services. We recommend developing and strengthening wide-scale community-based genetic counseling service for the Arab population, preferably operated by professionals who are Arab speakers, with the background support and encouragement of religious leaders.

P01.19 Genetic counseling role in historicist middle east cultures

A. Haghighatfarid; Islamic Azad university-science and research branch, Tehran, Islamic Republic of Iran.

Genetic counseling is a process of communication and education that considering expression and transference of genetic disorders. Achieving to this communication is depended to knowledge about culture and traditions of society and psychological situation of consultant. This article is an inspection about social reactions against genetic counseling as a new branch of medical science in historic and historicist Middle East societies and their own cultures.

Public belief to “paternal big family” and “God willing destiny” are two major challenges of genetic counseling in Middle East. In case of paternal big family Middle East people especially Arab tribes of Persian Gulf region believe that familial marriage especially children of two brothers makes stable and honorable family. For example familial marriage rate in Saudi Arabia and Kuwait are 12 times more than Europe. In the other hand belief to “God willing destiny” that is based on some Qur’an sentences made kind of religious historicism. In this ideology called “Taghdir”, no person can predict about illness or healthy of newborn child because it is part of God designs and theology.

Now Middle East geneticists are facing with public distrust about genetic counseling; also increasing rate of recessive genetic disorders patients and decreasing the gene pool diversity. In the absence of state programs for public education, “perceived personal control” has a completely different definition from European societies. It seems so that spiritual influence of pioneer Muslim clerics and their fatwa (religious decree) could help to improve people’s trust to genetic counseling.

P01.20 A comparison study of the practices of genetic counsellors between France and Canada

C. Coudert1,2, L. E. Boettier1, M. Edmont1, H. Sobol1, M. Weelkens1
1Dept of Oncology and Haematology, Hospital of Strasbourg, Strasbourg, France, 2French Association of Genetic Counsellors, Marseille, France, 3Centre Paul Strauss, Strasbourg.

www.eshg.org
Abstracts - European Human Genetics Conference 2012

France, Dept of medical genetic, Hospital of Strasbourg, Strasbourg, France; Dept of genetic, University hospital, Montreal, QC, Canada; "Institut Pauli Calmettes, Marseille, France, Dept of medical genetic, Timone's hospital, Marseille, France.

Genetic counsellors are Health Professionals with specialized training and experience in the areas of clinical genetics and genetic counselling. They did work as members of a multi-disciplinary healthcare team that provides genetic services. In France, the profession of genetic counsellor is relatively recent (2005). This profession has been created due to the increasing number of genetic consultations but also face to the decrease of medical professional in this field. About Canada, the profession has been created, for the same reason, since 1985 by a genetic counsellor graduated in the United States and by the aucoinst of geneticists who exercise their profession in Canada. Members of different groups (French and Canadian) have received an electronic survey based on their background, the role and the practice of the profession of genetic counsellors in their own country. The questionnaire was sent to the Association of Genetic Counsellors which transmitted it to all the members. Data were collected during the year 2011. We are looking to see if there are major differences in the practice of exercising the profession, but also in the education and in the collaboration established between genetic counsellors and medical geneticist.

P01.21 Genetic education in Brno, Mendel 190

R. Gailliovy1,2, I. Valiovska1,2, P. Raguilts3, R. Veseliky1, J. Relichov1, D. Dostal1, M. Mazek1,2; University Hospital, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; "Mendel Museum, Masaryk University, Brno, Czech Republic; "Department of Biology and Medical Genetics, Charles University and 2nd Faculty of Medicine, Prague, Czech Republic.

The Department of Medical Genetics at the University Hospital Brno (www.fnbrno.cz) has besides its core activities (comprising genetic counseling, molecular diagnostics, pre-graduate teaching of medical genetics at the University of Brno and the Mendel University in Brno) devoted itself to the popularization of medical genetics to the lay public (http://www.mendelmuseum.muni.cz/cz/lekarska-genetika/).

Since 2009 successful series of public lectures, conducted in association with our partner institutions, on various subjects of medical genetics are organized. The 16th series, entitled “Medical Genetics for the Public” has been linked to the Gen-event known as “Mendel 190”, within which planned lecture series will be presented. Since 1985, each year, the family of Mendel`s relatives, his colleagues and different guests from the medical and scientific community, with help of the Mendel Museum, gather in the town of Vrbno pod Pradědem毁灭 Mendel’s birthplace (www.vrabne.cz). Supported by CZ.2.16/3.1.00/24022

P01.22 Creating an agenda for effective genetic educational strategies: Needs assessment and prioritization in primary care

E. J. F. Hawink1,2, J. Henneman1, S. J. van Laarik1, M. A. van Engen1, C. van der Vleuten1, G. Dinant1, M. C. Cornel2; 1Department of Clinical Genetics, Section Community Genetics, EMGO Institute for Health and Care Research, Amsterdam, Netherlands; 2School for Public Health and Primary Care, Department of General Practice, Maastricht University, Maastricht, Netherlands. 3Department of Medical Genetics, University hospital, Amsterdam, Netherlands; 4Department of Educational Development and Research, Maastricht University, Maastricht, Netherlands. 5Maastricht University, Maastricht, Netherlands. 6Department of Biology and Medical Genetics, Charles University and 2nd Faculty of Medicine, Prague, Czech Republic.

Purpose

General practitioners (GPs) are increasingly expected to deliver genetic services in daily patient care. Education in primary care genetics is considered a suboptimal and in urgent need of revision and innovation. Aims of our study: exploring the role of genetics in primary care and the need for genetics education and prioritization of GPs’ genetics education.

Methods

Three types of focus groups were held (n=44): mono-disciplinary groups of GPs and midwives, respectively and multidisciplinary groups composed of a diverse set of experts. Recurrent themes were identified after verbabin transcription and content analysis. Consecutively, a Delphi consensus procedure was conducted. A purposively selected heterogeneous panel (n=18) of experts participated. Educational needs regarding genetics in general practice in terms of knowledge, skills and attitudes, were rated and ranked in a Top 10.

Results

Four themes emerged from the focus group study: (1) genetics knowledge, (2) family history, (3) ethical dilemmas and psychosocial effects in relation to genetics and (4) insight into the organisation and role of clinical genetics services. These themes reflected a shift in the role of genetics in primary care with implications for education.

Conclusion

Results help to develop effective genetics educational strategies (including input for case-based education). Enhancement of primary care providers’ competences in genetic patient care could actually become possible.

P01.23 Developing best practice guidelines for provision of clinical genetic service - Examples of testing for monogenic subtypes

T. Rijgers1, H. Henneman1, U. Kristoffersson1, M. C. Cornel2; 1VU University Medical Center, EMGO Institute for Health and Care Research, Community Genetics, Amsterdam, Netherlands; 2Lund University Medical Center, Department of Clinical Genetics, Lund, Sweden.

Introduction: In 2010 the Council of Europe described that “The development of genetics in health care services has a major impact on the organisation of health care, leading to shifting from curative to preventive services, from in-patients to out-patients treatment, from specialised genetic services to genetics as an integral part of general health services.” The responsibilities of expert geneticists, both in laboratory and clinic, will change. Because of this shifting, new guidance on genetic service provision is urgently needed in many countries.

Methods: In Workpackage 8 within Eurogentest2 an expert meeting, questionnaire and online discussion forum were used to develop recommendations which describe the optimal practice and interaction between different parties involved, including:

• (genetic) patients and their families, the users of the services;
• medical professionals such as primary care workers and other non-genetic specialists;
• genetic professionals from clinical and laboratory background.

Results of this ongoing project include a “Temple of genetic services” depicting interactions between different stakeholders in genetic services. Also experiences with testing for monogenic subtypes have been discussed as best practices in an expert meeting. By describing practices of service provision from oncogenetics, cardiongenetics and MOBY we hope to show that different fields ask for different approaches and have their own opportunities and threats when it comes to good genetic service provision.

Implications: The tools that will be developed within this project could help health care stakeholders in different countries to improve genetic services for their citizens.

P01.24 An overview of the genetic testing offer in Europe: trends and forecast

Genetic testing services are now offered internationally, through both the public and private sectors. Physicians prescribing these tests and biologists receiving samples need to know which tests are available, where they are performed and whether identified laboratories meet quality standards. To fulfill this need, www.orpha.net was launched fifteen years ago to set up a database of medical laboratories in the field of rare diseases. Data was collected in 1 country in 1997, 15 in 2003, 26 in 2006 and 36 in 2011, with recurrent assessments and whether identified laboratories meet quality standards. To fulfill this need, www.orpha.net was launched fifteen years ago to set up a database of medical laboratories in the field of rare diseases. Data was collected in 1 country in 1997, 15 in 2003, 26 in 2006 and 36 in 2011, with recurrent assessments and whether identified laboratories meet quality standards. To fulfill this need, www.orpha.net was launched fifteen years ago to set up a database of medical laboratories in the field of rare diseases. Data was collected in 1 country in 1997, 15 in 2003, 26 in 2006 and 36 in 2011, with recurrent assessments.
downloaded from www.orphadata.org. In September 2011, 1,056 laboratories offering tests for 1,811 genes were registered. The test offer differed greatly from one large country to another: from 1,449 genes (Germany) to 541 genes (UK). In medium and small-sized countries, it ranged from 1 to 355 genes. A comparison with the information available at Geneticists for the USA highlights the need for a worldwide coordination of cross-border healthcare, as 584 genes are only available for testing in the EU member states and not in the USA. The capacity to access genetic testing on an international scale, however, both increases the availability of testing and raises significant policy issues.

P01.25 Alignment and Assessment Problems in the Undergraduate Genetics Curriculum: A View from the United States

M. Dougherty1, T. McElhinny2, B. Bowling3, J. Libarkin4
1American Society of Human Genetics, Bethesda, MD, United States, 2Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Denver, CO, United States, 3Department of Geological Sciences and Department of Zoology, Michigan State University, East Lansing, MI, United States, 4Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, United States

Backward design is a model of curriculum development that relies on identifying learning outcomes and defining what constitutes evidence of learning before planning the teaching. Although backward design is widely considered best practice, it is often overlooked by university faculty and may help explain the inconsistency between faculty teaching behavior and the genetics concepts they claim are most important. This paper will review the state of genetics instruction in the United States from the perspective of backward design, with particular attention to the goals and assessments that inform curricular practice. An analysis of syllabi and leading textbooks indicates that genetics instruction focuses most strongly on the structure and function of DNA and Mendelian genetics. At the same time, a survey of faculty indicates that other concepts, such as the application of genetics to society or the environment, are viewed as equally or even more important than certain foundational concepts. This disconnect suggests a need for more explicit goal setting prior to curriculum development. Preliminary analysis of existing assessments, specifically concept inventories developed for high education, indicates that assessments are poorly aligned with faculty goals for instruction and need to be modified into more valid and reliable measures of student conceptions.

P01.26 Considerations in the review of ethical guidelines pertaining to human genome research in Japan

Z. Yamagata
University of Yamashita, Yamashita, Japan

Ethical guidelines for human genome research in Japan were formulated in 2001, by three government ministries: the Ministry of Education, Culture, Sports, Science and Technology; the Ministry of Health, Labour and Welfare; and the Ministry of Economy, Trade and Industry. The present (2012) review has taken into consideration advances in genome research such as the implementation of studies involving large amounts of genomic information, diversification of the study design such as genome cohort studies, and the advent of next-generation sequencing technologies. The main aspects reviewed are the use of existing samples, method of collection and distribution of resources, the drafting of informed consent so that it will also be applicable to future genome research, and the disclosure of genetic information. With respect to the use of existing samples, institutions that do not possess a correspondence table can handle samples anonymized in a linkable fashion in the same way that they handle those anonymized in a non-linkable fashion. The collection and sale of samples, requirements and administrative procedures have been revised to enable the more effective use of existing samples and other resources. Regarding the disclosure of genetic information, the revisions adhere to the basic principle of disclosure with respect to the Personal Information Protection Law, but some disclosure-related issues remain unresolved.

New regulations have also been established for safety management measures related to the handling of genetic information, compliance rules for the outsourcing of genetic research, and education and training for researchers and members of ethical review boards.

P01.27 One disorder is not like another - the importance of taking a disorder-centred approach to introducing high-throughput sequencing into the clinic

S. Leonard, A. Soulier, S. Julia, A. Camhon-Thomson

Now that next generation sequencing has become a reality, it is time to examine how this technology will change the way medicine is practiced in the clinic. A particular concern is that the rapid penetration of systematic technologies into genetic medical departments blurs established frontiers between research and clinics. The benefits and risks of using the technology as part of the diagnostic toolkit for each disorder need to be considered in relation to the characteristics of the patients themselves as well as the societal context in which the tests will be offered. It is vital to consider each patient group in their own right - the different motivations for testing and expectations for the process, and the meaning of results in terms of screening, management, prevention and knowledge. During the course of the European Teghes project, which aimed to develop clinically applicable high throughput sequencing tests, a series of 7 semi-structured interviews was performed with clinicians and researchers dealing with one of four clinical areas: mental retardation, breast cancer, sensory disorders and neurodegenerative disorders. Through these interviews areas of particular and specific concern for each disorder, were highlighted. Proposals were then developed to allow an approach to the introduction of NGS technologies into the clinic in a manner which is tailored to the categories of disorder, to ensure that we are properly prepared to meet the challenges of the new technology and harness its potential for the greatest benefit for patients.

P01.28 A proposal: a family-driven social network model for clinical data sharing and research in intellectual deficiencies and other neuromuscular disorders with specific genetic causes

J. Mandel1,2,3, J. Beckmann1
1IGBMC, Illkirch, CU Strasbourg, France, 2Laboratoire de diagnostic génétique CHU Strasbourg, Strasbourg, France, 3Collège de France, Paris, France, 4Département de génétique Médicale Université Lille, Lille, France, 5Department of Medical Genetics, CHUV, Lausanne, Switzerland, 6Service de Génétique Médicale CHUV, Lausanne, Switzerland.

CGH-array has led to a rapidly growing number of genetic diagnoses of intellectual deficiency (ID) associated or not to autism. High-throughput sequencing will further accelerate the detection of mutations in ID-related genes. This will be useful for genetic counseling (when penetrance is known to be high). But the extraordinary genetic heterogeneity of ID will render extremely difficult the determination, for each specific cause (recurrent CNV or mutated gene), of genotype-phenotype correlations and natural history, the estimation of penetrance and expressivity variation, and the organization of clinical trials, except for the most frequent causes (see recent work on 16p11.2 del or dup). Symptomatic treatments will be proposed, with little chance to evaluate whether their efficacy depends on the specific genetic cause. It will be difficult to motivate busy MDs to establish and maintain the wide-ranging databases required for such studies. We propose genetic ID databases organized in a social network model, whereby clinical information would be entered mostly by the patient’s family. 23andMe or PatientsLikeMe have recently shown that such data can lead to useful research. Contacts between families affected by the same genetic cause could be established in an initially anonymous way as for Relative Finder in 23andMe, creating gene- or CNV-specific micro-networks to which interested professionals could be associated, akin to disease-specific patients associations. Anonymized data could be accessible to professionals for specific projects approved by a comity composed of health or research professionals and of family representatives. Concerned families could then decide whether to participate in such projects.

P01.29 The legal landscape of stratified medicine

A. E. Half, H. Burton1, A. Pokorska-Bocci1, J. Hitchcock2
1PHG Foundation, Cambridge, United Kingdom, 2Lawfords Davies Denoon, London, United Kingdom.

This paper examines the extent to which there is a ‘lack of fit’ between the existing framework of European legislation (and the devolved national legislation which rests thereon), and emerging applications of genomic knowledge in stratified healthcare. For example, the advent of stratified medicines has enabled the co-development of therapeutic products and ‘companions
diagnostics which are used together to prospectively target individuals who through genetic factors, are at risk of disease. This has the potential to increase drug efficacy and safety whilst ensuring greater cost effectiveness. Current legal and regulatory frameworks do not provide a clear route for developing these linked applications and the safeguards, protections, and incentives for developing packages of diagnosis, treatment and care sometimes lack coherence.

Other emerging technologies, such as the diagnostic algorithms that support the process of stratification, may not be within the remit of existing legislative frameworks at all, or may be protected by non-patent intellectual property rights, such as copyright. In other respects, the regulatory framework is predicated upon outdated assumptions, such that products and devices can always be easily differentiated, or that the processes in bringing a product, device or test to market will take place entirely within Europe, when increasingly this is a global exercise.

In combination, these factors have the potential to negatively impact upon clinical translation and national healthcare economics. This paper offers an analysis of the existing regulatory gaps and inconsistencies within Europe in the context of stratified medicine, and suggests some proposals for reform.

P01.30 Development of the Hellenic Neuromuscular Disorders (HNDR) Registry

N. Vogiatzakis, K. Kekos, K. Kosma, E. Kanavakis; Dept. of Medical Genetics, University of Athens, Athens, Greece., Athens, Greece.

Over the recent years, a growing number of patient databases are being created to accommodate patient data for various diseases. Registries acting as a hub for information and social awareness, can prove very beneficial to the patients registered and society in general, especially since they help disseminate organizations with government lobbying. They also provide valuable information to scientists, helping them to perform research on a bigger scale, having access to accumulated medical and genetic data. For neuromuscular disorders in particular, patient registries have played a significant role facilitating clinical trials designed to test for new therapeutic strategies and thus have promoted research regarding those types of diseases. This project aims to create and coordinate the first national neuromuscular disorders registry in Greece. The main concept behind the HNDR is to organize a reliable electronic database, containing clinical and personal data of all patients in order to provide important data for the study and research of neuromuscular disorders in Greece. Ultimately, the goal is to connect the Hellenic registry to the global network of patient registries that is universally being developed ensuring that patients who register in the HNDR can be retrieved if their profile fits to a clinical trial.

P01.31 Incidental findings in genetic testing: current laboratory reporting procedures

L. M. Jackson, L. Goldsmith, H. Skirton; Plymouth University, Plymouth, United Kingdom.

Incidental findings from genetic testing are defined as those that have potential health or reproductive importance and are discovered in the course of testing but beyond the aims of the initial test. Since genetic testing was initiated there has been a potential for incidental findings, but numbers are likely to increase with the emergence of array and sequencing techniques. A genetic incidental finding is unlikely to require immediate treatment; most often it will affect the relative risk of a patient developing a disease. This raises questions as to which genetic incidental findings should be returned to the patient, at what time and by whom. These issues are passionately debated in the ethical literature, however there is a paucity of empirical data on which to base recommendations. The aim of this study was to determine current practice and ascertain the views of many different stakeholders as to future management of incidental findings. In the first phase a systematic review indicated a dearth of empirical evidence on dealing with incidental findings. In Phase 2 we surveyed staff of national health service genetics laboratories in the United Kingdom to determine how incidental findings were reported. Our initial findings indicate a lack of consensus; no universally accepted set of guidelines were used and decisions were made on a case-by-case basis. This individualised approach may interfere with equity of patient care. Findings will be used to shape the qualitative collection phase of the study and generate guidelines concerning the reporting of genetic incidental findings.

P01.32 Ethical implications on disseminating complex genetic information to relatives at risk

M. Nyman1

1Department of Philosophy and History of Ideas, Aarhus University, Aarhus, Denmark.

Background: Genetic counselling focuses on providing patients with qualified professional assistance in understanding and responding to their inherited risk. Genetic information is both individual but at the same time highly familial. Decisions regarding how and by whom relatives at risk for the disorder should be informed are included in the counselling. Aim: To examine how aspects of respect for autonomy are addressed by genetic counsellors when patients have relatives deemed to be at risk. Method: Data from empirical observations of genetic counselling, insight in medical charts, and discussion with health care personnel regarding information strategies for relatives was gathered and analysed through a structured, philosophical-theoretical approach. Results: When relatives are informed by a tested patient, the outcome of their experience and perception of the information is influenced by how they are informed. Counsellors are affected by their own diagnosis and may be challenged in disseminating complex genetic information correctly to relatives. Problems particularly arise when lack of communication in families is present and when relatives are in conflict. Health care professionals are reluctant to contact relatives at risk directly, to respect their right to not know. Discussion: Existing procedures for informing relatives at risk may be inadequate. Complexities of genetic information, combined with tested patients’ emotional reactions, reduce relatives’ access to relevant information, necessary for making autonomous and rational choices about their future. A more proactive role for health care professionals seems warranted, towards increasing accurate information and knowledge of options, enabling patient and relatives to make informed, autonomous decisions.

P01.33 The challenge of education in birth defects: management of orofacial clefts

L. A. Magna, M. C. S. Basso, L. G. Amstalden-Mendes, V. L. Gil-da-Silva-Lopes; State University of Campinas, Campinas, Brazil.

Cleft lip and/or palate (CL+/-P) has an incidence of 1/650-1000 live births. It is often accompanied by comorbidities, needing multi-professional assessment. It was investigated the knowledge on this matter in a random sample of 292 students attending the last degree of Medicine, Nursing, Speech Therapy and Odontology courses in a Brazilian University. It was used a pre validated automatic applicable questionnaire on information of both anatomy and physiology of the motor oral apparatus, either of carriers and non-carriers of CL+/-P, existing family resources, indication of particular feeding methods, and skills to give genetic orientations. The questionnaire form applied to the respondents was retrieved immediately it was filled in with his/her answers. The results were treated by descriptive and analytical statistical methods, adopting the 5% significant level. As a whole, there were no significant differences among the students from the different courses. Student’s auto evaluation achieved 58.6% of them referring sufficient notion on anatomic alterations of CL+/-P, as well as 51.0% on functional ones. It was observed the lack of systematization on the knowledge of the various topics herein investigated, leading 96.2% of the respondents to not consider them capable, in their particular health field, to deal with affected individuals. Also, 48.3% referred knowledge on CL+/-P etiology, though only 86.5% answered that 99% were able to give genetic orientation for families of carriers of CL+/-P and CP, respectively. A specific multi professional discipline, which fits each particular course, would be an alternative to increase academic capacitiation of health professionals.

P01.34 The psychological impact of pancreatic cancer surveillance in high-risk individuals

F. Harincck, T. Nagtegaal1, I. Kuiljot, C. M. Aalst, E. M. Smets, J. Polev1, A. Wagner, G. Slabbert1, J. E. van Hooff, H. M. van Duijvenen1, R. Sijmons1, P. Focken1, M. J. Brunner1, E. M. A. Bliekert1

1University Medical Center Rotterdam - ErasmusMC, Rotterdam, Netherlands.

Background: Background of the study and generate guidelines concerning the reporting of genetic incident findings.
P02.001

Items flowchart (7-iF) for the clinical indication to GCK genetic test

M. Pinelli
F. Acquaviva
T. Nistico
E. Caredella
D. Pirozzi
S. Coccozza
L. Sacchetti

Background

The success of pancreatic cancer (PC) surveillance depends on the awareness of patients and doctors. In Romania, more than 95% of patients do not have a complete diagnosis or do not receive adequate care and treatment. All the indications for the etiological diagnosis of diabetes, including the autoimmune diagnostic criteria for the etiological diagnosis of diabetes, including the autoimmune approach in one of the largest Romanian pediatric diabetes outpatient clinic. Of 921 patients, 21 (2.3%) received positive indication to GCK testing according to the 7-iF. Seventeen underwent to genetic testing and 13 (76%) carried a pathological mutations. 5 were novel mutations. The flowchart had a specificity of 99% and a sensitivity of 92%, based on the estimated frequency of GCK-MODY2 in Italian diabetic patients.

Conclusion

We proposed a simple diagnostic flowchart aiming to easily identify among a diabetic pediatric population, patients with the highest probability to carry a pathological mutation in the GCK gene. Heterozygous individuals for these mutations are affected by a monogenic disease, characterized by a moderate increase in fasting glucose and Hba1c levels with, usually, no micro- or macro-vascular complications and no need of pharmacological intervention. The molecular diagnosis provides a perceptible impact on both patient’s quality of life (no need of treatment) and health care costs (less frequent follow up visits, no stick for glycemic controls or drugs to provide).

The proposed 7-item flowchart (7-iF) takes into account the most recent criteria for the etiological diagnosis of diabetes, including the autoimmune pancreatic antibodies, the Hba1c and the familiarity. We validated this approach in one of the largest Italian pediatric diabetes outpatient clinic.

Abstracts - European Human Genetics Conference 2012

www.eshg.org
Proximal deletions of the long arm of chromosome 13 have been reported only rarely. Here we present three unrelated patients with intellectual disability carrying novel heterozygous interstitial deletions encompassing 13q12.3. The proximal and distal breakpoints are similar and the deletions span about 1.4 Mb, comprising at least 11 RefSeq genes.

The patients present with moderate intellectual disability, secondary microcephaly and short stature as the leading symptoms. In addition, they experienced pronounced feeding difficulties in early infancy and later on eczema/atopic dermatitis. They display strikingly similar facial features such as fullness of the periorbital region, a flat malar region, a characteristic nose with a bulbous nasal tip and hypoplastic alae nasi, a smooth philtrum and thin upper lip.

Heterozygous deletions of 13q12.3 overlapping about 1 Mb of the distal part of the deletions in our patients have been described in healthy carrier parents of patients with Peters-Plus syndrome (an autosomal recessive disorder caused by inactivation of the B3GALT1 gene). We therefore propose that the critical region of the 13q12.3 microdeletion syndrome contains only three genes, namely, KATNAL1, LINC00426 and HMGBl. So far, little is known about the function of the KATNAL1 and LINC00426 genes in humans. HMGBl, however, is an evolutionarily conserved chromatin-associated protein which has been implicated in various disease processes.

In summary, we suggest that microdeletion 13q12.3 represents a clinically recognizable condition characterized by intellectual disability, microcephaly, short stature, a disposition for atopy and characteristic facial features. The critical region encompasses about 300 kb with 3 genes assigned to it.

P02.004
Proximal and distal 15q25.2 microdeletions - genotype-phenotype delineation and confirmation of two neurodevelopmental susceptibility loci

S. C. Doelken1, K. Seeger1, P. Hundsdörfer2, W. Weber-Ferro2, E. Klopopki2, L. Graul-Neumann1
1Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany, 2Klinik für Pädiatrie mit Schwerpunkt Onkologie/Hämatologie, Otto-Heueber Centrum für Kinder- und Jugendmedizin, Charité Universitätsmedizin Berlin, Berlin, Germany, 3Department of Paediatrics, Klinikum Neukölln, Berlin, Germany, 4Max-Planck Institute for Molecular Genetics, Berlin, Germany.

Cooper and coworkers have recently reported distal 15q25.2 microdeletions as a potential CNV locus for neurodevelopmental and neuropsychiatric disorders with variable outcome. Previously, more proximal microdeletions of 15q25.2 have been described by Wat et al. as a susceptibility locus for cognitive deficits, congenital diaphragmatic hernia, and Diamond-Blackfan anaemia (DBA).

We present two new 15q25.2 deletion patients and compare them to the 18 patients reported in the literature. Our patient 1 with a deletion overlapping both, the distal and proximal 15q25.2 deletions, presented with mild learning deficits, portal vein thrombosis, iron deficiency anaemia, short stature, and Noonan syndrome aspect. DBA is thought to be caused by reduced copy numbers of RPS17, which is normally present in four copies (two on each allele) in the proximal 1q25.2 region. We demonstrate a 50% reduction in copy number of RPS17 in our patient 1 by quantitative real-time PCR. Loss of two copies of RPS17 might be responsible for at least some of our patient's features. As the clinical spectrum of DBA includes individuals without DBA who have other DBA-associated congenital anomalies, patients with proximal 15q25.2 deletions should be monitored for development of anaemia and DBA-associated malignancies.

Patient 2 with the more distal 15q25.2 deletion presented with severe psychomotor retardation, microcephaly and epilepticiform signs. He carries two additional microdeletions, the 1q21.1 recurrent microdeletion and a hemizygous deletion on the X-chromosome encompassing OPN1H.

We contribute to the genotype-phenotype delineation for 15q25.2 microdeletions and further elaborate the characterization of these two novel microdeletion syndromes.
De novo microdeletion 2p14-p15 in a boy with developmental delay, facial dysmorphisms and sensorineural hearing loss with dysplasia of the inner ear.

B. Krubichler, D. Karafi, F. Rottensteiner, A. Hirt-Stdalmann, J. Zschocke, C. Faust

Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria, Clinical Department of Pediatrics IV, Division of Neuropediatrics and Inherited Metabolic Diseases, Innsbruck Medical University, Innsbruck, Austria, Clinical Department of Pediatrics, Marienklinik and Private Pediatric Practice, Bazen, Italy, Clinical Department of Hearing, Speech and Voice Disorders, Innsbruck Medical University, Innsbruck, Austria.

During the past years interstitial microdeletions of various segments of the short arm of chromosome 2 were recognized as a cause of mental retardation and dysmorphisms. However, most of these deletions have no recurrent breakpoints which hampers precise genotype phenotype correlation. In this situation thorough clinical characterization of patients with overlapping deletions and comprehensive database search for gene centred information may give insight into the contribution of single genes to the clinical phenotype.

Recently, Wohleber et al. (2011) described two patients with small interstitial microdeletions 2p14-p15 who presented with mild mental retardation and dysmorphisms. We report on a third patient with a de novo 2p14-p15 microdeletion. The boy presented at the age of 22 months with muscular hypotonia, developmental delay, absent speech development and facial dysmorphisms (high forehead, sparse eyebrows, short palpebral fissures, hypertelorism, thin vermillion of the upper lip, deep set ears). Measurements (height, length, OFC) were in the lower normal range. He had bilateral deafness with dysplasia of the semicircular canals and was supplied with cochlear implants. Molecular karyotyping (HumanCytoSNP-12 array, Illumina, CA) revealed a de novo 2.9 Mb microdeletion 2p14-p15 encompassing 12 genes. This deletion overlaps with those previously described, but, in addition, affects the homeobox gene MEIS1. The latter has recently been shown to be strongly expressed in the semicircular canals of the developing inner ear in chicken and therefore ID is a good candidate for dysplasia of the inner ear in our patient. This case contributes to further delineate the 2p14-p15 microdeletion phenotype.

PO2.008

Abstracts - European Human Genetics Conference 2012

PO2.009

PO2.010

A familial case of developmental delay/intellectual disability, variable psychiatric disorders and optic atrophy due to a novel 1.5 Mb deletion on 3q29

Department of Pediatrics, University of Turin, Turin, Italy, Department of Genetics, Biology and Biochemistry, University of Turin, and Medical Genetics Unit, San Giovanni Battista Hospital, Turin, Italy, Istituto di Fisiopatologia Clinica, Clinica Occlusale, University of Turin, Turin, Italy.

We report on a family segregating a 3q29 deletion centromeric to the classic ‘Chromosome 3q29 deletion syndrome’ (OMIM #609429). The proband, a 4 yr. old girl, presented with severe global developmental delay and autism. Family history was positive for psychiatric/ophtalmologic disorders.

Array-CGH analysis (Agilent, 44K) revealed a 1.5 Mb deletion on chromosome 3q29 (194,529,547-195,888,674 bp, hg18). The deletion, confirmed by a real-time PCR assay, was inherited from the mother, affected by mild depression, and was also present in the maternal uncle (anxiety/depression), two maternal aunt (schizophrenia), the maternal grandmother (microcephaly, depression and visual deficit), and her brother (schizoaffective disorder).

The deletion encompasses 14 genes, including the OPA1 gene, whose haploinsufficiency causes autosomal dominant optic atrophy type 1 (OMIM #165500). Complete ophthalmologic evaluation performed in three deleted subjects of the family (mother, uncle, grandmother) confirmed the presence of a variable degree of optic atrophy. Among the deleted genes, HES1, which encodes for a basic helix-loop-helix transcription factor, is essential for neurogenesis. This gene has been suggested to have a role in the determination of autistic spectrum disorders and could be related with the psychiatric diseases observed in the family.

In conclusion, we detected a novel 3q29 deletion associated with optic atrophy and variable neuropsychiatric manifestations, ranging from mild depression to schizophrenia.

PO2.011

EMX2 haploinsufficiency and ambiguous genitalia in a retarded boy

J. Piard, B. Magnét, F. Arbez-Gindre, D. Aubert, Y. Morel, V. Bazé, P. Jonveaux, L. Van Maldergem

1Centre de Génétique Humaine, Besançon, France, Dept of Pediatrics, Besançon, France, 2Dept of Pathology, Besançon, France, Dept of Pediatric Surgery, Besançon, France, 3Dept of Molecular Endocrinology & Rare Diseases, Lyon, France, Dept GBHBDR, Besançon, France, 4Dept of Cytogenetics & Molecular Biology, Nancy, France.

We report a 28 month-old boy, born to unrelated parents of French ancestry, presenting at birth with 46, XY disorder of sex differentiation (DSD): posterior hypospadias, micropenis (1.2 cm) bifid scrotum, atrophic testes(one undescended), a left hypoplastic ectopic kidney on ultrasound, and no useful mullerian duct residue on genitoendoscopy. Hormonal data supported a diagnosis of testicular dysgenesis: low antimullerian hormone at day 2, undetectable basal testosterone at minipuberty, slightly stimulated by HCG (1.35 nmol/L), and normal gonadotrophins. No significant alteration of SF1, WT1, Sox9 and MAML1 sequences was found, nor rearrangement of SRY or DAX1. As the decision was taken to rear him as a male, surgery was limited to only uretroplasty. Testis biopsy showed atrophic testicular tissue with widely spaced seminiferous tubules and rare spermatogonial when referred at 28m for developmental delay, no language, bruxism and clumsiness were observed, alongside with a small head (OPC-3SD). Array-CGH (Agilent 180 K) then indicated a 3.85 Mb 10q25.3-q26.12 de novo microdeletion encompassing 28 genes, including EMX2 and RAG3. We postulate that EMX2 haploinsufficiency is responsible for the masculinization defect observed in our patient, similar to what has been described in the mouse by Chung in 1998 and Miller in 2009. There are only a few descriptions of 10q25.3 microdeletion and DSD in medical literature, all but one before the array-CGH era. Our patient represents thus the second case. We recommend considering EMX2 haploinsufficiency in case of 46, XY DSD with testicular dysgenesis left without a definite molecular diagnosis.

52
PO02.012
5q31 Microdeletions: Definition of a Critical Region and Analysis of LRRMT2, a Candidate Gene for Intellectual Disability

E. Wohlböer1, A. M. Zink1, W. Kuffmann1, J. A. Lee2, J. Senderek3, E. Mangold1, U. Moog1, G. A. Rappold1, H. Engel1

1Institute of Human Genetics, Bonn, Germany; 2Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany; 3Institute of Cell Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland; 4Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany; 5Department of Human Molecular Genetics, Ruprecht-Karls-University, Heidelberg, Germany.

Microdeletions in 5q31 have been reported in only few patients to date. Apart from intellectual disability / developmental delay (ID/DD) of varying degrees, which is common to all reported patients, the clinical spectrum is very wide and includes short stature, failure to thrive, congenital heart defects, microcephaly, and dysmorphic features. Here, we report a male patient with a 0.9-Mb de novo deletion of 5q31.2, the smallest microdeletion of 5q31 reported thus far. His clinical presentation includes mild DD, borderline short stature, postnatal microcephaly and mild dysmorphic signs including microretrogнатия. In conjunction with data of seven reported overlapping microdeletions, analysis of our patient enables the tentative delineation of a phenotype map for 5q31 deletions. In contrast to the mild phenotype of small microdeletions affecting 5q31.1 and/or 5q31.3, more severely affected with congenital malformations, growth anomalies and severe encephalopathies.

A 0.24-Mb smallest region of overlap (SRO) in 5q31.2 is delineated which contains only two genes. We propose LRRMT2 as the most promising candidate gene for ID/DD in this SRO due to its expression pattern, its function as a key regulator of excitatory development and its interaction with Neurexin 1. However, mutational analysis of LRRMT2 in 330 patients with ID/DD revealed no sequence alterations, excluding intragenic mutations in LRRMT2 as a frequent cause of ID/DD in patients without microdeletions.

PO02.013
A second case of 7p22.1 microduplication: clinical and molecular characterization

E. Preikšaitienė1, A. M. Zink1, W. Kuffmann1, J. A. Lee2, J. Senderek3, E. Mangold1, U. Moog1, G. A. Rappold1, H. Engel1

1Institute of Human Genetics, Bonn, Germany; 2Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany; 3Institute of Cell Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland; 4Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany; 5Department of Human Molecular Genetics, Ruprecht-Karls-University, Heidelberg, Germany.

Aarskog-Scott syndrome is an X-linked recessive syndrome caused by FDG1 mutations and characterized by dysmorphism, short stature and brachydactyly. We demonstrate that carrier females are distinguishable based on craniofacial measurements. We evaluated 20 adult females, out of which 16 are obligate carriers, 1 is a molecularly verified carrier, and 3 are verified non-carriers. First, we compute the likelihood to be sampled from the analysed control population for each of 21 craniofacial measurements. The combined likelihood scores demonstrate a moderate recognition rate with Area Under ROC Curve (auc) of 0.74. In order to improve the recognition rate, we consider the interaction variables that correspond to all pairs of measurements. Since the individual measurements of the control population became unavailable once the statistics of each measurement were computed, we cannot directly estimate the distribution of the interaction variables. Instead, we employ a second data set of 21 adult female Navajos, for which five cranio-facial measurements that are common with the ones of the Aarskog-Scott syndrome carrier dataset are available per-person. Employing only these five measurements and correcting for the correlations among the derived interaction variables, we are able to obtain an improved recognition rate (auc of 0.78). This is significantly higher than the recognition rate obtained from these five measurements without considering the interaction variables (auc of 0.65). Therefore, our results highlight the utility of interaction variables in evaluation of facial features and support the usage of surrogate correlation matrices when such data are unavailable.

PO02.014
Phenotypic Evaluation of 8q11.1-q11.23 Deletion In a Mental Retardation Patient

E. Gumuslu1, N. Cine1, D. Sannetti1, B. Karat2, R. Askoyunlu3, S. Eren1, H. Sav1

1Kocaeli University Medical Genetics Department, Kocaeli, Turkey; 2Kocaeli University Department of Pediatrics, Kocaeli, Turkey.

We report on a 17 years old male patient with mental retardation, speaking disability and dysmorphic features. He has hyperextensibility, deep set eyes, upslunting palpebral fissures, prominent dysplastic ears, short philtrum, prominent prognathism, narrow and high arched palate, broad thumb, short and thick hand fingers and macrostomia. Family members of the patient was evaluated genetically, and we found that his mother has 3 spontaneous abortus occu-
A novel heterozygous \textit{ALX4} gene mutation in a familial case presenting parietal foramina and a mild frontonasal dysplasia phenotype

\textbf{D. R. Bertolo}, M. G. Rodrigues, C. D. C. Queiroz, C. A. Kim, M. Passos-Bueno*; 1Instituto de Ciência - HCFMUSP, São Paulo, Brazil, 2Instituto de Ciências Biológicas - Universidade de São Paulo, São Paulo, Brazil.

\textit{ALX4} encodes a transcriptional regulator involved in cell-type differentiation and development during embryogenesis, playing an important role in the processes of cranial development. We will illustrate the craniofacial heterogeneity of the \textit{ALX4}-related craniofacial malformations by describing the first familial case segregating a heterozygous mutation and with an intermediate phenotype between isolated parietal foramina and the severe \textit{ALX4}-related frontonasal dysplasia with alopexia and genital abnormality phenotype (\textit{ALX4}-related FDNG).

The proband, the second child of non-consanguineous parents, has had normal cognitive development and has craniofacial features included hypertelorism, telecanthus, epicanthic folds, long nose and fronto-parietal alopecia. These features strongly resembled his mother. He also presented with bilateral cryptorchidism and broad thumbs. Cranial and limbs X-rays disclosed only parietal foramina in both the patient and his mother.

The coding region sequencing of the \textit{ALX4} gene disclosed a novel heterozygous mutation between isolated parietal foramina and the severe \textit{ALX4}-related frontonasal dysplasia with alopexia and genital abnormality phenotype. This illustrates the broad phenotypic spectrum associated to mutations in \textit{ALX4} gene, ranging from isolated parietal foramina to a severe frontonasal involvement.

\textbf{P02.021}

A homonymous novel WDR72 mutation in two siblings with amelogenesis imperfecta and short stature - coincidence or expansion of the clinical spectrum?

\textbf{A. Kuechler}, E. Prott, B. Schweiger, J. Hentschel, I. Karth, A. Schuster, D. Wieczorek, H. Lueddecke; 1Institut für Humangenetik, Universitätsklinikum Essen, Germany, 2Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Universitätsklinikum Essen, Germany, 3Institut für Humangenetik, Universitätsklinikum Jena, Germany, 4EndoRhinologikum Ruhe, Bochum-Wittenheim, Germany.

Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous group of inherited defects of enamel formation. In isolated AI (no additional segregating phenotype), mutations in at least 6 genes are known so far, causing dominant, recessive or X-linked AI and allowing the identification of the molecular etiology in \textless{}40\% of affected families. We report on two siblings (11-year-old female and 7-year-old male), born to consanguineous Turkish parents, with mild proportionate short stature, normal OPC, mild developmental delay and with variable expression of AI. Both children presented with normal teeth, but mother, maternal grandmother and great-grandfather were also of short stature. Affymetrix GenomeWide SNP6.0 Array analysis excluded pathogenic copy number changes but showed that both siblings share large homozgyous regions. One of those regions is located on chromosome 15q21.3 and contains the WDR72 gene. Mutations in WDR72 are with two affected children, a 1.5-year-old girl (index case) and a 9-year-old boy (whom we did not examine personally). Both children had typical presentation: uncomplicated pregnancy and delivery, normal condition in first weeks of life, unexplanable fever \textgreater{}38\°C, leukocytosis and severe motor and mental delay with variable delay \textless{}1.5 years of age, stabilization and partial improvement with time, multiple petrificates and white matter lesions on CT/MRI. Along with intrafamilial likeness few differences in MRI and clinical signs were seen. There were no characteristic skin chilblains. The boy’s previous diagnosis was ‘cerebral palsy due to congenital CMV infection,’ and risk for the second child was mistakenly considered low. AGS was first recognized in the girl. Homozygosity for TREX1 mutation c.342G>A (p.Arg114Gly) was detected. The mutation is most common in European populations and is supposed to have common origin due to founder effect [Crow et al, 2006]. Evidently, ours is the first AGS Russian case which shows its underestimation in practice. AGS should be considered in ‘CBS congenital infection’ with negative virological tests.

Aicardi-Goutières syndrome type 1 in a Russian family

\textbf{E. Prott1, B. Schweiger2, J. Hentschel3, I. Karth3, A. Schuster4, D. Wieczorek5, H. Lueddecke6; 1Institut für Humangenetik, Universitätsklinikum Essen, Germany, 2Institut für Diagnostische und Interventionelle Radiologie und Neuroradiologie, Universitätsklinikum Essen, Germany, 3Institut für Humangenetik, Universitätsklinikum Jena, Germany, 4EndoRhinologikum Ruhe, Bochum-Wittenheim, Germany.}

Aicardi-Goutières syndrome (AGS) is a rare early-onset hereditary encephalopathy with some features of congenital viral infection which often leads to misdiagnosis. AGS is genetically heterogeneous, five genes are known and genotype-phenotype correlations exist. TREX1 mutations produce AGS type 1, a severe neonatal-onset form making up 25\% of AGS cases. Inheritance is autosomal recessive but few cases due to heterozygous TREX1 mutation de novo are known. We diagnosed AGS type 1 in a non-consanguineous family
a very rare cause of autosomal-recessive hypomaturation type of isolated AI. The WDR72 protein is critical for dental enamel formation but its ex- action is still unknown. By now, only 6 different truncating mutations have been published. WDR72 sequence analysis in both siblings revealed homozygosity for a novel stop mutation in exon 10 (c.997A>T, p.Lys332X) explaining the AI phenotype. Patient reports with AI and mild short stature due to a brachymelia were found in the literature. But a spine X-ray performed in the girl excluded brachymelia. Therefore, it remains unclear whether the short stature in the two siblings is due to the mutant WDR72 or segregates as an independent trait in this family.

P02.022
Identification of a new mutation in exon 1 of androgen receptor gene in a Turkish patient with complete androgen insensitivity syndrome
A. Wischmeijer, A. Nijman, R. C. Koolman, M. Berberoglu, B. Hochmair-Desoyer, S. Sauvage Erdeve, Z. Ayvaz, G. Ogul, F. A. Yüksel;
*Ankara University School of Medicine, Department of Medical Genetics, Ankara, Turkey,
1Zekai Tahir Burak Women’s Health Education and Research Hospital, Department of Genetics, Ankara, Turkey,
2Ankara University School of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Ankara, Turkey,
3Of Sami Ulus Obstetrics and Gynecology, Children’s Health and Disease Training and Research Hospital, Department of Pediatric Endocrinology, Ankara, Turkey.

We report a 22 months old girl with the diagnosis of complete androgen insensitivity syndrome (CAIS). From her medical history, we learned that she had been operated because of left inguinal hernia. Its pathological examina- tion revealed intact testes without congenital transformation of male. Ultrasonography and MRI had shown tests in right inguinal channel, but no Wolffian derivatives. In laboratory, basal testosterone was 57.6ng/dL, stimulated testosterone was 264ng/dL, stimulated DHT was 30ng/dL. Accordingly, stimulated T/DHT ratio was calculated as 8.8. Her basal LH was 2.22mIU/ mL, basal FSH was 0.94 mIU/mL. Direct sequence analysis of the androgen receptor (AR) gene showed c.88G>A mutation in exon 1 causing p.Val30Met in N-terminal domain of the AR. It may disrupt receptor activity in two ways. Firstly, val30 residue is too close to 23QNL,27 primary androgen dependent motif which stimulates hormone-receptor complex via N/C interaction. Although both amino acids are hydrophobic in nature, methionine is a bigger molecule than valine. Hence, it may distort the delicate three dimen- sional structure of the protein and interfere with receptor activity. Secondly, c.88G>A creates a noncanonical start codon. Translation initiation from this noncanonical start codon removes 23QNL,37 motif and disrupts N/C interaction. There are very few missense mutations in exon 1 shown to cause CAIS, and p.Val30Met mutation has never been reported before.

P02.023
First report of aortic aneurysm in infancy in a new family with Aneurysms-Osteoarthritis Syndrome due to a SMAD3 mutation: further delineation of the clinical phenotype
A. Wischmeijer, G. Tortora, V. Van Leufer, N. A. Bolar, G. Van Camp, E. Fransen;
P. Castrillon, G. Gargiulo, M. Bonvicini, M. Ritelli, M. Colombi, L. Garavelli, M. Seri, B. Loeyt;
1Department of Medical Genetics, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy,
2Department of Cardiac Surgery, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy,
3Department of Pediatric Endocrinology, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy,
4Department of Pediatric Cardiology, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy,
5Department of Pediatric Cardiology, Policlinico S. Orsola-Malpighi, University of Bologna, Bologna, Italy,
6Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology, Medical Faculty, University of Brescia, Brescia, Italy.

Recently, mutations in the SMAD3 gene were found to cause a new autosomal dominant aneurysm condition similar to Loesch-Dietz Syndrome (LDS), mostly with osteoarthritis, called Aneurysms-Osteoarthritis Syndrome (AOS). Our proband is a 3-year old boy who underwent correction of an inguinal hernia at 3 months and substitution of the ascending aorta for pathologic dilation at 12 months of age. He also presents LDS-like facial features and elongation and kinking of the thoracic aorta on MRI. Family history reveals aortic dilation in his mother, death due to aortic dissection of an 18-year old maternal aunt, surgical replacement of the ascending aorta because of aneurysm in a maternal uncle at 19 years of age, postpartum death of the mat- ernal grandmother at 24 years and surgical intervention because of thora- cico-aortic aneurysm in a brother of the proband’s grandmother at 54 years. Other clinical findings in affected individuals include pes planus, striae, easy bruising, dural ectasia, degenerative disc disease, hiatus hernia, premature loss of teeth. No radiologic evidence of osteoarthritis was present in the fa- mily. Molecular testing of the TGFBR1 and TGFBR2 genes, involved in LDS, resulted negative, but analysis of SMAD3 disclosed the novel heterozygous

P02.024
Neurological phenotype in Angelman syndrome
A. Jacquemet, A. Ajenjar, D. Heron, P. Charlet;
1Département de génétique, centre de référence des déficiences intellectuelles, Hôpital de la Salpêtrière, Paris, France,
2Service de Neuropédiatrie, Hôpital Trousseau, Paris, France.

We report four patients with Angelman syndrome (UB3a microdeletion) performed in 15q11.2/cell line. Th of the case presents severe extra pyramidal syndrome after neuroleptic medication. Symptoms resolved with discontinuation of treatment.

Those observations suggest high susceptibility to antipsychotic agents in this population and could be move closer to description of two Angelman patients who develop in adulthood extra pyramidal features consistent with Parkinson Disease with spectacular improvement with L-Dopa therapy (Harbord 2001).

It could be useful to perform DAF-Scan in Angelman patients. In the same way, in the mouse model (maternal loss of Ube3a), number of neurons in the substantia nigra is significantly reduced and motor deficits could be attributed to the dysfunction of the nigrostriatal pathway (Mulher- kar et al, 2010).

Furthermore the dysregulation of CaMKII could be responsible of neurologi- cal phenotype and could be improved by Levodopa.

In this population, if neuroleptic medication turns out necessary, we suggest to use atypical neuroleptic with different pharmacokinetic pathway with less affinity to Dopaminergic receptors D2.

Those results could improve our understanding of pathophysiological me- chanisms involved in Angelman syndrome and lead to finalize new therapeu- tic strategies.

P02.025
A case of mosaic paternal uniparental disomy 15 identified by SNP- array analysis
A. Fabretto, A. Skaber, M. S. Bocca, M. D. Peronne, R Gasparinì, V. Pecile;
1S.C. Medical Genetics - Institute for Maternal and Child Health - IRCCS “Burlo Garofolo” - Trieste, Italy,
2S.C. Neuropsychiatry - Institute for Maternal and Child Health - IRCCS “Burlo Garofolo” - Trieste, Italy,
3Institute for Maternal and Child Health - IRCCS “Burlo Garofolo” – Trieste, University of Trieste, Italy, Trieste, Italy.

Angelman syndrome (MIM 108390) is a complex neurodevelopmental dis- order caused by loss of function of the imprinted UBE3A gene in 15q11-1q3 region. Approximately 7% of cases are due to paternal uniparental disomy (UPD). Our case is the first child of healthy non consanguineous Italian ma- ting. He was born at term after uneventful pregnancy. At birth no anomalies were referred, birth weight = 3540g (50° centile). Growth curve was normal and at 6 yrs his parameters were weight = 37kg (>97°), height = 125cm (50°-75°) and OFC = 52cm (50°-75°). He had normal motor development (sitting = 6m, walking = 10m). He was evaluated for absence of speech. All audiological investigations were normal. He had friendly personality. No facial dysmorphisms were evidenced and no seizures were referred, although sleeping EEG showed anomalies. Molecular karyotype analysis using “Hu- manCyto-12 BeadChip” ILLUMINA, revealed a paternal UPD 15 mosaicism. Data analyzed with GenomeStudio 2011.1 (cvn Partition 3.16) and Penn- CNV, showed a 80% percentage of mosaicism, which was calculated from B allele frequencies. Results confirmed by UPD study is the first time that we can describe a somatic paternal UPD 15 mosaicism. UPD 15 patients nor- mally have milder phenotype with a better prognosis, and our case is a very mild condition with mainly severe speech delay and truncal obesity. If we compare with other cases due to somatic mosaicsisms of the imprinting cen- ter, our case could clinically overlap although maybe is still milder. Our work suggests that maybe many cases of AS could have been undiagnosed.

P02.026
Array-based genome-wide genotyping in patients with anorectal malformations and intellectual disability and/or malformations of the brain
G. C. Dworschak, M. Draukien, A. Hilde, C. Schwamm, E. Bartele, E. Schmieden;
1Institute of Human Genetics, University of Bonn, Bonn, Germany, 2Department of

Abstracts - European Human Genetics Conference 2012

www.eshg.org

55
Clinical Pharmacology, University of Bonn, Bonn, Germany, is susceptible to lead to a BSI and/or SICI phenotype. This phenotypic variation after shedding of the collodion membrane. This study highlights the importance of identifying specific transglutaminase 1 mutation profiles in bathing suit ichthyosis (BSI) and self-improving collodion ichthyosis (SICI). BSI is characterized by scaling of the skin in a bathing suit appearance, finger-like thumbs, atrial septal defect, growth retardation, and in 9 cases (60%) appeared to be inherited from an unaffected parent. In 15 cases (75%) the diagnosis was established in the group without clinical diagnosis. The prevalence of aberrations in the group with isolated CL/P reached 21%. All CNVs found (except 4 deletions exceeding 5Mb) were unique and did not encompass any known microdeletion/microduplication syndrome regions. Novel candidate genes (T brachyury, SLFN12) were suggested in the group with isolated CL/P whereas in the MCA group one of the interesting findings was del2q35 (STK36 gene). Our results demonstrate that high resolution array CGH is a powerful diagnostic tool in newborns with MCA and isolated CL/P. This study also helped in the recognition of genes involved in pathogenesis of congenital anomalies. The research is funded by the grant of the Polish Ministry of Science and Higher Education NN40759438.

RefSeq genes. All findings were confirmed by quantitative PCR. These 3p21 microdeletions, the SNP fluorescence intensity was analyzed with QuantiSNP using an Objective-Bayes Hidden-Markov model for calling putative CNVs. Preliminary results revealed probable causative deletions in five patients encompassing chromosomal regions: 6q14.3-q16.3 (16.5 Mb; 51 RefSeq genes), 13q31.2qter (28.5 Mb; 85 RefSeq genes), 17q12-q21.2 (2.1 Mb; 81 RefSeq genes), and two regions on chromosome 22q11.2 (2.5 Mb; 43 RefSeq genes, and two regions on chromosome Xq28.2-q28.3; 14.2 Mb; 111 RefSeq genes, respectively). In all these patients we identified a 7.9 Mb duplication on chromosome 3q26.32-q27.2 harboring 56 RefSeq genes. All findings were confirmed by quantitative PCR. These observations support the previously described association of microdeletion 22q11.2 and the occurrence of ARCI and/or ID suggesting this region to harbor genes, which contribute to both phenotypic features. Studying larger cohorts is likely to detect additional CNVs that might give further information on chromosomal regions and genes involved in the etiology of ARCI and/or ID.

P02.027 Specific transglutaminase 1 mutation profiles in bathing suit ichthyosis and self-improving collodion ichthyosis B. Hartmann,1 E. Bourrat,1 C. Blancheatt-Bardon,2 C. Derbois,3 S. Careu,4 J. Fischer1; 1Institut für Humangenetik, Freiburg, Germany, 2Department of Dermatology, Hôpital Saint-Louis, Paris, France, 3CEA, Institut de Génomique, Centre Nationale de Génopropage (CNV), Evry, France, 4Institut de Génomique, Centre National de Séquençage (CNS), Evry, France.

Bathing suit ichthyosis (BSI) and self-improving collodion ichthyosis (SICI) are two minor variants of generalized autosomal recessive congenital ichthyosis (ACI). BSI is characterized by scaling of the skin in a bathing suit pattern, mainly limited to the trunk, whereas SICI is characterized by complete disappearance of the skin lesions. We report genotypic and phenotypic data for a series of 132 duplications on chromosome 3q26.32-q27.2 harboring BSI or SICI due to mutations in the transglutaminase 1 gene (TG1M), including 3 previously unreported missense mutations. All our BSI or SICI patients carried at least one specific missense mutation in TG1M concerning an arginine at position 307 or 315. In two patients the disease evolved in two phases (BSI to SICI or BSI to ACI). The other 7 patients exhibited a stable BSI phenotype after shedding of the collodion membrane. This study highlights the possibility of variable evolution of the phenotype of patients with identical mutations in the same gene. Combined with data from the literature, this confirms the hypothesis that only a restricted spectrum of TG1M mutations is susceptible to lead to a BSI and/or SICI phenotype. This phenotypic variability also depends on other genetic and external factors.

P02.028 Application of high resolution array CGH in newborns with multiple congenital anomalies and isolated cleft lip/palate K. Szczulub1, K. Berwinska1, R. Smigiel2; 1Institut für Humangenetik, Freiburg, Germany, 2Department of Pediatric Surgery, Campus Virchow Clinic, Charite University Hospital Berlin, Berlin, Germany.

Molecular karyotyping by array CGH has now been widely used for genetic analysis in the setting of both multiple (MCA) as well as isolated congenital birth defects. The technique has the potential of providing diagnosis in up to 27% of newborns with MCA and accompanying chromosomal and a significant number of neonates with isolated anomalies [i.e. cleft lip/palate (CL/P), heart defect], where it can also identify new candidate genes. To assess the frequency of array-detected copy number variations (CNVs) in neonates with congenital birth defects we screened two cohorts of 33 newborns with MCA and 40 newborns with isolated CL/P using whole genome Agilent 180K (hg18) microarray with mean resolution of 16kb. We have found 19 CNVs, including 17 deletions and 2 duplications ranging in size from 27 kb up to ~16Mb. The prevalence of aberrations in the group with MCA was 25% whereas in the group with isolated CL/P it reached 21%. All CNVs found (except 4 deletions exceeding 5Mb) were unique and did not encompass any known microdeletion/microduplication syndrome regions. Novel candidate genes (T brachyury, SLFN12) were suggested in the group with isolated CL/P whereas in the MCA group one of the interesting findings was del2q35 (STK36 gene). Our results demonstrate that high resolution array CGH is a powerful diagnostic tool in newborns with MCA and isolated CL/P. This study also helped in the recognition of genes involved in pathogenesis of congenital anomalies. The research is funded by the grant of the Polish Ministry of Science and Higher Education NN40759438.

P02.029 1p22 microdeletion represents a novel contiguous gene syndrome associated Diamond-Blackfan anemia K. Karasowawa,1 M. Tominaga1, N. Furuya1, K. Enomoto1, T. Saito1, N. Nagai1, M. Masuno1, S. Hamaonose1, M. Shiono1, H. Kikumasa1; 1Kanagawa Children’s Medical Center, Yokohama, Japan, 2Kawasaki University of Medical Welfare, Kureshiku, Japan.

Diamond-Blackfan anemia (DBA) is characterized by a profound normochromic and macrocytic anemia with normal leukocytes and platelets, congenital malformations, and growth retardation. The phenotype varies from a mild form to a severe form of fetal anemia resulting in hydrops fetalis. DBA is associated with an increased risk of hematological malignancy and solid tumors including osteogenic sarcoma. Other genetic forms of anemia, such as Fanconi anemia, need to be considered and ruled out as appropriate. The mutations of nine genes encoding ribosomal proteins have been recognized to be responsible for DBA. Most of the mutations are detected by sequence analysis except for the RPS19. We present a patient with mild intellectual disability, chronic normochromic anemia, mild neutropenia, normal platelets, and multiple congenital malformations including characteristic facial appearance, finger-like thumbs, atrial septal defect, growth retardation, and vaginal atresia. The detection of chromosomal aberrations in cells after culture with a DNA interstrand cross-linking agent (MMC) failed to determine the diagnosis as Fanconi anemia. Bone marrow examination revealed hypoplastic, but showed normal balanced hematopoiesis. Microarray CGH analysis revealed a 7.9 Mb deletion at 1p22.1-p22.3, involving ribosomal protein L5 (RPL5), and transcriptional repressor protein GFI1. RPL5 is responsible for Diamond-Blackfan anemia, and GFI1 is responsible for autosomal dominant severe congenital neutropenia, where both genes are adjacent to each other. These results indicated that the 1p22 microdeletion represents a novel contiguous gene syndrome associated Diamond-Blackfan anemia, but overlapping with clinical features of Fanconi anemia.

P02.030 Array CGH with normal karyotype. Utility in pediatrics diagnosis M. Peres Sanchez1,2, A. Mora Guijosa1,2, J. Barrionuevo Porras1,2, A. González Ramírez1; 1Servicio de Análisis Clínicos. Hospital Virgen de las Nieves, Granada, Spain, 2Servicio de Pediatría. Hospital Virgen de las Nieves, Granada, Spain, 3FIBAO. Hospital Clínico San Cecilio, Granada, Spain.

Microarray-based comparative genomic hybridization (array CGH) has provided a relatively quick method to scan the genome for gains and losses of chromosomal material. This new methodologies have led to identification of novel genomic disorder in patients with developmental delay/mental retardation and/or multiple congenital anomalies (DD/MR/MCA), with a significant increase in diagnostic yield.

In this study we present the result of array CGH obtained in 150 children with normal karyotype but DD/MR/MCA. The array CGH 60k from agilent platform was performed. In 34 patients (22,66%) was detected a chromosomal deletion or duplication previously described like pathogenic copy number variants (CNVs). In 15 cases (10%) was necessary the analysis of parental samples, showing that 6 anomalies (40%) had occurred de novo and was classified as pathogenic and in 9 cases (60%) appeared to be inherited from an unaffected parent. In CL/P, it was also possible to detect a pathogenic CNV. Recent studies suggest that when aCGH is performed with an apparently normal karyotype, the diagnostic yield increases by an additional 8-17%. In our study we have obtained a 26,66% of children with pathogenic CNVs that is higher than the results obtained by other authors. This increase at the detection rate probably is due to the array type utilized.
Human body asymmetry spectrum - dysmorphic and genetic perspectives for five rare disorders

K. Pusina, O. Oshinai, G. Motei, D. Stambovski, E. Neag, L. Barbair;
1OMC Prof. Alfred Busse, Bucharest, Romania, 2Cytogenetic Medical Laboratory, Bucharest, Romania, 3National Legal Medicine Institute "Mina Minovici", Bucharest, Romania.

Human body asymmetry is a diagnosis with a large spectrum of features, with a multifactorial aetiology: physiological, osseal, neurological, genetic.

There are many aspects to discuss in involved asymmetry: situs anomalies, asymmetric cell division, laterality, asymmetric embrithy, hemisymmetries, asymmetric vascular syndromes, somatic mosaicism.

Asymmetric entities are classified in non-syndromic and syndromic, congenital or acquired, total or limited. Left-right asymmetry has important implications for human health and development.

We report our clinical experience of some rare entities with body asymmetry:

1) An infant with Beckwith-Wiedemann syndrome (MIM: 130650)
2) A newborn with probably Proteus syndrome (MIM: 176920)
3) Three cases with Klippel-Trenaunay-Weber syndrome (MIM: 149000)
4) A girl with short stature, left-right asymmetry and radiologic signs of skeletal dysplasia, with clinical diagnosis of Conradi-Hünermann syndrome (MIM: 302960)
5) A six years old female patient with diploid-tetraploid mosaoidy (92,XXXX/46,XX), demonstrated by cytogenetic studies in blood cultures, with asymmetric overgrowth, abnormal skin pigmentation, mental retardation, the first child of a family with primary subfertility. Different mechanisms involved in the development of asymmetry in these disorders are discussed: mutations of imprinted genes, mosaicism for a somatic activating mutation, pathogenic gene for vascular and tissue overgrowth, random X-inactivation in affected tissues in heterozygous female, mosaicism versus chimerism.

The diagnostic were given according to the associated clinical features. Clinical delineation of the cases with congenital growth asymmetry remains essential until pathophysiological mechanisms are elucidated. Other laboratory tests like chromosomal analysis, biochemical studies, molecular assay, applied on different tissues, help in the differential diagnosis.

ATP6V0A2-related cutis laxa: Case report and review of the literature

We report on a 2-3/4 year-old Afghan male patient diagnosed with ATP6V0A2-related cutis laxa whom we first saw postnatally and have come for routine follow-up consultations. The parents are double first cousins. The boy initially presented with excessive skin wrinkling, microcephaly with a sloping forehead, large anterior fontanelle, dysmorphic facial features (hypertelorism, downslanting palpebral fissures, broad nasal bridge, low-set ears), myopia, atrial septum defect and small penis. At the age of 2 months, an inguinal hernia occurred. Meanwhile the furrowing of the skin has markedly improved. Our patient has fortunately not shown any signs of developmental delay which is often present in patients with ATP6V0A2-related cutis laxa. All these findings are consistent with the clinical diagnosis of Wrinkly skin syndrome, the clinically mild phenotype of this disorder. Molecular genetic analysis revealed a homozygous c.1A>T mutation of the ATP6V0A2-gene. This is a yet undescribed pathogenic mutation presumably leading to an impairment of initiation of translation. The 20 exons of the gene encode the a2-subunit of the V-H+ATPase complex. Immunoabinding with an antibody against the N-terminal domain of ATP6V0A2 demonstrated loss of the a2-subunit in the patient's fibroblasts.

The ATP6V0A2-related cutis laxa is a rare autosomal recessive disorder first described in 1973 by Dr. Gazit. Up until now approximately 60 cases of ATP6V0A2-related cutis laxa have been reported. (OMIM # 278250). We compare the phenotype and findings of our case to previously published cases.

An autosomal recessive form of atrophoderma vermiculatum: Clinical and genetic characterisation

1Department of Immunology, Genetics and Pathology, Uppsala, Sweden, 2Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.

Atrophoderma vermiculatum (AV) is a rare, benign skin disorder characterized by the occurrence of pitted atrophic and depressed scars in a reticular pattern. AV usually begins in childhood by symmetric reticular or honeycombed atrophy of the cheek. The genetics behind AV is unclear as most cases appear to be sporadic and the few cases with mendelian inheritance seem to follow an autosomal dominant inheritance pattern.

We have identified a consanguineous Pakistani family segregating autosomal recessive AV. In total, the extended family contains four affected individuals, three affected siblings and their first cousin. Parents to affected individual were healthy. Affected individuals are born with normal skin. Symptoms starts at approximately one year of age by tear shedding provoked by sunlight, breeze and cold air, followed by the development of characteristic skin changes. The facial skin shows pit like areas of atrophy distributed most prominently over the cheeks, extending to the chin, upper lip, forehead and nasal ridge. The atrophic pits are separated by ridges of normal looking skin.

We have recently initiated homozygosity mapping and exome sequencing to identify the mutation behind autosomal recessive AV. The results from these efforts will be presented.

Two cases with different microarrabberations of the long arm of chromosome 15 and autism

1Department of Clinical Genetics, University Pediatrics Hospital, Medical University, Sofia, Bulgaria, Sofia, Bulgaria, 2Department of Medical Genetics, Medical Faculty, Medical University, Sofia, Bulgaria.

Autism is a complex neurodevelopmental disorder of the immature brain with unknown origin that manifests in early childhood. The exact aetiology of autism remains speculative, although it is likely to result from a complex combination of multiple non-genetic and/or genetic factors. Advances in high-resolution comparative genomics hybridization (CGH) microarray technology have revealed sub-microscopic aberrations that lead to identification of many disease-causing genomic copy variant numbers (CNVs) in autism.

Numerous reports have implicated duplications or deletions of proximal chromosome 15q as significant risk factors for autism and autism-related disorders.

We report two autistic children with 15q11-13 rearrangements. We have used genomic array Cytochip Oligo (BlueGnome, Cambridge, UK). format 2x105K, version 1.1. and BlueFuse Multi software, version 2.2. The 2x105K array detects 35 kbp imbalances on the backbone and has tiling of 20 probes over 137 OMIM disease loci. In the first case a de novo cryptic deletion of 2q36.3 region spanning 1,456 Mb and amplification of (15)q11.2-q13.1 region spanning 3,473 Mb were found in 12 years old girl with autism, severe mental retardation and dysmorphic features. The second case showed deletion of 15q1.2 region spanning 494, 905 bp in a boy with idiopathic autism. FISH experiments with BAC clone confirm the CytoChip results. These data strongly support the implication of 15q11-13 rearrangements as a predisposing factor for autism.

The clinical and genealogical diagnosis of autosomal dominant spinocerebellar ataxia in Yakutia

According to genetic-epidemiological investigations of Yakut population in Republic Sakha (Yakutia), the frequency of hereditary diseases in Yakuts are very high. Most common AD disease in Yakuts is a spinocerebellar ataxia. 80% of SCA are SCA 1 type. The high incidence of the SCA1 in Yakutia (38.6 per 100000), compared to 1-2:100000 in the world population.

The aim of study was to establish of the spectrum of genetic form of AD SCA in Yakutia.

A computer database of patients with cerebellar syndrome was established. 83 families with SCA1 and 9 familial and 66 sporadic cases of undifferentiated SCA identified by clinical and genealogical research. Differential diagnosis was performed on the five forms of ADSCA: SCACa, 3, 6, 17 and DRP-
Axenfeld-Rieger syndrome is one of the most common cardiac ion channel disease which its morbidity and mortality rate can be lessened with an early diagnosis and proper treatment. It is a cardiac repolarization abnormality that is characterized by prolonged QT interval and propensity for ventricular tachycardia (VT) of the torses de points type are the characteristics of the disease. This syndrome represent high risk of presyncope, syncope, cardiac arrest and sudden death. Jervell and Lange-Nielsen syndrome (JLNS) is one of the inherited form of long QT syndromes. It is inherited recessively and characterized by profound sensorineural deafness and prolongation of the QT interval, thus representing abnormal ventricular repolarization. JLNS has been shown to occur due to homoyzygous and compound heterozygous mutations in KCNQ1 or KCNE1. There was one clinical report on JLNS in Turkey; however, it was not confirmed by a molecular study. We identified a homozygous mutation in KCNQ1 in a 3.5-year-old female child with JLNS, who visited the hospital due to recurrent syncope and seizures and had congenital sensorineural deafness. Her electrocardiogram revealed a markedly prolonged QT interval. The sequence analysis of the proband revealed the presence of homozygous missense mutation (c.728G>A, p.R243H). Heterozygous mutation in KCNQ1 was identified on the maternal, paternal and sister side. Even if with a high dose b-blocker therapy the patient has twice VT attacks, because of this reason the implanted cardiac defibrillator (ICD) was planned and implanted. We suggest early genetic diagnosis for proper management of the disease and genetic counseling.

Axenfeld-Rieger Syndrome Type 1 - family case report

INTRODUCTION: The Axenfeld-Rieger syndrome is a rare, autosomal dominant disorder, characterized by corneal defects, iris defects and glaucoma. More than 50% of patients become blind because of glaucoma complications. Other associated developmental defects involve the teeth and facial bones.

MATERIAL AND METHODS: We present a family with Axenfeld-Rieger syndrome on four generations. Complete ophthalmic examination (biomicroscopy, gonioscopy, oculo-orbita ultrasound, corneal topography) and general examination of the patients showed ocular and non-ocular manifestations. The cranofacial and oral examination involved cephalometric radiographs and orthopantomograms. All the patients were screened for mutations in PITX2 and FOXC1 by DNA Analysis.

RESULTS: DNA Analysis of all the patients revealed a mutation of the PITX2 gene.

CONCLUSIONS: We present a family with Axenfeld-Rieger syndrome type 1 on four generations, a very rare disorder with clinical and genetic variability.

Muscle hemangiomatosis as a severe presenting feature in a patient with PTEN mutation: Expanding the phenotype of vascular malformations in Bannayan-Riley-Ruvalcaba syndrome

Y. Soysal*, T. Acar*, C. M. Lourenço*, W. Marques Jr, C. Yakıcıer*

*Afyon Kocatepe University, Afyonkarahisar, Turkey; †Zonguldak Karadeniz University Medical School, Zonguldak, Turkey; ‡University of São Paulo, Faculty of Medicine of Ribeirão Preto, Clinics Hospital of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil; †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, ‡Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paulo, Brazil, †Academia University, Faculty of Medicine of Ribeirão Preto, Neurogenetics Division, São Paul
growth patterns: neonatal macrosomia in IC1 patients, postnatal overgrowth in IC2/CDKN1C/MDM2 patients, and hemihypertrophy in UPD patients. Exomphalos was more common in IC2/CDKN1C patients, whereas diastasis recti and umbilical hernia were associated with IC1 defects, consistent with organogamy and polyhydramnios. Renal defects were typical of UPD/IC1 patients, and uterine malformations of IC1 cases. Eye anomalies and nevus flammeus were associated with IC2/CDKN1C/MDM2 genotype. MacroGLOSSIA is almost always present, was less common in UPD. Wims’ tumour was associated with IC1 defects and never observed in IC2 patients. Hepatoblastoma was typical of UPD and other tumors were randomly scattered among molecular subclasses. In BWS is definable a clear phenotype-epigenotype correlation allowing tailored follow-up and cancer screening procedures.

P02.041 Beckwith-Wiedemann syndrome - clinical findings in Polish patients with IC2 (KvDMR) hypomethylation in 11p15 region

Beckwith-Wiedemann syndrome (BWS) is characterized by overgrowth, macroGLOSSIA, abdominal wall defects and a high risk of childhood tumors. BWS is caused by various 11p15 genetic or epigenetic defects leading to defective expression of imprinted genes. The genes in 11p15 region are organized into two imprinted domains controlled by two Imprinting Centers: IC1 (H19DMR) and IC2 (KvDMR). The most common defect in BWS (~50%) is loss of methylation at IC2. Paternal UPD of 11p15, gain of methylation at IC1, mutations in IC2/CDKN1C/MDM2 and chromosomal rearrangements also result in the BWS phenotype. Some specific phenotype-epigenotype correlations are observed in BWS. However, there is a marked phenotypic variability within molecular subgroups. We present fourteen Polish patients with BWS and IC2 hypomethylation. A molecular analysis was performed by methylation sensitive multiplex ligation-dependent probe amplification (M-MLPA) in a group of thirty five unrelated BWS patients. Analysis met all the criteria for the IC2 CpG island hypomethylation in 40% of investigated patients. All the patients presented clinical features typical for BWS, although in various degree. The study underlines correlation between IC2 hypomethylation and the presence of BWS features such as: macroGLOSSIA (14/14 cases), characteristic face (14/14 cases), abdominal wall defects (12/14 cases) and anterior ear lobe creases and/or posterior helical pits (12/14 cases). An interesting finding is a relatively high prevalence of cryptorchidism (5/9 male patients). The further investigations of the genetic background of BWS in Polish population are under way. The study was financed by National Science Centre, project no. 1149/B/ PO1/2011/40 (NN407114940).

P02.042 Ophthalmic status of the patients with Bloch-Sulzberger syndrome

M. O. Mhchedze1, O. K. Jankavare1;
1Medical University named after L1 Mechnikov, St.Petersburg, Russian Federation, 2Medical Centre of St.Petersburg, Russian Federation.

Bloch-Sulzberger syndrome (BSS) or Incontinentia pigmenti (MIM 308300) is an X-linked dominant syndrome with cutaneous, neurologic, ophthalmologic, and dental manifestations. It is caused by mutations in the IKK-gamma gene (IKBG; MIM 300248, Xq28). A Garrod reported the first probable case of incontinentia pigment in 1906. Subsequently, Bloch and Sulzberger further defined the condition in 1926 and 1928, respectively, as a clinical syndrome with unique features of typical cutaneous manifestations. IKK-gamma is the regulatory subunit of the inhibitor kappa kinase (IKK) complex and is required for the activation of the transcription factor NF-kappaB (NF-kB). NF-kB is central to many immune, inflammatory, and apoptotic pathways. The incidence of BSS is believed to be 1 case per 40,000. Here we reported on 5 female patients with BSS aged from 4 to 20 yr. Proband mothers (3/5) had multiple male miscarriages. All patients had hypopigmented, atrophic patches, conical forms of their teeth and some ophthalmologic findings. Two patients had strabismus and nystagmus due to congenital opacity of the macula and optic nerve atrophy. Their visual acuity was insufficient and rehabilitation process was difficult without positive prognosis. Three patients had vitreoretinal abnormality as congenital hyperplastic persistent vitreous body complicated with traction retinal detachment. These patients have been observed formerly as the patients suffered from retrolental fibroplasia. Vitrectomy with scleral buckle was performed with successful anatomical results and preservation visual function.

P02.043 Molecular analysis of patients with Bohring-Opitz syndrome

A. Bohring1, S. R. Braddock2, A. Destree3, D. R. Granger4, L. Grau-Neumann5, M. Hannibal6, N. J. Leonard7, P. Muschle8, G. G. Oudesluijs9, A. Pichardt7, P. Thierry10, D. Wiczworek1, P. Weicker1, A. Röpke12; 1Institut für Humangenetik, Universität Wilhelmshöhe-Universitäts-Münster, Münster, 2Division of Medical Genetics, University Hospital and Clinics, Columbia, MO, 3Institut für Pathologie und Genetik, Charleroi, Belgium, 4Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO, 5United States National Virchow Research Institute, Aurora, WI, 6Alabama Department of Public Health, Birmingham, AL, 7Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada, 8Institut für Humangenetik, Universitätsklinikum Magdeburg, Magdeburg, Germany, 9Department of Clinical Genetics, University Medical Center Groningen, Groningen, Netherlands, 10Children’s Hospital of Wisconsin, Milwaukee, WI, United States, 11Department de Pediatrie, Hopital Paul Morel, Vensol, France, 12Institut für Humangenetik, Universität Duisburg Essen, Essen, Germany.

Bohring-Opitz syndrome (BOS) is a rare condition comprising distinct facial features including bulging forehead over the metopic suture, frontal nevus flammeus, exophthalmos, retinal abnormalities, hypertelorism, upslanting palpebral fissures, and cleft lip and/or palate, intrauterine growth retardation, severe failure to thrive, flexion deformities of the upper limbs, lower limb deformities, severe developental delay, and death often early in childhood. Recently, ASXL1 nonsense mutations were identified in 7/13 suspected BOS cases as the cause of the syndrome [Hoischen et al., 2011]. Here we report on 10, clinically unoubtful cases with BOS. All of them fulfilled the diagnostic criteria proposed by Bohring et al. [2006] and all carry a private, previously undescribed heterozygous nonsense/framenesh ASXL1 mutation. As far as parental DNA was available for analysis, the mutations were shown to be de novo. Thus, our data further support ASXL1 as the main cause of BOS and confirm exon 13 (NM_015338) as mutational hotspot in this syndrome. In addition, our data show that in clinically well characterized cases the detected mutation rate may be 100%. Further carefully performed genotype-phenotype studies are necessary to specify the most appropriate key symptoms and to differentiate between BOS and other phenotypically overlapping syndromes or to prove genetic heterogeneity.

P02.044 Clinical Spectrum and Natural History of Bohring-Opitz (BOPS) (BOS) syndrome, in the three first Italian Patients

G. Scarselli1, F. Fiorini1, F. Scarano1, L. Di Medici1, P. Magini1, M. Seri1, M. Della Monica2, E. Lapo1, S. Guazzetti1, G. Scarlato1, M. Giovannucci Uzielli3, P. Fiorini3, F. Scarano4, L. Di Medici1, M. Seri1, M. Della Monica2, G. Scarlato1, M. Giovannucci Uzielli3; 1Genetic Science, Firenze, Italy, 2U.O.C. Genetica Medica Ospedale di Benefvento, Benevento, Italy, 3Genetic Science - Dept. of Science Gyn-Obst. - University of Bologna, Bologna, Italy, 4U.O.C. Ospeilade Anna Meyer, Firenze, Italy, 5U.O.C. Genetica Medica Ospealde di Benefvento, Benevento, Italy, 6Medical Genetics - Dept. of Science Gyn-Obst. - University of Bologna, Bologna, Italy, 7Institute of Human Genetics, University of Florence, Firenze, Italy, 8University of Florence - Pediatric Neurology Unit, Firenze, Italy, 9Intensive Therapy Unit - Ospealade Anna Meyer, Firenze, Italy, 10U.O.C. Genetica Medica Ospealde di Benefvento, Benevento, Italy, 11U.O.C. Genetica Medica Ospealde di Benefvento, Benevento, Italy, 12University of Bologna, Bologna, Italy.

Bohring-Opitz Syndrome; BOPS (#605039), also known as C-like syndrome, is a very rare malformation disorder, reported until now in about twenty, unrelated, subjects. The delineation of BOS was made by Bohring in 1999, on the basis of a complex phenotype characterized by IUGR, feeding problems, severe intellectual ad motor disability, trigonocephaly, frontal nevus flammeus, exophthalmos, cleft palate, flexion of elbows and wrists, hirsutism, micrognathia, recently [Hoischen et al., 2011] exomencing the exomes of 15 unrelated subjects with BOS, identified mutations of ASXL1 gene, in 7 of them, suggesting the genetic heterogeneity of this disorder. Here we report the follow-up study of three, unrelated, Italian subjects with BOS, and we briefly...
underline the natural history steps, and the major clinical aspects useful for the diagnosis at different ages. The first two children (a female and a male) are still alive, respectively aged 3 and 7 years; the third patient (a female) passed at age 22. Only the male is able to walk. Absolute lack of language in all patients. Extremely similar, clinical phenotype at birth, with characteristic face, frontal nevus flammeus, severe myopia, BOS "attitude." The face was definitely less typical in the third patient since the age 15. Severe mental retardation in cases 1 and 3: the male interacts by using cards with images and alphabetical letters: Sequencing analysis of ASXL1 gene in the first and second child, revealed new mutations, respectively c.2407_2411del5 [p.Q803TfsX17] and c.2893C>T [p.R965X]. We are looking for biological samples of the third patient to screen the ASXL1 gene.

P02.045
Unusual presentation of combined sagittal-metopic synostosis represents the second case of the Boston-type craniosynostosis syndrome
A. Janssen1, M. J. Hosen2, P. J. Coucke2, A. M. van Akkeren2; 1Department of Paediatrics, Jan Palfijn Hospital, Ghent, Belgium, 2Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.

Background. Craniosynostosis, caused by early fusion of cranial sutures, can be divided into three major types of sagittal (scaphocephaly) or metopic suture (trigonocephaly). Though often occurring as isolated findings, their co-existence in a craniosynostosis syndrome is infrequent and mostly sporadic.

Case description. The male proband presented with premature fusion of the sagittal and metopic suture. Imaging revealed also coronal synostosis and multiple endocranial hypoplastic areas. Radiographs demonstrated bilateral agenesis of the middle phalanges in the feet. Family history revealed the father, his sister and half-sister to have scaphocephaly with 3-4 syndactyly. The paternal grandfather did not have a phenotype, though the great-grandfather had bilateral 3-4 syndactyly. Molecular analysis revealed a mutation (p.P148L) in the MSX2 gene, which has been associated with the Boston-type of craniosynostosis in a single family (Warmer et al., 1993). Segregation analysis confirmed non-penetration in the grandfather.

Conclusion. In this four-generation family with various expression of scaphocephaly and severe trigonocephaly, molecular analysis revealed a missense mutation in MSX2, previously described in the Boston craniosynostosis family. Besides unique features such as incomplete penetrance, limb abnormalities and the cranial sutures involved, our patients share with the original family autosomal dominant inheritance with anticipation and the endocranial hypoplastic areas. Though these findings are diagnostic clues for MSX2-related craniosynostosis, the initial patients in this family presented with isolated scaphocephaly and syndactyly. MSX2 analysis should therefore be considered in patients with scaphocephaly, especially if a positive family history for craniosynostosis or syndactyly is present.

P02.046
Unusual Phenotype of Brachydactyly in a Patient with a GDF5 Splice Mutation
M. Rieger1, S. Mundlor1, S. Reif1, F. R. Kreuz1, J. Pachshle1, S. Krüger1, A. Bier1; 1Gemeinschaftspraxis für Humangenetik, Dresden, Germany, 2Institut für Medizinische Genetik und Humangenetik der Charité, Berlin, Germany.

Brachydactyly (BD) is characterised by shortening of digits due to abnormal development of phalanges and/or metacarpals. BD has been classified on an anatomic basis into five types (A to E) with several subgroups. This group of inherited hand and foot malformations usually follows an autosomal dominant inheritance.

In recent years, mutations affecting the GDF5, a signal protein of the bone morphogenetic protein family, have been shown to result in skeletal malformation syndromes such as brachydactyly type A2 (HDA2), brachydactyly type C (BDC), proximal symphalangism, multiple synostoses syndrome 2 and acromesomelic dysplasias of the Hunter-Thompson, Grebe and DuPan types. Here we report on 21-year-old male with hypoplasia of all middle phalanges, shortened metacarpals except of the 2nd metacarpal and kidney dyplasia/hypoplasia, scoliosis, shortening of his arms' length and Madelung deformity. Complete analysis of the growth/differentiation factor 5 (GDF5) gene identified heterozygosity for a novel splice variant in intron 3 (c.631+2T>G). Until now, no splice mutations have been described for GDF5. The phenotype of our patient could not be classified as one of the well-known types of BD, since there are overlapping features of several skeletal malformation syndromes. Hence, our findings extend the spectrum of phenotypes caused by mutations in the GDF5 gene.

P02.047
6p24.2 microdeletion involving TFA2P2 without classic features of branchio-oculo facial syndrome.
C. P. Barnett, S. Yu; 1Women's and Children's Hospital/SA Pathology, North Adelaide, Australia, 2SA Pathology at Women's and Children's Hospital, North Adelaide, Australia.

Branchio-oculo-facial syndrome (BOM, MIM 113620) results from haploinsufficiency of TFA2P2 on 6p24.2. The cardinal features of BOM are pseudo-cleft of the upper lip, brachial sinus/post auricular linear skin lesion, auricular/lip pits, lacrimal duct obstruction, short stature and intellectual disability. Other features described include coloboma of the iris/retina and preaxial polydactyly. Here we describe a mother and daughter with a deletion at 6p24.2 involving TFA2P2 but with a clinical presentation that would not have led to a diagnosis of BOM. The proband was seen at 3-months of age. She was growth restricted at birth (1985g at 37 weeks gestation). Examination revealed a non-dysmorphic infant with no evidence of a branchial sinus, linear skin lesion or pseudo-cleft of the lip. A blocked left lacrimal duct was diagnosed in the first few weeks of life. Numerous investigations were performed because of growth restriction and poor feeding. Hearing was normal and renal ultrasound revealed mild pelvicalyeal dilatation. Array CGH revealed a 593 kb deletion at chromosome 6p24.2-p24.3 involving TFA2P2. The infant's 26-year-old mother was also found to carry the deletion. She has a mild intellectual disability and good general health. She had lacrimal duct obstruction until 11 years of age, requiring surgical intervention. She had normal hearing and normal kidneys and was of normal stature. Close examination of her branchial region and lips/philtrum was normal.

This case adds to the growing list of atypical presentations of "classical" single gene disorders which have only come to light in the array CGH era.

P02.048
BRESEK/BRESHECK syndrome and IFAP syndrome are allelic disorder caused by mutation in MBTPS2
S. Mizuno1, M. Nakai1, K. Imao1, Y. Yamada1, R. Kimura2, O. Shirou1, N. Okamoto1, Y. Mizuno1; 1Osaka Central Hospital, Aichi Human Service Center, Kasugai, Aichi, Japan, 2Nagoya University Graduate School of Medicine, Nagoya, Japan.

BRESEK/BRESHECK syndrome is a multiple congenital malformation characterized by brain anomalies, retardation, ectodermal dysplasia, skeletal deformities, ear or eye anomalies, and kidney dysplasia/hypoplasia, with or without Hirschsprung disease and cleft palate/cryptorchidism. The syndrome is quite rare, but the combination of ectodermal dysplasia, vertebrae anomaly and Hirschsprung disease is unique to this disease.

Here, we report the fourth male patient presenting with brain anomaly, mental and growth retardation, ectodermal dysplasia, vertebra (skeletal) anomaly, Hirschsprung disease, ear anomalies (low-set and large ears), cryptorchidism, and kidney anomalies; these manifestations fulfill the clinical diagnostic criteria of BRESHECK syndrome. Since all the patients with BRESEK/BRESHECK syndrome are male, and X-linked syndrome of ichthyosis follicularis with atrichia and photophobia (IFAP) syndrome sometimes associates with some of the features of BRESEK/BRESHECK syndrome, such as mental retardation, vertebral and renal anomalies, and Hirschsprung disease, we analyzed the causal gene of IFAP syndrome, MBTPS2, in our patient and identified an R429H mutation. This mutation has been reported to cause the most severe type of the IFAP syndrome, including neonatal and infantile death. These results demonstrate that the R429H mutation in MBTPS2 causes BRESEK/BRESHECK syndrome.

Since the original description of IFAP syndrome did not include structural abnormalities, and photophobia, which is one of the triad of IFAP Syndrome, is hardly diagnosed in severely intellectually disabled patients as present case, we propose BRESEK syndrome remains as a clinical entity for diagnosis of congenital anomaly syndrome.

P02.049
Detailed analysis of IFG2 isoforms in patients with imprinting defects
U. Martine1, C. Rudloff1, D. Langer1, P. Bohne1, W. Jesen1, C. Eider1, N. Bachmann1, C. Bergmann1, T. Eggermann1, B. U. Zabel1, T. Enkel1, D. Prawitt1; 1Institute for Pediatrics and Adolescent Medicine, University Medical Center, Mainz, Germany, 2Bioclassenta Institute for Medical Diagnostics GmbH, Ingelheim, Germany, 3Institute of Human Genetics RWTH, Aachen, Germany, 4Center for Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany.
As part of the network "Imprinting Defects" we aim to understand the regulatory mechanisms of the human organism to achieve monoallelic gene expression and how this is altered in patients with the imprinting defects Beckwith-Wiedemann (BWS) and Silver-Russell syndrome (SRS). They may result from deletions with preserved genes within the chromosomal region 11p15.5. Altered methylation at additional imprinted gene loci can be found in a significant proportion of BWS and SRS patients with unknown molecular cause or pathogenic consequence. One designated effector gene involved in BWS and SRS growth defects is IGFB2. It is hyperactivated by loss of imprinting in most BWS patients and silenced in most SRS patients with 11p15.5 epimutations. The IGFB2 gene is transcribed from five promoters, each of which drives the transcription of the coding region with an individual first exon. They differ in allele- and tissuespecificity. In addition an alternative splice site lies within the second coding exon present in all promoter isoforms. We analysed the distribution of IGFB2 splice-isoforms and promoter usage in selected human fetal tissues and in primary fibroblasts of BWS and SRS patients as well as in patients with multi locus hypomethylation, a patient with an unrelated overgrowth phenotype and normal controls to determine disease associated isoform usage. In addition we established genetically engineered HEK293 cells with isoform specific IGFB2 overexpression and analysed the potential of enhanced IGFB2 thresholds in triggering tumorigenesis by critically altered Akt/mTOR and Erk1/2 pathways.

P02.050

Investigation of notch3 in cadasil in 10 patients in Iran

M. Balali, O. Arani**, S. Saber**, V. Ghodsinijadehbalshou**t, M. Hossamshad**

Special Medical Center, Tehran, Islamic Republic of Iran,
National Institute for Genetic Engineering and Biotechnology,
Dept. of Medical Genetics,
Tehran, Islamic Republic of Iran.

Cerebral autosomal dominant arteriopathy with sub cortical infarcts and leukoencephalopathy (CADASIL) is an inherited cerebrovascular disease due to mutations of the Notch3 gene at the chromosome locus 19p13. The symptoms of CADASIL are attributed to mutations in this gene. Allelic variations of Notch3. In addition to the clinical workup for genetic testing for this mutation can be used in familial or sporadic ischemic disorders of undetermined cause to assist in confirming a diagnosis. Our lab's CADASIL DNA Sequencing Test will detect approximately 85% of the mutations resulting in the phenotype of the disease. CADASIL experts recommend that people under 65 with the following characteristics should be tested: Depression, memory loss, behavior change, migraine, and/or stroke-like symptoms, such as recurrent stroke at a young age (<29 years old) when associated with prominent white matter disease, diffuse white matter hyperintensities on MRI. Lack of significant vascular risk factors. It is important to note that because there is no treatment for CADASIL, a similar counseling protocol to Huntington's disease should be followed for presymptomatic patients. It is understood that presymptomatic genetic testing for CADASIL can have potential benefit and clinical utility. Often under appreciated, however, are the types of possible adverse outcomes and the severity and duration of the problems. The American Academy of Neurology has published recommendations and practice guidelines. We have checked eighteen patients since then (referred to our lab or diagnosed by Dr. Aran). Six of the eighteen cases were affected by CADASIL and the others were normal.

P02.051

Eleven patients with Camptodactyly-Arthropathy syndrome in a kindred Turkish family caused by homozygous deletion in PRG4 gene

1 Istanbul University, Cerrahpasa Medical Faculty, Istanbul, Turkey, **2** Yale University, Departments of Neurosurgery and Genetics, New Haven, CT, United States.

The camptodactyly-arthropathy-coxa vara-penicillarits syndrome (CACP) is an autosomal recessive condition characterized by the association of congenital or early onset camptodactyly and noninflammatory arthropathy with synovial hyperplasia. Progressive coxa vara deformity and/or noninflammatory pericardial or pleural effusions have been observed in some patients. CACP is caused by mutations in Proteoglycan 4 (PRG4) gene, encodes a protein that presents in synovial fluid and at surface of articular cartilage and acts as lubricating glycoprotein in protecting joints. We describe two siblings at ages 2 and 9, and two patients who are their second cousins at ages 3 and 7, respectively. It was noticed that PRG4 mutations were identified in 7 distinct relatives of the patients who share same findings. Swelling of wrist and elbows were earliest symptoms of the disease, even in first years of life. The age of arthropathy onset was 1 year, and camptodactyly began around 4 years old. Severe hip and vertebral involvement were developed during at the age of 20's. Patients had mild coxa vara. Although none of the patient had pericarditis, sister of one of the patients with same findings died due to cardiac problems at 34 years old. A novel frameshift mutation including 1 bp homozygous deletion (c.1068delA) in PRG4, predicting early truncation of the protein (p.Thr358fs), was found. This is the first report of PRG4 mutation in Turkish family with CACP and supports the hypothesis that only termination mutations cause phenotype since all previously reported PRG4 mutations are predicted to produce a premature termination.

P02.052

A novel missense mutation (c.1442C>A) in the BRAF gene caused Cardio-facio-cutaneous syndrome: Case report

1 Department of Medical Genetics, Dr. Behcet Uz Children's Hospital, Izmir, Turkey, **2** Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey, **3** Department of Pediatrics, Dr. Behcet Uz Children's Hospital, Izmir, Turkey, **4** Department of Pediatric Cardiology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey.

Cardio-facio-cutaneous syndrome (CFCs) is a multiple congenital anomaly disorder characterized by craniofacial features, cardiac defects, ectodermal anomalies and neurocognitive delay. CFCs is caused by mutations in BRAF, MEK1, MEK2, KRAS genes encoding proteins of the RAS/ MAPK signaling pathway. In more than 70% of CFCs patients, BRAF gene mutations are detected. BRAF is an oncprotein and somatic mutations occur in BRAF in approximately 8% of all human cancers. The most common germline BRAF mutations have been identified in 7 out of 18 exons (6, 11-16). In this case report, we present a ten-year-old boy who had characteristic craniofacial features of CFCs, short stature, hypertrophic cardiomyopathy, café au lait spots, developmental delay and severe mental retardation. A novel, de novo missense mutation (c.1442C>A) leading to A481E aminoacid substitution in exon 12 of the BRAF gene was detected by sequence analysis. This mutation was not detected in both parents. It is considered that the novel mutation defined in the case presented causes CFCs with severe mental retardation and the sequence analysis of exons 6, 11-16 of the BRAF gene is recommended in the first step for the molecular diagnosis.

P02.053

Copy number variations shape human brain: The contribution of the array-GGH in the understanding of the genetic bases of congenital brain malformations and cognitive disorders

1 Centre for Human Genetics - University Hospitals of Leuven, Leuven, Belgium, **2** Department of Genetics and Research Unit 04/1/9/08-05 “Molecular Immunogenetics" – Faculty of Medicine,ousse, Tunisia, **3** Department of Paediatrics – Faculty of Medicine, Sousse, Tunisia, **4** Department of Genetics – University hospital Hedi Chekir and Faculty of Medicine, Sfax, Tunisia, **5** Department of Congenital and Hereditary Diseases - University Hospital Charles Nicole & Faculty of Medicine, Tunis, Tunisia, **6** Department of Paediatric Neurology and Centre for Developmental Disorders – University Hospitals of Leuven, Leuven, Belgium.

Copy number variants (CNVs) are genomic segments which are duplicated or deleted among different individuals. Following the recent technological advances leading to the development of molecular cytogenetic techniques and the emergence of the array comparative genomic hybridization (aCGH), CNVs have gained considerable interest as a source of genetic variation likely to play a role in phenotypic diversity and disease. Several new genomic disorders caused by CNVs of genes whose dosage is critical for the physiological function of the central nervous system (CNS) have been recently identified. We applied aCGH in a group of patients presenting CNS anomalies to map novel loci involved in brain malformations. Here, we describe some evidence that CNVs are responsible for congenital CNS anomalies ranging from size anomalies to structural brain malformations and neural migration disorders. Illustrated respectively in patients with microcephaly, agenesis of corpus callosum, and pachygyria.

Here, we discuss the mechanisms mediating these rearrangements and suggest candidate genes for the respective disorders within the mapped loci.

P02.054

Report of one case of cerebro-oculo-nasal syndrome

Cerebro-Oculo-Nasal syndrome (CONS) is characterized by structural ano-
malies of the central nervous system, by ocular alterations ranging from anophthalmia/microphthalmia to normal eyes, and by proboscis-like nares. It was first reported by Richieri-Costa and Guin-Antón in 1993 in two patients with clinical anophthalmia, abnormal nares, central nervous system anomalies, and mental retardation. In this report, we present an additional sporadic case of this syndrome. A 1-month-old boy from a consanguineous parents with a pregnancy complicated by a gravid diabetes had unilateral anophthalmia, hypertelorism, single nostril orifice and asymmetric mouth. He also had a fan-like ear and three preauricular appendages. Additional findings were umbilical hernia and abnormal dermatoglyphics. CNS malformations will be explored by MRI. Other investigations including cardiac and abdominal ultrasonographies were normal. Karyotype showed a de novo mosaic reciprocal translocation between chromosomes 2 and 3: 46.XYt(2;3)(p22;p12)[10]/46,XY[16]. Until now about twenty cases of Cerebro-Oculo-Nasal syndrome were reported. Despite marked variability, CEN is so unique that differential diagnosis is extremely limited because of its characteristic nasal configuration. Indeed, our patient presents also proboscis-like nares. Facial clefting was variable among reported cases, it was absent in our patient. All cases reported so far have been sporadic suggesting that the syndrome may be due to a new dominant mutation. Characterization of chromosomal breakpoints is planned.

P02.055 Congenital myopathy caused by a novel missense mutation in the CFL2 gene
C. W. Ockeloen1, J. Gilhuis1, R. Pfundt1, H. Kamsteeg2, P. Agramav3, A. Beggi3, A. Darpe3, A. Hamdan-Amin2, A. Diekstra2, A. V. M. A. Kröner1, M. Lammens3, N. van Alfen3; 1Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 2Department of Neurology, Reinier de Graaf Group, Delft, Netherlands, 3Program on Genomics and Division of Genetics, The Mount Sinai Center for Orphan Disease Research, Children’s Hospital Boston, Harvard Medical School, Boston, MA, United States, 4Department of Neurology, Haga Hospital, The Hague, Netherlands, 5Department of Medical Genetics, Utrecht University Medical Centre, Utrecht, Netherlands, 6Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 7Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands.

Nemaline myopathy and myofibrillar myopathy are heterogeneous myopathies that both comprise early-onset forms. We present two siblings from a consanguineous Iraqi Kurdish family with predominant axial and limb girdle weakness. Muscle biopsies showed features of both nemaline myopathy and myofibrillar myopathy. We performed homozygosity mapping in both siblings using an Affymetrix 250K NspI SNP array. One of the overlapping homozygous regions harboured the gene CFL2. Because a mutation in CFL2 was identified in a family with nemaline myopathy, we performed sequence analysis of the gene and a novel homoygous missense mutation in exon 2 (c.19G>A, p.Val7Met) of CFL2 was identified in both siblings. CFL2 encodes the protein coflin-2, which plays an important role in regulation of sarcomeric actin filaments. To our knowledge, this is the second family in which a mutation in CFL2 causes an autosomal recessive form of congenital myopathy with features of both nemaline and myofibrillar myopathy. Given the clinical variability and the multihypothesis of histological features of congenital myopathies, CFL2 sequence analysis should be considered in patients presenting with an autosomal recessive form of congenital myopathy.

P02.056 Charcot-Marie-Tooth families analysed with High-Throughput Sequencing
R. Hoyer1,2; Ø. L. Busk1, Ø. L. Hollo1, L. Strand1, C. F. Skjelder1, G. J. Braathen1,2, M. B. Russell3,4; 1Department of Laboratory Medicine, Section of Medical Genetics, Telenor Hospital, Skien, Norway, 2Department of Ophthalmology, Nasjonalt sykehuset i Skien, 3Department of Pediatrics, Catholic University School of Medicine, Rome, Italy, 4Department of Pediatrics, Catholic University School of Medicine, Rome, Italy.

Background
Charcot-Marie-Tooth (CMT) is the most common inherited neuropathy, affecting 1 per 1,214 persons in the general population. 47 CMT related genes are known to cause CMT by altered gene dosage (20-50%) or point mutations. Genetic analysis to discover point mutations have traditionally been performed by Sanger sequencing, a time consuming and expensive analysis. Most genetic laboratories choose to sequence only the most frequently involved genes, meaning that more than 50% of the patients remain genetic undiagnosed. High-Throughput Sequencing (HTS) offers the possibility to sequence many genes at the same time, fast and to a low cost compared with traditional methods.

Method
HTS has been used to analyse point mutations in 68 CMT families from a defined epidemiological population. This has been performed by designing panels containing the known CMT genes, enriching for CMT gene areas. Compared to exome sequencing, sequencing a panel of genes means more samples at shorter time at a lower cost, and fewer problems with unrelated findings.

Results
To our knowledge this is the first report to sequence all the presently known genes related to CMT with HTS for a large population based material. These results will establish the CMT gene frequencies in the Norwegian population which probably might be transferred to other populations.

The results will be presented at the meeting.

P02.057 The clinical presentation of a newborn girl with isodicentric chromosome 22
L. Måmecke1, C. Hoefers1, M. Hagemann1, K. Hoffmann1, D. Wand1; Institut für Humangenetik, Halle, Germany.

We assessed a ten days-old girl with bilateral pterygium skin tags, downs- sitting palpebral fissures, micrognathia, deep-seated ears and an anal atresia with vaginal fistula. We suspected cat eye syndrome (CES) which was confirmed by subsequent ophthalmologic evaluation describing coloboma of iris, choroid and retina. Accordingly, cytogenetic analysis identified an extra biallellated marker chromosome in all metaphases of a lymphocyte culture (47,XX, idic(22) (pter-q11.2:q11.2→qter)). The finding was confirmed by FISH and MLPA analyses. Further clinical studies revealed an open foramen ovale and a ductus arteriosus as well as biliary atresia. Jung Min Ko et al. (2010) reported a patient with the same partial trisomy of chromosome 22q11.1, but with milder clinical features. CES is a complex malformation syndrome with a significant clinical variability ranging from severely affected children to phenotypically unaffected parents carrying the same cytogenetic abnormality. Accordingly, only 40% of the CES-patients present the classical triad of symptoms iris coloboma, anal anomalies, and pterygium skin tags. In addition, CES may be associated with cardiac defects, hepatic, renal and skeletal abnormalities and mental retardation. The cause of this clinical variability remains to be determined. The classical CES is present in most cases and characterized by supernumerary biallellated and isodicentric marker chromosome containing duplicated material of chromosome 22. The phenotype does not correlate with the size of the marker chromosome. It may be speculated whether mosaic conditions, the genetic background and/or epigenetic factors affect the phenotypic presentation. However, life threatening problems to consider are severe cardiac, renal and/or biliary defects.

P02.058 Chromosome 9p deletion syndrome and sex reversal: Novel findings and redefinition of the critically deleted regions
R. Onceimo1, D. Orteschi1, M. Scialdone2, A. Rossoavita3, L. Nannini4, G. Zannoni1, G. Marrocco2, D. Battaglia1, C. Pandolfi1, G. Neri6; 1Department of Pediatrics, Catholic University School of Medicine, Rome, Italy, 2Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy, 3Institute of Pathology, Catholic University School of Medicine, Rome, Italy, 4Department of Pediatric Surgery, San Camillo De Lellis, Rome, Italy.

Deletions of the short arm of chromosome 9 are associated with two distinct clinical entities. Small telomeric 9p24.3 deletions cause genital anomalies in male subjects, ranging from disorder of gonadal sex to genital differentiation anomalies, while large terminal or interstitial deletions result in 9p-malformation syndrome phenotype. The critical region for non symmetric 46,XY sex reversal was assigned to a 1Mb interval of chromosome 9p, extending from the telomere to the DMRT genes cluster. The 9p- syndrome was associated to band 9p22, but a phenotypic map has not been established for this condition, probably because of the lack of detailed molecular and/or phenotypic characterization, as well as frequent involvement of additional chromosome rearrangements. Here we describe a unique patient with a small isolated 9p terminal deletion, characterized by array-CGH and FISH, who shows a complex phenotype with multiple physical anomalies, resembling the 9p-syndrome in sex development with gonadoblastoma, congenital heart defect and epilepsy. The observed deletion includes the 46,XY sex-reversal critical region, excluding the region so far associated with the 9p- syndrome. Genotype-phenotype correlations are tentatively established comparing our patient to seven other previously reported males with isolated terminal 9p deletions, finely defined at a molecular level. Our
P02.059 Spondyloepiphyseal dysplasia with luxations, CHST3 type (Recessive Larsen syndrome): Further clinical characterization and report of a novel mutation

P. M. Tarnowska, H. Shadr, K. M. Girish;

*Genetics Research Center, IBI, Mumbia, India, Department of Orthopedics, Kasturba Medical College, Manipal, India, *Genetics Clinic, Department of Pediatrics, Kasturba Medical College, Manipal, India.

Spondyloepiphyseal dysplasia with luxations, CHST3 type (OMIM 430095) is an autosomal recessive chondrodysplasia predominantly affecting joints, spine and epiphyses. Mutations in carbohydrate sulfotransferase 3 (CHST3) (OMIM 607309) have been identified to cause this condition. We describe the clinical features of three patients of a large highly inbred Indian family with a novel homozygous mutation g.1445 (p.431 G>A) in CHST3. All of them had thickened mitral valves and short metacarpals. We emphasize thickened mitral valves, short metacarpals, hallux valgus and biphid epiphysis of distal phalanx of thumbs are additional features of this condition that should be looked into while evaluating patients with multiple joint dislocations.

P02.060 Advances in Cohen syndrome diagnosis using Next Generation Sequencing

1Department of Orthopedics, Kasturba Medical College, Manipal, India, 2Department of Pediatrics, Kasturba Medical College, Manipal, India.

Cohen syndrome is an autosomal recessive disorder characterized by developmental delay, visual impairment, typical facial gestalt (wave-shaped/downdraining palpebral fissures, short-upturned philtrum, prominent incisors, beak-shaped nose, low-hairline), intellectual deficit (ID) and neutropenia. The conventional mutation screening, performed by DHPLC and/or Sanger sequencing, is time-consuming and has relatively high costs because of the occurrence of hot-spots and to the high number of exons of the causative COH1 gene. Thus, we designed a Next-Generation Sequencing protocol enabling detection of variants in the whole coding region. We used a method coupling selective amplification to the 454 Roche DNA sequencing platform (Genome-Sequnencer-junior). This technology allowed us to identify the second mutation in patients previously analysed by DHPLC and MLPA and to diagnose new patients. Overall the clinical picture of our cohort of 23 patients indicates that the key features of the syndrome are ID, typical facial gestalt, narrow hands/feet with tapering fingers, myopia and/or retinopathy that are present in 100% of cases. Neutropenia, joint hyperlaxity and microcephaly are present in more than 80%. Truncal obesity and social behaviour are present in about 70%. Interestingly, we identified mitral insufficiency in about 20%. In case aortic and tricuspidal insufficiency was also present. Cardiac anomalies have not been previously reported in patients with documented COH1 mutations. Overall, after the use of a combination of the most sensitive available molecular techniques, the phenotype of Cohen syndrome due to COH1 mutations is quite homogeneous. We thus recommend to request COH1 analysis only for patients with the core phenotype. The 19 registered nosologies that according to the list of the International Registry EUROCAT: anencephaly - 2 (0.2%), spina bifida - 16 (2.1%), encephalocele - 2 (0.2%), hydrocephalus - 43 (5.6%), microtia - 4 (0.5%), cleft palate, cleft lip - 71 (9.3%), congenital heart diseases - 78 (10.2%), atresia of the esophagus - 14 (1.8%), reduction deformities of limbs - 2 (0.2%), polydactyly - 8 (1%), diaphragmatic hernia - 31 (4%), renal agenesis and dysgenesis - 94 (12.3%), herniated umbilical cord - 6 (0.7%), gastroscisis - 8 (1%), Down's syndrome - 178 (23.4%), multiple birth defects - 110 (14.5%)

Thus, the register will allow determining the frequency and structure of the congenital malformations and hereditary diseases, to monitor the dynamics of the load of hereditary and congenital disorders in the population of the Republic of Kazakhstan.

P02.062 New TUBB3 gene mutation in a woman with CFEOM3 and brain abnormalities

A. Driscoll, I. Pirson, P. Jissendi, M. Pandolfi, M. Abramowicz;

1IBISM - Université Libre de Bruxelles, Brussels, Belgium, Department of Medical Genetics, Hôpital Erasme-ULB, Brussels, Belgium, 2Department of Neonatology, Hôpital Erasme-ULB, Brussels, Belgium.

Congenital fibrosis of extraocular muscles type 3 (CFEOM3) is a cranial disinnervation disorder characterized by ophthalmoplegia and ptosis, thought to be caused from defect in axonal guidance. Isolated CFEOM3 results from mutations in microtubules-associated KIF21A and TUBB3 genes. CFEOM3 caused by TUBB3 gene mutation may also be associated with facial weakness, congenital contractures, intellectual deficiency, progressive polymyrrophyathy and brain anomalies as dysgenesis of the corpus callosum, anterior commissure, internal capsule, corticospinal tracts and basal ganglia. Other mutations of the same gene are reported in patients without CFEOM who present a wide range of cortical dysplasia including neuronal migration disorders associated with pontocerebellar hypoplasia.

We report on a 26 years old woman who suffered from severe congenital strabismus, ophthalmoplegia, unilateral ptosis and psychomotor retardation. CFEOM3 was diagnosed during strabismus surgery. She also has minimal pyramidal syndrome with conserved muscular strength but fatigability and slowness. Electroencephalogram, somatosensory evoked potentials and intelligence were normal. Magnetic resonance imaging showed dysplastic and hypoplastic venuiss, dysmorphic and small corpus callosum, hypoplastic right cerebral hemisphere and peduncle, absent anterior commissure, asymmetric caudate nuclei and dilated ventricles. Therefore, we sequenced TUBB3 gene in this patient and found a de novo heterozygous missense mutation. This mutation affects a highly conserved amino acid, is predicted to be damaging by Polyphen2 software and was not reported in patients with CFEOM3 (Tischfeld, 2010) nor cortical dysplasia (Poirier, 2010) until now. Our finding will help to determine the genotype-phenotype correlation of the TUBB3-related spectrum.

P02.063 Unknown CNVs in cohort of 52 Bulgarian patients with learning disability and congenital malformations

1Department of Medical Genetics, Medical University-Sofia, Sofia, Bulgaria, 2State University Hospital Pediatric "Queen Evdokia", Medical University-Sofia, Sofia, Bulgaria.

Introduction. The increasing resolution of DNA-microarrays and the techniques optimization allow detection of larger (> Mb) aberrations and a large number of small CNVs, whose clinical significance in some cases is unknown. The interpretation of CNVs with unknown clinical significance remains still a challenging issue.

Materials and methods. Oligo array-CGH was applied in 52 patients with developmental delay and multiple congenital anomalies in order to unravel the underlying genetic abnormalities. We have used BlueGenome CytoChip oligo 2X105K microarray, v.1.1, with 35Kbp backbone resolution. Results. A total of 247 CNVs were detected, of which 15 pathogenic (7 deletions, duplications 8), 124 normal (62 deletions, 62 duplications) and 108 were unknown clinical significance (68 deletions, 40 duplications). Discussion. Due to insufficient data for the Bulgarian population we made an individual assessment of each variant. In our study 19 variations in chromosomal loci 2q7.3, 10q11.22, Xp22 were found in over 5% patients, which gave us a reason to suppose that they were probably not pathogenic. Twenty-five of the variations occurring in patients with established large
pathological aberrations associated with specific phenotype. Therefore, we have assumed that probably they have no pathogenic nature. Thirty-five of the other variants do not contain OMIM genes. Conclusion. So from total 108 unknown CNVs as potentially pathogenic remain to be seen only 29 variations. Of these, only one aberration in Xq22.1 can be directly related to patient’s clinical phenotype. This gave us a reason to accept this deletion as potentially pathogenic.

Acknowledgements: Grant 02/76-21.12.2009, National Science Fund, Bulgaria.

P02.064 Congenital myasthenic syndromes: impact of genotype-phenotype correlation on strategy and efficiency of genetic testing

1Medizinisch Genetisches Zentrum (MGZ), Munich, Germany; 2Friedrich-Baur-Institut, Ludwig Maximilians University, Munich, Germany; 3Clinic of Neurology, University Hospital Alexandrovska, Sofia, Bulgaria; 4Department of Paediatric Neurology, University of Essen, Essen, Germany; 5Children’s Hospital, Technical University Dresden, Dresden, Germany; 6Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.

Congenital myasthenic syndromes (CMS) are clinically and genetically heterogeneous disorders characterized by a neuromuscular transmission defect. Even though CMS are genetic disorders they are highly treatable, and the appropriate drug treatment depends on the underlying genetic defect. This highlights the importance of genetic testing in CMS. In recent years, the molecular basis of CMS has constantly broadened and disease-associated mutations have been identified in 14 genes encoding proteins of the neuromuscular junction. In the dawn of novel sequencing strategies we report on our 14-year experience in traditional Sanger-based mutation screening of a large cohort of 680 independent patients with suspected CMS. In addition to most known CMS-causing genes, we analyzed the functional candidate genes LRPR, VACT, and CNTN1. In total, we identified disease-causing mutations in 299 patients (44%) of patients in various known CMS genes, confirming the high degree of genetic heterogeneity associated with the disease. Apart from four known founder mutations, and a few additional recurrent mutations, the majority of variants are private, found in single families. Genotype-phenotype correlations reported previously in the literature were extended on our cohort. The NIPBL mutation was found in four patients with a high degree of genetic heterogeneity associated with the disease. Apart from four known founder mutations, and a few additional recurrent mutations, the majority of variants are private, found in single families. Genotype-phenotype correlations reported previously in the literature were extended on our cohort. The NIPBL mutation was found in four patients with Cornelia de Lange syndrome (CdLS). This gene encodes a key regulator of the Cohesin complex, which controls sister chromatid segregation. CdLS affects about one in 2000 live born females and results from complete or partial absence of one of the X chromosomes, frequently accompanied by cell-line mosaicism.

Here, we report a patient with CdLS due to a mutation in the NIPBL gene (c.1445+1448delKAGA) and mosaic TS (mos 45X/46XX karyotype). This patient showed the classical and predominant phenotype of CdLS, although without limb reduction. She was also clinically diagnosed with TS because of two typical recognizable features: the peripheral lymphedema and the webbed neck. Molecular characterization showed that the NIPBL mutation was present in all the tissues analyzed from different embryonic origins (mesoderm and ectoderm); while FISH analysis revealed that the percentage of cells with monosomy X was low and tissue-specific. These findings indicate that, ontogenically, the NIPBL mutation appeared before the mosaic monosomy X. Moreover, the recent identification of frameshift NIPBL mutations in colon cancer cells associated with chromosome aneuploidy suggests that it could affect faithful chromosome segregation. The coexistence in several patients of both these rare disorders raises the issue of whether there is indeed a cause-effect association. We hypothesize that the NIPBL mutation might be responsible for the loss of one of the X chromosomes in this patient.

P02.065 Management of Pain and Fatigue in The Joint Hypermobility Syndrome (Ehlers-Danlos Syndrome, Hypermobility Type): Principles and Proposal for a Multidisciplinary Approach

M. Castori1, S. Morfini2, C. Celletti2, M. Calvi1, F. Camerota1, P. Grammatico1.

1Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo Forlanini Hospital, Rome, Italy; 2Department of Physical Medicine and Rehabilitation, Sapienza University, Umberto I Hospital, Rome, Italy; 3Department of Pediatrics, Sapienza University, Umberto I Hospital, Rome, Italy.

Joint hypermobility syndrome (JHS), or Ehlers-Danlos syndrome hypermobility type (EDS-HT), is a underdiagnosed heritable connective tissue disorder characterized by generalized joint hypermobility and a wide range of visceral, cutaneous, neurologic and cognitive dysfunctions. Deterioration of quality of life is mainly associated with chronic pain and fatigue. Except for the recognized effectiveness of physiotherapy for some musculoskeletal features, there are no standardized guidelines for the assessment and treatment of pain and fatigue. In this work, a practical classification of pain presentation and factors contributing in generating painful sensations in JHS/EDS-HT is proposed. Pain can be topographically classified in articular limb (acute/subacute and chronic), muscular limb (myofascial and fibromyalgia), neuropathic limb, back/neck, abdominal and pelvic pain, and headache. For selected forms of pain, specific predisposing characteristics are outlined. Fatigue appears as the result of multiple factors, such as muscle weakness, respiratory insufficiency, unrenewing sleep, dysautonomia, intestinal malabsorption, reactive depression/anxiety and excessive use of analgesics. A set of lifestyle recommendations to instruct patients as well as specific investigations aimed at characterizing pain and fatigue are identified. Available treatment options are discussed in the set of a structured multidisciplinary approach based on reliable outcome tools.

P02.066 Cornelia de Lange syndrome with mutation in NIPBL and mosaic Turner syndrome in the same individual

1Universidad de Zaragoza, Zaragoza, Spain; 2Medical University of Gdańsk, Gdańsk, Poland; 3Children’s University Hospital, Lublin, Poland; 4Hospital Clinico Universitario “Lozano Blesa”, Zaragoza, Spain.

Cornelia de Lange syndrome (CdLS) is a dominant inherited disorder characterized by facial dysmorphism, growth and cognitive impairment, limb malformations and multiple organ abnormalities. Mutations in NIPBL gene etiologically account for 60% of CdLS patients. This gene encodes a key regulator of the Cohesin complex, which controls sister chromatid segregation. Ts affects about one in 2000 live born females and results from complete or partial absence of one of the X chromosomes, frequently accompanied by cell-line mosaicism.

Here, we report a patient with CdLS due to a mutation in the NIPBL gene (c.1445+1448delKAGA) and mosaic TS (mos 45X/46XX karyotype). This patient showed the classical and predominant phenotype of CdLS, although without limb reduction. She was also clinically diagnosed with TS because of two typical recognizable features: the peripheral lymphedema and the webbed neck. Molecular characterization showed that the NIPBL mutation was present in all the tissues analyzed from different embryonic origins (mesoderm and ectoderm); while FISH analysis revealed that the percentage of cells with monosomy X was low and tissue-specific. These findings indicate that, ontogenically, the NIPBL mutation appeared before the mosaic monosomy X. Moreover, the recent identification of frameshift NIPBL mutations in colon cancer cells associated with chromosome aneuploidy suggests that it could affect faithful chromosome segregation. The coexistence in several patients of both these rare disorders raises the issue of whether there is indeed a cause-effect association. We hypothesize that the NIPBL mutation might be responsible for the loss of one of the X chromosomes in this patient.
pertolism and later was excluded as a carrier of causal mutation. Second case - newborn girl expressed craniosenosis of coronal suture with typical hypertelorism, hypoplasia of corpus callosum and suspicion from hearing loss (pathological TEOMAE). First suspicion from craniofacial dysmorphism was on prenatal ultrasound screening where picture of cloverleaf skull was seen. Mutation analysis revealed known causal mutation c.451G>A in exon 3 of EFN1 gene. The father has significant hypertelorism, MG findings in father and other family members are not available yet.

P02.069
Identification of a novel EFN1 mutation in a patient with Craniofrontonasal Syndrome and right halux duplication
A. GEZDIRICI, O. F. Karataş, H. Ülütak, E. Soyunkaya, M. Severy, A. Yüksel, M. Özer;
1Cerrahpaşa Medical School Dept. of Medical Genetics, Istanbul, Turkey, 2Bezmialem Vakif University, Istanbul, Turkey.

Craniofrontonasal syndrome (CFNS) is a rare X-linked dominant disorder characterized by a more severe manifestation in heterozygous females than in hemizygous males. Typical manifestations involve hypertelorism with telecanthus, widow’s peak, frontal bossing, craniolonysois, a bifid or broad nasal tip, wide, and grooved fingerprints. Besides, anterior cranial dysmorphisms, exophthalmia, joint hyperlaxity, lipomas, large coronary suture, unilateral breast hypoplasia, labiophagmatic hernia, asymmetric lower limb shortness, and agenesis of the corpus callosum are within the rare manifestations of CFNS. Most CFNS patients have mutations in the EFN1 located at chromosome Xq13.1. This gene encodes a member of the ephrin family protein, Ephrin B1, which interacts with Eph tyrosine kinase receptors. It functions in the formation of tissue boundaries. Here, we report a 7-month-old female patient who has brachycephaly, frontal bossing, hypertelorism, telecanthus, downsloping palpebral fissures, broad nasal root and bifid nasal tip. She also had large anterior fontanelle and broad right halux. To confirm CFNS diagnosis, EFN1 was sequenced and a novel de novo c.402 T>C heterozygous mutation in exon 2 was detected. This change is not reported in the SNP databases. Isoleucine is a highly conserved amino acid and its replacement to threonine in codon 134 may result in a conformational change in the protein. Parents were normal both clinically and genotypically, confirming de novo mutation in the patient. This mutation was not previously reported for CFNS.

P02.070
Can FGFR2 mutations explain craniosynostosis with hydroureteronephrosis?
C. Vanlerberghe1, C. Collart, E. Classet, S. Petit1, S. Manouvrier1, C. Vincent-Deforme1;
1Department of Clinical Genetics, Jeanne de Flandre hospital, CHRU, Lille, France, 2Department of Molecular Genetics, Lariboisiere hospital, APHP Paris, France.

During the second pregnancy of unrelated parents, a megacystis and a megueter were detected by ultrasound examination at 10 weeks of gestation (WG). Subsequently craniosynostosis of the metopic, sagittal and coronal sutures was seen at 26 WG. Chromosomes on amniotic fluid were normal. Termination of pregnancy was performed at 28 WG. Pathology confirmed the renal malformation and a trigonocephaly. Molecular analysis found a de novo heterozygous FGFR2 mutation that had been previously reported in Crouzon, Pfeiffer and Jackson-Weiss syndromes.

Rare renal malformations have been previously clinically reported with syndromic craniosynostosis. In vitro studies have shown that FGFRs are expressed in the ureteric bud and in the metanephric mesenchyme of the developing kidney. Exogenous FGfs affect growth and maturation of both organs in cultured tissues. In vivo studies on mice demonstrated that the loss of fgfr2 often lead to multiple ureteric buds, renal dysplasia and obstructed hydrourereter. Therefore the FGFR2 signaling pathway is critical at early and later stages of kidney development. Other studies showed EFN1 and FGFR2 overexpression in renal cell carcinoma. A case of bladder papillary carcinoma with Apert syndrome and a germline FGFR2 mutation has also been previously reported. Thus, we think that FGFR2 loss-of-function mutation in this case could explain the whole phenotype. This report highlights the probable relationship between FGFR2 and renal and vesicoureteral abnormalities in human embryonic development.

P02.071
Ventricular septal defect in crouzon syndrome: case report
N. Unal, F. Hazar, A. Aykut1, T. Mese, H. Ozyag, F. Ozkiny;
1Department of Pediatric Cardiology, Dr. Behet Uz Children’s Hospital, Izmir, Turkey, 2Department of Medical Genetics, Dr. Behet Uz Children’s Hospital, Izmir, Turkey, 3Department of Medical Genetics, Ege University Faculty of Medicine, Izmir, Turkey.

Crouzon Syndrome (CS) is an autosomal dominant hereditary disease, which is characterized by clinical triad of cranium deformity, facial anomalies and exophthalmia. Crouzon Syndrome is caused by the mutations in the FGFR gene. Same gene mutations are observed in Apert, Pfeiffer and Jackson-Weiss syndromes as well. Cardiac anomalies are detected in 10% of the patients with Apert Syndrome. According to the literature, cardiac anomalies have been reported in only three patients with CS, but there is no report on cardiac anomalies, neither in patients with Pfeiffer nor the ones with Jackson-Weiss syndrome. We describe here a 10 year old CS patient with ventricular septal defect. A heterozygous 886G>C (Trp290Arg) mutation was detected by sequence analysis in the FGFR2 gene. The patient’s mother with similar craniofacial features had the same mutation.
Key words: Crouzon Syndrome, FGFR2 gene, ventricular septal defect

P02.072
A CSFR1 mutation in a family with hereditary diffuse leukocyte phosphatase with 3 affected offspring
K. Platzer, S. Bishup1,2, H. Freitag, C. Ganout, G. Gilles-Faeschbiche1, Y. Hellenbroich1;
1Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany, 2GesTaT GmbH, Tübingen, Germany, 3Hertie Institute for Clinical Brain Research, Tübingen, Germany, 4German Center for Neurodegenerative Diseases, Tübingen, Germany, 5Biotranspress in the Tübingen, Lübeck, Germany, 6Movement Disorders Group, Department of Neurology, University Medical Center Hamberg-Eppendorf, Hamburg, Germany.

Mutations in the colony stimulating factor 1 receptor gene (CSFR1) have recently been shown to cause hereditary diffuse leukocyte phosphatase with spheroïdls (HDLS), an autosomal-dominant disease leading to progressive cognitive and motor dysfunction. We describe a family from Northern Germany with an apparently autosomal-dominant early onset frontotemporal dementia syndrome. Multiple MRI scans of a 38 year old clinically presymptomatic woman showed slowly progressive bifrontotemporal cortical atrophy and asymmetric hyperintense white matter lesions. Her father and paternal grandfather both suffered of early onset and rapidly progressing dementia and personality change starting in their late 40s, leading to death within a decade. An underlying CADASIL in the family was excluded as molecular analysis of NOTCH3 showed no pathogenic mutation. Next-generation-sequencing of nine known early-onset dementia genes identified the very likely heterozygous disease causing mutation c.2381T>C (p.I794T) in the CSFR1-gene in the female index patient.

P02.073
Danon disease - different phenotypic expression a family with hypertrophic cardiomyopathy
A. V. Popoiu, G. Doros, C. Popoiu;
Children’s Hospital, Timisoara, Romania.

The rare X-linked dominant lysosomal disorder called Danon disease, is the consequence of the mutation of the lysosome - associated membrane protein 2 gene (LAMP2), affecting myocytes and skeletal muscles by accumulation of intracytoplasmatic autophagic vacuoles. The characteristic clinical triad of the Danon disease include mental retardation, severe hypertrophic cardiomyopathy, skeletal myopathy. We describe a case of Danon disease, belonging to a family with known hypertrophic cardiomyopathy with 3 affected generation. The grandmother and mother are known with mild hypertrophic cardiomyopathy. A sister and brother of the affected mother, were both diagnosed with hypertrophic cardiomyopathy and died at 24 years of age, respectively at 36, despite a pacemaker implantation. The son was diagnosed at the age of 14 years with mild mental retardation, limb-girdle dystrophy, severe hypertrophic obstructive cardiomyopathy, WPW syndrome. He presents a massive concentric ventricular hypertrophy of 45 mm, and 2 years later atrial flutter occurred. The parents refused heart transplantation or myomectomy and a defibrillator was implanted. The patient has 2 healthy sisters, were the genetic counseling is of greatest importance.

Conclusion: The LAMP2 mutation was proved as an important cause of massive cardiac hypertrophy with high mortality in the absence of heart
transplantation. The variable phenotypic expression with a usually milder clinical presentation in females is the case in our patients too.

PO2.074
Darier Disease - a family case report
D. F. Albu1, C. C. Albu2, E. Severin3;
1University of Medicine and Pharmacy Carol Davila, Bucharest, Romania; 2Alco San Clinic, Bucharest, Romania.

INTRODUCTION: Keratosis follicularis, also known as Darier disease or Darier-White disease, is an autosomal dominantly inherited genodermatosis characterized by greasy hyperkeratotic papules in seborheic regions, nail abnormalities, and mucous membrane changes.

The disease was first reported independently by Darier and White in 1889.

MATERIAL AND METHODS: We present a family with Darier Disease on three generations.

Dermatological examination and complete general examination of the patients showed skin rash, lesions on the hands and nails and lesions affecting the mucous membranes.

Skin biopsy, histopathological examination of the skin and DNA Analysis was necessary to confirm the diagnosis.

RESULTS: A skin biopsy show characteristic degeneration of cells in the epidermis (acantholysis) and abnormally increased keratinisation (hyperkeratinisation).

DNA Analysis of all the patients revealed mutations in the ATP2A2 gene.

CONCLUSIONS: We present a family with Darier Disease on three generations, a rare disorder with variable penetrance, clinical and genetic variability in the same family.

PO2.075
Clinical manifestation of congenital bilateral, profound sensorineural hearing loss and adult-onset retinitis pigmentosa is not always Usher syndrome
A. Singer1; Genetic Institute, Ashkelon, Israel.

Usher syndrome is an autosomal recessive condition characterized by a combination of congenital hearing impairment and retinitis pigmentosa (RP). Three types of Usher syndrome are known and differ by the time of onset of the symptoms, severity and progressiveness of deafness and additional vestibular dysfunction. Several genes are known to be associated with this disease. Patients with type II Usher syndrome have congenital bilateral sensorineural hearing loss that is mild to moderate in the low frequencies and severe to profound in the higher frequencies, intact vestibular responses, and bilateral retinitis pigmentosa (RP).

We describe a 30 years old female whose parents are first cousins of Moroccan origin. She has congenital deafness and has been referred by her ophthalmologist because of recently diagnosed RP. A clinical diagnosis of Usher syndrome was suggested. However, a molecular workup including testing of the three genes known to cause the disease (USH1C, USH2A, GPR98) and DNFB31 were all negative.

A founder mutation (c.1355_GdelCA, p.Thr452SerfsX33) in the RP gene FH-M161A has been later described in Moroccan-Jews. Our patient was found to be homozygous to the founder mutation and her parents were heterozygous to this mutation. Information was given to the family during genetic counseling explaining that Usher syndrome was ruled out and a plausible explanation would be that she is expressing two independent diseases. Recently she was tested for mutation in the TMC1 gene associated with autosomal recessive deafness and was found homozygous for the c.1939T > C deleterious mutation.

PO2.076
Interstitial 9q34.11-q34.13 deletion in a patient with severe intellectual disability, hydrocephalus and cleft lip/palate
A. Tszschech1, U. Grasshoff2, K. Schöferhoff3, M. Bonin2, A. Dufter2, M. Wolff4, K. Haas-Lude4, A. Bovet5; O. Ries6; University of Tuebingen, Tuebingen, Germany.

Interstitial deletions of chromosome bands 9q34.11-q34.13 are rare. We report on a 16-year-old female patient with severe intellectual disability, congenital hydrocephalus, cleft lip and palate, talipes equinovarus, epilepsy, kyphoscoliosis, congenital strabismus, severe short stature, dysBeauty and facial dysmorphic signs. Array analysis revealed a 3.7 Mb interstitial deletion in 9q34.11-q34.13. The deletion harbors more than 60 genes, including SP1T1, DYT1, TOR1A, ABL1, ASS1, LAMC3, POMT1, DOLK and GLE1, mutations in which have previously been associated with monogenic disorders. This is the first patient with a deletion of this size and position in 9q34.11-q34.13. Reports of additional patients with variations in this region will be needed to establish karyotype-phenotype correlations and to gain information on the contribution of individual genes for the clinical manifestations.

PO2.077
Interstitial deletion of 3p22.1p24.1 including haploinsufficiency of the MLH1 gene in a boy evaluated for developmental delay, short stature and physical anomalies
B. Maas1, C. Stetter1, J. Janssen1, A. Jauky1, K. Hinederation1, S. Korsch1; U. Moog1;
1Institute of Human Genetics, Heidelberg, Germany; 2University Children’s Hospital, Heidelberg, Germany.

Introduction: Molecular karyotyping is a well established method in the evaluation of children with developmental disorders and/or physical anomalies leading to the diagnosis of a relevant chromosomal imbalance in 10-15% of cases. However, an anticipated finding may be a major challenge. We present the case of a boy with developmental delay and multiple physical anomalies in whom array analysis revealed a concomitant diagnosis of a tumor predisposition syndrome.

Case Report: A boy of 4 years of age was evaluated for short stature, psychomotor retardation, hypotonia and physical anomalies (e.g. hypoplasia, pectus excavatum). Physical examination also showed facial dysmorphism (prominent forehead, downslanting palpebral fissures), inverted nipples and hypertonia of fingers and toes. Array analysis (Affymetrix® CytoScan HD) showed a de novo 9.5 Mb interstitial deletion on chromosome 3p22.1-p24.1 not detectable by G-banding analysis. The deletion was confirmed by FISH analysis with probes specific for 3p22.3. The deleted region comprised about 60 refseq genes among which MLH1 (confirmed by MLPA).

Discussion: Overlapping interstitial deletions of 3p22-p24 so far have been rarely reported and mostly predate molecular karyotyping. They are associated with global developmental delay, CHD, short stature and mild dysmorphic features. In the present case, based on haploinsufficiency of the mismatch repair gene MLH1, a diagnosis of Lynch syndrome (HNPCC) was also established and surveillance guidelines were discussed with the parents.

Conclusion: This case illustrates that any chromosomal imbalance has to be evaluated carefully for alterations potentially affecting cellular key pathways as deletions of tumor suppressor genes with implications for health management.

PO2.078
After a long diagnostic journey: Duplication 17q25.1 in a child with multiple disabilities
D. Wahl1, U. Heinrich2, M. Gabert3, G. Buheitel4, I. Rost5;
1Practice for genetic counselling and psychotherapy, Augsburg, Germany; 2Centre for Human Genetics and Laboratory Medicine, Martinsried, Germany; 3Ul. Children’s Hospital of the Central Clinic, Augsburg, Germany.

About 20% of the children with syndromic appearance show submicroscopic duplications and deletions, which are detectable by high resolution Array CGH-diagnostic platforms. We give an account of a meanwhile nearly eight years old disabled girl, who had already been presented to a genetic counselor as a new born child because of prematurity (34th weeks of gestation), microcephaly, striatal septal defect, stenosis of the left bronchus, sickle feet, muscle weakness, dysmorphic features and feeding problems. A chromosomal analysis was performed and showed a normal female karyotype. In the further course of her development, the girl showed profound psychomotor retardation, speech delay, mental retardation, recurring infections and early behavioural problems. On the occasion of the second presentation at the age of 2 ½ years to the genetic counselor she was examined using a low-resolution BAC Array (resolution 0.44 Mb). The result was interpreted as normal. Because of the persisting impression of a syndromal clinical picture the parents continued presenting her daughter to the genetic counselor. An Angelman-Syndrome as well as a Rett-Syndrome were excluded. Finally the Array-GH-examination was repeated using a higher resolution (resolution 25 to 100 kb) and revealed a 830 kb duplicatiion on 17q25.1 that is thought to be causal. The results of the prenatal analysis will be presented. This case emphasises the benefit of applying a high resolution array after a normal result with a low resolution array.

PO2.079
22q13.3 deletion syndrome - report of three cases
S. Bichev1, R. V. Vazharov1, I. Bradinova1, S. Andonova2, A. Savov2, V. Bajnov2; E. Simenov1, I. Kremenov1;
1National Genetic Laboratory, Sofia, Bulgaria; 2USBALNP ‘Saint Naum’, Sofia, Bulgaria; 3University Hospital ‘Alexandros’, Sofia, Bulgaria.
Phelan-McDermid syndrome (22q13.3 deletion syndrome) is characterized by neonatal hypotonia, global developmental delay, absent to severely delayed speech, and normal to accelerated growth. Most individuals have moderate to profound intellectual disability. Other features include large, floppy hands, and a characteristic “butterfly”-like contour of the midbrain on axial sections. We describe six patients from three unrelated consanguineous Egyptian families with a novel characterized brain malformation at the level of the diencephalic-mesencephalic junction (DMJ). Diagnostic testing including high resolution karyotyping and extended metabolic screening were normal. Brain MRI demonstrated a dysplasia of the DMJ with a characteristic “butterfly”-like contour of the midbrain on axial sections. Additional imaging features included variable degrees of supratentorial ventricular dilatation and hypoplasia to complete agenesis of the corpus callosum. Diffusion tensor imaging showed diffuse hypomyelination and lack of an identifiable corticospinal tract. All patients displayed severe cognitive impairment, postnatal progressive microcephaly, axial hypotonia, spastic quadriaparesis and seizures. Autistic features were noted in older cases. Telocytes and non-observant cardiomyopathy and persistent hyperlastic primary vireous were additional findings in two families. One of the patients required shunting for hydrocephalus, however, this yielded no change in ventricular size suggestive of dysplasia rather than obstruction. We propose the term diencephalic-mesencephalic junction dysplasia (DMJD) to characterize this autosomal recessive malformation.

P02.080
A unique case of familial Diamond-Blackfan anemia
R. Sorte1, Y. K. Shen2, T. G. Luber3, T. J. Zeller4, A. Stray-Pederson2
1Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; 2Department of Genetics, Ullerslaa, Oslo University Hospital, Oslo, Norway; 3Department of Pediatrics, Oslo University Hospital, Oslo, Norway.

Diamond-Blackfan anemia (OMIM #105650) is a rare, autosomal dominant condition characterized by congenital erythroid aplasia with normal leukocytes and platelets. Half of the patients have associated malformations of upper limb and craniofacial region and are growth retarded. DBA cases are mostly sporadic, only 10-25% are familial. DBA is genetically heterogeneous. Causal variants have been identified in nine ribosomal genes, and diagnostic tests are clinical available for only a limited number of them. We present a 6 year old boy with classical DBA. He was diagnosed in early childhood with severe anemia, is currently transfusion dependent and on androgen treatment. The boy’s father is asymptomatic. Exome sequencing (Agilent 38Mb exome capture and 2x100bp Illumina sequencing) detected a novel heterozygous deletion in RPS26 (c.6_9del). The deletion leads to a frameshift, and will most likely cause a premature stop-codon and induce nonsense mediated decay. Sanger sequencing showed that the variant was paternally inherited. Variants in RPS26 are estimated to cause 2.6% of the DBA cases (OMIM #613309). A molecular diagnosis should enable prenatal diagnostic testing, however predicting the diagnostic outcome of an affected fetus is challenging in this family. This case illustrates the force of targeted exome sequencing to efficiently identify novel variants in a large set of candidate genes, and demonstrates its clinical utility to identify causal variants in rare dominant disorders.

P02.081
Two patients with Diamond-Blackfan anemia: a novel point mutation in RPL5 and a microdeletion encompassing RPL5
R. Flettermann1, G. Strauss2, E. Klopocki2, L. M. Graul-Neumann2
1Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany; 2Clinic for Pediatrics, Oncology & Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Diamond-Blackfan anemia (DBA: MIM #105650) is a rare congenital red blood cell aplasia with an increased risk of malignancy. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Approximately 50% of affected individuals show congenital malformations. DBA has been associated with mutations in nine genes that encode ribosomal proteins, amongst others RPL5. Mutations in RPL5 and RPL11 are more frequently associated with additional congenital malformations compared to the other genes.

We present two patients with DBA: patient 1 carries a missense mutation in RPL5 inherited from the unaffected mother. The mutation c.625C>T (ENST00000370321;p.Arg208Cys) has not been reported in the literature to date but was predicted as disease causing by the prediction tools MutationTaster [www.mutationtaster.org]. The girl was hypotrophic at birth, and presented with triphalangeal thumbs as well as unilateral renal agenesis. She did not show any facial dysmorphism or cardiac anomalies.

In patient 2 array CGH analysis detected a de novo 594kb microdeletion on chromosome 1p22.1 encompassing RPL5. The girl was also hypotrophic at birth, and was additionally diagnosed with complex cardiac malformations. All developmental milestones were delayed. At age three years she presented with triphalangeal thumbs as well as unilateral renal agenesis. She did not show any facial dysmorphism or cardiac anomalies.

We compare the phenotypes of our two patients with distinct mutations affecting the RPL5 gene.

P02.082
Diencephalic-mesencephalic junction dysplasia: A novel recessive brain malformation
M. S. Zak1, S. N. Salem1, M. B. D. Dey2, J. R. K. R. Ismail1, C. Irons1, A. Dales1, T. Donnai1, M. S. Zaki2
1National Research Centre, Dokki, Egypt; 2Radiology Department, Cairo University, Cairo, Egypt. 3Department of Pediatrics, Seattle Children’s Research Institute, Seattle, WA 98195-6320, Seattle, WA, United States; 4Department of Radiology and Biomedical Imaging, University of California, San Francisco, 94143, USA, San Francisco, CA, United States; 5Modular Imaging Laboratory (MML), Department of Radiology and Neurosciences, University of California, San Diego, 92093 USA, San Diego, CA, United States; 6Diffusion Tensor Image Analyses and Brain Morphometry Center, Children’s Hospital of Philadelphia, Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia PA 19104 USA, Philadelphia, PA, United States; 7Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences and Pediatrics, Rady Children’s Hospital, University of California, San Diego, 92093 USA, San Diego, CA, United States.

We describe two patients with DBA: patient 1 carries a missense mutation (ENST00000370321;p.Arg209Cys) has not been reported in the literature (DECIPHER). The girl was hypotrophic at birth, and was additionally diagnosed with complex cardiac malformations. At age three years she presented with triphalangeal thumbs as well as unilateral renal agenesis. She did not show any facial dysmorphism or cardiac anomalies. We compare the phenotypes of our two patients with distinct mutations affecting the RPL5 gene.

P02.083
De novo duplication 15q22.21-24.1 in patient with mental retardation, congenital heart defect and dysmorphic features
O. Liagoudiati1, L. Cimbalistienė1, Ž. Čiuadaitė1, J. Kasnauskienė1, E. Preikšaitienė1, V. Kučinskas1
1Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.

We report on a 25 years old female referred for evaluation because of intellectual disability, atrophic ventricular communication, muscle weakness, neurogenic urinary incontinence and dysmorphic features (long trunk, low forehead with hypertrichosis, strabismus, depressed nasal bridge, full cheeks, retrognathia, high narrow palate, malposition of one central incisor, malocclusion of teeth, brachydactyly of the fingers, small and flat feet). Proband’s mother had a congenital heart defect. The propositus was born in normal delivery but with lower birth-weight (2800 g). In infancy she had poor suck reflex, considerable hypotonia and severely retarded psychomotor development.

Initial karyotype analysis revealed normal female karyotype. Array-CGH (400K) showed and FISH confirmed a de novo tandem interstitial 9.0 Mb duplication of 15q22.21-24.1. The duplicated region is gene-rich, encompassing more than 140 genes. At least 11 of duplicated genes are associated with known diseases, including CLN6, NCH4, KBTBD13, MAP2K1. The other overexpressed genes (MEC11, ZNF609, TPN1, PHOS) are involved in brain development and functioning. Proband’s phenotype is similar to previously reported overlapping duplication (22,23 Mb) in DECIIPHER. The abnormal phenotype could be determined by overdose of duplicated genes, the disturbance of genes regulatory sequences, or the excess genetic material which may disorganize chromatin conformation affecting the expression of distance genes. Given its large size, high gene content and de novo origin, the observed duplication is considered as pathogenic and responsible for the clinical phenotype manifesting in our patient.
We have analyzed 8 patients from 6 families presenting with isolated EL. and FBN1 all mentioned mutations above. were missense substitutions. A novel mutation has been identified within 50(27%) of probands have mutation. Among these mutations 2 cases were Result: Studying COL7a1 hotspot exons, 73, 74, 75, showed that 11 out of donor DNA is present either in passenger cells or recipient's phagocytes. An open question remains whether it may be 14 days after transplantation. Donor DNA is present either in passenger cells or recipient's phagocytes. One open question remains whether it may be incorporated into recipient cell genome. Molecular diagnosis of common mutations in COL7a1 Gene among Iranian patients suffering from Epidermolysis Bullosa A. Kolovand Hamidi1, M. Mahdavi1, H. Dehghanpour1, R. Hatahetanjudian1, M. Moghaddam1, B. sedaghati khayat1, P. Toury2, M. Yuzufi1, A. Ebrahimi1;1,2Parush Medical Genetics Center, Shadah Beheshti uni skin research center, Tehran, Islamic Republic of Iran, 1Shahid Beheshti university skin research center, Tehran, Islamic Republic of Iran.

Background: The dystrophic forms of Epidermolysis Bullosa (DEB), a group of heritable blistering disorders, show considerable phenotypic variability, and both autosomal dominant and autosomal recessive inheritance can be recognized. DEB is derived from mutations in the type VII collagen gene (COL7A1).

It has been reported that most mutations detected in the recessive disease form are nonsense mutations or small insertions or deletions leading to frame shift and premature translational termination, which tend to produce severe phenotypes. In contrast, missense mutations causing amino acid substitutions, which result in variable phenotypes, predominate in the dominant form of dystrophic Epidermolysis Bullosa. Methods: DNA samples (Genomic DNA from the patient) from 50 affected patients, clinically diagnosed, were subjected to mutation analysis by PCR using designed primers for hotspot exon of COL7A1, followed by sequencing of the PCR products. Result: Studying COL7A1 hotspot exons, 73, 74, 75, showed that 11 out of 50(27%) of probands have mutation. Among these mutations 2 cases were compound heterozygotes, the other 2 cases were deletions and the rest were missense substitutions. A novel mutation has been identified within all mentioned mutations above.

Molecular findings in patients with isolated ectopia lentis - results of FBN1 and ADAMTS14 mutation analyses A. Laner1, P. Mangold1, T. Martin1, A. Bieart1, A. Stegger1, E. Holmoli-Feder1, T. Neuhaus1;1Medizinisch Genetisches Zentrum, Munich, Germany, 1Institut für Humangenetik, Universitätsklinikum Bonn, Bonn, Germany, 2Gemeinschaftspraxis für Humangenetik, Homburg, Germany, 3Abteilung Medizinische Genetik, Institut für Humangenetik, Universitätsklinikum Tübingen, Tübingen, Germany.

Ectopia lentis (EL) can occur as an isolated condition or as a feature of syndromal diseases, such as Marfan syndrome (MFS). Isolated ectopia lentis has been associated with mutations in ADAMTS14 (autosomal-recessive) and FBN1 (autosomal-dominant) and FBN1 and 8 patients from families presenting with isolated EL. 4 patients had homoygous mutations in ADAMTS14: 2 unrelated patients (14 and 34 years) carried the common mutation c.767_766delA.T, p.(Gln25Profs*38); in two siblings (4 and 5 years), the homozygous mutation c.1162dupG; p.(Ala388Glyfs*8), which has not been yet reported, was identified. None of the patients had a history of systemic involve ment with syndromal EL. We additionally identified 2 heterozygous mutations in FBN1. A de novo FBN1-mutation c.4043G>A;p.(Cys1348 Tyr), that has not been reported previously, was detected in a 4 year-old child with EL, other features of MFS were not present. The mutation c.805G>C, p.(Cys805Tyr) was identified in a 13-year-old girl with EL not fulfilling MFS diagnostic criteria. She inherited the mutation from a parent who had a history of bilateral lens extraction in childhood and no further clinical signs of MFS. Furthermore, there was a family history of aortic (abdominal) aneurysms. One child with EL neither had a FBN1 nor ADAMTS14 mutation.

Results: Our results emphasize the importance of mutation analysis of FBN1 and ADAMTS14 in patients with isolated EL, especially in young children, since patients with mutations in ADAMTS14 do not need the extensive screening exams (especially regarding cardiovascular complications) as patients with a FBN1 mutation.

Translation initiation factor EIF3A haploinsufficiency appears to be a neutral variant despite de novo occurrence in a patient with developmental delay M. Appelbäck1,2, D. Bruun1, M. Morh1, S. Berland1, G. Honge1;1Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway, 2Department of Clinical Medicine, University of Bergen, Bergen, Norway, 3Department of Child Neurolgoy, Stavanger University Hospital, Stavanger, Norway.

In a 5 year old boy with aplastic congenital hypothyroidism detected at birth, mild developmental delay, normal stature (25 centile) and microcephaly (1 cm < 2.5 centile), a 0.1 Mb de novo duplication was found seemingly disrupting the EIF3A gene of which was later confirmed by molecular investigations and supposed pathogenic. In another patient a routine SNP array test revealed a 1.4 Mb 10q26.11 deletion affecting 12 protein coding genes, including EIF3A. This patient was a 15 year old girl with mild ID, short stature (25 centile) and normal head circumference (25-50 centile). The deletion turned out to be maternal, and the mother was completely healthy and could report of average or above-average school performance. Our initial assumption that the de novo disruption of the EIF3A gene was likely to be pathogenic, given the importance of EIF3A for e.g. normal translation and ERK signal transduction, had to be revised. The dissimilar phenotypes additionally support the hypothesis that EIF3A deletions are neutral. This is especially evident in the lack of microcephaly in the girl with the 10q26.11 deletion and the lack of short stature in the boy with the EIF3A disruption.
P02.089

Emanuel syndrome: breakpoint determination.
Z. Gencik-Guillier, A. Lott, H. Gabriel, A. Gencik;
1Department of Medicine (DIMED), Surgical Pathology & Cytogenetics Unit;
University of Padova, Padova, Italy, 2Department of Woman and Child Health, Section of Maternal and Fetal Medicine, University of Padova, Padova, Italy, 3Clinical Genetics Unit - Department of Obstetrics, Gynecology and Pediatrics - IRCCS Santa Maria Nuova Hospital, Reggio Emilia, Italy, 4Department of Pediatrics, University of Lausanne (www.skiely.org), Lausanne, Switzerland, 5Department of Pediatrics, Clinical Genetics Unit, University of Padova, Padova, Italy.

The constitutional translocation between chromosomes 11 and 22 is the most common non-Robertsonian translocation in humans. Clustered breakpoints involving chromosome regions 11q23 and 22q11 have been reported in unrelated families. Balanced translocation carriers are clinically normal. Their offspring have a risk to her a supernumerary der(22)t(11;22) chromosome, which results in a rather very constant phenotype. This very rare genomic syndrome was named Emanuel Syndrome.

We report a case of a boy with classical features of Emanuel Syndrome: mental retardation, microcephaly, failure to thrive, some organ malformations, ear anomalies, and dysmorphics features with a typical round face, prominent forehead and deep round eyes. After array CGH and carotypening of patient and his parents and sibs, we also analysed the chromosomal re-structuralisation with a breakpoint - specific PCR to determine its precise localisation and to confirm that the breakpoint lies in the region of the recurrent translocations, with a variation of only several nucleotides, if compared to other Emanuel Syndrome patients. The mechanism of the recurrent translocation may be explained by the fact that it lies in a region with a palindromic nucleotide sequence.

P02.090

ECO Syndrome Without ICK Mutation: Genetic Heterogeneity?
K. Ludwig, R. Salmaso, E. Cosmi, L. GARAVELLI, B. Campos-Xavier, M. Clementi, M. RUGGE, A. Superbi-Punga;
1Department of Medicine (DIMED), Surgical Pathology & Cytogenetics Unit;
University of Padova, Padova, Italy, 2Department of Woman and Child Health, Section of Maternal and Fetal Medicine, University of Padova, Padova, Italy, 3Clinical Genetics Unit - Department of Obstetrics, Gynecology and Pediatrics - IRCCS Santa Maria Nuova Hospital, Reggio Emilia, Italy, 4Department of Pediatrics, University of Lausanne (www.skiely.org), Lausanne, Switzerland, 5Department of Pediatrics, Clinical Genetics Unit, University of Padova, Padova, Italy.

Endocrine-cerebro-osteodysplasia (ECO) is a recently described neonatal lethal recessive disorder characterized by multiple congenital anomalies involving the endocrine, central nervous and skeletal system. Six affected individuals from a single consanguineous Old Order Amish family have been reported so far. All affected individuals carried a homozygous missense mutation in the ICK gene. We report a single case, offspring of non-consanguineous parents, with multiple congenital anomalies equalling those of ECO syndrome. Malformations included micromelia, ulnar deviation of hands, brachydactyly, midface hypoplasia, midline cleft-lip and -palate, holoprosencephaly and absence of the adrenal glands. The external phenotype was indistinguishable from that of the published cases of ECO syndrome. Molecular analysis failed, however, to identify mutations in the ICK gene. We therefore think that ECO syndrome might be genetically heterogeneous and not a "private" condition. Consequently the diagnosis of ECO syndrome should be considered in prenatal/neonatal cases of multi-system disorders involving the endocrine glands, the cerebrum and skeletal system.

P02.091

Recurrent risk and (epi)genetic complexity in Silver-Russell and Beckwith-Wiedemann syndrome
1Bioscientia, Center for Human Genetics, Ingelheim, Germany, 2Institute for Human Genetics, University of Magdeburg, Magdeburg, Germany, 3Institute for Human Genetics, University of Magdeburg, Magdeburg, Germany, 4Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany, 5Center for Pediatrics and Adolescent Medicine, University of Mann, Mann, Germany.

Silver-Russell (SRS) and Beckwith-Wiedemann syndrome (BWS) are growth disorders mainly caused by defects in the epigenetically regulated region 11p15.5 containing the imprinting control regions 1 and 2 (ICR1 and ICR2). SRS is characterised by severe intrauterine and postnatal growth retardation, contrary to BWS which presents as an overgrowth disorder associated with embryonal tumors. While the most frequent known aberration in SRS is an ICR1-hypomethylation (>30%), most BWS cases (50-60%) are caused by an ICR2-hypomethylation. In addition, a variety of other genetic and epigenetic alterations in 1p11.5 are known to result in deficient epigenetic regulation.

NLRP2-mutations have recently been identified as a rare heritable cause for methylation defects resulting in BWS in children of unaffected female homozygous mutation carriers. Even though familial cases of BWS and SRS are rare, the identification of heritable factors affecting genomic imprinting in these disorders is crucial to estimate the recurrence risk in affected families.

For illustration of the (epi)genetic complexity, we present several familial and sporadic SRS and BWS cases with rare disturbances in 1p15.5. Furthermore, we refer to Next Generation Sequencing (NGS) as a suitable testing approach for future detection of genes involved in the regulation of genomic imprinting and further epigenetically regulated regions involved in BWS and SRS.

P02.092

A new case of genome-wide paternal uniparental disomy emphasizing the need of multilocus-testing in imprinting disorders
1Institute of Human Genetics, University Hospital Aachen, Aachen, Germany, 2Frauenklinik Kreiskrankenhaus Eihingen, Eihingen, Germany, 3MVZ Humanangenetik Ulm, Ulm, Germany.

While non-mosaic genome-wide paternal uniparental disomy (UPD) is not consistent with life and leads to hydatidiform mole, UPD of single chromosome is a well-known cause for a group of congenital diseases usually called imprinting disorders. The breakpoint in both chromosomes 2 and 7 (11, 11, 14, 15 (Transient Neonatal Diabetes Mellitus, Silver-Russell syndrome, Beckwith-Wiedemann syndrome, upd(14)-syndromes, Prader-Willi syndrome, Angelman Syndrome). The clinical outcome of a UPD depends on the transmitting parent. Whereas maternal and/or paternal UPD of the aforementioned chromosomes have clinical consequences, others are not associated with clinical phenotypes (if not carrying a recessive mutation). Therefore it can be argued that UPDs of other chromosomes are undiagnosed and are detected only by chance. We here present a 19-year-old woman carrying a mosaic genome-wide paternal UPD that was coincidentally identified in a multi-focus screening for aberrant methylation. The patient was initially diagnosed as BWS due to a mosaic upd(1p)1p5pat but presented additional clinical findings including nesidioblastosis, fibroadenoma, hamartoma of the liver, hypoglycemia and ovarian steroid cell tumour. So far, only single cases with similar clinical and molecular findings mainly diagnosed in early childhood have been reported. Based on these data it can be concluded that the mosaic genome-wide paternal UPD (also known as androgenic/biparental mosaicism) in our patient explains the unusual BWS phenotype. These findings emphasize the need for multilocus testing in imprinting disorders to efficiently detect cases with disturbances affecting more than one chromosome.

P02.093

Eight alterations in the genes FOXG1, TCF4 and CDKL5 in a cohort of 70 patients with seizures and intellectual disability
I. Stefanova, C. Runge, S. Purrmann, G. Uyanik, G. Gillesken-Kaesbach;
1Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany, 2Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.

To date many genes have been identified to be associated with epilepsy, intellectual disability (ID) and other features such as dysmorphism, movement disorders, microcephaly or brain malformations. CDKL5, TCF4, SLC9A6, ARX and FOXG1 are important genes belonging to this group. The conditions caused by mutations in these genes are especially relevant differential diagnoses to Rett and Angelman syndromes. The incidence of these conditions is unknown. In addition, there is only insufficient data available concerning the phenotypic variability, caused by haplinsufficiency of these genes. In a cohort of 70 patients with seizures or EEG abnormalities and ID, we sequenced the genes CDKL5, TCF4, SLC9A6, ARX and FOXG1. We found heterozygous pathogenic alterations in eight patients (11,4 %). Four patients showed alterations in FOXG1 (one frameshift, two missense mutations and one deletion) and two in CDKL5 (one splice-site mutation and one deletion).

Two patients had the same recurrent missense mutation in the TCF4 gene. We performed MLPA analysis for CDKL5, TCF4, SLC9A6, ARX and FOXG1 in our cohort. We found heterozygous pathogenic alterations in eight patients (11,4 %). Four patients showed alterations in FOXG1 (one frameshift, two missense mutations and one deletion) and two in CDKL5 (one splice-site mutation and one deletion). Two patients had the same recurrent missense mutation in the TCF4 gene. We performed MLPA analysis for CDKL5, TCF4, ARX and FOXG1. We found heterozygous pathogenic alterations in eight patients (11,4 %). Four patients showed alterations in FOXG1 (one frameshift, two missense mutations and one deletion) and two in CDKL5 (one splice-site mutation and one deletion). Two patients had the same recurrent missense mutation in the TCF4 gene.

We present detailed clinical and molecular data of our patients. We compare the results to the literature and discuss on novel insights into the phenotypes of patients with FOXG1, TCF4 and CDKL5 mutations. Our study contributes to the delineation of the phenotypes of these rare conditions. Further investigations with new molecular techniques such as next generation sequencing will identify much more patients. The evaluation of the clinical findings in these patients will help to define more precisely the incidence and phenotypic variability in these disorders.
A Patient with 3q26.33q27.3 monosomy presenting with intellectual disability, facial dysmorphism and diaphragm evantration

Y. Sahin1, P. Simplek Kiper2, E. Ulte1, K. Boduroglu3
1Hacettepe University, Ankara, Turkey, 2Department of Medical Genetics, Ankara, Turkey, 3Clinical Genetics Unit, Ankara, Turkey.

A Patient with 3q26.33q27.3 monosomy presenting with intellectual disability, facial dysmorphism and diaphragm evantration

We herein describe a 7-year-old female patient who was referred to us for facial dysmorphism, intellectual disability and diaphragmatic evantration. The patient was born 2050 grams, to nonconsanguineous parents, as their first liveborn by normal delivery, at term. Prenatal history revealed oligohydranmios and intrauterine growth retardation. Postnatally the patient had irregular respiration and tachypnea. She had a delay in both motor and mental developmental milestones. Fluoroscopy detected evantration of the right diaphragm. Perfusion scintigraphy of the lungs demonstrated segmental perfusion defects bilaterally. Magnetic resonance imaging revealed hypoplasia of corpus callosum and cerebral atrophy. On physical examination body weight was 17.7 kg (3-10th centile), head circumference was 46 cm (<2SD), and height was 106 cm (3rd centile). She had facial dysmorphic features including thin lips, broad base to nose, low set ears, bilateral epi- canthi. The patient was clinically suspected to have a chromosomal disorder. The patient had a normal karyotype; however, array-CGH analysis (Agilent 8x60K Array) revealed a 4.3 Mb deletion in 3q26.33q27.3. Previously six cases of microphthalmia or anophthalmia in association with deletions/fusion rearrangements of chromosome 3q involving 3q26.33q27.3 have been reported. The described region was estimated to be 6.7 Mb and was assumed to have an anophthalmia gene at 3q26.33-q27.3 locus. Our patient did not have any eye malformation. Therefore, the previously described region suspected to harbor the anophthalmia gene may be further narrowed down to the 3q27.3-q28 region with the findings of the present patient.

P02.098
Clinical and genetic characteristics of the chest and pleuroparacordial manifestations in Armenian children with Familial Mediterranean fever

G. G. Amaryan1, H. S. Hayrapetyan2, T. E. Sarkisian2
1Arakir Medical Center, Yerevan, Armenia, 2Center of Medical Genetics, Yerevan, Armenia.

Familial Mediterranean fever (FMF) is an autosomal-recessive disease characterized by febrile aseptic polyserositis. FMF, as ethnic disorder for Mediterraneans, is widespread in Armenians. Chest pain attacks are 2nd manifestation after febrile abdominal attacks. Objective: to investigate clinical and genetic characteristics of the chest manifestations (pleuritis and pericarditis) in children with FMF. Results: We performed clinical and genetic (MEFV gene mutations) investigations in 715 children (438 boys, 277 girls, mean age 6.64±0.17). Chest pain attacks (pleuritic or/and pericardial in origin), mostly unilateral, short lasting with dyspnea, superficial, painful inspiration, often developed recurrent pleurisy (81.7%), pericarditis (13.8%). Pleurisy as 1st manifestation was observed in 23.1% of patients. In 1% of cases lung atelectasis and asthma attacks were observed. We detected the most frequent mutations of MEFV gene. Frequency of V726A mutation in Armenians is higher (22.3%) than in other populations with high level of FMF: Jews (3.0%), Turks (2.9%). Risk of leucyria in contrast to other ethnicities was associated mainly with V726A/M694V compound-heterozygous genotype (81.6%) and was 2.3 time higher than in M694V homozygotes (71.9%) and M694V-heterozygotes (68.9%) with benign clinical course. Recurrent pericarditis was revealed in 13.8% and associated with M694V-homozygotes in compare to patients without M694V mutation. Conclusions: Taking into consideration our data about more frequent association of V726A mutation with pleurisy, we suppose that the prevalence of V726A compound-heterozygous genotype might be considered as a risk factor for development of the pleurisies. Pericarditis as rare FMF manifestation, was associated with M694V mutation and considered as unfavorable FMF prognosis.

P02.099
Feingold syndrome type II in a family with deletion 13q31q32 comprising the microRNA 17~92 cluster

P. Villavicencio Lorini1, E. Klopoki2, M. Trimbos2, S. Mundlos1, D. Horn1
1Clinical Genetics Unit, Ankara, Turkey, 2Hacettepe University, Ankara, Turkey.

A Patient with 3q26.33q27.3 monosomy presenting with intellectual disability, facial dysmorphism and diaphragm evantration

We herein describe a 7-year-old female patient who was referred to us for facial dysmorphism, intellectual disability and diaphragmatic evantration. The patient was born 2050 grams, to nonconsanguineous parents, as their first liveborn by normal delivery, at term. Prenatal history revealed oligohydranmios and intrauterine growth retardation. Postnatally the patient had irregular respiration and tachypnea. She had a delay in both motor and mental developmental milestones. Fluoroscopy detected evantration of the right diaphragm. Perfusion scintigraphy of the lungs demonstrated segmental perfusion defects bilaterally. Magnetic resonance imaging revealed hypoplasia of corpus callosum and cerebral atrophy. On physical examination body weight was 17.7 kg (3-10th centile), head circumference was 46 cm (<2SD), and height was 106 cm (3rd centile). She had facial dysmorphic features including thin lips, broad base to nose, low set ears, bilateral epi- canthi. The patient was clinically suspected to have a chromosomal disorder. The patient had a normal karyotype; however, array-CGH analysis (Agilent 8x60K Array) revealed a 4.3 Mb deletion in 3q26.33q27.3. Previously six cases of microphthalmia or anophthalmia in association with deletions/fusion rearrangements of chromosome 3q involving 3q26.33q27.3 have been reported. The described region was estimated to be 6.7 Mb and was assumed to have an anophthalmia gene at 3q26.33-q27.3 locus. Our patient did not have any eye malformation. Therefore, the previously described region suspected to harbor the anophthalmia gene may be further narrowed down to the 3q27.3-q28 region with the findings of the present patient.

Clinical and genetic characteristics of the chest and pleuroparacordial manifestations in Armenian children with Familial Mediterranean fever

G. G. Amaryan1, H. S. Hayrapetyan2, T. E. Sarkisian2
1Arakir Medical Center, Yerevan, Armenia, 2Center of Medical Genetics, Yerevan, Armenia.

Familial Mediterranean fever (FMF) is an autosomal-recessive disease characterized by febrile aseptic polyserositis. FMF, as ethnic disorder for Mediterraneans, is widespread in Armenians. Chest pain attacks are 2nd manifestation after febrile abdominal attacks. Objective: to investigate clinical and genetic characteristics of the chest manifestations (pleuritis and pericarditis) in children with FMF. Results: We performed clinical and genetic (MEFV gene mutations) investigations in 715 children (438 boys, 277 girls, mean age 6.64±0.17). Chest pain attacks (pleuritic or/and pericardial in origin), mostly unilateral, short lasting with dyspnea, superficial, painful inspiration, often developed recurrent pleurisy (81.7%), pericarditis (13.8%). Pleurisy as 1st manifestation was observed in 23.1% of patients. In 1% of cases lung atelectasis and asthma attacks were observed. We detected the most frequent mutations of MEFV gene. Frequency of V726A mutation in Armenians is higher (22.3%) than in other populations with high level of FMF: Jews (3.0%), Turks (2.9%). Risk of leucyria in contrast to other ethnicities was associated mainly with V726A/M694V compound-heterozygous genotype (81.6%) and was 2.3 time higher than in M694V homozygotes (71.9%) and M694V-heterozygotes (68.9%) with benign clinical course. Recurrent pericarditis was revealed in 13.8% and associated with M694V-homozygotes in compare to patients without M694V mutation. Conclusions: Taking into consideration our data about more frequent association of V726A mutation with pleurisy, we suppose that the prevalence of V726A compound-heterozygous genotype might be considered as a risk factor for development of the pleurisies. Pericarditis as rare FMF manifestation, was associated with M694V mutation and considered as unfavorable FMF prognosis.

Feingold syndrome type II in a family with deletion 13q31q32 comprising the microRNA 17~92 cluster

P. Villavicencio Lorini1, E. Klopoki2, M. Trimbos2, S. Mundlos1, D. Horn1
1Clinical Genetics Unit, Ankara, Turkey, 2Hacettepe University, Ankara, Turkey.
Feingold syndrome is characterized by developmental delay/intellectual disability, microcephaly, short stature, characteristic shortening of middle phalanges II/III and various congenital defects of the heart, kidney and gastro-intestinal tract. In about 90% of patients, this syndrome is caused by mutations of N-MYC. Recently, germline deletions of microRNA 17–92 cluster have been identified to be responsible for the Feingold syndrome phenotype in three patients. This variant is called Feingold syndrome type II. Here we report on a family with a 4.5 Mb deletion of the chromosomal region 13q31.3q32.1 comprising the microRNA 17–92 cluster. This deletion was identified by array CGH and confirmed by FISH. The index patient and his mother show the typical phenotypic pattern of Feingold syndrome including developmental delay/intellectual disability in combination with microcephaly, short stature and the digital abnormalities. N-MYC mutations were excluded in the index patient. The 13q31.3q32.1 deletion emerged de novo in the affected mother of the index patient. To clarify whether phenotypic features could be caused by a single copy loss of other involved genes in the deleted chromosomal region we compared the clinical findings of our patients with those of reported patients carrying 13q31.3q32 deletions. Interestingly, we could not find any further remarkable clinical feature which is not belonging to the phenotypic spectrum of Feingold syndrome in the here reported family. Our findings confirm deletions of the microRNA 17–92 cluster as a further cause of Feingold syndrome.

P02.100 Heterotopic bone formation not related to POH/FOP disease: a new entity
1Department of Pediatrics, University of Torino, Torino, Italy; 2Department of Genetics, Biotechnology and Biochemistry, University of Torino, and Medical Genetics Unit, San Giovanni Battista Hospital, Italy; 3Turino, Italy; 4Department of Haematology, Oncology and Molecular Medicine Istituto Superiore di Sanità, Roma, Italy.

We present a peculiar case of multiple and massive congenital periarticular calcification in a normally developed female, aged 2 years, the first child of Italian non consanguineous parents. Since her first month, she presented progressive diffuse joint limitation. Skeletal survey and a CT scan at 8 months assessed shoulder, elbow, wrist, hip, knee and ankle joints fixed by periarticular calcifications. Ectopic bone tissue was present between the occipital skull base and C3 vertebral body. At 10 months, total body MRI showed respiratory and deglutitory muscles calcification, with progressive cranio-caudal involvement. On physical examination at 2 yr, diaphragmatic breathing underlay gradual respiratory deterioration. Her posture was forced in flexion of elbows, knees and ankles, and movements of the head were completely abolished. She also had brachydactyly of hands and feet, camptodactyly of the hands, forced in flexion of elbows, knees and ankles, and movements of the head were completely abolished. Her eyes are deep-set, the philtrum is short and smooth, but she has no other striking dysmorphisms. Neurocognitive milestones were properly achieved. Extensive metabolic workup gave normal results: serum and urine calcium levels were normal, as well as serum and urine phosphorus, sodium, potassium, magnesium, creatinine, PTH, 1-25-DH-Vit D, 25-OH-Vit levels. Molecular analysis of ACRV1 and GNAs genes ruled out both Fibrodysplasia Ossificans Progressiva (FOP) and Progressive Osseous Heteroplasia (POH). Two distinct severely disabling heritable disorders of connective tissue characterized by progressive heterotopic ossification. Exome sequencing: pending.

P02.101 Filamin A associated periventricular nodular heterotopia in males
U. Hehr1, M. Lange2, B. S. Rasper3, N. D. Donav4, F. Mueller5, G. Schwerer4, J. Winkler1;
1Centre for Human Genetics, Technical University of Dresden, Dresden, Germany; 2Max-Planck-Institute for Molecular Genetics, Berlin, Germany; 3Max-Planck-Institute for Molecular Genetics, Berlin, Germany.

Introduction: Filamin A (FLNA) associated periventricular nodular heterotopia (PVNH) is a Xlinked dominant inherited neuronal migration disorder with high perinatal lethality of hemizygous males. Occasional reports of older male patients were associated with hemizygous hypomorphic FLNA alleles or somatic mutations.
Methods: neurological examination, cerebral MR imaging, sequence analysis of the entire FLNA coding region and MLPA.
Results: we here present the neurological findings, selected MR images and results of FLNA mutation analysis for three new male patients. Patient A at the age of 4 years presented with a severe global developmental delay, dolichocephaly, muscular hypotonia, complex cerebral malformations including polymicrogyria and PVNH in MR imaging and was hemizygous for a FLNA missense mutation inherited from his mother. A severe and complex phenotype was also identified in 37 year old patient B with intractable seizures, skeletal features within the OPD spectrum and severe obstructive lung disease, resulting from a mosaic frameshift FLNA mutation. In contrast, a mosaic FLNA splice site mutation was observed in the 63 year old father (patient C) of two daughters with PVNHL MR imaging confirmed for him very subtle PVNH; he has a University degree, under antiepileptic medication is without seizures and otherwise healthy.
Discussion: FLNA mutations in males are rare and should also be considered in patients with more complex phenotypes including PVNH as shown in patients A and B. Furthermore, mosaic Filamin A mutations may be clinically silent, but still be associated with a high recurrence risk as demonstrated in patient C.

P02.102 De novo FMR2 (AFF2) deletion encompassing exons 2 and 3 in a boy with a mild intellectual disability
A. Behboudi1, T. Zagaras2, L. Samuelsen3, C. Jiang4, E. Kaeerstedt5, M. Stefanova2,6;
1Systems Biology Research Centre - Tumor biology, School of Life Sciences, University of Skövde, Skövde, Sweden; 2Department of Medical and Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; 3Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden.

Alterations of the Fragile Mental Retardation 2 gene (FMR2, synonym AFF2) can result in a mild to moderate intellectual disability (ID), speech delay, hyperactivity, and autistic behaviour. The well-known underlying molecular mechanism of this condition, also referred to as FRAXE, is a (CGG)n trinucleotide repeat expansion which leads to silencing of the FMR2 gene. Additionally, deletions within the FMR2 gene were described in handful number individuals with ID. Here we report on a de novo 131 kb deletion of FMR2 gene in a 2-years-old boy with a mild developmental delay, behaviour changes, hypotonia, and discrete facial dysmorphism. The deletion, detected by SNP-array analysis (Affymetrix 250 K Nsp I), spans between the base pairs 147454718-14756623 (NCBI36). The aberration and its de novo origin were confirmed by MLPA. RNA analysis on the patient showed a 994 bp deletion of AFF2 transcript, resulting in the complete loss of exons 2 and 3. In conclusion, this case report further confirms the role of FMR2 gene deletions as a FRAXE phenotype underlying mechanism. RNA analyses demonstrate that the deletion within the FMR2 gene ceases the transcript production.

P02.103 Detection of serum anti-neuronal antibodies in patients with Fragile X syndrome
M. Lisik, A. Pyrkosz, E. Gatmajster, A. L. Sieron; Department of General, Molecular Biology and Genetics, Katowice, Poland.

Fragile X syndrome (FXS) is the most common form of familial mental retardation and known cause of autism. The mutation responsible for FRAXA is a large expansion of the trinucleotide CGG repeats at 5’end of the FMR1 gene resulting in the transcriptional silencing of the gene. There are close similarities between autism profiles of idiopathic and comorbid autism (FXS). Aim: The aim of the study was to investigate the frequency of serum anti-neuronal antibodies in a group of 23 Fragile X males. Material and methods: Serum anti-neuronal antibodies were measured by Western blot technique (Anti-neuronal Antigens EUROLINE-WB EUROMUN) in 23 patients with FXS (full mutation in the FMR1 gene), aged between 10 and 32 years, in comparison to 19 healthy-matched males. Results: We detected the presence of antibodies in the serum of 10 FXS males and in 1 from the reference group. FXS males had significantly higher levels of serum anti-neuronal antibodies (4.348%) than healthy controls (5.26%). Conclusion: Serum anti-neuronal antibodies were found in a subgroup of FXS patients. Autistic symptoms in FXS may be, in part, caused by autoimmune factors. Further wide-scale studies are necessary to shed light on the role of anti-neuronal antibodies in autistic syndromes. The work was in part financed from Institutional grant KBN-2-021/10 awarded to MZL.
PO2.104
Offspring of a fully mutated fragile-X male patient: a prepubertal female baby
L. Valdes-Miranda1,2, J. M. Valdes-Miranda,3 M. Martin-DeSaro4, S. A. Cuenca-Covarrubias5
1,2Genetic, Hospital General de Mexico, Mexico, D.F, Mexico, 3Genetica, Hospital General de Mexico, Facultad de Medicina, UNAM, Mexico, D.F, Mexico.

PO2.105
A rare case of Fraser syndrome followed 9 years alive
M. Bembes1, C. Jurca1,2, D. Bembea1,3, K. Kozma1,2, S. Bembea1, A. Jurca1
1Medicine and Pharmacy Faculty, Oradea, Romania, 2Municipal Clinical Hospital, Oradea, Romania.

PO2.106
Frontonasal dysplasia; characterization of a family with an evident pattern of an autosomal dominant inheritance.
J. M. Valdes-Miranda,2 M. Martin-DeSaro3, A. Cuenca-Covarrubias5
2Genetic, Hospital General de Mexico, Mexico, D.F, Mexico, 3Genetica, Hospital General de Mexico, Facultad de Medicina, UNAM, Mexico, D.F, Mexico.

PO2.107
Severe FX deficiency caused by a 4 bp deletion compound heterozygous with a large deletion in 13q34
1Institute of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University Greifswald, Greifswald, Germany; 2Northern Blood Research Centre, Kelling Institute, University of Sydney and Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia; 3Department of Haematology, Westmead Children’s Hospital, Sydney, Australia.

PO2.108
Efficacy and safety of biphosphonates in a Romanian pediatric clinical trial with genetic disorders affecting bone mineralization
V. Dumitrascu, D. Vlad1, C. Gagi1, S. Sipos1, A. Bacar1, C. Vlad1, A. Matosa1
1Department of Pharmacology and Biochemistry, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania, 2Department of Genetics, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania, 3Department of Public Health, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania, 4Dentissimo Dental Care, Timisoara, Romania, 5European General Practice Research Network Romanian National Representative, Timisoara, Romania.

Background: Most genetic disorders with increased bone fragility (congenital rickets, osteogenesis imperfecta) include close to normal growth and autosomal dominant inheritance. Previous randomized controlled trials revealed that the majority of children and adolescents with mild and moderate forms of disease have low areal bone mineral density (BMD) at the lumbar spine and that cyclical treatment with bisphosphonates has beneficial effects.

Methods: In a two years longitudinal study, we prospectively followed up 35 pediatric patients recruited from a Romanian primary care setting between November 2009 and November 2011. Inclusion criteria positive family history - presence of at least one fracture or dentinogenesis imperfecta, child > 10 yr of age. Patients were randomized to either risedronate (N=18) or alendronate (N= 17) and study visits occurred every 3 month.

Results: The main efficacy variable was the change in lumbar spine (L1-4) areal BMD z-score; risedronate increased it by 0.76, whereas patients receiving alendronate therapy experienced an increase of 0.45 (p >0.05). Regarding safety, the incidence of gastrointestinal side effects due to alendronate was higher (47%) when compared with the risedonate group (26%). These results suggest that the skeletal effects of oral alendronate are weaker but still lead to an increase in lumbar spine areal BMD.

Conclusions: In a single dose, pharmacokinetic study, data showed that bisphosphonates were well tolerated and reduced fracture rates in a population-based cohort study of children with genetic disorders affecting bone mineralization.

Keywords: genetic disorders, bone mineralization, pediatric patients, bisphosphonates.
PO2.109
Audiological analysis in deaf patients homozygous for the splice site mutation IVS1+1G>A in GJB2 gene
F.M. Tovynto1,2, A. Breshears1, L.T. Dohnemieve1, O.L. Psukh1, A.V. Solovierov1, V.G. Pshenshno1, M.V. Vasiliev2, E.E. Fedotova2, S.A. Fedorenko2, V.K. Khustadinova4, A.Y. Belyaeva4
1Yakutsk Scientific Centre of Complex Medical Problems, Yakutsk, Russian Federation, 2Department of Developmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan, 3Department of Medical Science, Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagoya, Japan.

Purpose: Glut1 deficiency syndrome (Glut1-DS) is a treatable epileptic encephalopathy diagnosed by hypoglycorrhachia, impaired erythrocytes glucose uptake, and heterozygous mutations in SLC2A1 gene. Here we report two patients with the same SLC2A1 mutation and different results in the erythrocyte glucose uptake to reveal clinical heterogeneity in Glut1-DS.

Patient 1: A 15-year-old girl, born to healthy non-consanguineous parents. Atypical absence seizures and dystonic posturing were seen since 2 years of age, and astatic episodes after a long walk has seen since 10 years of age. Hypoglycorrhachia and decreased erythrocyte glucose uptake were observed. She was diagnosed with Glut1-DS and started on the ketogenic diet.

Patient 2: A 17-year-old girl, born to healthy non-consanguineous parents. Since 4 years of age, she showed myoclonus, ataxia, and loss of consciousness with drooling. Such events were mostly seen in the late afternoon, and recovered with eating. Hypoglycorrhachia was observed while erythrocyte glucose uptake was normal. She has not started ketogenic diet yet, and her developmental status is severely retarded. Both patients had the same mutation in SLC2A1 (R330X). Discussion and conclusion: This is the first report of a patient with normal erythrocyte glucose uptake caused by the R330X mutation. There is variability in the level of erythrocyte glucose uptake even in patients with the same SLC2A1 mutation. Factors causing the variability remain to be clarified.

PO2.111
Gomez-Lopez-Hernandez Syndrome - a further case report
A.L. Burgeimeister1, A. Seitzi2, S. Karch3, D. Choukair3, A. Bockius4
1Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany, 2Department of Neuroradiology, University of Heidelberg, Heidelberg, Germany, 3Center for Pediatric and Adolescent Medicine, Pediatric Neurology, Heidelberg University Hospital, Heidelberg, Germany, 4Pediatric Practice, Dieburg, Germany.

Gomez-Lopez-Hernandez syndrome (GLHS), also known as cerebellotrigeminal-dermal dysplasia, is a rare, possibly underdiagnosed neurocutaneous syndrome of unknown origin. GLHS is characterized by the triad of rhombencephalosynapsis, trigeminal anesthesia and partial alopecia of the scalp. However, only rhombencephalosynapsis and partial alopecia have been recognized as consistent features and are obligate diagnostic criteria. Rhombencephalosynapsis is defined as agenesis of the cerebral vermis and fusion of the cerebellar hemispheres, the superior cerebellar peduncles and the dentate nuclei. Inconsistent features of GLHS include characteristic craniofacial features (brachy-turricephaly, midface hypoplasia, down-slant of palpebral fissures, hypertelorism, low posteriorly rotated ears), strabismus, short stature, cognitive impairment, ataxia and muscular hypotonia. 27 patients have been published to date, all of them sporadic cases. We report one further male patient, 6 years of age, who presented with short stature, hypoplasia, atrial septal defect, mild muscular hypotonia and motor coordination problems, strabismus, bilateral parietal alopecia, craniofacial dysmorphic signs, and congenital hypothyroidism also present in his brother. He showed a normal cognitive development. Chromosome analysis, FISH for 22q11 microdeletion and SNP-array analysis yielded no relevant results. A MRI of the brain performed for the evaluation of short stature showed rhombencephalosynapsis and thus led to the diagnosis of GLHS.

PO2.112
Gómez-López-Hernández syndrome: description of an additional case with typical phenotypic features and normal cognitive function
S. Munk-Schulenburg1, D. Bartholdt2, R. Munk3, K. Schenck-Kaseler2, A. Busche1, J. Fischel2
1Institute of Human Genetics, University Clinic Freiburg, Freiburg, Germany, 2St. Josef Krankenhaus Freiburg, Department of Diagnostic Radiology, Freiburg, Germany.

Gómez-López-Hernández syndrome (GLHS) also named cerebellotrigeminal-dermal dysplasia is a rare neurocutaneous syndrome with unknown etiology. Based on current data, only 27 cases have been described so far, all sporadic cases. GLHS is characterized by the triad of rhombencephalosynapsis, trigeminal anesthesia and partial parietal or parieto-occipital alopecia. Bilateral alopecia is already present in the neonatal period and is highly suggestive of GLHS. Trigeminal anesthesia seems to be very variably in its expression and can be easily missed. Rhombencephalosynapsis is a consistent neuroimaging sign, comprising fusion of the cerebellar hemispheres with agenesis of the cerebellar vermis. Further features described so far include short stature, hypertelorism, down-slanting palpebral fissures, brachy-turricephaly, craniostenosis, midfacial hypoplasia, mild mental retardation, dyspraxia, ataxia and corneal opacities.

Here we report on an additional patient with typical GLHS. The seven year old girl presented with trigeminal anesthesia with distinctive cornalian lesions and visual impairment and mild parietal alopecia. Rhombencephalosynapsis was diagnosed in retrospect. Other phenotypic features were brachy-turricephaly, low set and dorsally rotated ears, strabismus convergens, down-slanting palpebral fissures, hypoplastic end phalanges and interrupted transverse palmar creases. Cognitive function was normal (IQ 104). Based on literature and our additional case we propose that the presence of partial alopecia, trigeminal anesthesia and rhombencephalosynapsis is required for the diagnosis of GLHS. Intellectual impairment is reported in patients but seems not to be a consistent feature of GLHS.

PO2.113
Calcaneonavicular coalition in patients with Gorlin syndrome
R.S. Alajmi1, A. Jelsig2, A. Gerdes1
1Department of Clinical Genetics, Odense University Hospital, Odense, Odense, Denmark, 2Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark.

Basal cell nevus syndrome (BCNS), also known as Gorlin syndrome, is an infrequent autosomal dominant disorder characterized by a predisposition to neoplasms and other developmental abnormalities. Key features are jaw keratocysts, calcification of the falx or eptic calcification, palmar/plantar pits and multiple basal cell carcinomas (BCC). A large proportion of affected patients have a recognizable appearance with macrocephaly, bossing of the forehead, coarse features and facial miilia. Gorlin syndrome is caused by mutations in the PTCH1 gene. Complete penetrance and variable expressivity are seen. Calcaneonavicular coalition is one of the most common types of tarsal coalition and may be a fibrous, bony, or bony union of the two bones. Calcaneonavicular coalition was seen in three patients from two different families, with known pathogenic PTCH1 mutations (c.2287dupG and c.1142-1145delATG).

Family A: An affected father and his two affected daughters all had classical
clinical manifestations of Gorlin syndrome. In addition, they had pain and reduced range of motion in their feet. Unilateral calcaneonavicular coalition was seen in the father and bilateral coalition in one of his daughters.

Family B: A father and son with classical manifestations of Gorlin syndrome. The son was diagnosed with bilateral calcaneonavicular coalition at the age of 38.

One major criteria of Gorlin syndrome is the ectopic calcifications and congenital skeletal malformations. To our knowledge there have not been any reports of tarsal coalition in individuals with Gorlin syndrome in the current literature. Although tarsal coalition is a common condition, this may be manifestation of Gorlin syndrome.

P02.114

Gorlin-Chaudhry-Moss syndrome: a case report
A. Cieślikowska, M. Kogaudo, M. Krajewska-Walasek, K. Chrzanowska; Department of Medical Genetics, The Children’s Memorial Health Institute, Warsaw, Poland.

The first description of the Gorlin-Chaudhry-Moss syndrome (GCMS) was published in 1960. Two sisters with craniosynostosis, hypertrichosis, hypoplastic labia majora, dental defects, eye anomalies, and normal intelligence were presented. Two other female unrelated cases have been documented. The inheritance is still not clear; both, autosomal recessive and X-linked dominant inheritance (lethal in males) were proposed. In 2011, Arawa et al. reported two sisters with some similarities to GCMS. However, they have neither craniosynostosis nor hearing loss, but had additional manifestations not previously described in GCMS: aplasia cutis, ossification defect of the skull and early mortality. We report a two-year-old girl born to apparently unrelated parents. She fulfills the clinical criteria of GMC with the following main clinical features: microsomia, hypertrichosis, midface hypoplasia, brachycephaly, coronal craniosynostosis, low frontal hairline, coarse hair, small ears, short and downslanting palpebral fissures and hypoplastic labia majora. Other features included loose skin, umbilical hernia, high arched palate, microdontia, somatovisceral malformations and severe malformations. Radiological evaluation showed hypoplasia of the distal phalanges of the left hand. Karyotype and metabolic screening were normal. Our patient, similarly to the patients described by Arawa et al. has not got hearing loss, the feature observed in all the first three patients with GCMS.

We would like to bring this condition to the attention of clinical geneticists. Future case reports can stimulate detailed clinical and molecular investigations into aetiology of GCMS with all implications for genetic counselling.

P02.115

Mutation-based growth charts for SEDC and other COL2A1 related dysplasias
P. A. Terhaa, P. van Dommelen1, G. Mortier2; 1Department of Biomedical Genetics, Utrecht, Netherlands, 2Life Style, TNO, Leiden, Netherlands.

In a large international collaborative study we have constructed a growth chart for patients with molecular confirmed congenital spondylo-epiphyseal dysplasia (SEDC) and other COL2A1 related dysplasias. The growth chart is based on longitudinal height measurements of 79 patients with glycine substitutions in the triple-helical domain of COL2A1. In addition, measurements of 27 patients with other molecular defects, such as arginyl to cysteine substitutions, splice mutations and mutations in the C-terminal propeptide have been plotted on the chart. Height of the patients progressively deviate from that of normal children: compared to normal WHO charts, the mean length/height is -2.6 SD at birth, -4.2 SD at 5 years and -5.8 SD at adult age. The mean adult height (male and female combined) of patients with glycine substitutions in the triple-helical region is 138.2 cm, but there is a large variation. Patients with glycine to cysteine substitutions tend to cluster within the upper part of the chart, while patients with glycine to serine and valine substitutions are situated between +1 SD and -1 SD. Patients with carboxy terminal glycine substitutions tend to be shorter than patients with amino terminal substitutions, while patients with splice mutations are relatively tall. However, there are exceptions, and specific mutations can have a strong, or the reverse, a relatively mild negative effect on growth. The observation of significant differences in adult height between affected members of the same family indicates that height remains a multifactorial trait even in the presence of a mutation with a strong dominant effect.

P02.116

Severe growth retardation in an 8.5 year old boy with dup 2p16.2-p22.1
A. Frühmesser, A. Blasming-Ezech, B. Simmera, R. Krabichler, F. Fausth, J. Zschocke, D. Kottatz; 1Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria, 2Department of Pediatrics, LKH Feldkirch, Academic Teaching Hospital of Innsbruck Medical University, Feldkirch, Austria.

So far, interstitial duplications of the short arm of chromosome 2 have been reported rarely and there is no specific phenotype. Here we describe an 8.5-year-old boy with severe growth retardation (110 cm ([< P3]) associated with delayed bone age (age 3 years for wrist and 5 years for forearm) and a rare genetic diagnosis (chronological age of 8 years 3 months), moderate intellectual disability ([IQ 79 tested by nonverbal intelligence test]), and facial dysmorphisms including severe/global obesity ([54 cm ([P75)]) with a high, prominent, and broad forehead, and a large anterior fontanel. Hormone values for T3, T4, TSH, GH, HGH (basic and stimulated), ACTH, Cortisol, LH and FSH were within normal ranges, whereas IgG1 and IgGFP3 were in the normal lower ranges. Cardiac ultrasound and cerebral imaging were normal. SNP-microarray analysis with the Illumina CytoChip 12v2.1 revealed a duplication of approximately 14.6 Mb carrying 63 genes, with breakpoints between rs2540240 (39,791,659 bp) and rs2540229 (39,797,559 bp) in 2p22.1 and between rs1801133 (39,401,998 bp) and rs100,034 (39,410,054 bp) in 2p16.2, respectively, and a variation in maternal meiosis. Comparison of our patient with the cases from the literature and the DECIPHER database allowed the identification of a region of 4 Mb carrying 48 genes, where one or more genes relevant for growth might be located. So far, none of these genes has been associated with growth retardation.

P02.117

MTHFR 677T is a determinant of the degree of hearing loss among Polish males
A. Polski, M. Mueller-Malesinska, U. Lebocwicz, A. Sierka1, L. Kornaszewski, A. Sobczyk-Kopicol, A. Waskiewicz1, G. Brodra1, K. Iwanicka-Pronsicha, M. Oldak, H. Skarzynski, R. Ploski1; 1The institute of Physiological and Pathological of Hearing, Warsaw, Poland, 2Department of Pediatrics, Medical University of Warsaw, Poland, Warsaw, Poland, 3Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland, 4Department of Cardiovascular Diseases Epidemiology, Prevention and Health Promotion, Institute of Cardiology, Warsaw, Poland, Warsaw, Poland, 5Department of Histology and Embryology Center of Biostucture Research, Medical University of Warsaw, Warsaw, Poland, 6Department of Medical Genetics, Medical University in Warsaw, Poland, Warsaw, Poland.

Hearing impairment (HI) is the most common sensory handicap. Whereas congenital HI has often a genetic etiology the non-syndromic postlingual HI (nphl) usually remains unidentified. Our purpose was to test whether the MTHFR C677T (rs1801133) polymorphism affecting folate metabolism is associated with the occurrence or severity of nphl. We studied rs1801133 genotypes in 647 nphl patients (age < 40, sudden sensorinural loss excluded, HI characterized as mean of better ear hearing thresholds for 0.5-8kHz) and 3273 adult controls from background population. Genotype distribution among patients and controls was similar but among male cases (N=302) we found a dose dependent correlation of MTHFR 677T with degree of HI (mean thresholds in dB: 38.8, 44.9 and 53.3, for CC, CT and TT genotypes, respectively; P=0.0013, P=0.0017). Among male patients rs1801133 TT significantly increased risk for severe/profound HI (OR=4.38, P=0.001). Among controls the known effect of MTHFR 677T on homocystein concentration was more pronounced in men than women (P<0.0004 for genotype-sex interaction) suggesting that in Poland folate deficiency is more prevalent in males. In our study we report a novel effect of MTHFR 677T among males with nphl. The functional significance of rs1801133 suggests these patients may benefit from that folate supplementation.

P02.118

Screening for miRNA and common mutations in deaf Brazilian patients

Mutations in the genes coding for connexins 26 (GJB2) and connexin 30 (GJB6) are the main cause of autosomal recessive nonsyndromic sensorineural hearing loss (AR-NNSHL). Lately, mutations in a noncoding microRNA (miRNA) gene, miR96, a member of the miR-183 miRNA cluster that is expressed in the inner ear sensory epithelium, were linked with progressive hearing loss in humans and mice. In the present study, we screened mutations in the GJB2 gene and two deletions in the GJB6 gene in 566 unrelated Brazilian patients, with moderate to profound NSHL. Besides these common muta-
PO2.119
Identification of two new alpha globin gene mutations in patients suspected of having alpha thalassemia
M. Hamidi1, G. Shariati2, A. Saberi3, M. Mohammad1, B. Keikhai1
1Molecular Medicine Division, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran, 2Narges Medical Genetics & PND Laboratory, No. 108, East Mihan Ave, Kianpars, Ahvaz, Islamic Republic of Iran, 3Department of Medical Genetic, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran, 4Department of Pediatric Hematology & Oncology, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences Ahvaz, Iran, Ahvaz, Islamic Republic of Iran.

Alpha thalassemia disorder is a hereditary anemia caused by quantitative reduction of the alpha chain of hemoglobin, which the majority is caused by deletion in alpha globin gene cluster and, small group by point mutations. We report two novel point mutations observed in two male from south of Iran with lur ethnic origin, detected during screening for hemoglobinopa-thies. The patients were initially selected for their hematological indices as belonging to a group suspected for alpha thalassemia. The patients who did not reveal the most common alpha thalassemia deletions (2.3kb, 4.2kb, 20.5kb) by gap-PCR, were subjected for alpha2 and alpha1 globin gene DNA sequencing. Sequence analyses identified C3 3A+G and C9 3A+T located in alpha 1 globin gene, which the C31 was missense and C93 was nonsense mutation. Based on the red cell indices and phenotype, these mutations seem to be associated with a mild alpha-thalassemia (alpha-thal) phenotype.

PO2.120
SPG 23: autosomal recessive spastic paraplegia with pigmentation anomalies: further definition in a large Algerian pedigree with pseudodominance
M. Hureaux, M. Irabe, F. Piard, L. Van Maldereghen, J. Bresson
CHU Besançon, Hôpital St Jacques, Center of Human Genetics, Besançon, France.

Autosomal recessive hereditary spastic paraplegia includes at least fifteen different conditions which manifest as a progressive neurologic phenotype with tremor and gait ataxia. Therefore, SPG 23 is known as an autosomal recessive spastic paraplegia (AR-SPG) that develops based on the severity of the pigmentary changes. We report two novel point mutations observed in two male from south of Morocco. The patient was diagnosed as a Zimmermann-Laband syndrome. This is the first report of this syndrome in Algeria.

PO2.121
A Microdeletion at the 7q11.23 Locus including HIP1 in a Girl with Developmental Delay, Behavioural Problems, Gait Abnormalities and Facial Dysmorphism
K. Hackmann1, C. Heine1, S. Syrbe3, D. Mitter1
1, K. Hackmann2, C. Heine1, S. Syrbe3, D. Mitter1; 2Institut für Humangenetik, Universitätshilklinikum Leipzig, Leipzig, Germany, 3Institut für Klinische Genetik, TU Dresden, Dresden, Germany, 4Klinik und Poliklinik für Gastroenterologie und Rheumatologie, Universitätshilklinikum Leipzig, Leipzig, Germany.

Recurrent deletions in the proximal region 7q11.23 are common in patients with Williams-Beuren syndrome (WBS). However, only a few patients with a microdeletion including the HIP1 gene, located in the distal region of 7q11.23, have been reported. These patients show a neurodevelopmental and epilepsy syndrome. HIP1 encodes human interacting protein-1 which is normally expressed in the brain. HIP1-knockout mice develop a progressive neurologic phenotype with tremor and gait ataxia. Therefore, HIP1 haploinsufficiency has been proposed to lead to cognitive and behav-ioural dysfunction in these patients. We present a 4 year old girl with motor and speech delay, mild ataxia, and behavioral problems including impulsivity, aggression and mild autistic features. She showed facial dysmorphism, including a short nose with anteverted nares, downturned corners of the mouth, and a full lower lip, reminiscent of patients with WBS. Array-CGH analysis revealed an intragenic 14-23kb deletion in the distal region 7q11.23, which leads to loss of exons 5 to 8 of HIP1. The deletion detected in this patient overlaps with a recurrent distal deletion in 7q11.23 in the patients reported by Ramochi et al. (2010). Those patients had similar clini-cal features, including intellectual disabilities, neurobehavioral problems and in addition epilepsy. However, no information about facial dysmorphism was reported. Our patient appears to be the first with HIP1 haploinsufficiency. Further, our observation supports HIP1 to be a good candidate gene in patients with developmental delay, behavioral and gait abnormalities and the facial dysmorphism described.
P02.124 Validation of “triplet repeat” disease detection and quantitation using micro-fluid technology based platform
J. Bamic; N. Lojo-Kadic; K. Radic; K. Bagrovic; L. Klapur-Popovic; Institute for genetic engineering and biotechnology, Sarajevo, Bosnia and Herzegovina.

Classical molecular genetic diagnosis of Huntington disease and similar diseases caused by unstable repetitive sequences relies mainly on the Southern blotting method. Specifically in the case of Huntington disease that we used as a model, which is transmitted in an autosomal-dominant inheritance, increased number of CAG triplet repeat is a genetic cause for the redundant synthesis of the targeted product. In the normal genotype, the numbers of repetitions ranges from 6-26, and with increasing numbers of repetitions also increase the degree of disease. Development of PCR technology has evolved and the possibility of faster and more reliable diagnosis of diseases of this type. Analysis of the PCR product from conventional gel electrophoresis is generally accepted, but it is not always possible to precisely determine the exact number of CAG repetitions that characterize this disease. In the present study we compared the process of PCR-based analysis using micro-fluid technology based platform (Agilent 2100 bioanalyzer, Agilent Technologies, USA) potentially produce more accurate data on qualitative and quantitative aspects of the mutation.

P02.125 Ischemic stroke in a case with moderate hyperhomocysteinemia
M. Cevei, D. Stoicanescu; 1University of Oradea, Faculty of Medicine & Pharmacy, Oradea, Romania; 2University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania.

Increased concentration of homocysteine is a risk factor for stroke, peripheral vascular disease, myocardial infarction, and venous thromboembolism. It seems that hyperhomocysteinemia affects not only the blood coagulation system, but also the vascular wall structure. MTHFR gene encodes a co-substrate for homocysteine remethylation to methionine, but it is also involved in transulfuration to cystathionine. We present the case of a 42 years old man hospitalized for treatment and functional rehabilitation in Medical Rehabilitation Clinical Hospital Baile Felix, Romania, after ischemic stroke. The patient with unremarkable anamnesis, negative family history, no known diagnosis of homocystinuria developed an acute cerebrovascular ischemic accident. MRI described an ischemic vascular lesion of the left cerebellar hemisphere with edema, herniation phenomena through foramen magnum and supratentorial and amputation of the fourth ventricle. Ultrasoundography of the heart and precerebral arteries revealed normal aspects. No atherosclerotic processes in the brain or defects to any structure in the motor unit. Cerebral CT scan did not reveal further pathological changes.

P02.126 Phenotype-genotype correlation in patients with mutations in the beta-myosin converter domain
D. A. Garcia-Gastinatiz1, X. Fernandez1, M. Ortiz-Geng1, R. Barriales-Villa1, A. Mazzanti2, M. I. Rodriguez-Garcia1, L. Casini1, M. Perez-Barbeito1, E. Maneiro1, L. Monserrat-Iglesias1,2; 1INIBIC, A Coruña, Spain, 2CHUCAS, A Coruña, Spain.

Purpose: Evaluate the genotype-phenotype correlation of mutations located in the beta-myosin converter domain (aa 709-777) of the MTHFR gene. Methods: Identification of mutations in the converter domain of MYH7 was performed in a cohort of more than 800 cases diagnosed either with Hypertrophic (HCM) or Dilated Cardiomyopathy (HCM), followed-up in a single reference unit. We also reviewed the published data about mutations located within this domain.

Results: 6 mutations (G716R, G741R, G768R, R7130N [novel mutation], R736T and R719Q) were identified in 11 families (59 relatives-30 carriers). Taking in account our data and data from literature, a total of 21 pathogenic mutations have been identified within this domain. They were distributed in 143 families (470 relatives). 424 relatives were affected or possibly affected (11 with DCM and the rest with HCM) and 382 were mutation carriers. We observed an early onset of disease (27±8 years, 56% males). Thirteen of 21 mutations were associated with a severe adverse event affecting at least one member in 52/143 families: sudden death occurred in 96 patients and at least 56% were younger than 45 years old, heart failure death in 35, cardiac transplantation in 18 and fatal stroke in 6.

Conclusion: Mutations located within the beta-myosin converter domain presented an early onset of disease. A significant proportion of mutations were associated with the occurrence of a serious adverse event and left ventricular dysfunction.

P02.127 Epidemiological and genetic assessment of hypospadias
D. Stoicanescu1, M. Stoian1, A. Belengeanu1, M. Cevei2; 1University of Oradea, Faculty of Medicine & Pharmacy, Oradea, Romania; 2University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania.

Hypospadias is one of the most common birth defects. In several countries, the incidence appears to be increasing, possibly due to increased reporting of minor degrees of hypospadias, but severe cases were also reported. Some reports have linked its high rate to prematurity and low birth-weight. The etiology is still unknown in many cases, pedigree analyses indicating a heterogeneous pattern of inheritance. A genetic predisposition has been suggested. The aim of this study was to perform an epidemiological study focused on this type of pathology, in newborns from Timisoara, Romania, for a period of three years, between 2008 and 2010 and to highlight the etiological aspects of hypospadias. Methods: data selection, family history, clinical, laboratory, cytogenetic and molecular study. Major and minor congenital defects present in examined patients were recorded. The determined incidence was 0.36% of male newborns. Glanular and distal penile locations were preferred. At birth, mean values were 2982 g weight and 46 cm for height. Frequently associated anomalies were genital, skeletal, nervous system and different minor anomalies. A brotherhood with hypospadias was noted. 83% of mothers had previous miscarriages or malformed births. Cytogenetic investigation revealed trisomy 21 in one case. A patient had disorder of sexual development. Environmental exposure to diluents was documented in another case. Identifying patients with a genetic susceptibility and further studies regarding gene and environment interactions will play an important role in preventing the occurrence of the defect.

P02.128 Molecular analysis is essential in the hypotonic infant approach detecting high incidence of Genetic diseases
G. Queipo1, J. Perez1, L. Gonzalez1, E. Barrargent1, N. Najer1, N. Garibay2; 1Hospital General de México-Facultad de Medicina UNAM, México DF, Mexico, 2Hospital Infantil de Mexico Federico Gomez, México DF, Mexico.

Neonatal central hypotonia is the lack of spontaneous movement, with or without muscular weakness, and generalized hypotonia during the neonatal period. This condition can be caused by a number of different pathological processes in the brain or defects to any structure in the motor unit. Central hypotonia affects the central nervous system, including the spine, and among its most frequent causes is systemic illness. As part of the central approach to the hypotonic baby, it is important to eliminate syndromic and genetic causes. Some reports have been proposed that 40% of the central hypotonic neonates had Prader-Willi the most common genetic cause of obesity however, in children under 2 years of age the diagnosis is especially difficult. It is clear that early diagnosis of PWS o any other genetic entity is crucial to avoid complications and decrease morbidity and life expectancy. Neonatal syndromes have other genetic causes. 4% of these central hypotonic cases were craniofacial anomalies as main clinical manifestation during infancy. So, genetic approach is mandatory during the initial clinical intervention. We present the genetic approach in 30 consecutive pediatric patients with central hypotonia as a major symptom, referred by the neuro-pediatrician. According with the clinical gene evaluation and presumptive clinical diagnosis, molecular analysis was performed detecting that 70% of the cases had a genetic disorder. We conclude that the genetic evaluation is the central hypotonic clinical approach, proposing that all the central idiopathic hypotonic babies should be evaluated by a clinical genetic professional.
Incidence of Beckwith-Wiedemann syndrome

C. Molinatti, A. Musa, A. De Crescenzo, N. Chiesa, G. Baldassarre, A. Selicorne, S. Russo, A. Bizzarri, M. Silengo, M. Forneri; 1Department of Pediatrics, University of Turin, Turin, Italy, 2Genetics and Biophysics Institute, A. Bizzarri-Traverso, CNR, Naples, Italy, 3Pediatric Clinical Genetics, Department of Pediatrics, University of Milano Bicocca, S. Gerardo HospitalMBBM Foundation, Monza, Italy, 4Laboratory of Cyogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy.

Background - Beckwith-Wiedemann syndrome (BWS) is the most common genetic overgrowth disorder, with an incidence ranging 1:13,000-15,000 live births. However, as data on its epidemiology are scanty and estimates show wide variability, there is a feeling that BWS could be more common than previously thought. Objective - We assessed its incidence in Piedmont, Italy (4,432,571 population) locating BWS cases born in this region. Methods - Patient were searched through local genetic counselling services, BWS Italian Association, malformation registries and rare diseases network. Data from the Italian National Institute for Statistics was used for live births assessment. BWS diagnosis was clinical according to Weckberg's criteria and molecular testing was performed according to currently employed diagnostic flow-chart. Results - 45 clear-cut BWS cases (26 females, 19 males) were born across a 13-year period (1996-2009), providing an incidence of 1:10,569 live birth. Forty patients accepted molecular testing: 72.5% turned positive showing imprinting center 2 (IC2) hypomethylation (30.0%), paternal chromosome 11p15 uniparental disomy (UPD, 25.0%), IC1 hypermethylation (15.0%), CDKN1C mutation (2.5%), whereas 27.5% turned negative. Mean age at diagnosis was 0.49±1.07 years, with 34 patients diagnosed in the first semester of life, providing a birth prevalence of 1:3,198. Four patients of the cohort developed Wilms' tumor (8.9%) and 2 hepatoblastoma (4.4%) during the observation period, resulting in a 14.2% cancer risk. Conclusion - We observed a BWS incidence of 1:10,569 live birth in Piedmont. This estimate results higher than previous figures, and represent the first attempt to correlate epidemiologic and molecular data in BWS.

Inheritance of the VATER/VACTERL association

E. Bartels, E. Jenetzky, B. B. Solomon, M. Ludwig, E. Schmiedeke; 1, S. Graschoff-Derne, D. Schmidt; 2Department of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany, 3Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, United States, 4Department of Clinical Chemistry and Clinical Pharmacology, Bonn, Germany, 5Department of Pediatric Surgery and Urology, Center for Child and Adolescent Health, University of Wuerzburg, Wuerzburg, Germany, 6Department of Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany, 7Department of Pediatric Surgery, Campus Virchow Clinic, Charite University Hospital Berlin, Berlin, Germany, 8Department of Pediatric Surgery, Klinikum Schwabing, Technische Universität München, Munich, Germany, 9Department of Pediatric Surgery, University of Heidelberg, Heidelberg, Germany, 10Department of Pediatric Surgery, Evangelisches Krankenhaus Hamm, Hamm, Germany, 11Department of Pediatric Surgery, St. Bernward-Hospital, Hildesheim, Germany, 12Department of Pediatric Surgery, Children's Hospital, University of Bonn, Bonn, Germany, 13Department of Pediatric Surgery, University of Greifswald, Greifswald, Germany, 14Malformation Monitoring Centre Saxon-Anhalt, Otto-von-Guericke University, Magdeburg, Germany, 15Department of Human Genetics, University of Bonn, Bonn, Germany, 16Department of Neonatology, Children's Hospital, University of Bonn, Bonn, Germany.

VATER/VACTERL association refers to the non-random co-occurrence of the following component features: vertebral defects, anal atresia, cardiac malformations, tracheo-esophageal fistula, renal abnormalities, and limb defects. The individual component features suggest that in some patients, the disorder may be inherited. The aim of the present study was to replicate these findings by investigating 116 VATER/VACTERL patients and their relatives. The prevalence of anal atresia (OR 41.7, 95% CI 15.5-112.2) and limb anomalies (OR 6.4, 95% CI 1.6-25.7) was significantly higher among first-degree relatives compared to the general population. This confirms other observations of an increased prevalence of component features among relatives. The fact that the two studies report a higher prevalence for differing specific component features might be explained by the differing malformation spectra of the respective index patients. Conclusion: the present study provides independent support for the hypothesis that some cases of VATER/VACTERL have a genetic basis.

A novel inPNPE mutation in a joubert syndrome patient

G. Uyunk;1 M. Güzünler;1 F. Sonmez;2 D. Yilmaz;1 L. Vater;1 G. Gömertay;1,2 M. Hesse;1 S. Cakar;1 Y. Hellenbroich;1

1Institute of Human Genetics, University Medical Center, Hamburg, Germany, 2Department of Pediatrics, Gürdes Hospital, Manisa, Turkey, 3Division of Pediatric Nephrology, Department of Pediatrics, Adnan Menderes University, Aydın, Turkey, 4Department of Human Genetics, University Hospital Schleswig-Holstein, Campus, Kiel, Germany, 5Department of Medical Biology and Genetics, Cukurova University, Adana, Turkey, 6UCL Institute of Child Health, Great Ormond Street Hospital, London, United Kingdom, 7Institute of Human Genetics, University Hospital of Schleswig-Holstein, Campus Lübeck / University of Lübeck, Lübeck, Germany.

Joubert syndrome (JS) is an autosomal recessive condition characterized by ataxia, muscular hypotonia, developmental delay, irregular breathing pattern and eye movement abnormalities. The MRI shows cerebellar vermis hypoplasia with accompanying brainstem malformations resulting in the characteristic “molar tooth sign”. JS can also be associated with additional features including retinal dysplasia, ocular colobomas, cystic renal disease, nephrophtisis, hepatic fibrosis and polyductly summarized as JS-related disorders (JNDS).

JS and JNDS are genetically and clinically heterogeneous disorders, so far 16 different causative genes have been identified in JNDS. Here, we present a 5 years old Turkish girl with JS. The parents were first degree cousins and the patient was on chronic peritoneal dialysis program since the age of 15 months. We decided first to perform a homozygosity mapping by SNP-array (6.0 Affymetrix) analysis, which showed “loss-of-heterozygosity” of the JBT1 locus on chromosome 9q34.3. The analysis of the INPNPE gene revealed a homozygous mutation (c.1303C>G; p.R435G) within exon 6, affecting a highly conserved amino acid within the inositol polyphosphate phosphatase catalytic domain of INPNPE. The genetic and clinical data will be presented and compared to the published cases.

Autosomal recessive syndrome characterized by Hypertelorism

- Intellectual Disability - Microcephaly - Short stature: clinical delineation and identification of two possible candidate loci

M. Feingold, A. Har Zahav, K. Noveling, G. Gilissen, M. Ranwit, S. Gilissen, J. Veltman, H. Brunner, M. Shohat, L. Basel-Vanagaite; 1Pediatric Genetics, Schneider Children’s Medical Center of Israel, and Raphael Recanati Genetic Institute, Petah Tikva, Israel, 2Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, Tel Aviv, Israel, 3Department of Human Genetics, Nijmegen Center for Molecular Life Sciences and Institute for Genetic and Metabolic Disorders, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands, 4Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel, 5Felerstein Medical Research Center, Tel Aviv University, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel.

Autosomal recessive intellectual disability (ID) is particularly prevalent in consanguineous populations. Numerous genes associated with ID have been identified, and for several genes, mutations can result in both syndromic and non-syndromic ID. We describe a consanguineous family with three boys and one girl affected with a hitherto undescribed autosomal recessive syndromic form of ID characterized by, in addition to ID, hypertelorism, broad nasal bridge with a broad and bulbous nasal tip, and microcephaly ranging from -4 SD to -2 SD. One patient has multiple miliaria and another was diagnosed with keratosis pilaris. Three of the patients have short stature. Neurological examination of all the affected individuals was normal; none of them had seizures. Brain MRI studies showed normal results. We were not able to find any reports of this combination of clinical features in the scientific literature.

Consanguinity increases the coefficient of inbreeding, which in turn increases the likelihood of the presence of pathogenic mutations in a homozygous state. Homozygosity mapping provides a rapid means of mapping autosomal recessive genes in consanguineous families through identification of “homozygous blocks” suspected of harboring the causative mutated genes. We performed homozygosity mapping using SNP array in four affected family members and identified two candidate loci, one on chromosome 6p12-q12.2 and one on chromosome 9p23-p24, possibly containing a homozygous mutation responsible for this family’s unique phenotype. None of the genes mapping to these two candidate regions are known to cause a similar syndromic form of ID.

A partial de novo deletion of GLRB and GRIAz in an individual with intellectual disability

K. Hackmann1, S. Madoh2, E. Gerlach3, M. von der Hagen1, B. Klimk1,4, E. Schrock, A. Ramp1, N. Di Donato2

1Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, 2Abteilung Neuropädiatrie, Klinik und Poliklinik
Molecular karyotyping revealed a deletion of 102-111 kb in an individual with intellectual disability. This finding was validated as a de novo event by FISH. The aberration partially affects GLRB and GRIA2. Both genes are highly expressed in brain tissues. GLRB encodes the beta subunit of the inhibitory glycine receptor. It has been associated with autosomal recessive hyperekplexia. No symptoms of this disorder were found in this case. GRIA2 encodes the GluR2 subunit of a glutamate receptor. Other subunits of glutamate receptors have been associated with intellectual disability. Sequencing did not detect any further mutation in either of the two genes. Analyses of reversely transcribed RNA from blood revealed the existence of GLRB/GRIA2 fusion transcripts. We were not able to find a fragment that carried an antisense exon of SOX5. It was supposed that the fusion knock-out, nonetheless, operated. Several fusion-molecules could be restored by different alternative splice events that might occur in neuronal structures. We speculate that either haploinsufficiency of GRIA2 or a GLRB/GRIA2 fusion gene was causing the disorder.

P02.134 Haploinsufficiency of SOX5, a member of the SOX (SRY-related HMG-box) family of transcription factors is a cause of intellectual disability I. Schanz1, D. Schanz1, C. A. Bacicor2, S. Dourou1, B. Kerr1, M. Zentker2.
1Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany, 2Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States, 3Genetic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.

Intellectual disability (ID) is a clinically and genetically heterogeneous condition; the cause is unknown in most non-specific and sporadic cases. To establish an etiological basis in those patients represents a difficult challenge. Over the last years it has become apparent, that chromosomal rearrangements below the detection level of conventional karyotyping contribute significantly to the cause of ID.

We present three patients with non-specific intellectual disability who all have a microdeletion in the chromosomal region 12p12.1. In two patients these deletions occurred de novo. All three identified deletions have different breakpoints and range in size from 120 kb to 4.9 Mb. The smallest deletion helps to delineate the critical region to a genomic segment (chr12:2,392,4800-2,404,418,689, hg19) encompassing only one gene, SOX5. SOX5 is a member of the SOX (SRY-related HMG-box) family of transcription factors shown to play roles in chondroblast function, oligodendrocyte differentiation and migration as well as ensuring proper development of specific neuronal cell types. Because of these biological functions, mutations in SOX5 were predicted to cause complex disease syndromes, as is the case for several SOX genes, but no such mutations have yet been identified. Our findings indicate that haploinsufficiency of SOX5 is a cause of intellectual disability. To verify this presumption we are performing mutational analysis in a cohort of patients with non-specific and unexplained ID.

P02.135 Analysis of ring finger proteins RNF133 and RNF148 in Intellectual disability E. Bonora1, A. Wischmeijer1, F. Minopoli1, C. Tabarroni1, M. Vidone1, M. Seri1, C. Graziano1, G. Bomeo2.
1Unit of Medical Genetics, University of Bologna, Bologna, Italy, 2Unit of Clinical Genetics, IRCCS Arco-Spadale S. Maria Nuova, Reggio Emilia, Italy.

Intellectual disability (ID), also referred to as cognitive impairment or mental retardation, is characterized by a substantial below-average score on tests of mental ability or intelligence, and limitations in functions related to areas of daily living. Intellectual disability can range from mild to profound and can be associated with other clinical findings or can occur as an isolated trait, with an extensive genetic and phenotypic heterogeneity. Taken together, syndromic and non-syndromic forms of intellectual disability affect 1-3% of the population. More than a hundred genes have been associated so far to ID, and they mainly have roles in brain development, synaptic plasticity and function. The ubiquitin proteasome system plays a fundamental role in maintaining the correct balance of protein levels inside cells and any disruption to this system is likely to have severe consequences, as shown for Angelman Syndrome. Several types of ubiquitin ligases have been identified, the largest group being those proteins containing a ‘RING’ motif. We analyzed two of these, RNF133 and RNF148, in a cohort of 36 ID patients selected from the CHERISH consortium and negative at the array-CGH analysis. A novel missense change was identified in one patient in RNF148 and was of maternal origin. The unaffected brother does not carry the variant. We therefore performed an expression analysis of the gene and could prove that the mother expresses only the wild type form in blood. Expression analysis in the patient and in different tissues will be reported. Supported by FP7 grant CHERISH (www.cherishproject.eu).

P02.136 Mutations in the intragenic transport component IFT144 cause a broad spectrum of ciliopathies including Jeune and Sensenbrenner syndrome H. Fehrenbach1, V. Frank1, U. Walder1, T. Hampel1, K. Amanat1, K. Höfler1, H. J. Bolz3, M. Pohli1, C. Bergman1, 1Department of Pediatrics, Children’s Hospital Memmingen, Memmingen, Germany, 2Bioscientia Center for Human Genetics, Ingelheim, Germany, 3Department of Pediatrics, Children’s Hospital Augsburg, Augsburg, Germany, 4Department of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany, 5Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany.

Intragenic transport (IFT) along the microtubule core organizes the cargo of proteins into and out of the cilium and is needed for its formation, maintenance and function. An emerging number of diseases is related to the dynamics and structure of cilia, collectively referred to as ciliopathies. We describe an 8-year-old girl with a complex phenotype that does not fit properly to any known syndrome. Hypotonia, facial dysmorphism and retardation were noted shortly after birth. Other features include short stature, skeletal anomalies, strabismus, deafness, subdural hygroma, hepatosplenomegaly, and end-stage renal failure due to focal-segmental glomerulosclerosis. Ten weeks after kidney transplantation, life threatening acute respiratory distress due to E. coli sepsis recently made extracorporal membrane oxygenation necessary. After array-CGH had revealed no pathogenicity, we used our next-generation sequencing (NGS) "ciliopathy panel" which encompassed at that time 131 cilia-related disease genes and candidate genes targeting 2335 exons and 644 kb of sequence. By this, we identified the homozygous mutation c.1483G>C (p.Gly495Arg) in WDR14 encoding the intragenic transport protein IFT144. This mutation affects an evolutionarily highly conserved residue, is absent from databases, and predicted by different bioinformatic sources to be pathogenic. Our patient emphasizes the usefulness and efficiency of this NGS panel approach and adds to the recent description of three families with WDR19 mutations and nephrophthisis, Jeune and Sensenbrenner syndrome suggesting that WDR19 mutations can cause a broad spectrum of ciliopathies.
Joubert syndrome: clinical variability in a family

M. Puiu, S. Dumitriu, C. Haivas, A. Chirita-Emandi; University of Medicine & Pharmacy, Timisoara, Romania.

Joubert syndrome is a rare genetic disorder characterized by the underdevelopment or even the absence of vomers, cerebellum, and brain malformation (molar sign). Most common manifestations are ataxia, hyperpnea, sleepleap, ocular anomalies, hipoplasia. Presentation: Non-consanguineous couple with 6 children of whom 4 with typical manifestations of Joubert syndrome. Results: Family history reveals one child that died 1 day after birth and one spontaneous abortion at months 2-3 of pregnancy. The affected children have different severity forms of disease in terms of motor coordination, ocular troubles, intellectual impairment, and respiratory problems. Mother presents with retinitis pigmentosa so with no other symptoms. Laboratory testing and interdisciplinary consultations are used to stage the disease. MRI done on all brothers reveals the same form of cerebellum (molar tooth sign). Genomic analysis was done and we had available did not show abnormalities.

Conclusions: The syndrome is managed differently in the four children. Genetic counseling is challenging because of the variable clinical picture as well as the different progression and prognosis of the disease. The children benefited from the adequate and empathic genetic counseling together with psychological counseling of the family who better supported them and differently addressed their problems.

Kabuki syndrome - clinical and genetic study of four new cases

C. Rusu1, M. Voloscu1, E. Brăhu1, M. Panzară1, C. Iordache2, R. Rusu3, C. Schrander-Stumpf4; 1University of Medicine and Pharmacy, Iasi, Romania, 2Children’s Hospital, Iasi, Romania, 3Academic Hospital Maastricht, Maastricht, Netherlands.

Kabuki syndrome (KS, Kabuki makeup syndrome, Niikawa-Kuroki syndrome) is an autosomal dominant disorder characterized by distinctive facial features (long palpebral fissures, version of the lower lateral eyelid, arched/interrupted eyebrows, depressed nasal tip, abnormal teeth and large/prominent ears), fetal pads, intellectual disability and postnatal growth deficiency. Cardiac, renal and skeletal defects are sometimes associated. Most cases are sporadic, but a few familial cases have been reported, suggesting an autosomal dominant inheritance with variable expressivity. We present 4 cases with KS in order to show some particularities that could be included in the feature list of the syndrome. Cardiac and renal defects seem more common, whereas skeletal defects have been identified less frequently. All our cases are males and in 2 of them the mother presented a mild phenotype.

Patient 1: postnatal growth retardation, typical face, soft skin, fetal pads, severe vesico-ureteral reflux leading to chronic renal failure, moderate/severe intellectual disability: the mother has typical face and fetal pads.

Patient 2: normal growth, typical face, soft skin, fetal pads, heart defect, unilateral renal agenesis, nephrocalcinosis, moderate intellectual disability

Patient 3: normal growth, situus inversus, typical face, fetal pads, cardiac and renal defect, severe intellectual disability with behavioral disturbance

Patient 4: postnatal growth retardation, typical face, soft skin, fetal pads, cardiac and renal defect, connatal syndactyly, moderate/severe intellectual disability: the mother has typical face and fetal pads.

In conclusion, we present 4 cases with KS to illustrate particular features and to discuss management.

Kabuki syndrome (KS) is a rare syndrome with multiple congenital abnormalities and intellectual disabilities. The most specific feature is a characteristic face. Numerous patients with ML2 mutations and rare of KDM6A have been reported. Kidney and urologic abnormalities occur in 12 to 43% of KS patients. Kidney function in KS has not been studied. Only 3 cases of terminal renal insufficiency are reported.

Taking advantage of a French cohort including 95 genotyped KS patients, renal ultrasounds and serum creatinine were collected. Renal function was evaluated by estimated glomerular filtration rate. A special attention was given to severe cases and a genotype-phenotype study was conducted for kidney malformation.

Kidney malformations were present in 24% of cases and urinary tract abnormalities in 17%. Renal function was normal except for the two patients with severe renal disease. Patient DJ002 presented with renal agenesia and contralateral severe hypoplasia. Severe renal insufficiency was diagnosed in the first days of life and progressed to terminal stage at 2 years of age. A ML2 mutation was found (c.3996delG). Patient NCK013 presented with tubulointerstitial nephritis during childhood, leading to terminal renal insufficiency at 27 years of age, and no ML2 or KDM6A mutations or deletions were found.

Kidney malformations were observed in 27% of ML2 mutation-positive group and 5% of ML2 mutation-negative group. No correlation was found between renal malformation and the location or type of ML2 mutation. Our study emphasizes the need for renal function and ultrasound screening when KS is diagnosed.

Kearns-Sayre syndrome (KSS) is a severe early-onset multisystemic mitochondrial syndrome. Prominent features include progressive external ophthalmoplegia, sensorineural hearing loss, and cardiomyopathy. Mutations in the mitochondrial genome can affect mitochondrial protein synthesis, leading to the clinical presentation of KSS. Next-generation sequencing (NGS) has been used to identify mutations in mitochondrial DNA (mtDNA) that are associated with KSS.

In this study, we performed NGS on patients with suspected KSS to identify mutations in mtDNA. We used a panel of 100 genes commonly associated with KSS and mitochondrial disorders. The panel included genes such as POLG, MTATP6, MTATP8, and other genes that are important for mitochondrial function.

We identified several novel and known mutations in patients with suspected KSS. The mutations included point mutations and deletions in mtDNA. The mutations affected both the tRNA and the coding regions of mtDNA, indicating a potential involvement of both the respiratory chain and the tRNA genes in the pathogenesis of KSS.

The findings of this study are important for the diagnosis and management of KSS. Identification of mutations in mtDNA can provide insights into the underlying mechanisms causing KSS and can guide the treatment and management of affected individuals. Furthermore, the results of this study highlight the importance of genetic testing for KSS and the potential benefits of personalized care in affected individuals.
thalamopelia, retinopathy, encephalopathy, proximal muscle weakness, cardiac arrhythmia and ataxia.

In most affected patients heteroplasmic large-scale mtDNA deletions can be found. The percentage of mutated mtDNA varies between patients and from tissue to tissue within the same individual. A high proportion of mitochondrial DNA deletions are found consistently in the most affected tissues (e.g. central nervous system, muscles), whereas very low or undetectable amounts are found in unaffected tissues (e.g. peripheral blood).

Due to the low amount of deleted mtDNA in peripheral blood confirmation of KSS by deletion specific PCR or Southern Blot from blood samples is not possible in most cases. In cases in which a mtDNA deletion is confined to affected tissues (e.g. skeletal muscle), the molecular diagnosis of KSS requires genetic analysis of DNA form muscle biopsy.

To overcome this limitation, we have established a next-generation-sequencing protocol on the Roche 454 platform, which allows the detection of very low amount of deleted mtDNA from peripheral blood samples. With this approach we are able to test for the three most common mtDNA deletions found in approx. 80% of KSS patients.

We could show that this new approach is able to characterize mtDNA deletions in patients with KSS from peripheral blood samples with a very high sensitivity. It allows clinical testing for KSS without muscle biopsies.

PO2.144

Neurocognitive phenotype and personality profile in men with Klinefelter syndrome and their vulnerability to psychiatric symptoms

A. S. Jensen1, A. D. Petersen1, A. Bojesen1, J. Hertz1, M. Wallentin1, J. B. Bystedt1, C. H. Grantrup1, 2

1Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark; 2Hammel Neurocenter, Aarhus University Hospital, Hammel, Denmark.

Klinefelter syndrome (KS) is associated with increased risk of psychiatric disease and behavioral problems. The background for these risks is not known.

The aim was to describe the cognitive function, personality traits and the vulnerability to psychiatric symptoms in patients with KS.

41 KS patients and 41 age- and education-matched control subjects participated in the study. All participants were tested with standardized neuropsychological tests and 4 questionnaires investigating psychological problems.

KS patients scored significantly lower in processing speed, working memory, verbal abilities and showed a selective deficit in executive function compared to control subjects, whereas visual cognitive abilities and cognitive response inhibition was preserved. The KS patients displayed significantly higher levels of cognitive failures, emotional distress and autism traits as reported in questionnaires. Furthermore symptoms of anxiety were also significantly higher among KS patients, whereas there were no differences in negative depressive symptoms between KS patients and control subjects. On the NEO-PI-R personality test KS patients scored high on the neuroticism scale, low on the extraversion scale and low on the conscientiousness scale.

Men with KS have deficits in several cognitive domains and have an altered personality phenotype. Furthermore our results suggest that KS patient may be associated with an increased genetic vulnerability to psychiatric symptoms. In future analyses, we are going to assess the neuropsychological, neurofunctional, endocrine and genetic basis for the cognitive deficits, altered personality phenotype and increased psychiatric symptoms seen in KS patients. Whether testosterone therapy or other interventions can alleviate these deficits remain to be proven.

PO2.145

L1 Syndrome diagnosed in a family with a manifesting female carrier with hydrocephalus and a fetus with agenesis of the corpus callosum.

R. Sukenik-Halevy1, A. Reches2, Y. Kaplan3, S. Ben-Shachar3, A. Orr-Ortgerger4, Y. Yaron2

1Genetic Institute, Tel Aviv, Israel; 2Sacker Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.

L1 syndrome is consistent with a variable clinical phenotype, including hydrocephalus, MAS syndrome, hereditary spastic paraplegia, and corpus callosum agenesis. Mutations in the L1CAM gene located on the X chromosome cause the full syndrome in males while females may manifest minor features such as adducted thumbs and/or subnormal intelligence. We present here a family with an unusual presentation of the L1 syndrome.

The couple was referred to genetic consultation after a pregnancy which was terminated due to a diagnosis of agenesis of the corpus callosum in a male fetus. Medical history revealed that the mother was diagnosed with hydrocephalus at 22 years that necessitated a surgical insertion of a shunt. No other family members had symptoms consistent with L1 syndrome. Sequencing of the L1CAM gene revealed that the mother was a carrier of a missense mutation: c.791G>A which is known to be causative for L1 syndrome. The mutation was also identified in the fetal DNA and in an asymptomatic maternal sister. The couple chose to proceed with preimplantation genetic diagnosis.

Conclusions: L1 syndrome can be associated with atypical presentations. A high level of clinical suspicion and active work-up is warranted in some cases.

PO2.146

Occipital band heterotopia in an infant with partial merosin deficiency due to novel LAMA2 mutations

S. Goobie1, M. Alturkistani2, L. C. Ang1, P. Ainsworth1, K. Y. Tay1, C. Campbell1, 2

1London Health Sciences Centre, London, ON, Canada; 2Western University, London, ON, Canada.

Laminin α2 (merosin) deficiency (MDC1A) is the most common congenital muscular dystrophy in Western countries. Typically patients are hypotonic at birth, with muscle weakness and joint contractures. Many will sit independently but less than 10% will walk. Lifespan can be shortened due to respiratory compromise. Most children with MDC1A will have characteristic cerebral white matter hypodensities detected by MRI after 6 months of age. Neuronal migration defects (cortical dysplasia, polymicrogyria) are rare, occurring in approximately 4% of merosin deficient muscular dystrophies.

We report a case of a 1 year old boy with congenital hypotonia and an elevated creatine kinase level. Electromyography was consistent with a myopathic process. MRI of the brain at 14 weeks of age revealed band heterotopia bilaterally in the occipital lobes. There was also the suggestion of polymicrogyria involving the inferior occipital lobes and posterior temporal lobes bilaterally. Sequencing of the LAMA2 gene revealed three novel nucleotide changes of uncertain clinical significance. Two of the mutations were predicted to be probably damaging, and parental mutation analysis confirmed a trans-orientation of these two mutations in our patient, which would be consistent with autosomal recessive inheritance. The patient also had one novel splice site mutation in the fukutin gene. Muscle biopsy at 9 months of age showed partial merosin staining and normal alpha dystroglycan staining, which together with the molecular results supports a diagnosis of MDC1A. The finding of band heterotopia in this patient expands the rare cortical dysplasia phenotype seen with this congenital muscular dystrophy.
PO2.150

Distinct and pathogenic substitution of IVS15+5G→A in the SLC26A4 gene in patients with enlarged vestibular aqueduct syndrome or Pendred syndrome in Okinawa islands.

A. Ganaha1, M. Suzuki2, K. Naritomi3, T. Kaname4, K. Yamagi5, S. Usami2
1Department of Otorhinolaryngology-Head and Neck Surgery, University of the Ryukyus, Nishihara, Okinawa, Japan, 2Department of Medical Genetics, University of the Ryukyus, Nishihara, Okinawa, Japan, 3Department of Otorhinolaryngology-Head and Neck Surgery, Shinshu University, Matsumoto, Japan.

Background

The SLC26A4 gene, located on chromosome 7q22.3, is responsible for two clinically overlapped syndromes, Pendred syndrome (PS) and enlarged vestibular aqueduct syndrome (EVA). Distinctive SLC26A4 mutations in such patients were described in some ethnic populations. Previous studies revealed that the spectrum of SLC26A4 mutation was different in different ethnic background. For example, a mutation, H723R, was reported as the most common mutation for EVA and PS in Japanese.

We investigated 18 patients from 16 unrelated families with EVA or PS to define the frequency of SLC26A4 mutations and clinical manifestations in Okinawa islands.

Results

Eight patients diagnosed with PS, and 10 patients with NSEVA were examined in the SLC26A4 gene. Mutations of the SLC26A4 gene were identified in 15 out of 18 patients. Of the 15 patients, four patients were having a homoygous mutation of H723R, six patients were having compound heterozygous mutations of H723R and IVS15+5G→A, four patients were homozygous mutation of IVS15+5G→A, and one patient had heterozygous mutation of IVS15+5G→A.

Among the mutations detected, IVS15+5G→A was most common, accounting for 61.1% (11/18) of the patients. In order to know whether the mutation was pathogenic, we performed a quantitative RT-PCR for SLC26A4 in patients with homozygous mutation of IVS15+5G→A. The result showed that the SLC26A4 gene was not expressed in the patients.

Conclusions

The substitution of IVS15+5G→A in the SLC26A4 gene was most common in PS or EVA patients in Okinawa area. The substitution of IVS15+5G→A caused loss of expression in the gene, which affects PS or EVA.

PO2.151

New mutation in PTPN11 gene causing LEOPARD syndrome with prominent cardiac hypertrophy

V. Rumiantseva1, A. Boboiev2, L. Bizan, E. Zaklyazminskaya
1Petrovsky Russian Research Centre of Surgery RAMS, Moscow, Russian Federation.

Background: LEOPARD syndrome is a rare autosomal dominant disorder characterized by multiple lentigines and café-au-lait spots, lentigines, growth retardation, pectus carinatum, and deafness. Clinical manifestation is highly polymorphic. Mutations in the three genes (PTPN11, RAF1, and BRAF) can be responsible for LEOPARD syndrome. About 85% of all cases are PTPN11-positive.

Clinical case: We did observe 17 y.o. male patient with prominent hypertrophic cardiomyopathy, left outflow tract obstruction, mitral valve insufficiency III-IV, left atrium dilation, ventricular and supra-ventricular extra systoles. The heart rhythm was performed by pacemaker, implanted in 2005 (at 13 y.o.), the battery was almost discharged. Extra-cardiac symptoms include multiple lentigines, growth retardation, pectus carinatum, and feet deformations. Parents were apparently healthy. Surgery treatment included mitral valve replacement, left ventricular outflow reconstruction, sub-aortic membrane excision, explanation of electrodes, pacemaker and ICD implantation.

Genetic screening results: We did perform Senger sequencing of PTPN11, RAF1 and BRAF genes by direct Sanger sequencing. New genetic variant p.Thr468Met in PTPN11 gene was found in probando’s DNA sample but not in a control group. Additionally, several SNPs in RAF1 gene without clear clinical importance were found. The result of IL-2 gene was negative.

Discussion: The clinical features strongly supported LEOPARD syndrome. New genetic variant p.Thr468Met in PTPN11 gene is a mutation causing LEOPARD syndrome. Clinical phenotype characterized mainly by cardiac and skeletal involvement. It’s important for clinicians to make correct and timely differential diagnostics between hypertrophic cardiomyopathy and inherited syndrome accompanied by myocardial hypertrophy.

PO2.152

Leri Weil Dyschondrosteosis -The bone microarchitecture in subjects with mutation in the SHOX-gene

M. Froit1, S. Hansen2, C. Fagerberg1, L. Osaguer1, A. L. Frederiksen1
1Dept. of Endocrinology, Odense University Hospital, Odense, Denmark, 2Dept. of Clinical Genetic, Odense University Hospital, Odense, Denmark, 3Dept. of Clinical Genetic, Vejle Hospital, Vejle, Denmark.

Background: Leri Weil Dyschondrosteosis (LWD) syndrome is characterized by short stature with mesomelic disproportion of the limbs and Male- lung deformity caused by SHOX-haplosufficiency. The morphology of the bone is only partly described.

Aim: To assess volumetric bone mineral density, microarchitecture, and strength in subjects with LWD and controls.

Methods: Controls matched on sex and age. A high-resolution peripheral quantitative CT scanner was used to measure volumetric BMD, bone geometry, and microarchitecture of the non-dominant distal radius and the distal part of tibia. Osteopetrosis was defined as a T-score<- 2.5 SD on the basis of the DXA scan.

Subjects: Five families comprising 22 individuals (15 females) aged 38 years [IQR: 21-35] were included and controls. SHOX-mutations: c.440G>T (n=2), c.657delA (n=9), del exon 3-4 (n=2), del SHOX (n=9).

Results: Tibial trabecular thickness was lower in cases (0.067 vs. 0.076, p<0.05). In radius the cortical area was larger in cases (74.4 vs. 56.5, p=0.001), cortical thickness was increased (1.16 vs. 0.82, p<0.001) and the trabecular number decreased (1.61 vs. 1.90, p<0.05). Bone strength was similar in cases and controls. The radial cortex adjacent to ulna was absent in 5 cases. Four subjects were osteoporotic based on a T-score but neither reported a previous fracture.

Conclusion: These results suggest that bone microarchitecture is changed in LWD cases. The increased cortical thickness in radius may be caused by a more proximal measurement of the radius of cases due to the mesomelic forearm. 5 cases had a radial cortical defect.

PO2.153

A new inactivating LH receptor mutation causes a disorder of sex development in a 46,XY girl and amenorrhea in her 46,XX sister

U. Groff1, M. Möller-Krull2, H. Drezer1, S. Fleischer1, N. Kandemir3, H. M. Schulte1, A. Richter-Orrahl1
1Endokrinologikum Hamburg, Center for Hormonal and Metabolic Diseases, Reproductive Endocrinology and Prenatal Medicine, Hamburg, Germany, 2Hacettepe University Faculty of Medicine, Division of Paediatric Endocrinology, Ankara, Turkey, 3Endokrinologikum Ruhr , Center for Hormonal and Metabolic Diseases, Witten,Germany.

Leydig cell hypoplasia (LCH) is a rare autosomal recessive condition that interferes with normal development of male external genitalia in 46,XY individuals. In 46,XX women primary and secondary sexual characteristics are developed normally but they are suffering from amenorrhea and infertility. Here we report a family with two affected sisters suspected to have an inactivating mutation in the LH receptor gene (LHR).

A 14-year-old girl was referred with lack of the progression in breast development and amenorrhea. In physical examination her height was 165.7cm and weight 81.5 kg. Breast development was Tanner stage I with pubic hair development Tanner stage III. She had female external genitalia with mild posterior labial fusion. 5 cases had a radial cortical defect.

A new inactivating LH receptor mutation causes a disorder of sex development in a 46,XY girl and amenorrhea in her 46,XX sister

U. Groff1, M. Möller-Krull2, H. Drezer1, S. Fleischer1, N. Kandemir3, H. M. Schulte1, A. Richter-Orrahl1
1Endokrinologikum Hamburg, Center for Hormonal and Metabolic Diseases, Reproductive Endocrinology and Prenatal Medicine, Hamburg, Germany, 2Hacettepe University Faculty of Medicine, Division of Paediatric Endocrinology, Ankara, Turkey, 3Endokrinologikum Ruhr , Center for Hormonal and Metabolic Diseases, Witten,Germany.

Leydig cell hypoplasia (LCH) is a rare autosomal recessive condition that interferes with normal development of male external genitalia in 46,XY individuals. In 46,XX women primary and secondary sexual characteristics are developed normally but they are suffering from amenorrhea and infertility. Here we report a family with two affected sisters suspected to have an inactivating mutation in the LH receptor gene (LHR).

A 14-year-old girl was referred with lack of the progression in breast development and amenorrhea. In physical examination her height was 165.7cm and weight 81.5 kg. Breast development was Tanner stage I with pubic hair development Tanner stage III. She had female external genitalia with mild posterior labial fusion. 5 cases had a radial cortical defect.

A new inactivating LH receptor mutation causes a disorder of sex development in a 46,XY girl and amenorrhea in her 46,XX sister
Splice mutations of the luteinizing hormone receptor gene (LHR) as a cause of 46,XY disorders of sex development (DSD)

ENDOKRINOLOGIKUM Ruhr, Center for Hormonal and Metabolic Diseases, Witten/Herdecke, Germany; Endokrinologikum, Center for Hormonal and Metabolic Diseases, Reproductive Endocrinology and Prenatal Medicine, Hamburg, Germany.

Leydig cell hypoplasia (LCH) is a rare autosomal recessive condition that interferes with normal development of male external genitalia in 46,XY individuals. Inactivating mutations of the human luteinizing hormone receptor (LHR) lead to decreased response of Leydig cells to LH and hCG.

Here we report 17 patients in 4 families with 46,XY disorder of sex differentiation caused by homozygous or compound heterozygous mutations in non-coding DNA sequences of the luteinizing hormone receptor gene (LHR).

14 patients in 2 different families were homozygous carriers of a mutation at the exon splice donor site in intron 1 (c.161+4A>G) whereas two sisters and their 14 patients in 2 different families were homozygous carriers of a mutation at the exon splice donor site in intron 1 (c.162-3T>G). In vitro minigene expression was employed to examine the effect on the LHR transcript.

P02.156 Evaluating the clinical significance of observations of loss of heterozygosity in SNP-arrays

J. Graukjaer, M. Rasmussen, S. Koivula, A. Bojesen; Vejle Hospital, Vejle, Denmark.

SNP-based detection of loss of heterozygosity (LOH) is now supported by most major array providers. Many labs are therefore for the first time challenged with the task of interpreting the clinical significance of areas of LOH in the genome. However, until now no formal guidelines for the interpretation of LOH are available. In this study we present our internal workflow for the handling of observations of LOH.

In this workflow we are grouping LOH observations into three groups: LOH interstitially on one chromosome, LOH on one chromosome extending to the telomere and LOH on multiple chromosomes. For each group of LOH observations, we review the possible biological mechanisms, the possible clinical significance and we suggest a procedure for further investigations of the observation. Each workflow takes into consideration resources and time constraints typically present in a clinical genetics laboratory setting. Hopefully these workflows can aid other laboratories in setting up their own internal workflow for interpreting LOH observations or add to a discussion of this new "challenge" in clinical genetics.

P02.157 Novel c.1731delC mutation in RN2 in two Turkish siblings with MACS / RN2 syndrome

Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey; Medical Genetics Unit, Kocaeli Derince Research and Education Hospital, Kocaeli, Turkey; Cardiology Unit, Gölcük State Hospital, Gölcük, Kocaeli, Turkey.

Inherited disorders of c o m p e t i t i v e t i p e of inheritance, such as Ehlers-Danlos (EDS) and the Cutis laxa syndrome (CLS), are a heterogeneous group of disorders which are characterized by hyperextensible skin and joint laxity. Thin/translucent skin with visible veins and easy bruising are also observed in EDS patients. Various clinical signs involve a genetic defect in synthesis and structure of collagen and collagen fibril assembly as well as the cutis laxa syndromes may be characterized by loss of cutis laxa.

We studied a group of 1933 patients of the Institute of Physiology and Pathology of Hearing, Warsaw, Warsaw, Poland. We reviewed the MACS acronym may not be the most appropriate term to sum up the phenotypic spectrum and suggested "RN2 syndrome".

We describe the third family with MACS/RN2 syndrome in two siblings from Turkey also displaying additional findings such as hypogonadism and mediastinal tumor, carrying a novel homozygous c.1731delC mutation resulting in frame shift in RN2 gene and causing protein truncation.

P02.158 De Novo triplication of the MAPT gene from the recurrent 17q21.31 microdeletion region in a patient with moderate intellectual disability and various minor anomalies

C. Kraus, A. Gregor, M. Krumbiegel, A. Reis, C. Zweier; Institute of Human Genetics, University Erlangen-Nuremberg, Erlangen, Germany.

We report on a 16-year-old male patient with moderate intellectual disability, behavioral problems, and further anomalies such as dysmorphism, heart defect and urogenital anomalies. By molecular karyotyping we identified the first de novo copy number gain to four copies on chromosome 17q21.31 including the MAPT gene but not the entire recurrent microdeletion/microduplication region. Recurrent microdeletions of this region including the MAPT and the CHRNA genes have been shown to be a relatively frequent cause of intellectual disability, while only a few reciprocal duplications in patients with variable cognitive disorders have been published so far.

A common inversion polymorphism in this region has been linked to a distinct H2 haplotype and seems to be associated with an increased risk for microdeletions and -duplications. Our patient and his father were both heterozygous for the H1/H2 haplotype, whereas the mother was homozygous for the H2 haplotype. Interestingly, in our patient the dosage gain apparently occurred on the paternal H1 allele and did not involve the H2 allele as in the previously published cases.

This patient further delineates the genotypic and phenotypic variability associated with copy number variants from the 17q21.31 microdeletion region.
PO2.159 Novel mutations causing Marfan syndrome in Czech population and rare case of compound heterozygosity
M. Beránek, A. Drev, H. Chytil, E. Augste, A. Bodík, Laboratory of Molecular Biology, P&K LAB a.s., Nyon, Switzerland, Czech Republic.
Background: Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder mainly involving the cardiovascular, skeletal and ocular systems. The estimated incidence is of about 1:500 - 1:10 000 and approximately 25% of cases are associated with de novo mutations. MFS is caused by mutations in fibrillin-1 gene (FBN1, c.15q→c.211) resulting in defective glycoprotein fibrillin-1. Recently, there are shown that three other genes FBN2 (5q23-q31), TGFBR2 (3p22) and TGFBR1 (9q22) influence MFS.
Aims: In this study we performed SSCP analysis of all 65 exons of FBN1 gene in order to identify novel mutations in 570 unrelated patients with clinical diagnosis of Marfan syndrome.
Materials and Methods: DNA was isolated from whole blood, the molecular analysis includes minP (multiple ligation-dependent probe amplification) and separation of PCR products by SSCP (single-strand conformation polymorphism). Exons with abnormal migrating patterns were sequenced.
Results: We identified 87 FBN1 mutations, 53 of them have not been previously described. Of the 46 were nonsense, 15 nonsense, 7 splicing, 17 small insertions or deletions and 2 g-nss deletions. Than we identified 4 patients with compound heterozygosity at the FBN1 locus, that is very rare.
Conclusions: We have confirmed 107 cases of Marfan syndrome caused by FBN1 mutation, which constitutes detection of about 19%. But mutation screening of FBN1 should yield a result in about 80-85% of FMS patients who meet the Ghent criteria. Our result is much lower due to sensitivity of SSCP and because the patients involved did not meet the Ghent criteria.

PO2.160 Interesting case of an atypical Marfan syndrome patient
M. Pfohl, M. Eggert, E. Aichinger, T. Koeppe, U. Hoffmann, O. Steinlein;1 Institut für Humangenetik, Munich, Germany, 2Department of Surgery, Munich, Germany, 3Department of Internal Medicine, Munich, Germany.
The Marfan syndrome is an autosomal dominantly inherited genetic disorder due to mutations in the fibrillin-1 (FBN1) gene, a gene that encodes a connective tissue protein. Consequently, mutations in this gene cause skeletal and connective tissue symptoms (pectus carinatum/excavatum, hypermobile joints, arachnodactyly), complications of the cardiovascular system (dilatation/ dissection of the aorta, mitral valve prolapse), and the eyes (ectopia lentis, myopia). Patients suffering from Marfan syndrome are at risk of aortic rupture. Here we report an atypical case of Marfan syndrome.
The 44 year old patient was hospitalized in 2007 with a spontaneous dissection of the arteria carotis interna. Last year, an infrarenal aneurysma of the abdominal aorta was diagnosed. Physical examination showed a patient of below average size (167 cm (mother and father: 160 cm)). The arm span/body height ratio was 0.98 (<1.05), neither skeletal nor ocular abnormalities were present. The arms were of normal length, neither skeletal nor ocular abnormalities were present. The patient suffered from hernia per umbilicalis. Here we report an atypical case of Marfan syndrome.

PO2.161 Epidemiological study of MECP2 duplications in France
A chromosomal balanced translocation disrupting the MED13L (PRO22) on chromosome 2q21.q23 has been described primarily in male patients with severe developmental delay, progressive spasticity, epilepsy, stereotyped hand movements and recurrent infections. The aim of our study was to carry out an epidemiological study in order to determine the number of cases described in France since the implementation of targeted molecular study (MLPA) and array-CGH, and to estimate the proportion of patients detected by either method. The 15 French cytogenetic and molecular labs were contacted and biological and epidemiological data were gathered in all cases. 71 symptomatic patients with a MECP2 duplication of less than 1,5 Mb were collected, including 66 boys and 5 females ranging from 0 to 24 years. The MECP2 duplication was identified in 45 patients (63%) using a targeted analysis, and in 26 patients (37%) using an array-CGH analysis. The majority was inherited from unaffected mothers and the size of the duplication varied between cases. Within the 5 females, the MECP2 duplication resulted from an unbalanced X-autosome translocation (3 cases), a paternal MECP2 deletion (1 case) and a maternal MECP2 duplication (1 case).

PO2.162 Dosage changes of MED13L further delineate its role in heart defect and intellectual disability
R. Asadollahi1, A. Baumer1, G. Houge1, A. Roach1; 1University of Zurich, Institute of Medical Genetics, Schmerrenbach-Zurich, Switzerland, 2University of Bergen, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, and Institute of Clinical Medicine, Bergen, Norway.
Dosage changes of MED13L further delineate its role in heart defect and intellectual disability. The first one is a novo 17 kb out frame deletion of its exon 2 in a patient with complex congenital heart defect, ID, gross and fine motor coordination problems and dysmorphic features. The second aberration is a 1 Mb de novo triplication in 12q24.21 indicating MED13L, several non protein coding RNA genes and MAP1LC3B2, in a patient with a milder phenotype including learning difficulties and perimemboraneous VSD (closed spontaneously). These findings suggest that abnormal MED13L dosage affects both, cardiac and neurologic development.

PO2.163 Simultaneous occurrence of medullary cystic kidney disease type 2 and autosomal dominant polycystic kidney disease in a single family due to novel UMOD and PKD1 mutations
G. Mittenberger-Mädry1, J. Colado2, M. Carvalho2, H. Viana2, S. V. Pereira3, C. Teixeira3, S. Jorge3, A. Brincat, E. Arte, E. Almeida4; 1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal, 2Hospital Curry Cabral, Lisbon, Portugal, 3GenoMed Diagnostico de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal, 4Dept. of Nephrology, Hospital Santa Maria, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal, 5Laboratório de Biologia Molecular, Fundação Puigvert, Barcelona, Spain, 6Laboratories of Obstetrics and Gynecology, School of Medicine, University of Pennsylvania, Philadelphia, USA.
M.79 and M.80 are two siblings, twins, males, born in 2001. The parents are healthy and non consanguineous. On the third birthday the first brother was admitted to the pediatric service due to a dysplastic left kidney, dysplastic right kidney, and a right renal cyst. Later, a team of nephrologists diagnosed a MCDK2 and a typical autosomal dominant PKD. The second affected brother was detected at age 4. At the age of 10, both boys were referred to the Department of Nephrology at the Hospital São José for investigation of the kidney disease. At that time, the typical autosomal dominant PKD was confirmed. At the age of 14, the MCDK2 was confirmed by medical imaging. Of the 20 affected cases, 19 were identified previously including 11 autosomal dominant PKD, 6 MCDK2, 1 MCDK1 and 2 with multiplemutations.
PO.02.166
MFRP-related oculopathy in a child and a distinct retinal disease in his mother
M. Rio1, M. Bitter1, J. Vagvolgy2, E. Moser3; 1Division of Human Genetics, Innbruck, Austria, 2Department of Ophthalmology, Wien, Austria, 3Department of Pediatrics and Adolescent Medicine, Wien, Austria.

The combination of nanophthalmos and retinal dystrophy is a rare syndrome recently identified as an inherited autosomal recessive disease caused by mutations in the MFRP gene. A 7-year-old boy with high hypermetropia and signs of a progressive retinal dystrophy was referred. His 37-year-old myopic mother was known to have a retinal dystrophy since childhood classified as M. Stargardt, consanguinity of the parents was denied. The boy was found to have nanophthalmos with the striking aspect of the fundus with a “macular fold” and clinical and ERG findings indicating disturbed photopic and scotopic vision. Molecular analysis identified a homozygous truncating mutation in the membrane-type frizzled-related protein (MFRP) gene. Complete sequence analysis of the MFRP gene in the mother showed heterozygosity for the mutation identified in the patient, and no further mutation. The heterozygous mutation of the MFRP gene is not sufficient to cause the phenotype of the mother, and we assume that two phenotypically and genetically distinct retinal dystrophies exist in the family. A comprehensive molecular genetic screening of the mother was initiated.

PO.02.167
Microcephaly-Capillary Malformation Syndrome (MIC-CAP): a new case
D. J. Norris-Rosendahl1, A. Hotz1, H. Gabriël1, T. Polster1; 1Institute of Human Genetics, Freiburg, Germany, 2Diagnos, Praxis für Human gentekik, Osnabrück, Germany, 3Epilepsie-Zentrum Bethel, Mara Krankenhaus, Bielefeld, Germany.

Microcephaly-Capillary Malformation Syndrome (MIC-CAP) syndrome was first described in 2011 as a disorder combining severe microcephaly with progressive cortical atrophy, intractable seizures, profound developmental delay and multiple small capillary malformations on the skin. An autosomal recessive mode of inheritance was implied in the families of the six described patients. We describe an affected male patient, the first child of non-consanguineous German parents, who was delivered by cesarean section due to pathological CTG at 34 weeks. Oligohydramnios was noted prenatally, a cranial deformity with severe microcephaly was noted after delivery [OFC 29 cm], as well as cutaneous macules. Seizures with tonic or clonic semiology started on the first day of life and have remained pharmacoresistant ever since. His EEG showed multifocal spikes, focal seizure patterns and a sinusoidal alpha activity, often seen in children with severe malformations of cortical development. Brain MRI revealed severely reduced cortical gyration in both anteriorly and posteriorly. At the age of 18 months he has no appreciable psychomotor development, no eye contact, no vocalization and spastic quadriparesis with axial hypotonia. He is severely dysorphic with a disproportionately small head, broad nasal bridge, hypertelorism and shallow philtrum. Toes are short and partly overlapping, the big toes have dysplastic nails. The scrotum is hypoplastic with small testes. An international consortium has been established in order to elucidate the molecular genetic cause of the disorder.

PO.02.168
A de novo 12q13.13 microdeletion in a patient with mild mental retardation, disproportionate habitus, facial dysmorphism and congenital heart defect
M. Simandlov1, M. Hancarova1, J. Drabova2, M. Vlckova3, M. Koudova2, M. Havlovicova3, Z. Sedlacek2; 1Institute of Human Genetics, Necker Hospital, Paris, France, 2Department of neurology, Necker hospital, Paris, France.

We report a de novo 12q13.13 deletion in a 4.5-year-old dysmorphic boy with multiple congenital anomalies/mental retardation (MCA/MR) syndro-
me consisting mainly of mild to moderate MR, disproportional habitus with extremely narrow shoulders and long, narrow thorax, facial dysmorphism [long narrow face, hypertelorism, enophthalmos, wide nose], onychodystrophy, fine hair, atypical hand grip between index and middle fingers, umbilical hernia, short hands and feet, pulmonary septal defects, hearing loss, dysogenesis, and cryptorchism. His behavioural pattern is very remarkable with a sad expression in the face, timidity and balbities. The deleted region is 0.95 Mb long and encompasses the whole HOXc gene cluster and 19 additional proxi-mally located genes. Although the HOXc cluster was shown to be dispensable in mouse, we speculate that its haploinsufficiency could potentially be responsible for the remarkable disproportionate stature of the proband. Reduced dosage of several other genes mapping to the deletion may also in-fluence this specific phenotype, especially RAGR which plays a role in limb bud development and skeletal growth, or SP7 which influences bone forma-tion. MR of the patient could be influenced by neural-expressed genes AAAS and MAP3K12, but the remaining deleted genes could also influence his phenotype. To our knowledge this is the first report of a de novo 12q13.1.3 deletion removing the whole HOXc cluster and several neighbouring genes, which is likely associated with the MCA/MR syndrome in the patient. Supported by CHERISH and M20FNM2012.

P02.169
Microdeletions in 9q33.3-q34.1 are associated with developmental delay, micro-/-brachycephaly, and seizures of incomplete penetrance

P02.170
Description of 2 patients with overlapping duplication of chromosome 20q11.2 with abnormal shape head and intellectual deficiency
malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome.

P02.173
Array detection of apparent mosaic monosomy 7 - a marker for underlying disorders of genome maintenance?
S. A. McKee1, D. LaGrasse1, J. Wells2, S. McNerney1, J. Achenmann1, M. Humphrey1; 1Northern Ireland Regional Genetics Service, Belfast, United Kingdom, 2Gayet BioMedical Genomics, Pune, India.

The increasing availability and precision of array-based comparative genomic hybridization (aCGH) techniques allow detection of subtle abnormalities that may have previously eluded traditional analyses. We present a male baby (Case 1), born at 36+4/40 gestation, with dysorphic facies, severe micrognathia, cleft palate, choanal stenosis, small extremities, hypoplastic terminal phalanges and normal genitalia. He had a ventricular septal defect and a patent ductus arteriosus. aCGH analysis on blood DNA revealed mosaic monosomy 7 (67% of cells). Mosaicism was not detected in fibroblasts, and there was no overt evidence of a blood dyscrasia on a blood smear. He died at age 4 months.

Monosomy 7 is a common feature in several myeloproliferative disorders and is very rare as a constitutional abnormality. We previously identified three male patients (Cases 2-4) with features reminiscent of IMage syndrome (Intrauterine growth retardation, Metaphyseal dysplasia, Adrenal insufficiency and Genital abnormalities), who were found to have monosomy 7 mosaicism in blood or bone marrow. This was associated with a confirmed myelodysplastic process in at least one child, who underwent bone marrow transplantation in the first year, remaining stable at age 7 years. The other two died in early infancy. Case 1 above, however, had normal adrenal function and normal genitalia, possibly suggesting a different underlying disorder.

We hypothesise that these children display defective genome maintenance contributing to their phenotype, with monosomy 7 as a secondary event. Exome sequencing is in progress in two of our cases.

P02.174
Syndromic Moyamoya disease and hemophilia A caused by Xq28 deletion in Czech patient
R. Pouravá, J. Drábková, S. Kološuková, V. Komříška, A. Tomek, Z. Zimková, D. Novotná; Charles University in Prague, Second Medical Faculty, Prague, Czech Republic.

There are 5 types of Moyamoya disease (MYMY) with genetic alignment, of which type 4 is syndromic. MYMY4 described patients suffer from MYMY, growth retardation, hyponadotropic hypogonadism (HH), azoospermia and stigmatazation. Cardiomyopathy, cataract and stroke may also occur. We present a 19-years old Czech patient with normal intellect, who has dysmorphic features, growth retardation since 10 years of age, HH with regressing of puberty in 15 years and azoospermia, but shows neither neurologic nor cardiologic symptoms. Unlike any of described patients he suffers from severe hemophilia A with level of factor VIII under 1% and low level of inhibitor (antibodies against exogenous FVIII).

The patient has normal karyotype 46,XY and there has been found no mutation in F8 gene. Array CGH investigation was later performed in this patient and cytogenic deletion within Xq28 was detected. The deletion removed approximately 100 kb and the deleted region harboured promoter of F8 gene as well as genes MTPC1/MTPC1NT and BRCC3, which might play an important role in syndromic MYMY development.

After obtaining the array CGH result, we immediately performed MRI, MRA and TCGS (transcralian colour coded sonography) with perfectly normal results.

Phenotype - genotype correlation will be further discussed.
Supported by C2.16/3.1.00/24202, M20FNM2005 and IGA-NS-9913-4.

P02.175
The NSEuroNet Database: an online resource for mutation spectrum and phenotype correlations in RASopathies
C. Liesiöski1, J. Allansson1, H. Cavé1, B. Kerr1, M. Tartaglia2, M. Zenker2; 1Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany, 2Université Libre de Bruxelles, Brussels, Belgium.

The NSEuroNet Database has been established in 2006 and contains all published germline mutations in the known RASopathy genes (excluding NFI), unpublished mutations observed by the consortium partners and collaborators, as well as polymorphisms and unclassified variants. In addition, standardized clinical datasets on a steadily increasing number of patients with a molecularly proven RASopathy are collected in order to establish genotype-phenotype correlations. Data can be submitted by registered users via an online questionnaire, are reviewed and then added to the database.

The database will be freely accessible. It can be browsed for genes, mutations or phenotypes through a user-friendly graphical surface. We introduce this novel resource which will be of great value for scientists as well as for clinical geneticists involved in counselling of patients with these disorders and their families.

P02.176
Genotype-phenotype correlation in cohort of patients with myotonic syndromes.
S. A. Kurbatov1, V. P. Fedorov1, E. A. Ivanova2, N. M. Galeeva1, A. V. Polyakov2; 1Genetic counseling, Regional Clinical Hospital, Voronezh, Russian Federation, 2Russian Research Center for Medical Genetics, Moscow, Russian Federation.

Myotonic syndromes (MS) - a heterogeneous group chromosome and sodium channel diseases with marked clinical polymorphism and often overlapping phenotypes. Attempts are being made to optimize the algorithm of finding causative mutations in the genes for the diagnosis of MS.

We have conducted a molecular genetics study in 94 patients from 65 unrelated families with MS. In 44 patients with myotonia congenita (MC) we revealed 26 different mutations in the CLCN1 gene, in 39 patients with myotonic dystrophy type 1 (DM1) we detected increased number of CTG-repeats (n>50) in the DMPK gene and in 8 patients with clinical hyperkalemic periodic paralysis (HYPP) with myotonia - mutations in the SCN4A gene.

In the three formed groups, we performed a study of the decrease of compound muscle action potential (CMAP) (50 Hz 200 repetitions): 34 cases of MC, 25 cases of DM1 and 7 cases of HYPP. Decrease of CMAP was observed in all patients with MC and was 68±2%, no significant statistical differences in the values of the decrement between the patients with Thomsen (7cases) and Becker (27cases) myotonias: 74±8% and 67±22% accordingly. In patients with DM1 decrement of CMAP was detected in 15 of 25 patients and was 33±14%. In patients with HYPP decrement was found in one of seven patients and was 34%.

The largest decrement of CMAP allows statistically to distinguish between groups of patients with MC from the DM1 and HYPP (p<0.001).

Statistically significant difference between decrement of CMAP in patients with DM1 and HYPP wasn't established.

P02.177
LMX1B mutations in Nail-Patella Syndrome (NPS)
L. Rocha1,2, S. Fernandes1, J. R. Oliveira2; 1Departments of Genetics, Department of Pediatrics, Porto, Portugal, 2OISJ, Porto, Portugal.

Introduction: Nail-patella syndrome (NPS; MIM 161200) is a rare (1/50000 births) autosomal dominant disorder characterized by dysplastic nails, absent or hypoplastic patellae, elbow dysplasia, bilateral clefts, and glaucoma. NPS is caused by mutations in the LMX1B gene (LIM homeobox transcription factor 1-beta), mapped at chromosome 9q34. The main pathogenic mechanism underlying NPS, particularly of the skeletal defects, is the haploinsufficiency of LMX1B.

Material and Methods: Genomic DNA was extracted from 4 patients with the clinical diagnosis of NPS and an unequivocal autosomal dominant pattern of inheritance. The 8 exons of LMX1B were amplified by PCR and sequenced in an ABI Prism 3500 genetic analyzer. MLPA technique (SALSA P289-A1 LMX1B) was used for detection of deletions and/or duplications.

Medicina Molocare, Istituto Superiore di Sanità, Rome, Italy.

Mutations in proteins involved in the RAS/MAPK pathway cause Noonan syndrome, Costello syndrome, cardio-facio-cutaneous syndrome, Noonan syndrome with multiple lentigines/LEOPARD syndrome, Noonan syndrome with loose anagen hair/Mazzanti syndrome, CBL mutation-associated syndrome, neurofibromatosis type 1 and related phenotypes, collectively called RASopathies. While the number of mutations and sequence variants identified in RASopathy genes is still increasing, the probability for novel mutations to be reported to the public has become quite low and the significance of rare variants may even remain unclear. Moreover, phenotypic data of published cohorts is hardly comparable due to the lack of standardization, and individual study cohorts do not reach the statistical power for rare the genotype-phenotype correlations.

To overcome these limitations, the NSEuroNet Consortium has established a database that contains all published germline mutations in the known RASopathy genes (excluding NFI), unpublished mutations observed by the consortium partners and collaborators, as well as polymorphisms and unclassified variants. In addition, standardized clinical datasets on a steadily increasing number of patients with a molecularly proven RASopathy are collected in order to establish genotype-phenotype correlations. Data can be submitted by registered users via an online questionnaire, are reviewed and then added to the database.

The database will be freely accessible. It can be browsed for genes, mutations or phenotypes through a user-friendly graphical surface. We introduce this novel resource which will be of great value for scientists as well as for clinical geneticists involved in counselling of patients with these disorders and their families.
P02.178

A review of breast cancer risk and female patients with neurofibromatosis type 1 in the West of Scotland.

C. M. Watt1, E. McGuire2, N. Bradshaw1, S. Gibson1, M. Longmuir1, D. Meechan1, V. Murray1, L. Snapseed1, E. Tobias1, M. Whiteford1, R. Davidson1;

1West of Scotland Regional Genetics Service, Glasgow, United Kingdom, 2University of Glasgow, Glasgow, United Kingdom

Background: The West of Scotland (WoS) Clinical Genetics service received a referral from a general practitioner asking us to meet with a 46 year old woman with neurofibromatosis type 1 (NF1) to discuss her risk of breast cancer and screening requirements.

Anecdotal evidence and case reports have indicated an associated increased risk of breast cancer and NF 1. A 2006 study showed an increased risk of breast cancer in women under 50 years but failed to show significance overall. In 2007 a population based study showed with significance that women with NF 1 below the age of 50 years had a five fold increased risk of breast cancer in the population studied.

It was decided to review a cohort of female patients with NF 1 from the WoS and compare the observed cases of breast cancer in this cohort with expected figures in the expected population.

Methods: The pedigrees of families affected by NF 1 were reviewed, inclusion and exclusion criteria were applied producing a cohort of female patients with NF 1 and who were 20 years or older. Women were excluded due to incomplete information and were under 20 years of age the final cohort included 119 patients. Statistical significance of the results was shown using the Poisson distribution.

Results: The results from this study showed a 4.13 fold risk of breast cancer over all ages and, a 20.8 fold risk less than 50 years of age. These results could prove challenging in genetic counselling.

P02.179

A 19-year-old man with intellectual disability, neurofibromatosis, multiple exostoses, and a paracentric inversion (inv(9)(q12q22.3)) could prove challenging in genetic counselling.

C. M. Watt1, E. McGuire1, N. Bradshaw1, S. Gibson1, M. Longmuir1, D. Meechan1, V. Murray1, L. Snapseed1, E. Tobias1, M. Whiteford1, R. Davidson1;

1West of Scotland Regional Genetics Service, Glasgow, United Kingdom

Background: Case reports have indicated an associated increased risk of breast cancer and NF 1. A 2006 study showed an increased risk of breast cancer in women under 50 years but failed to show significance overall. In 2007 a population based study showed with significance that women with NF 1 below the age of 50 years had a five fold increased risk of breast cancer in the population studied.

It was decided to review a cohort of female patients with NF 1 from the WoS and compare the observed cases of breast cancer in this cohort with expected figures in the expected population.

Methods: The pedigrees of families affected by NF 1 were reviewed, inclusion and exclusion criteria were applied producing a cohort of female patients with NF 1 and who were 20 years or older. Women were excluded due to incomplete information and were under 20 years of age the final cohort included 119 patients. Statistical significance of the results was shown using the Poisson distribution.

Results: The results from this study showed a 4.13 fold risk of breast cancer over all ages and, a 20.8 fold risk less than 50 years of age. These results could prove challenging in genetic counselling.

P02.180

Molecular characterization of two similarly emerging NF1 microdeletions with Oligo-Array-CGH: differentiation of a 66,84-84,42 kb intragenic and a 160,69-178,14 kb contiguous gene deletion in two NF1 patients with different clinical characteristics.

U. Heinrich1, D. Wahl1, J. Höfle1, H. Klein1, K. Mayer1;

1Centre for Human Genetics and Laboratory Medicine, Martinsried, Germany, 2Practice for Genetic Counselling and Psychotherapy, Augsburg, Germany.

Neurofibromatosis type 1 (NF1) results from microdeletions encompassing the entire NF1 gene and a variable number of flanking genes in 5-10% of patients. Three recurrent microdeletions types have been described: 1.4 Mb type-1, 1.2 Mb type-2, and 1.0 Mb type-3 microdeletions.

However, a more severe phenotype has been reported in patients carrying genomic microdeletions involving the entire NF1 gene compared to patients with intragenic NF1 mutations.

We demonstrate the results of the molecular genetic analysis in two 2 and 4 year old NF1 patients mainly presenting with multiple cafe-au-lait spots and a positive family history in one case. MLPA analysis using Salsa-Kit P081/P082 detected an indistinguishable deletion in both cases of at least 48 kb starting in intron 27 and comprising the 3‘ terminal half of the NF1 gene including the last but one exon 48. Efforts to differentiate the deletions applying Salsa P122 NF1-area probe confirmed the deletion sizes to a maximum of 579 kb in both cases that remained still indistinguishable. Finally, oligo-array-CGH with the microarray kit 244A resolved a 66,84-84,42 kb intragenic NF1 deletion and a 160,69-178,14 kb gene deletion involving two distally adjacent genes, respectively. Atypical microdeletions less than 1 Mb encompassing the NF1 gene and distally adjacent genes are very rare.

We want to highlight the clinical manifestations in our patients with regard to both deletion types identified. This study confirms that array-CGH is a sensitive approach for accurate characterization of NF1 microdeletions to differentiate between the types of microdeletions with respect to patients’ follow-up care.

P02.181

Nonfracture Osteogenesis imperfecta (or another collagenopathy ?) in a 2 year old Russian boy with a mutation in the COL1A2 gene

L. M. Graul-Neumann1, C. Ehlers2, G. C. Schwabe3;

1Institute of Medical and Human Genetics, Berlin, Germany, 2Mitteldeutscher Praxisverband, Humanengenetik, Dresden, Germany, 3Children’s Hospital, Pediatric Hematology & Oncology, HELIOS Klinikum Berlin-Buch, Berlin, Germany.

Case Report:

Our patient is the second child of healthy parents. He had congenital clubfeet, a unilateral hernia inguinalis, a large frontal fontanel, frontotemporal alopecia, blue sclerae, normal teeth.

Clubfeet were present at birth, but so far no osseous fractures have been reported.

At the age of 2 years, height and weight were at P3, OFC at P97 and hypermobility of the hip joints was evident. Serum levels of calcium, phosphate and alkaline phosphatase were normal.

Radiographs showed wormian bones, normal skeletal mineralisation.

As some of the clinical features were suspicious of OI we initiated a molecular analysis. In exon 23 of the COL1A2 gene a de novo not yet described heterozygous missense mutation c.1316G>A (p.Gly439Asp) was identified.

Comment:

The mutation described here is characteristic for osteogenesis imperfecta as Glycin substitutions are typical for OI. Comparable mutations have only been described in the collagenopathies OI and neurofibromatosis.

For Genetic Counseling and Psychotherapy, Augsburg, Germany.

We demonstrate the results of the molecular genetic analysis in two 2 and 4 year old NF1 patients mainly presenting with multiple cafe-au-lait spots and a positive family history in one case. MLPA analysis using Salsa-Kit P081/P082 detected an indistinguishable deletion in both cases of at least 48 kb starting in intron 27 and comprising the 3‘ terminal half of the NF1 gene including the last but one exon 48. Efforts to differentiate the deletions applying Salsa P122 NF1-area probe confirmed the deletion sizes to a maximum of 579 kb in both cases that remained still indistinguishable. Finally, oligo-array-CGH with the microarray kit 244A resolved a 66,84-84,42 kb intragenic NF1 deletion and a 160,69-178,14 kb gene deletion involving two distally adjacent genes, respectively. Atypical microdeletions less than 1 Mb encompassing the NF1 gene and distally adjacent genes are very rare.

We want to highlight the clinical manifestations in our patients with regard to both deletion types identified. This study confirms that array-CGH is a sensitive approach for accurate characterization of NF1 microdeletions to differentiate between the types of microdeletions with respect to patients’ follow-up care.

P02.182

Visual Function and Ocular Manifestations in Noonan Syndrome

R. Rodtscheidt1, K. Reuter1, D. Orel-Büttel1, S. D. Shankar1;

1Cornell University, Ithaca, NY, United States, 2University of California, San Francisco, CA, United States, 3Berkeley Optometry, University of California, Berkeley, CA, United States, 4Emory University School of Medicine, The Department of Human Genetics, Atlanta, GA, United States.

Purpose of study: To determine visual function and characterize ophthalmic...
mic manifestations in Noonan syndrome.

Introduction: Noonan syndrome is a developmental syndrome caused by heterogeneous mutations in the genes PTPN11, SOS1, RAF1, N Ras, CBL, or KRAS. It is inherited in an autosomal dominant manner. Clinical features in this syndrome include congenital heart defects, short stature, developmental delay of variable degree and ocular involvement.

Methods: Thirty individuals were studied in the Berkeley and Chicago RAS/ MAPK symposium by visual function assessment, slit lamp exam and dilated fundus exam.

Results: The Ocular findings in 30 Noonan syndrome patients have been tabulated below. We noted the following parameters.

Conclusion: Ophthalmic manifestations are commonly noted features in Noonan syndrome. Most individuals have good visual function with majority having stereopsis. Annual eye exams are recommended and necessary to correct refractive errors, prevent amblyopia and in monitoring for intracranial complications such as hydrocephalus or rarely intracranial tumors.

Results of Ocular Findings in Noonan Syndrome

<table>
<thead>
<tr>
<th>Number</th>
<th>Parameters</th>
<th>Results</th>
<th>n=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eyelids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patient with glasses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Nystagmus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Anterior segment</td>
<td>Normal</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Fundus exam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Color vision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Happy Contrast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Stereo smile test</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **1**
- **2**
- **3**
- **4**
- **5**
- **6**
- **7**
- **8**

PO2.184

Pulmonary valve stenosis (PVS) and hypertrophic cardiomyopathy (HCM) are the most frequent anomalies, although the spectrum of cardiac defects is wider. We analysed the clinical and molecular characteristics of atrioventricular canal defect (AVCD) in patients with mutations affecting genes in the RAS/MAPK pathway. Between 2002 and 2011, 101 patients with cardiac defects, including subvalvular aortic stenosis, mitral valve anomaly, hypermetropia or hypertelorism were found in 65 (38.0%), 14 (8.2%) and 13 (7.6%) patients, respectively.

The clinical analysis of NS patients revealed that there is significant variation in disease phenotypic expression depending on the mutation presence in specific gene. The short stature was statistically more frequent in patients with mutations in RAF1 and PTPN11 (76.9% and 69.2%) than in SOS1 (42.9%, p<0.05). Pulmonary valve stenosis was present in 30 (46.2%) patients with mutation in PTPN11, 7 (50.0%) in SOS1 and 5 (38.5%) in RAF1, although the observed differences were not statistically significant. The hypotropic cardiomyopathy and strabismus were more common in patients with mutated RAF1 (46.2% and 38.5%) vs. 2.7% and 12.3% for PTPN11 and SOS1 respectively. The delayed psychomotor development, speech delay and cryptorchidism were more frequently observed in patients with PTPN11 and SOS1 mutations (45.2%, 21.9% and 65.1% vs. 15.4%, 0% and 16.7% for RAF1, p<0.05). Our results confirm a significant correlation between the NS-causing mutation in specific gene and clinical symptoms of the disease.

Supported from NCN project no. DEC-2011/01/D/NZ5/01347.

PO2.185

Mutations in PTPN11, SOS1 and RAF1 genes and clinical characteristics of Noonan syndrome patients.

G. Baldassarre, C. Bassi, M. Tartaglia, M. Silengo, G. B. Ferrero; 1Department of Pediatrics, Torino, Italy; 2Department of Medical Genetics, Bologna, Italy; 3Department of Hematology, Oncology and Molecular Medicine, Roma, Italy.

Noonan syndrome (NS) is an autosomal dominant disorder caused by heterozygous gain of function mutations in various genes (mainly PTPN11, SOS1, RAF1 and KRAS) encoding proteins of the Ras-MAPK signaling pathway. Here we report genotype-phenotype correlation in a well-characterized cohort of 63 Polish patients affected by NS. We identified pathogenic mutations in PTPN11 for 32 (51.9%), SOS1 for 12 (19%), RAF1 for 2 (3%) and KRAS for 1 (2%) unrelated patients. Our total mutation detection rate was 75%. All patients presented phenotype typical for NS, however we observed differences in the prevalence of some features depending on the mutated gene. Ptosis, macrocephaly, hypotonia, hyperkeratosis, sparse eyebrows, mitral valve anomalies and cardiac defects were significantly more prevalent among individuals with SOS1 mutations. Whereas short stature, pulmonic stenosis, atrial septal defect, sparse hair and skin pigmentation were significantly more frequently associated with presence of PTPN11 mutations. Two characteristic NS features, such as mental retardation and hypertrophic cardiomyopathy were rarely associated with PTPN11 or SOS1 mutations, while were observed in our RAF1 cases. Additionally, we revealed that 10 affected mothers and one affected father manifested a milder phenotype than their sick children.

The study was supported by National Science Centre Project no. PB0056/B/01/2008/35 and by Children’s Memorial Health Institute Project no. 190/08.
nacterized by a specific ectodermal phenotype. Here we report two cases of NS-LAH SHOC2 mutated patients revealing the extreme clinical variability of this condition. The first patient presented common NS features at birth with typical facial dysmorphism and hypertrophic cardiomyopathy. However, he had a dramatic clinical evolution in the first months of life rather resembling that of CS. Central nervous system (CNS) involvement with drug-resistant epilepsy and severe developmental delay occurred associated with significant growth delay and dystrophic appearance. The second patient presented a distinctive NS-LAH phenotype at birth, without CNS anomalies or cardiac defects documented in the 18 months clinical follow-up. These two cases represent the mild and the severe end of the same phenotypic spectrum, demonstrating that SHOC2 genotype-phenotype correlation is more complex than previously thought, and preventing the possibility of a genotype-based prognosis.

Boy with Noonan syndrome with multiple giant cell lesions (NS/MGCL) and review of the literature

O. Bartsch, W. Coerdli, W. Wagner, J. Karbach; 1Institut für Humangenetik, Universität zu Köln, Köln, Germany, 2Institut für Pathologie, Universität zu Köln, Köln, Germany, 3Klinik für Kinder-, Jugend- und Genetik, Universität zu Köln, Köln, Germany.

Noonan syndrome with multiple giant cell lesions (NS/MGCL) was recently shown to be part of the phenotypic spectrum of the syndromes of the RAS/MAPK pathway. We report on a 13-year-old boy with a typical phenotype of Noonan syndrome including atrial septal defect, pulmonic stenosis, short stature, pectus excavatum, and multiple giant cell lesions of both jaws, and a de novo mutation in exon 3 of PTPN11, c.236A>G (predicting Q79R). PTPN11 mutations are the most frequent cause of Noonan syndrome and Q79R is a well-described recurrent mutation. Including this patient, 24 subjects with molecularly confirmed NS, LEOPARD or CFC/MGCL syndrome have been reported to date. Of these, 21 subjects (87.5%) had PTPN11, SOS1 or RAF1 mutations and three (1.25%) had BRAF or MAP2K1 mutations, confirming that MGCL is a rare complication of the deregulated RAS/MAPK pathway. The lesions of the mandible and to a lesser extent of the maxilla were first noted between ages 2 and 19 years (median 11 years) and were combined with facial asymmetry in 5/24 patients (21%). With one exception (mutation not reported), all 24 subjects demonstrated known mutations in the PTPN11, SOS1, RAF1, BRAF, and MAP2K1 genes that were previously reported with RASopathies without MGCL.

Widening the phenotypic spectrum of 5q35.3 microduplication encompassing NSD1: description of two more patients with the reversed Sotos syndrome phenotype

Background: Loss-of-function mutations in NSD1 and 5q35 microdeletions encompassing NSD1 are a major cause of Sotos syndrome which is characterized by overgrowth, macrocephaly, characteristic facies and other features. Among several patients with partial trisomy 5q, five patients with confirmed microduplication of the 5q35.3 region including NSD1 have been described. They show a ‘reversed phenotype’ of Sotos syndrome with microcephaly, short stature and mental retardation. We here report on two siblings with interstitial duplication 5q35, widening the phenotypic spectrum.

Patients: Both siblings had microcephaly, behavioral problems with agitation and lack of social distance, and a distinctive facial phenotype with thin upper lip, flat philtrum, short palpebral fissures and epicanthic folds. The 13-year-old girl showed mild to moderate mental retardation, short stature and cataracts. Her 15-year-old brother had learning problems with an IQ of 78. His length was within the lower normal range. The biological parents were neither available for clinical examination nor for testing.

Methods: Besides chromosomal analysis (with a resolution of about 550 bands) we performed SNP-array analysis (Affymetrix® CytoGenetics Whole-Genome 2.7M) and FISH (using a specific probe for NSD1).

Results: Chromosomal analysis was normal in both siblings. Molecular karyotyping in the sister revealed a 1.6 Mb interstitial duplication of 5q35.2-q35.3 containing 40 RefSeq genes including NSD1 and the duplication could be confirmed in both siblings by FISH analysis. The siblings illustrate intrafamilial variation of the reversed Sotos syndrome phenotype.

Bladder extrophy (BE) is a complex congenital anomaly, part of the clinical spectrum of the bladder extrophy-epispadias complex (BE/EEC). The BEC represents a spectrum of urological abnormalities in which part of all the distal urinary tract fails to close and is exposed to the external abdominal wall. Previously, nine cases of classical extrophy of the bladder with underlying microduplication 22q11.2 have been reported (Lundin et al 2010; Draken et al 2010; Ludwig et al 2011). A 10-year-old boy was referred for genetic evaluation for psychomotor retardation. He had a bladder extrophy at birth. He was adopted. He showed short stature, scar of repair of bladder extrophy, microopenis. Multiple ligament-dependent probe amplification (MLPA) analysis is performed using the SALSA MLPA KIT P250 (George MRC-Holland, Amsterdam, Netherlands) to detect a microduplication 22q11.2. The array-CGH (Affymetrix CytoGenetics Whole-Genome, 2.7 M Array) identified a duplication of 2419 kb in the 22q11.2 region. In conclusion, this report extends the phenotypic spectrum of bladder extrophy in microduplication 22q11.2 and may point to possible gene(s) located in 22q11.2 playing a putative role in urogenital development. It provides further evidence of genotype-phenotype correlation.

Two years experience of Fibular Aplasia, Tibial Campomelia, and Olygosyndactyly

O. Sezer, 1I. Gebeheoglu, E. Gokce, S. Guner; 1Department of Medical Genetics, Samsun Maternity and Children Diseases Hospital, Samsun, Turkey, 2Department of Pediatrics, Samsun Maternity and Children Diseases Hospital, Samsun, Turkey.

Fibular Aplasia, Tibial Campomelia, and Olygosyndactyly (FATCO) syndrome (MIM#246570) is an extremely rare syndrome related with shortening and anterior bowing of the lower limb at the distal third of the tibia overlying soft tissue dimpling, oligodactyly of the foot, and olygosyndactyly of the hand. It is associated with an increased risk of neural tube defects. To date, no disease gene/genes were identified. According to our knowledge this is the 11th case of FATCO described in literature and 3rd case in Turkey. We presented two years of experiences of FATCO syndrome.

The patient was born at term with uneventful pregnancy and delivery. He was the first child of healthy parents, 17 years old mother and 25 years old father. They were non-consanguineous, both born in same small town. The pregnancy was follow-up regularly. During follow-up pregnancy of mother triple screening test risk was low. Fetal ultrasonography showed chogenicity of the tibial osseous and shortening of both tibias during 21st, 25th and 27th weeks, respectively. The right upper extremity had evaluated in the 25th and 27th weeks, respectively. The right upper extremity had evaluated in the 25th and 27th weeks, respectively. The right upper extremity had evaluated in the 25th and 27th weeks, respectively. The right upper extremity had evaluated in the 25th and 27th weeks, respectively.

Ohdo syndrome Maat-Kievit-Brunner type is caused by mutations in MED12

A. T. Valtu-Matthiessen, 1H. H. C. Hamel, 1K. Spaeth, 1B. C. Hamel, 1T. Kleefstra, 1W. M. Minooyan, 1H. G. Yntema, 1H. van Bokhoven, 1B. A. de Vries, 1H. G. Brunner, 1T. G. Boyer, 1A. P. M. de Brouwer; 1Department of Medical Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 2Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center, San Antonio, Texas.

Ohdo syndrome (MIM#249620) is characterized by intellectual disability and the typical facial features including blepharophimosis. Clinically the blepharophimosis-intellectual disability syndromes have been classified in five distinct subgroups: del(3)(pter) type, Ohdo type, Say-Barber-Biesecker-Syndrome (SBB) type, Say-Barber-Biesecker-Year-Yoom-Simpson (SBYS) type, Verloes type, and Maat-Kievit-Brunner (MKB) type. Here, we performed exome sequencing in two families with two affected males with Ohdo syndrome MKB type. Two novel missense mutations were identified in Mediator of RNA polymerase II transcription subunit 12 (MED12; NM_00121020, p.(Arg4118His) and p.(Ser1165Pro), that segregated...
Two novel GJA1 missense mutations in patients presenting with osteogenesis imperfecta: a case report

A. Kondo1, J. Nishihata, K. Mitsuhashi, S. Sato, H. Yokoyama, M. Mizuguchi, H. Ishimoto, S. Izumi,
Tokai University, Isehara, Japan.

Perinatal lethal osteogenesis imperfecta (OI) is the result of heterozygous mutations of the COL1A1 and COL1A2 genes. Point mutations resulting in the substitution of Gly residues in Gly-X-Y amino acid triplets of the triple helical domain of the alpha 1(I) or alpha 2(I) chains are the most frequent mutations. They interrupt the repetitive Gly-X-Y structure that is mandatory for the formation of a stable triple helix. Most babies have their own private de novo mutation. However, the recurrence rate is about 7% owing to germ-line mosaicism in one parent.

A 29-year-old lady had recurrence of OI. Her first fetus was diagnosed as OI at 21 weeks gestation and she declined. She referred to us for her second pregnancy because of ultrasound findings. Short long bones with fractures, small chests and soft skulls were significant and the fetus was also suspected OI at 19 weeks gestation. Type II OI was suspected with these findings. Her previous doctor explained her it would not recur because most cases of type II OI represent autosomal recessive traits. However, there is another possibility with germline mosaicism and this case could be in this group. In addition, similar extremely severe types of OI, Types VII and VIII, can be caused by recessive mutations to other genes.

It is very important to make an accurate diagnosis to plan future pregnancy. Hence genetic test for OI patients is recommended even if it is difficult to perform genetic test for every patients with OI in Japan.
P02.198 Papillon-Lefèvre syndrome and GJB2 associated hearing loss in two siblings

B. F. Stothoff1, A. S. Rosow2, J. C. Stöck1, T. E. Pescott2
1Oslo University Hospital, Oslo, Norway, 2TAKO centre, Lovisenberg Diahospital, Oslo, Norway.

Papillon-Lefèvre syndrome (PLS, OMIM #245000) is an extremely rare autosomal recessive disorder associated with mutations in CTSC (chromosome 11q14.3). Palmo-plantar hyperkeratosis beginning in early childhood is the hallmark of severe disease. The disorder is most often diagnosed by dentists, however, because of severe painful progressive periodontal disease with premature loss of teeth which affects both primary and secondary dentition. Pyogenic liver abscesses, presumably a consequence of neutrophil dysfunction, have been reported. Systemic retinoids, especially acitretin, can be very effective in treating the skin lesions and may have some effect on the periodontal manifestations. Dental implants may be an option.

Mutations in GJB2 (chromosome 13q12.13) are a cause of autosomal non-syndromic mild to profound sensorineural hearing impairment which is usually congenital (OMIM #220290). Estimated prevalence in the general population is 14:100,000.

We present a brother and sister who both have molecularly confirmed PLS as well as GJB2 associated hearing loss. Seven of nine surviving siblings have neither disorder. Three siblings died of unknown cause in infancy. The parents, originally from Somalia, are not consanguineous by history. Both teenagers presented with severe periodontal disease and palmo-plantar hyperkeratosis interfering with mobility and sleep. The boy is deaf; the girl has minimal residual hearing.

This case reminds us that treatment and follow-up can be significantly influenced by making the correct diagnosis of a rare disorder and that two monogenic conditions occasionally co-occur.

P02.199 CYP2C9 and VKORC1 polymorphisms influence the warfarin dose adjustment during initial anticoagulation and follow-up of 360 days

P. C. J. Santos1, C. L. Dinardo1, I. T. Schettori1, R. A. G. Soares1, L. Kawabata-Yoshida2, I. M. Bensendor1, P. A. Lotufo1, J. E. Krieger2
1Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo, Sao Paulo, Brazil, 2University Hospital of the University of Sao Paulo, Internal Medicine Division, Sao Paulo, Brazil.

Background: Warfarin is an anticoagulant that has been the standard to prevent and treat thromboembolism and, genotypic variations in the CYP2C9 and VKORC1 have been reported to predict dosing. Objectives: As an initial step towards clinical pharmacogenetic implementation, the main aim of this study was to determine whether CYP2C9 and VKORC1 polymorphisms influence the warfarin dose adjustment during initial anticoagulation and follow-up of 360 days. Methods: Two hundred six patients who were beginning warfarin therapy were selected. They were assessed with general and clinical characteristics, response to therapy followed on days 7-10, 30, 60, 180, 360, and adverse events. Results: During 360 days, the total dose variation was associated with predicted metabolic phenotypes according to CYP2C9*2 and CYP2C9*3 (extensive metabolizer (EM): +1.7±1.5 mg/week and intermediate or poor metabolizers (IM-PM): -5.5±2.5 mg/week; p=0.03, adjusted for covariates). Dose variation during first month was also associated. Patients carrying VKORC1 and CYP2C9 variants presented lower required dose compared to patients carrying wild-type genotypes (p=0.04 and p=0.03, respectively). Conclusions: This genetic information is important in the initial anticoagulation dosing and during treatment maintenance. In this scenario, the present study could help to design programs towards individualization of warfarin therapy in the Brazilian population.

P02.200 Dosage-sensitive network in polycystic kidney and liver disease: Multiple mutations cause severe hepatic and neurological complications

J. Kleffmann1, V. Frank1, C. Both1, H. J. Bolz2, A. Ferbert3, C. Bergmann1
1Department of Neurosurgery, Klinikum Kassel, Kassel, Germany, 2Bioscientia Center for Human Genetics, Ingelheim, Germany, 3Department of Neurology, Klinikum Kassel, Kassel, Germany.

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic disorders. Most elderly patients also show liver cysts. Polycystic liver disease (ADPLD) can also occur isolated, but may also encompass kidney cysts. Variable disease expression even in the same family is incompletely understood. ADPKD and ADPLD overlap not only clinically, but also genetically and functionally. Both genes known for ADPLD, PKRKS7 and SEC63, encode proteins that are involved in posttranlational translocation and quality control of proteins (such as the ADPKD proteins). We describe a family with liver and kidney cysts in which the much more severely affected index patient harbours a total of four mutant alleles in genes for ADPKD and ADPLD with massive hepatic and neurovascular complications leading to stroke at the age of 38. All other affected family members displayed a mild phenotype with practically no disease burden and a few liver and kidney cysts at varying degrees. In line with recent functional data, we postulate a dosage-sensitive, tissue-dependent network for polycystic liver and kidney disease in which additional mutational hits exert an aggravating effect and contribute to earlier and more severe disease expression. This concept may describe a general principle for the modification of disease expression and demonstrates how trafficking and quality control of proteins matter in human disease.

P02.201 Autosomal recessive polycystic kidney disease (ARPKD/ADPKD) gets complex: Genetic network and mutations in multiple cilia-related genes

V. Frank1, M. Kuhn1, T. Eisenberger1, H. Fehrenbach1, L. Pappe2, K. Hüffler2, S. Weber2, J. Gellermann3, M. Schuler2, K. Latta4, S. Berland5, T. Fiskerstrand5, K. Zerres6, H. J. Bolz2, C. Bergmann1
1Bioscientia Center for Human Genetics, Ingelheim, Germany, 2Department of Pediatrics, Children’s Hospital Memmingen, Memmingen, Germany, 3Department of Pediatric Nephrology, Hepatology and Metabolic Diseases, Hannover Medical School, Hannover, Germany, 4Department of Pediatrics and Adolescent Medicine, University Hospital Essen, Essen, Germany, 5Department of Pediatric Nephrology, Charité Berlin, Berlin, Germany, 6Department of Pediatrics, Clementine Children’s Hospital, Frankfurt, Germany, 7Department of Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway, 8Department of Human Genetics, RWTH Aachen University, Aachen, Germany.

Polycystic kidneys paved the way for elucidation of cilia-related disorders and notably most ciliopathies have a renal cystogenic component. Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common Mendelian disorders with a prevalence of 1:500-1000 and typically a late-onset disease caused by mutations in PKD1 or PKD2. About 2% of ADPKD patients show an early and severe phenotype with considerable perinatal morbidity and mortality that can be clinically distinguishable from the recessive form of polycystic kidney disease (ARPKD) caused by PKHD1 mutations. We demonstrate severely affected PKD patients who carry, in addition to their expected familial germline defect, further mutations that are likely to aggravate the phenotype. We also show that polycystic kidney disease may also be mimicked by mutations in HNF16 and genes typically causing other ciliopathies, such as Nephrophthisis and Meckel syndrome. Due to these aspects, we established a novel genetic testing approach based on Next-Generation Sequencing (NGS) that allows simultaneous investigation of all PKD and other ciliopathy genes.

P02.202 Pre and post-axial polydactyly caused by a novel dominant GLI3 mutation in a large kindred

M. Volodarsky3, O. Birk3
3Ben-Gurion University of the Negev, Beer-Sheva, Israel.

A large Jewish Moroccan kindred presented with 12 cases of isolated polydactyly. Afeclotic individuals had either pre-axial, post-axial or combined polydactyly. Most had also syndactyly. Using polymorphic markers adjacent to D7S691 and D7S1526 near GLI3 followed by targeted sequencing of the coding sequence of the gene, demonstrated that the phenotype with pre-axial, post-axial or combined polydactyly is caused by a novel dominant GLI3 allele. Most had also syndactyly. Using polymorphic markers adjacent to D7S691 and D7S1526 near GLI3 followed by targeted sequencing of the coding sequence of the gene, demonstrated that the phenotype with pre-axial, post-axial or combined polydactyly is caused by a novel dominant GLI3 allele. Most had also syndactyly.

P02.203 Candidate genes and CNVs in patients with polymicrogyria

N. Di Donato1, U. Hehr1, G. Schuierer2, J. Lemke3, G. Hahn4, J. Schallner5, A. Bump6, E. Schroeck7, K. Hackmann8
1Institut für Klinische Genetik, Dresden, Germany, 2Zentrum für Humangenetik, Regensburg, Germany, 3Institut für Neurowradiologie, Regensburg, Germany, 4Department of Pediatrics, Children’s Hospital, Kassel, Kassel, Germany, 5Department of Pediatrics, Children’s Hospital, Kassel, Kassel, Germany, 6Department of Pediatrics, Children’s Hospital, Kassel, Kassel, Germany, 7Department of Pediatrics, Children’s Hospital, Kassel, Kassel, Germany, 8Department of Pediatrics, Children’s Hospital, Kassel, Kassel, Germany.

Polycystic kidneys paved the way for elucidation of cilia-related disorders and notably most ciliopathies have a renal cystogenic component. Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common Mendelian disorders with a prevalence of 1:500-1000 and typically a late-onset disease caused by mutations in PKD1 or PKD2. About 2% of ADPKD patients show an early and severe phenotype with considerable perinatal morbidity and mortality that can be clinically distinguishable from the recessive form of polycystic kidney disease (ARPKD) caused by PKHD1 mutations. We demonstrate severely affected PKD patients who carry, in addition to their expected familial germline defect, further mutations that are likely to aggravate the phenotype. We also show that polycystic kidney disease may also be mimicked by mutations in HNF16 and genes typically causing other ciliopathies, such as Nephrophthisis and Meckel syndrome. Due to these aspects, we established a novel genetic testing approach based on Next-Generation Sequencing (NGS) that allows simultaneous investigation of all PKD and other ciliopathy genes.
Polymicrogyria (PMG) represents a common cortical malformation and is characterized by an excessive number of small gyri as a result of the abnormal neuronal migration. Up to date mutations in 35 genes are related with various neuronal migration disorders. 13 chromosomal loci were associated with PMG.

Here we present the results of high resolution array CGH analysis (Agilent 244K Oligo array) in 21 patients with PMG. In one patient we identified de novo deletion 15q26.3 (24 Mb). Although known from the literature in association with developmental delay/multifocal malformations this locus was not previously associated with PMG. 11 patients showed copy number variations (CNVs) neither listed as benign nor previously described in the literature. 7 patients had a single aberration (4 losses and 3 gains). In 3 patients a combination of 2 CNVs and in one patient 4 CNVs (gains) were seen. The size of the copy number losses and gains varied from 25 kb to 250 kb and from 36 kb to 250 kb, respectively. In six patients a segregation analysis was possible. A de novo event could be confirmed in one patient (loss). Four patients showed maternal inheritance (one mother partially affected) of the CNVs and one patient had two CNVs, one inherited from either parent. Two discovered CNVs reside within the known PMG loci 4q22.1 and 13q22.1.

In 9/21 patients only CNVs listed in Database of Genomic Variance were found. The phenotype, candidate genes, possible causative role of the rare CNVs and further studies using NGS will be discussed.

P02.204

Polymicrogyria, schizencephaly, and eye anomalies in a girl with COLA1A1 mutation

T. M. Neumann, E. Baumeister, J. Kohlbauer, S. Budy, E. Holinski-Feder, A. Abicht, B. Ert-Wagner, M. Medizinisch Genetisches Zentrum, Munich, Germany; RoMed Klinikum Rosenheim, Rosenheim, Germany; Praxis für Humangenetik, Freiburg, Germany; Institute of Clinical Radiology, University of Munich – Grosshadern Campus, Munich, Germany.

Mutations in COLA1A1 are associated with autosomal-dominant type 1 porencephaly; brain small-vessel disease; and hereditary angiopathy with nephropathy, aneurysms, and muscle cramps (HANAC) syndrome. Recently, mutations in COLA1A1 have also been identified in patients with presumed Walker-Warburg syndrome. Schizencephaly and abnormal gyration (such as polymicrogyria) have not been described as primary features.

We describe a girl with a novel mutation in COLA1A1 (c.2716+2T>C, IVS3+2T>C, het.). She was presented at the age of 4 months with complex brain (schizencephaly, polymicrogyria, hypoplastic corpus callosum, and ventriculomegaly) and eye (congenital cataract, microphthalmia) abnormalities. Her development was markedly delayed. In the further course, she developed West syndrome. Prenatally she was diagnosed with bilateral cataracts and transient ventriculomegaly. Within the first month of life, the girl suffered from bilateral fulminant orbital phlebitis; consecutively, both orbits became markedly microphthalmic. When reassessing the consecutive MRI and CT scans that had been performed since birth, multifocal bleeding episodes at different stages of development and organization as well as porencephalic changes were detected in the early brain imaging studies. Polymicrogyria and schizencephaly most likely developed secondary to the vascular changes and bleeding episodes caused by the mutation during early stages of fetal development. Her parents and the dizygotic twin sister are healthy and do not carry the mutation.

This case highlights, that the brain phenotype may change over time in patients with COLA1A1 mutations and may mask the primary defects expected in these patients.

P02.205

New insights into Potocki-Lupski syndrome by characterisation of the duplicated region 17p11.2 with self-designed two-colour FISH probes

The Potocki-Lupski syndrome (PTLS, MIM 610883) is a microduplication syndrome caused by a common duplication of about 3.7Mb in 17p11.2. The PTLS-associated duplication is reciprocal to the common 17p11.2 deletion syndrome (Smith-Magenis syndrome). Both, deletion and duplication rearrangements are caused by nonallelic homologous recombination between flanking repeat gene clusters (Zhang et al. 2010). Clinical features of PTLS include infantile hypotonia, failure to thrive, mental retardation, autism, behavioural abnormalities and speech delay.

Here we report about two patients with PTLS who were ascertained by karyotyping and array-CGH analyses. Patient 1, a 5 year old boy, showed an uncommon duplication of 4.7Mb. He demonstrated classical features like hypotonia, failure to thrive, mental retardation, speech delay, auto-aggressive behaviour and facial dysmorphisms, but no congenital malformations. Patient 2, a 2 month old boy, presented the common duplication of 3.7Mb with hypotonia and additional club feet.

Our study was established to design new self-designed two-colour FISH probes for investigation the duplication region more precisely. Therefore, we amplified two genes from proximal and distal part of the duplication by Long Range PCR with a size in total of 30kb. After fluorescent labelling with different colours we hybridised the FISH probes on patients metaphase spreads. Both revealed an inverted duplication due to specific signal pattern. Using our self-generated protocol to establish PTLS specific FISH probes it is possible to detect how the duplicated region is arranged. Furthermore, we demonstrate patients from the literature with similar duplication segments in comparison of their phenotype for phenotype-genotype correlation.
Primordial Dwarfism: A case report of two South African patients
S. Mosaa, L. Bhengu1, A. Jackson2; 1Division of Human Genetics, National Health Laboratory Service, Johannesburg, South Africa; 2Medical Research Council, Human Genetics Unit, Edinburgh, United Kingdom.

Primordial dwarfism (PD) is the term used for a group of genetic disorders, which result in severe short stature and growth failure. „Primordial“ has been defined as belonging to or being characteristic of the earliest stages of development. Thus, PD is a class of disorders where growth delay occurs at the earliest stages of embryonic development. Unlike some of the other forms of dwarfism where neocytes may have normal growth parameters, children with PD are born small. Here we report on two South African girls with PD, aged four and six years. Short stature was evident at birth. Currently, their height parameters fall below the -8SD and -10SD curves, respectively. Both girls have clinical features suggestive of a diagnosis of Majewski Osteodystrophic Primordial Dwarfism Type II (MOPD II), and molecular testing has confirmed that the four year old is homozygous for a mutation in the causative gene, pericentrin (PCNT). Apart from severe intrauterine and postnatal growth failure, patients with MOPD II have microcephaly, skeletal dysplasia and a distinctive facial appearance. Individuals with MOPD II are at increased risk for several significant complications, which include insulin resistance, diabetes mellitus and central nervous system vascular malformations. As adults, their average height approaches 100cm, making them among the smallest of human beings. We compare the physical features and radiological findings of these two patients, followed by a brief discussion on the associated co-morbidities and current research on the genetic basis and natural history of PD.

Primrose syndrome with testicular cancer: case report and review of the literature
D. Liebrecht1, C. Daumers-Haas1, T. Braun1, C. Hann von Weyhern3; 1Präventiamedizin München, Munich, Germany; 2Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde Ludwig-Maximilians-Universität München, Munich, Germany; 3Medizinische Poliklinik Harlaching, Munich, Germany.

We report on a male patient with the rare finding of enlarged calcified external ear auricles combined with macrocephaly, mental retardation, dysraphic facial features, bilateral cataracts, hearing impairment, sparse body hair, progeroid muscle wasting, severe kyphoscoliosis and behavioural problems. All findings are consistent with the clinical diagnosis of Primrose syndrome. At the age of 28 years the patient developed a germ cell tumor and a seminoma of his testicles, which was effectively treated by orchiectomy and chemotherapy. The patient died at the age of 31 years because of cancer recurrence.

Primrose syndrome is an extremely rare neurodegenerative disorder of unknown cause. The first patient diagnosed with Primrose syndrome was described in 1982 by Dr. D.A. Primrose. Between 1982 and 2011 there have been published about seven cases of Primrose syndrome (OMIM #259050).

To our knowledge our case is the second reported case of Primrose syndrome with testicular cancer; the first case was reported by Mathijssen et al., 2006. This new case of testicular cancer confirms an increased risk to malignancies, especially testicular tumors, as a part of Primrose syndrome. We compare the phenotype and findings of our case to previously published cases of Primrose syndrome in order to expand the phenotypic spectrum. Up to now all cases of Primrose syndrome are mentioned to be sporadic without familial occurrence or consanguinity and probably related to a novel autosomal dominant mutation of a yet unknown gene.

A large deletion in the GNAS gene in a patient with pseudohyoparathyroidism type 1a (PHP-1a)
E. Tanne1, M. A. Kalseb1, A. G. Myhr2, T. Prescott2; 1Department of Medical Genetics, Oslo, Norway; 2Department of Pediatrics, Oslo, Norway.

Albright hereditary osteodystrophy (AHO) is a rare autosomal dominant inherited condition associated with short stature, obesity, subcutaneous oedema, long and shortening of the long bones of the hands and feet. Some degree of development delay, generally mild, is common. The underlying molecular cause is reduced activity of the alpha subunit of the stimulatory guanine nucleotide-binding protein (Gaalpha). Gaalpha is encoded by GNAS and heterozygous mutations including missense, nonsense, small insertions and deletions in GNAS exon I-13 have been reported to cause AHO. Submicroscopic deletions identified by array CGH involving the GNAS locus, has also been reported. GNAS is subjected to maternal imprinting in some human tissues, including the thyroid gland, and hormone resistance (particularly for parathyroid hormone and thyroid-stimulating hormone) is associated with AHO, only when the genetic defect is maternally inherited.

Proteus syndrome (PS) (OMIM#176920) is a highly variable disorder characterized by asymmetric and disproportionate overgrowth of body parts, including bone overgrowth. The concept of a dominant lethal gene defect surviving by mosaicism was proposed by Happle over twenty years ago to explain the mosaic distribution of lesions and the sporadic occurrence. Recently, an activating missense mutation in the AKT1 gene has been found by Lindhurst et al. (2011) to be associated with the PS. The AKT1 serine/threonine protein kinase is a central mediator of PI3-Kinase signalling which influences cell proliferation and apoptosis (Lee et al. 2011). Here, we screened affected tissues from two patients with classical PS and three patients with an asymmetric and disproportionate overgrowth not fulfilling the PS criteria, one of the latter with unilateral lower extremity overgrowth and two with cranial bone overgrowth. We used restriction-enzyme assay described by Lindhurst et al. To test our method we created mutated PCR fragments and showed a sensitivity up to ~5% mutated PCR-Fragments. We detected the AKT1 mutation in the affected bone, fat and cartilage but not in the blood sample of two Proteus syndrome affected patients. The mutated allele frequency ranged between 4 and 20 percent. We did not detect AKT1 mutation in affected tissues of the patients with cranial bone overgrowth and unilateral extremity overgrowth. This data suggest a different molecular mechanism accounts for the overgrowth in these distinct from PS cases.

Identification of mosaic AKT1 mutations in two patients affected with Proteus syndrome but not in three patients affected with an asymmetric and disproportionate overgrowth not fulfilling the Proteus syndrome criteria
D. Emmerich1, M. Kolanycz2, S. Mundlos1, S. Tischner2; 1Charité – Universitätsmedizin Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany; 2Max Planck Institute for Molecular Genetics, Research Group Mundlos, Berlin, Germany; 3Technische Universität Dresden, Institut für Klinische Genetik, Dresden, Germany.

Hereditary chronic pancreatitis (HCP) belongs into the group of rare diseases. HCP follows an autosomal dominant inheritance pattern with a penetrance of approximately 80%. The incidence is expected to be 3.5-10 cases/100.000 inhabitants in Europe and USA. It was shown that in approximtely 50% of families affected with HCP, mutation of PRSS1 gene was present. PRSS1 gene encodes cationic trypsinogen and some mutations described in this gene lead to higher stability of prematurely activated trypsin in pancreas or higher autacoidal activation of inactive trypsinogen to trypsin. Another gene associated with HCP is SPINK1. This gene encodes serin protease inhibitor Kazal type I, which is markedly upregulated in the pancreas during acute inflammation. Variants present in this gene may interrupt the specific inhibition of active trypsin in pancreas.

Recently we have started the analysis of mutations in PRSS1 and SPINK1 genes in Slovak HCP families. Although, we have so far tested only few families, several mutation carriers were already identified. One unreported variant, the p.Ile141Asn that we detected, presumably has a negative effect on the protein function. This novel variant may be specific for our population and will be analyzed further. The genetic testing resulting in discovery of the mutations in mentioned genes associated with HCP may help to enroll the patients into special preventive programs. Here we discuss the importance of genetic testing of PRSS1 and SPINK1 in patient with pancreatitis as the risk of pancreatic cancer is elevated in patients with diagnosed HCP to more than 50%.
AHO with hormone resistance (pseudohypoparathyroidism type 1a (PHP-1a)) was diagnosed clinically in an adopted boy with subcutaneous ossification on the left leg, short stature (2.5 percentile), brachydactyly, obesity (weight for height 97.5 percentile), a round face with a short neck and mild developmental delay. He had PTH resistance with hypocalcaemia and mild TSH resistance. MLPA analysis revealed heterozygosity for a deletion of exon 7-13 in GNAS. The clinical feature of PTH resistance indicates that the deletion was located at the maternal allele. This case underscores the usefulness of MLPA in the diagnosis of AHO. To the best of our knowledge, a similar partial GNAS deletion has not been described previously.

P02.213 Genetic study of PTEN mutations among individuals with ASDs / MR and macrocephaly
M. Havlovicova, P. Vasovcak, A. Krepelova, M. Simandlova, T. Marikova, A. Hlobova, Z. Sedlacek;
Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.
Autism spectrum disorders (ASDs) are a group of severe neurodevelopmental conditions among which pervasive developmental disorder (not otherwise specified) and autistic disorder are the most common. The prevalence of ASD is currently estimated at 60 and 13 per 10,000 for ASDs and autism, respectively. Autistic disorder is often associated with macrocephaly: 24% of patients have head circumference (HC) at >98th centile. Mutations in the PTEN gene have been reported in patients with ASDs and significant macrocephaly (HC ranging from +2.5 SD to +8 SD). Germline PTEN mutations also cause a variety of inherited cancer predispositions like the Cowden disease, Bannayan-Riley-Ruvalcalba, Proteus and Proteus-like syndromes. These conditions may also have neurobehavioural features resembling autism as well as overgrowth and macrocephaly. On the contrary, most macrocephalic autistic patients with confirmed PTEN mutations were lacking the typical signs of these syndromes, at least at the time of testing. We have selected 53 autistic individuals with HC ranging from +2 SD to +4.8 SD (including the controls) for PTEN mutation analysis. Three novel (p.Asp331Thrfs*11, p.Phe423Ilefs*13, p.Thr321Glnfs*23, p.Glu242*) and two known germline mutations (p.Pro246Leu, p.Arg130*) have been found in 8 of the 53 probands (15%). We discuss possible genotype/phenotype correlation in our group of patients. Our data support former findings that PTEN mutations are frequent in patients with ASDs and macrocephaly. Therefore PTEN testing should be considered in such patients. The findings may impact the assessment of the recurrence risk and medical management of the families including early cancer prevention. Supported by CZ.16.1.00/2.1.00/16_013/0000682.

P02.214 Ptosis, arched eyebrows, hypernasal speech, obesity & mild learning disability - a clinical & mapping study
S.A. Lynch1, M. Abram1, N. Goggin2, M. Earley1, S. Ennis1, J. Conroy1;
1National Centre for Medical Genetics, Dublin, Ireland, 2Department of paediatrics, Ardean Hospital, Waterford, Ireland, 3Dept of Surgery, Temple Street Children's Hospital, Dublin, Ireland, 4School of Medicine & Health Science, University college Dublin, Dublin, Ireland.
We report 15 members of a three generation pedigree with ptosis, velopharyngeal incompetence, dysmorphism and a learning disability. The index case presented with nasal regurgitation, ptosis, obesity and developmental delay. His maternal grandfather had ptosis & cannot read or write. He had 8 children, 5 affected & 3 unaffected. Two aunts of the index case have ptosis, obesity & learning difficulties. One has a son with ptosis. Mapping analysis was performed on an Illumina Human-1M array on 15 samples including 8 affected & 7 unaffected individuals. Three regions of interest on Chromosome 2, 10 & 18 were identified. A number of genes within these regions are of interest including: NR6R1, NLRN1, PIK3CA, FKX11. However, one gene, FOX2, stands out. Many of the forkhead genes have important biological functions in multiple species. Mutations in FOX2 have been implicated in the regulation of proliferation and differentiation of multiple cell types. The pathway results in a number of disorders with overlapping physical manifestations. These include postnatal growth retardation, skeletal, ectodermic and haematologic anomalies; congenital heart defects and hypotrophic cardio-myopathy. A Noonan Spectrum Test - comprehensive screening for RASopathies
M. Spiden2, J. Short2, S. Spiden2, J. Short2, D. Bromley1, P. Scully1, J. M. Coste1, S. Spider1, J. Short1, D. Robinson1, D. Huntley1, A. Curtis1, R. Taylor1;
1NewGene Ltd, Newcastle upon Tyne, United Kingdom, 2SW Thames Molecular Genetics Diagnostic Laboratory, St George’s Healthcare NHS Trust, London, United Kingdom.
The Ras/MAPK signal transduction pathway is critical for the regulation of proliferation and differentiation of multiple cell types. Deregulation of the pathway results in a number of disorders with overlapping physical manifestations. These include postnatal growth retardation, skeletal, ectodermic and haematologic anomalies; congenital heart defects and hypotrophic cardio-myopathy. The Noonan Spectrum Test (Noonan Spectrum Test) is a comprehensive screening for RASopathies (RAS-associated disorders). These include Noonan syndrome (NS), Costello syndrome (CS), cardio-facio cutaneous syndrome (CFCS), Proteus syndrome (PS) and other related disorders. The Noonan Spectrum Test can detect mutations in the genes involved in the Ras/MAPK signaling pathway.

P02.215 Hemodynamic and genetic analysis in patients with idiopathic/heritable and congenital heart disease associated pulmonary arterial hypertension
K. Pfeifer1, J. Szamalek-Hoogrefe, C. Fischer1, N. Eiben1, T. Becker-Grunig2, O. Miero1, M. Gorenflo1, A. Hager1, K. Hinderhofer1, C. Nagel1, D. Schranz1, E. Grunig1;
1University Hospital of Heidelberg, Institute of Human Genetics, Heidelberg, Germany, 2Centre for pulmonary hypertension/Department of Pneumology, Thoraxclinic, Heidelberg, Germany, 3German Heart Center Berlin, Berlin, Germany, 4University Hospital of Heidelberg, Department of Padiatric Cardiology, Heidelberg, Germany, 5Clinic of Pediatric Cardiology and Congenital Heart Defects, Munich, Germany, 6University of Giessen, Department of Padiatric Cardiology, Giessen, Germany.
Background: Idiopathic (I) pulmonary arterial hypertension (PAH) is rare in childhood and can be associated with congenital heart defects (CHD). The clinical features of PAH associated with congenital heart defects (CHD-PAH) is less clear. The aim of this study was to compare hemodynamic and genetic findings in children with I/PAH and CHD-PAH. Methods: Prospectively included were consecutive children with invasively confirmed diagnosis of I/PAH or CHD-PAH. Assessment of family members, pedigree analysis and systematic screening for mutations in the genes BMPR2, ACVR1L1, ENG, SMAD1, SMAD5 and SMAD9 was performed. Results: 19 children with I/PAH (6.3±4.7 years) and 11 with CHD-PAH (7.2±4.5 years). Four BMPR2 variants were identified in 2 patients. Two ACVR1L1 mutations and 2 unclassified sequence variants (ENG n=1, BMPR2 n=1) were identified. Conclusion: Mutations and unclassified variants with functional impact in different TGFβ signalling genes occurred in 21% of I/PAH and 27% of patients with CHD-PAH and may influence the clinical status of the disease. Therefore, genetic analysis in children with various forms of PAH is important, may be of clinical and prognostic relevance, and shows the complexity of the genetic background.
myopathy, and variable cognitive deficit. With an incidence of 1:1000-2500 in all live births, Noonan syndrome (NS) is the most common RASopathy. To date, pathogenic mutations in twelve genes (PTPN11, SOS1, RAF1, SHOC2, BRAF, MAP2K1, MAP2K2, SPRED1, CBL, KRAS, HRAS and HRAS) have been been shown to underlie NS and other Ras/MAPK-related conditions that include Cardio-facial-cutaneous (CFC), Costello, LEOPARD and Legius syndromes, enabling a molecular diagnosis in up to 75% of affected patients.

In a joint collaboration between SW Thames Molecular Genetics Diagnostic Laboratory and NewGene, we have developed a single diagnostic test to screen for all the Noonan spectrum disorders, based on next generation sequencing (NGS) technology. The NGS assay, using the Roche amplicon approach with multiplex PCR, has been validated using samples from patients referred for Noonan related syndromes that were previously tested by a 3-sanger approach at St George’s. We compare the cost and turn-around-times of this of our “Noonan Spectrum Test” with similar assays currently available in the EU and the US and outline a new service strategy for molecular diagnosis of RASopathies. We include some case studies to demonstrate the benefits of this approach to testing.

Rubinstein-Taybi-like syndrome: clinical and molecular genetics delineation

E. Chabchoub1, J. Chabchoub1, B. Dimitr1, N. Ardeshirdavani2, J. R. Vermeesch1, A. Tafazzoli3, A. Zakhama4, S. Bengtsson5, P. Prat6
1Centre de Génétique Humaine – Université Hospitals of Leuven, Leuven, Belgium
2Department of Genetics and Immunology, Research Unit 04040805 - Faculty of Medicine - University of Sousse, Sousse, Tunisia
3Department of oncology – University Hospital Farhat Hached, Sousse, Tunisia, Department of Clinical Genetics - Guy’s and St Thomas’ Hospital – NHS Foundation Trust, London, United Kingdom
4Department of Pathology - University Hospital Fattousha Bourguiba, Monastir, Tunisia

In 1963, Rubinstein and Taybi reported a syndrome (RTS) characterized by mental retardation, broad thumbs and toes, and recognizable facial abnormalities with a high propensity to neoplasms. RTS is caused by submicroscopic deletions or duplications in chromosomes 16p13.1. The present case, of a 9 years old girl born to consanguineous unrelated German parents and has a healthy elder sister. Pregnancy was followed in the genetics and paediatric neurology clinics in Leuven and a Tunisian clinic. The patient followed a routine prenatal care. The conventional karyotype was normal. We found no deletion on 16p13 by FISH. By aCGH we detected in the first patient a terminal deletion on chromosome 16q and a terminal duplication on 7q. We confirmed by FISH that these submicroscopic chromosomal abnormalities were the product of an unbalanced reciprocal translocation (6:7). The second patient has a de novo microduplication of 500 kb on chromosome 5q11.2. We found no abnormality in the third patient by aCGH at a resolution of 1 Mb.

In this report, we will discuss the pathogenic relevance of these abnormalities and their possible contribution to the clinical phenotype. In conclusion, we show that aCGH is a powerful tool for investigating the genetic aetiology of Rubinstein-Taybi-like syndrome.

Midline defect with single central incisor masks facial phenotype of Rubinstein-Taybi syndrome

B. Albrecht1, D. Bartels2, D. Wieczorek1
1Institut fuer Humangenetik, Essen, Germany, 2Institut fuer Humangenetik, Mainz, Germany

We report on a patient followed from one to 11 years of age. She presented with intellectual disability and facial dysmorphism. She was born to healthy unrelated German parents and has a healthy elder sister. Pregnancy was complicated by polyhydramnios. Caesarean section was performed at 38th week of gestation. Birth measurements were normal, but the patient needed ventilation and showed brachycephaly. A naevus of the glabella, chonal atresia, a fleshy nose, a high arched palate and ovarian cysts were diagnosed after birth. At the age of one year a single central incisor and right sided aortic arch and left sided vena cava superior were observed. MRI scan showed a thin corpus callosum and mild frontal brain atrophy. The patient walked and talked at the age of 3 years. She was also followed in the genetics and paediatric neurology clinics in Leuven and a Tunisian clinic. The patient followed a routine prenatal care. The conventional karyotype was normal. We found no abnormality in the third patient by aCGH at a resolution of 1 Mb.

In this report, we will discuss the pathogenic relevance of these abnormalities and their possible contribution to the clinical phenotype. In conclusion, we show that aCGH is a powerful tool for investigating the genetic aetiology of Rubinstein-Taybi-like syndrome.
We performed homozygosity mapping in this family and found clear evidence of linkage to a single large region on chromosome 2 encompassing an interval of approximately 35 Mb (15,200,000 - 51,300,000). The locus was confirmed but not further refined by another affected child born to this family more recently.

In another patient with scalp defects, mild-to-moderate cognitive impairment and facial dysmorphism, we discovered a significant stretch of homozygosity overlapping with the above mentioned region. This girl was born to healthy parents originating from a remote area in Romania but who denied consanguinity.

We hypothesize that the affected individuals in these two families share the same very rare autosomal recessive condition, the hallmarks of which are congenital scalp defects and intellectual disability. The gene for this condition is probably located on chromosome 20. Further investigations are on the way to identify the causative gene for this syndrome.

P02.224
Deletion of a long-range cis-regulatory element for the TWIST1 gene in a family with mental retardation and mild craniofacial dysmorphism

H. Weinhart, K. Kitzisch, G. Rettenberger; Private Practice for Human Genetics, Cottbus, Germany, Social pediatric center at the Carl-Thiem Hospital Cottbus, Cottbus, Germany, geneutikum, Neu-Ulm, Germany.

Disruption of the normal cis-regulatory architecture of disease gene loci has been described as a special cause of different genetic disorders. The TWIST1 gene locus might be one of those. Mutations within the coding region of TWIST1 are associated with the Saethre-Chotzen syndrome. Large deletions encompassing the TWIST1 gene and its neighboring genes also contribute to this disorder, but some patients have additional significant learning difficulties, which led to the suggestion of a novel microdeletion syndrome 7p2.11. Here we describe a three generation family, in which several members have a slight to moderate mental retardation and mild craniofacial dysmorphism.

On-array-CHG analysis variable constellations of two different copy-number changes flanking the TWIST1 gene at 7p21.1 could be detected in the affected and non-affected probands. One is a duplication of ~800 kb nearly 270 kb upstream of TWIST1, which contains 3 genes of so far unknown function (TWISTNB, MIR1346, TMEM1). The other, a small deletion of ~150 kb, is located approximately 2.9 Mb downstream of TWIST1 and encloses the gene LOC729920. Both changes are not yet known as pathogenic or benign CNVs. Based on the clinical and molecular findings in our family and considering the presence of this "clearer-upstream" region in particular for the smaller deletion - disease causing effects on the function of TWIST1 and/or other genes nearby.

P02.225
A syndrome condition with scalp defects, developmental delay and dysmorphic features maps to chromosome 20.

M. Sukalo, L. Al-Gazali, C. Russi, A. Elci, M. Zenker; Institute of Human Genetics, University Hospital of Magdeburg, Magdeburg, Germany, Department of Pediatrics, Faculty of Medicine & Health Sciences, Al Ain, United Arab Emirates, Human Genetics, University of Medicine and Pharmacy, Iasi, Romania, Institute of Human Genetics, University Hospital of Erlangen, Erlangen, Germany.

In 2007, Al-Gazali et al. reported on an apparently new autosomal recessive condition comprising hypotonia, developmental delay, cutis aplasia of the vertex and dysmorphic features in an Middle Eastern family. It was proposed that this could represent a severe recessive form of scalp-ear-nipple syndrome (Clin Dysmorphol 2007).

In this family with inherited joint dislocations and a congenital heart defect, we describe a three generation family, in which several members have a slight to moderate mental retardation and mild craniofacial dysmorphism.
Deletion causing SHH disruption in a family with severe enhancers.

In mice, the premaxilla is highly placed with a single central maxillary incisor, midline lobar HPE associated with eye anomalies who presented a deletion in the SHH regulatory region. In mice, the SHH gene has six enhancers that regulate Shh transcription in the embryonic forebrain. The Shh floor-plate enhancers (SFPE2) and Shhb brain enhancer (SBE1) are localized approximated 200 kb downstream from Shhb promoter, the other enhancers, SFPE1, SBE4, SBE2 and SBE3 are approximately 400 kb upstream from Shhb promoter, and three of these enhancers are highly conserved in human. The microdeletion found in our study affected at least three of these enhancer elements (SBE2, SBE3 and SBE4) and suggests that the HPE phenotype is probably causal for loss of SHH enhancers.

Grants: Fapesp Proc. n° 2011/07012-9

Deletion causing SHH disruption in a family with severe hydrocephalus

A couple presented to the SAGOS with a history of two previous TOP for severe hydrocephalus. The gender of the first fetus was uncertain, and the second was male. Given the likelihood of X-linked recessive inheritance, the LICAM gene was tested in fetus 2 and returned a normal result. An array CGH test was also performed. This showed a 7q36 terminal duplication in fetus 2, no DNA was available from fetus 1. Parents were tested and the duplication was identified in the father who was phenotypically normal. An MRI scan was then arranged in the father which showed a small tectal hematomata not causing obstruction. The 7q36 duplication in this case was 562kb in length, with one breakpoint disrupting the SHH (sonic hedgehog) gene. Heterozygous deletions of the SHH gene are known to cause holoprosencephaly and the maldevelopment of midline brain structures. Duplication of 7q36, has been reported to cause severe pre- and postnatal growth restriction and typical triangular face. BWS is an overgrowth syndrome involving predisposition of tumor development. Defective expression of imprinted genes (FGF2, H19, CDKN1C, KCNQ1, KCNQ1OT1) at 11p15 is implicated in etiology of both syndromes. IRC1 hypomethylation is the major cause of IRS and IIRC2 hypomethylation mostly found in BWS. Both disorders occur sporadically, but familial inheritance is also described.

Alltogether 28 patients were enrolled in BWS and 20 patients in SRS group. All patients' clinical symptoms were re-evaluated by one investigator. In BWS patient’s group 19/28 and in SRS patients 14/20 fulfilled the minimal diagnostic criteria. Molecular analysis was performed by methylation-specific MLPA (MRC-Holland).

In SRS group hypomethylation in IRC1 region was found in 4 SRS patients including 2 siblings. One SRS patient had maternal duplication in 11p15 involving both IRC1 and IRC2 regions. She has inherited 11p15 region duplication from the mother who shows overgrowth since the birth and clinical features of BWS. Patients’ mother has inherited duplication from father. Therefore 38.5% (5/13) of SRS patients exhibited an epimutation at the 11p15 region, which is consistent with other investigations. Interestingly, two familial SRS cases were found in the group. BWS was confirmed in one patient with hypomethylation in IRC2. In almost 95% of BWS patients we could not confirm the clinical diagnosis, therefore molecular investigations should continue.

Case report of Shwachman-Bodian-Diamond syndrome (SBDS) with a combined point mutation and large deletion

A duo presented with severe growth restriction due to dysregulation of imprinted genes controlled by ICR1 and ICR2 on chromosome 11p15. One SRS patient had maternal duplication in 11p15 involving both IRC1 and IRC2 regions. She has inherited 11p15 region duplication from the mother who shows overgrowth since the birth and clinical features of BWS. Patients’ mother has inherited duplication from father. Therefore 38.5% (5/13) of SRS patients exhibited an epimutation at the 11p15 region, which is consistent with other investigations. Interestingly, two familial SRS cases were found in the group. BWS was confirmed in one patient with hypomethylation in IRC2. In almost 95% of BWS patients we could not confirm the clinical diagnosis, therefore molecular investigations should continue.
Affymetrix SNP Array 6.0. Thereby we identified pathogenic de-novo copy number variations with sizes ranging from 672 kb to 9,158 Mb in eight patients. Some of them were associated with known microdeletion syndromes with overlapping features with SRS. In 5 further patients imbalances with so far unknown clinical significance were detected.

In conclusion, pathogenic submicroscopic imbalances were detectable in a significant proportion of our patients molecular karyotyping should generally be implemented in routine diagnostics for growth retarded patients with even slight dysmorphisms suggestive of SRS.

P02.235
The mutation in KRT5 gene in Iranian EB patients
H. Dehghanpour1, M. Moghaddam2, N. Hatamnejadian1, Mahdavi1, A. Kakavand1, B. Sadeghatty-khayyae1, M. Yousef1, P. Toure1, A. Ebrahimi2
1Fars-ech Medical Genetic Counseling Center, Tehran, Islamic Republic of Iran, 2Shahid Beheshti University Skin Research Center, Tehran, Islamic Republic of Iran.

INTRODUCTION: Epidermolysis Bullosa (EB) is a group of inherited disorders in which skin blisters develop in response to minor injury. There are four main types of EB Including; SIMPLEX, JUNCTIONAL, HEMIDESMOSSAL and DYSTROPHIC. Because of many overlapping clinical manifestations, identification of the exact type of EB is complicated. The most severe and common form of EB is SIMPLEX that caused by a mutation in either of the keratin genes, KRT5 or KRT14. The purpose of this study is to investigate KRT5 gene common mutation in Iranian affected patients.

MATERIALS and METHODS: Eighty clinically diagnosed patients as EB evaluated and their DNA extracted from blood sample. PCR reaction followed by DNA sequencing were done to identify designated primers for hotspot exons of KRT5 gene including exons 1, 4, 5 and 7.

RESULTS: A novel mutation was detected in codon 308 and about 18 % of patients illustrated a kind of mutation in selected regions. The most hotspots were exons 4 and 5. Interestingly the most of mutations were diagnosed in compound heterozygous form.

P02.236
Identification of a novel deletion in the DHCR7 gene in a patient with SLOS
K. Hindberhofer1, B. Moos1, M. Witsch-Baumgartner1, H. Gaspar1, D. Hoa1, C. R. Bartunek1
1Institute of Human Genetics, Heidelberg University, Heidelberg, Germany, 2Division for Human Genetics, Insbruck Medical University, Innsbruck, Austria, 3Division of Inborn Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany.

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive defect of cholesterol biosynthesis with characteristic dysmorphism, mental and growth retardation, and multiple congenital malformations. Mutations in the human Δ7 sterol reductase (DHCR7) gene are the genetic cause of this syndrome. In most of the analyzed patients with distinct phenotypic features and/or biochemical findings two mutations can be identified by sequencing of coding exons 3 to 9 and adjacent intron boundaries of the DHCR7 gene (detection rate up to 96%). In a small number of clinically and/or biochemically positive patients, only a single heterozygous mutation can be identified. We analyzed 9 of these patients by self-made multiplex ligation-dependent probe amplification (MLPA) of exons 3 to 8 of the DHCR7 gene. In one patient, we could identify a heterozygous deletion of exons 3 to 6, in addition to the heterozygous common mutation p.Arg535Trp (c.1054C>T) in exon 9 of the DHCR7 gene. The deletion leads to an almost complete loss of the gene which is presumably disease causing. At birth the patient was small for gestational age, had short proximal limbs, syndactyly of toes 2 and 3, an atrial septal defect, horseshoe kidney, and typical facial features. During the first year psychomotor retardation, muscular hypotonia, and feeding difficulties evolved. Plasma sterol analysis showed elevated 7- and 8-dehydrocholesterol and decreased cholesterol. Exon deletions in the DHCR7 gene have only been reported once in a SLOS patient with holoprosencephaly. Therefore, we recommend MLPA analysis in patients suspected of SLOS harbouring only one heterozygous common mutation identified by exon sequencing.

P02.237
In frame deletion and missense mutations of the C-terminal helicase domain of SMARC2 in three patients with Nicolaslea-Baraitser syndrome
C. Zwieri1, D. Wolff1, S. Ende1, S. Azzarello-Burri1, J. Hoyer1, M. Zwieri1, J. Schanne1, B. Schmidt1, A. Hauf1, A. Reis1
1Institute of Human Genetics, University Erlangen-Nuremberg, Erlangen, Germany, 2Institute of Medical Genetics, University of Zurich, Zurich-Schwerzenbach, Switzerland, 3Department of Pediatric Neurology, University Children’s Hospital, Zurich, Switzerland.

INTRODUCTION: SMARC2 is a component of the SWI/SNF chromatin remodeling complex. Deletions in the putative C-terminal helicase domain of SMARC2 were described in patients with the Nicolaslea-Baraitser syndrome. Here we report three further cases with this gene defect.
Using high resolution molecular karyotyping with SNP arrays to identify candidate genes for etiologically unexplained intellectual disability, we identified a 32 kb de novo in frame deletion of the C-terminal helicase domain of the SMARCA2 gene in a patient with severe intellectual disability, epilepsy, sparse hair, prominent joints and distinct facial anomalies. Sequencing of the gene in patients with a similar phenotype revealed de novo missense mutations in this domain in two further patients, pointing to a crucial role of the SMARCA2 C-terminal helicase domain. Clinical features observed in all three patients are typical of Nicolaides-Baraitser syndrome, an only rarely reported syndrome with mainly moderate to severe intellectual disability and other typical aspects like a recognizable facial gestalt, sparse hair, epilepsy, wrinkling of the skin, prominent interphalangeal joints and broad distal phalanges. Notably, one of our patients with a p.Gly1125Asp mutation showed typical morphological features but an exceptional good development with borderline overall IQ and learning difficulties, thus expanding the phenotypic spectrum of Nicolaides-Baraitser syndrome.

P02.238
Co-occurrence of the SMMC1 syndrome and a 5q21 deletion in a young girl patient
Center for Human Genetics, CHU Sart-Tilman, University of Liège, Belgium, Liège, Belgium.

Solitary median maxillary central incisor (SMMC1) or single central incisor is a rare dental anomaly. It is estimated to occur in 1:50,000 live births. SMMC1 syndrome is a complex, autosomal dominant developmental disorder in which an SMMC1 is seen in association with midline nasal cavity defects (choanal atresia, mid-nasal stenosis, nasal pyriform aperture stenosis) and variably holoprosencephaly. We report a 21-month-old girl, who was the second child of unrelated parents. She was referred to our genetic counseling service for evaluation of dysmorphic features suggesting the SMMC1 syndrome and psychomotor development delay. On physical examination, she presented a single central incisor, choanal atresia, nasal pyriform aperture stenosis, ocular hypertelorism, short stature and microcephaly. No brain anomalies were identified by cerebral CT-scan.

A de novo heterozygote missense mutation 494C>T was identified within the SHH gene, leading to the replacement of Alanine at amino acid position 165 with Valine. Affymetrix Whole-Genome 2.7M Array Chip revealed a deletion of 6956kb of the 5q21.1-q21.2 region. In conclusion, it difficult to establish genotype-phenotype correlations of the 5q21 deletion because of the simultaneous presence of the SMMC1 syndrome.

P02.239
Two Portuguese families with recurrent episodes of pain and different SCN9A mutations - Primary Erythermalgia or Paroxysmal Extreme Pain Disorder?
M. I. G. Rodrigues;
Department of Medical Genetics, Hospital Dona Estefânia, Centro Hospitalar de Lisboa Central, CEP, Lisbon, Portugal.

Background: Mutations in SCN9A gene can cause three very different pain phenotypes: Primary Erythermalgia (PE), Paroxysmal Extreme Pain Disorder (PEPD) and Channelopathy-associated Insensitivity to Pain (CIP). The first two disorders result from gain-of-function mutations and are characterized by recurrent episodes of pain, but the accompanying manifestations are usually distinct.

Objectives: The authors aim to present two Portuguese families with recurrent episodes of pain, in which the diagnosis PE and PEPD was difficult to establish due to overlapping clinical manifestations. The first family is one large kindred with 26 affected subjects and the second family has 3 affected members.

Methods: A heterologous expression of the clinical mutations, we performed mutation analysis of SCN9A gene in 17 of the 26 affected and in 2 non affected members of family 1, as well as in all the affected subjects of family 2.

Results: In all the affected individuals of family 1, except for one female subject, a heterozygous missense mutation c.4385T>C (p.Leu1462Pro) was identified. In family 2 complete sequencing of SCN9A gene revealed a heterozygous unclassified mutation c.4808T>G (p.Met1627Arg), which is most likely pathogenic and is present in all the affected family members.

Conclusion: We believe that these two families are the first Portuguese families reported to have mutations in SCN9A gene, in which the molecular diagnosis was determining to correctly classify the clinical phenotype. This stresses the importance of performing mutation analysis in affected indivi duals to confirm the clinical diagnosis and to support pharmacological treatment, which can reduce the frequency of pain episodes.

P02.240
Clinical variability of Sotos syndrome patients with no NSD1 deletion identified
I. M. Furquim1, C. E. F. Andrade1, M. R. Paxonio-Bueno2;
1Hospital Santa Marcelina, São Paulo, Brazil, 2Centro de Estudos do Genoma Humano, São Paulo, Brazil.

Sotos syndrome is an overgrowth syndrome characterized by increased birth length and weight, excessive growth during the first years of life, advanced bone age, learning disability, and distinctive facial features (including macrocephaly, ocular hypertelorism and prominent mandible). Other findings associated with Sotos syndrome are: behavioral problems, cardiac anomalies, cranial MRI/CT abnormalities, scoliosis and seizures. Sotos syndrome is estimated to occur in 1:14,000 live births, and most cases are sporadic. Even though NSD1 is the only gene associated with the Sotos syndrome, in nearly 20% of the cases no genomic abnormality can be found. In 5 affected unrelated patients who are currently being treated at Hospital Santa Marcelina, in São Paulo, Brazil, no NSD1 deletion or duplication was identified by the MLPA method. The purpose of this report is to describe the phenotypic spectrum of Sotos patients. Molecular genetic testing is important not only to confirm the diagnosis, but also it may help determining genotype-phenotype correlations and monitoring the affected patients in order to identify medical complications that may arise from their condition.

P02.241
Partial deletion of SOX6 in a boy with mental retardation, extrapyramidal motor disorder and skeletal anomalies
B. Maass1, K. Hinderhofer1, A. Jach1, J. W. G. Janssen1, C. R. Bartram2, B. Assmann2, H. Ranz1;
1Institute of Human Genetics, Heidelberg University, Heidelberg, Germany, 2University Children’s Hospital, Heidelberg University, Heidelberg, Germany.

We report on a 17-year-old boy who was referred to us for a seemingly progressive neuropsychiatric disorder of unclear aetiology. He presented with mild mental retardation, developmental delay, skeletal malformations with sternal abnormalities and L-DOPA responsive extrapyramidal motor disorder including ataxia, dysarthria, apraxia, tremor and mimetic tics. Array CGH analysis (Affymetrix 2.8M array) revealed a monoleak de novo 84 kb deletion on chromosome 11p15.2 encompassing exon 14 to 16 of the SOX6 gene. The deletion was confirmed by MLPA (multiplex ligation dependent probe amplification). SOX6 belongs to the family of Sry-related HMG box transcription factors with regulatory functions during embryonic development. It plays important roles during early chordogenesis, muscle development, erythropoiesis and development of the central nervous system. While Sox6 knockout mice show an early lethality, conditional Sox6-knockouts (Sox6f/f) revealed skeletal anomalies with short sternum, including fusion of the fourth and fifth sternbrae (Dumitriu et al., 2006). Due to the fundamental role of SOX6 in a variety of developmental processes and the skeletal similarities between the patient and the mouse model we suggest the partial deletion of SOX6 as apparently disease causing in this patient.

P02.242
Molecular Genetic Confirmation of the Diagnosis Spastic Paraplegia 31 in a Teenage Boy
F. Stock1, U. Hieber1, A. Merkenschlager1;
1Institut für Humangenetik, Universitätsclinikum Leipzig, Leipzig, Germany, 2Zentrum und Institut für Humangenetik, Universität Regensburg, Regensburg, Germany, 3Klinik und Poliklinik für Kinder und Jugendliche, Universitätsclinikum Leipzig, Leipzig, Germany.

Spastic paraplegia (SPG) 31 (MIM #101250) is an autosomal dominant neurodegenerative disease. Typical signs are proximal weakness of the lower extremities and progressive spasticity with gait abnormalities, the upper extremities and the sensory system are usually not affected. The age of onset is during the first or second decade in 70 % of affected individuals, in the remainder after the age of 30 years. The genetic cause of SPG31 are mutations in the REEP1 gene (MIM *101250) on chromosome 2p12-2p13, which were described for the first time in 2006 in six unrelated families. Variable expressivity and incomplete penetrance have been noted. Recent studies indicate that REEP1 mutations are the third most frequent cause of hereditary spastic paraplegia, being responsible for 6-8% of cases.

We present a 14-year-old boy from an otherwise neurologically unremarkable family showing abnormal statomotoric and language development. At first muscular dystrophy was suspected until he showed signs of spastic...
paraplegia at the age of 7 years. Muscle biopsy and neuromuscular imaging were normal. The boy is receiving regular treatment by physiotherapy, surgery (elongation of Achilles tendons) and medication (botox injections, baclofen). Now at age 14 years he is in a stable condition, being able to ambulate using several auxiliary devices, and an excellent swimmer. Various genetic investigations (genes SPG4, SPG6, SPG7, SPG20, karyotyping) did not disclose a cause for his disease. After seven years of diagnostic attempts we found a novel heterozygous truncating mutation in the REEP1 gene, c.550C>T (p.Gln184X), which confirmed the diagnosis in this patient.

P02.243
Hereditary Spastic Paraplegia Type 8 (SPG8): A novel mutation in a German family
F. R. Kreuz, J. Fiedler, A. Bier, S. Reif, S. Krüger, J. Fuchsbe; Gemeinschaftspraxis für Humangenetik, Dresden, Germany.

Hereditary Spastic Paraplegia (HSP) is caused by progressive upper motor neuron axons degeneration. Central-motor-system deficits lead to lower limb paraparesis. HSP can be classified in pure HSP with lower limb spasticity only and complicated HSP with other neurological and non-neurological symptoms. SPG8 is one of the more aggressive subtypes of autosomal dominant pure HSP. The age of onset varies from the twenties to the sixties and there is relatively little interfamilial variability. The KIAA0196 gene, consisting of 29 exons coding for the strumpellin protein with 1150 amino acids, has been identified as the SPG8 locus mapped to chromosome 8q24.12. There have been only three mutations reported in six families until now.

Here we report on a male patient, aged 27 years, and his mother, aged 50 years. Both suffer from spastic-atatic gait disorder, pes cavus, muscle atrophy at lower limbs (“stork legs”), muscle hyper trophy, brisk reflexes, wide reflex zones, and clonus.

DNA analysis of KIAA0196 gene revealed the novel missense mutation c.1859T>C; p.Val620Ala in both patients. We did not find this mutation in 598 control chromosomes of German origin. It affects the same α-helix motif (amino acids 619-628) like two mutations in five of the six reported families of size in all three members of this family who bear the translocation. The ArrayCGH analysis revealed a microdeletion in 1q43 which spans over 528 kb of size in all three members of this family who bear the translocation. The ArrayCGH analysis revealed a microdeletion in 1q43 which spans over 528 kb of size in all three members of this family. The study confirmed the deletion was present in all three members.

P02.244
Subtelomeric 1q deletion: A new case with vertebral anomalies
J. Pitich, R. Śmigiel, I. Laczmatiskia, J. Kozłowska, E. Gutmajster, A. L. Sierrò; 1Department of Child Neurology, Medical University of Silesia, Katowice, Poland, 2Genetics Department, Wrocław Medical University, Wrocław, Poland, 3Department of General, Molecular Biology and Genetics, Medical University of Silesia, Katowice, Poland.

Subtelomeric deletion of chromosome 1q is a rare genetic condition that can be associated with a wide range of phenotypic anomalies. In this case, we report a 5-year-old boy with a subtelomeric deletion of chromosome 1q43 associated with syndactylies of hands and feet as well as a skeletal dysplasia and were carriers of a novel heterozygous truncating mutation in the KIAA0196 gene.

The patient presented with a unique combination of clinical features, including vertebral anomalies, cryptic deletion in chromosome 1q43, and syndactylies. The genetics investigation revealed the novel missense mutation c.550C>T (p.Gln184X) in the REEP1 gene. This mutation is predicted to alter the amino acid sequence and may contribute to the observed phenotype.

P02.245
Evaluation after sudden unexplained death in young patients
B. M. Beckmann, I. Simicna, G. Niedobitek, C. Marschall, R. Roß, A. Kleinmann, S. Greiß, M. Gawro, H. Netze, S. Käß; 1Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, München, Germany, 2Institut für Pathologie, Unfallklinikum Berlin and Sana Klinikum Lichtenberg, Berlin, Germany, 3Labor Dr. Klein und Dr. Roß, Ludwig-Maximilians-

P02.246
Male with mosaicism for a supernumerary derivative X chromosome lacking the XIST gene and phenotypic features of craniofrontonasal syndrome
J. Morgenstern, C. Evers, J. G. Janssen, A. Jauch, U. Moog; 1Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.

Craniofrontonasal syndrome (CFNS, OMIM 304110) is an X-linked disorder with typical craniofacial dysmorphism (brachycephaly, facial asymmetry, coronal craniostenosis, hypertelorism, broad nasal root, bifid nasal tip, syndactyly, broad halluces, and hypoplastic corpus callosum. Mutations in the gene for ephrin-B1 (EFNB1) located at Xq13.1 have been identified as the primary cause of CFNS which paradoxically shows a more severe phenotype in heterozygous females than in hemizygous males. In rare cases, CFNS can be caused by X-chromosome anomalies.

Case report: We describe a five month old boy with severe dysmorphic features including a broad face, hypertelorism, broad nasal root, bifid nasal tip and multiple congenital anomalies (agenesis of the corpus callosum, patent ductus arteriosus, VSD and hypospadias).

Cytogenetics including FISH analysis revealed mosaicism for a supernumerary derivative X chromosome (mos 47.XY+der(X)[1p11.1]del(X)(q13) [7]46,XY[23] lacking XIST. Parental cytogenetic studies were normal.

Discussion: The severe phenotype of CFNS in females with a heterozygous EFNB1 mutation is hypothesized to result from inequalities in gene dosage for EFNB1 due to X inactivation. A patchy ephrin-B1 defect leads to disturbed closure of cranial sutures by a process termed cellular interference. Mosaicism for a derivative chromosome expressing EFNB1 in one cell line due to a lack of XIST may explain similar phenotypic features in the present male patient and one other previously published case.

P02.247
Cryptic deletion in chromosome 1q43 associated with syndactyly syndrome detected by arrayCGH - a different critical region for syndactyly syndrome
E. E. Fiedler, B. C. Gläser, H. Heilbronnern, S. Blum; 1Institut für Klinische Genetik, Stuttgart, Germany.

We report a case of a woman with a known familial history of syndactyly syndrome probably associated with a cytogenetically balanced translocation 1(19)(q43.3q32). At the age of 19 years she came for genetic counseling while being pregnant. She herself was analyzed by cytogenetic karyotyping where a translocation was detected which she inherited from her father. As her father, her brother and her half-brother from father's side also had syndactyly of hands and feet as well as a skeletal dysplasia and were carriers of this specific translocation, we performed arrayCGH analysis on all of them. ArrayCGH analysis revealed a microdeletion in 1q43 which spans over 528 kb of size in all three members of this family who bear the translocation. The deletion includes partly the CHRM3 (cholinergic receptor, muscarinic 3) and
the FMN2 (formin-2) gene, two genes which are hardly described in literature until now. Formin-1 is the founding member of a family that share specific domains of homology and are classified together as the formin homology proteins. Deficiency mutations in formin-1 lead to profound developmental defects in limb and kidney formation. To date variations in formin-1, a gene which seems to have a high degree of similarity to formin-1, are rarely detected and understood.

In order to elucidate this specific region, we intend to perform next generation sequencing (NGS) to correlate the clinical phenotype to this deleted region.

P02.248 CGH-array detection of a "de novo" chromosome 19p13.3 deletion: case report.

Introduction: the development of high-resolution array-CGH has allowed the identification of genomic alterations not previously detectable with routine techniques. We present a patient with a "de novo" genomic imbalance of 19p13.3, not detected by routine techniques (high resolution G-banded chromosome analysis and MLPA).

Patients and Methods: five members of the same Spanish family: the index patient, a 23 year old male who presented atonic encephalopathy, mild mental retardation and dysmorphic phenotype, the unaffected parents and two unaffected sisters.

Oligonucleotide comparative genome hybridisation-based microarray analysis (array-CGH; 105A or 180K, Agilent Technologies) was performed on each DNA sample of each family member.

Results: the proband showed three deletions not previously described in the general population, two of them potentially pathogenic, deletion in 19p13.3 and 22q11.2. He also presented eighteen copy number variations (CNVs) previously described in the general population.

The deletion in 22q11.2 was also present in the sisters and in the mother.

The 19p13.3 monosomy covers 821kb (from position 982,017 to position 1,083,579) which includes 33 genes, four of them pathological (STK11, NDUFS7, GAMT and TCF3).

Conclusions: the "de novo" 19p13.3 monosomy seems to be responsible for the pathology of the proband.

This is the first case of 19p13.3 monosomy described in Spanish population (two cases have been previously reported among other populations, Siggberg, 2010 and Smith, 2010).

CGH-arrays allows for the genetic diagnosis of new syndromes, but further studies are needed to establish genotype-phenotype correlation.

P02.250 Identification of TAZ mutation in a family with X-linked dilated cardiomyopathy by Next Generation Sequencing
B. Chen, M. Tan, T. C. Yang, K. S. Lan, K. T. Chau; Department of Paediatrics, The University of Hong Kong, Hong Kong, Hong Kong.

Familial dilated cardiomyopathy (DCM) is defined as DCM of unknown cause in 2 or more closely related family members. We reported a family with 2 male siblings both presented with heart failure in infancy and subsequently confirmed to have DCM without conduction abnormalities. Endo-myocardial biopsy (in the elder sibling), extensive metabolic workup, viral studies and NimbleGen GX1-12 array were all normal. Oligonucleotide-based target capture (Sureselect, Agilent) followed by next generation sequencing (Illumina HiSeq2000) was used to capture variants of 46 genes implicated in the cause of cardiomyopathy (Partners Healthcare Center for Personalized Genetic Medicine). Clinically significant novel variants are confirmed by independent Sanger sequencing. A hemizygous variant c.718G>C (p.Gly240Arg) in exon 10 of TAZ gene is identified. This variant is likely pathogenic as it has been reported in 5 individuals with X-linked infantile DCM and was described in a family with endocardial fibroelastosis. So far, the 2 siblings did not show evidence of skeletal myopathy, stunted growth, neutropenia or abnormal urinary organic acid analysis. Next generation sequencing (NGS) allows efficient screening of a panel of genes in complex disorders like DCM, in which there is substantial overlap among phenotypes, multiple causative genes, and some mutations associated with > 1 phenotype. The identification of TAZ mutation has major impact in the medical surveillance of our patients as they need to be monitored for symptoms of Barth syndrome in addition to DCM. (Funding support from Children's Heart Foundation, Hong Kong)

P02.251 Novel insertion in exon 5 of the TCOF1 gene in Twin Sisters with Treacher Collins syndrome
B. A. Marszałek-Kruk, P. Wojcicki, S. Smigielski, W. H. Trzeziak; 1Department of Genetics, Wrocław University of Environmental and Life Sciences, Wrocław, Poland, 2Department of Plastic Surgery, Wrocław Medical University, Wrocław, Poland, 3Department of Genetics, Wrocław Medical University, Wrocław, Poland, 4Faculty of Public Health, WSPiA, Poznan, Poland.

Treacher Collins Syndrome (TCS) is an autosomal dominant disorder, associated with abnormalities in the first and the second pharyngeal arches during fetal development. It cause craniofacial deformities with typical clinical symptoms: downward slanting of the eyelids, hypoplasia of the zygomatic bone, mandibular hypoplasia. The estimated incidence is 1/500000 live births, with 60% of the cases resulting from a de novo mutations. The syndrome is mostly caused by mutations in the TCOF1 gene, which encodes the serine/alanine-rich protein named Treacle. TCS can be also caused by mutations in the POLR1C and POLR1D genes encoding subunits of RNA polymerases I and III. Over hundred mutations of the TCOF1 gene responsible for TCS have been described, which about 70% are deletions. Investigated DNA fragments were amplified by PCR and were subsequently subjected to multitemperature single-stranded conformation polymorphism analysis. Fragment of the allele, which exhibited an abnormal MSSCP pattern were eluted from the gel and used as template for reamplification of single band by PCR method. The PCR products were purified followed by direct sequencing. In the patients - two monozygotic twin sisters a novel, heterozygotic insertion c.483_484ins185 was detected. It is the longest discovered in TCOF1 gene in Twin Sisters with Treacher Collins syndrome. This mutation was absent in the patients' father, brother and uncle, which probably indicates a de novo origin. The c.483_484ins185 insertion causes a reading-frame shift and premature termination of translation at 167aa. We believe that these findings facilitated a precise diagnosis of both patients and extended our knowledge on the pathogenesis of TCS.

P02.252 Beta-globin deletion in a transfusion dependent child with parents showing no elevated HbF
N. Bayat, M. Ashki, S. Farrahi, N. Faramarzi Garous, S. Vakili, M. Montajabi Niat, A. Aszarekhian, H. Imanian, H. Najmabadi; Kariminejad-Najmabadi Pathology & Genetics Center, 14665/154, Tehran, Iran, Tehran, Iran, Iranian Republic of Iran.

The molecular investigation of beta-globin cluster deletions is usually performed in the presence of fetal hemoglobin (HbF). In this study, a family showing no elevated HbF (0.6% and 0%), the mean corpuscular value (MCV: 59.9 fl and 64.7 fl.), and HbA2 (3% and 2.9%) for the maternal and paternal sides respectively has referred to our laboratory having a 3 months old child with severe anemia undergoing blood transfusion every 15 days.

www.eshg.org
Hennekam1, D. Lindhout1, M. Cune4,5 T. Heinrich chose to continue the pregnancy. The patient was born at 35+5 weeks by caesarean section as the second child of unrelated. Prenatal sonographic examinations had revealed IUGR, dolichocephalus, hypertelorism, flattening of the nasal bridge, dysplastic ears with preauricular sinuses and tags, medial cleft palate, anal atresia, and coronary hypoplasia. Craniofacial dysplasia due to mutations in HbF. The probands all had agenesis with –α3.7 and consequently the child has inherited the –α3.7 in heterozygous state. The yield of molecular diagnostics in isolated tooth agenesis has increased significantly from 15% to 71%. This approach will be of help in a more optimal counselling of patients with hypodontia and their family members.

P02.253
Mutations in WNT10A are present in more than half of isolated hypodontia cases
M. H. van den Boogaard1, M. Creten1, Y. Bronkhorst1, A. H. van der Hout1, F. A. M. Heinemann1, M. Cune1, M. K. Ploos van Amstel1, 1Department of Medical Genetics, University Medical Center Utrecht, The Netherlands; 2Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center Utrecht, The Netherlands; 3Department of Genetics, University Medical Center Groningen, The Netherlands; 4Department of Fixed and Removable Prosthodontics, Academic Centre for Dentistry and Oral Health, University Medical Center Groningen, The Netherlands; 5Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, St. Antonius Hospital Nieuwegein, The Netherlands, Nieuwegein, Netherlands.

The young man was able to live alone and was working 50% at a protected workplace. Here we report a 34 years-old man with maternal isodisomy for chromosome 9 detected by genome-wide combined copy number and genotype probe analysis. The signal of -α3.7and consequently the child has inherited the –α3.7 in heterozygous state. The yield of molecular diagnostics in isolated tooth agenesis has increased significantly from 15% to 71%. This approach will be of help in a more optimal counselling of patients with hypodontia and their family members.

P02.254
Live-born Child with Trisomy 22
T. Heinrich1, I. Nanda1, M. Rehn2, U. Zollner2, E. Frieauff3, J. Wirbelauer3, T. Grimm1, M. Cune4,5, 1Department of Medical Genetics, University Medical Center Utrecht, The Netherlands; 2Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, University Medical Center Utrecht, The Netherlands; 3Department of Genetics, University Medical Center Groningen, The Netherlands; 4Department of Fixed and Removable Prosthodontics, Academic Centre for Dentistry and Oral Health, University Medical Center Groningen, The Netherlands; 5Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, St. Antonius Hospital Nieuwegein, The Netherlands, Nieuwegein, Netherlands.

Here, we report on a male infant with complete, non-mosaic trisomy 22 in peripheral blood lymphocytes (PBLs) and skin fibroblasts. The patient was born at 35+5 weeks by caesarean section as the second child of a 44-years-old female and a 40-years-old male. The parents are healthy and unrelated. Prenatal sonographic examinations had revealed IHGR, dolichocephalus, SUA, absent right kidney, and hypospadia. Due to the parents’ beliefs they did not opt for additional prenatal diagnostic procedures and chose to continue the pregnancy. Birth weight and length were below the 3rd percentile: Apgar 5/6/8* (CPAP). GTG-banded chromosomes from PBLs and fibroblasts showed an additional chromosome 22 in all metaphases analyzed (47,XY,+22). SNP array and aCGH demonstrated a complete trisomy 22. Clinical features included dolichocephalus, hypertelorism, flattened nasal bridge, dysplastic ears with preauricular sinuses and tags, medial cleft palate, anal atresia, and coronary hypoplasia. Craniofacial dysplasia due to mutations in WNT10A was identified as an interesting candidate gene for dental agenesis. This motivated us to study the contribution of WNT10A mutations in comparison with mutations in other genes that are associated with hypodontia in isolated hypodontia patients. We tested a panel of 34 probands that showed variable severity of isolated tooth agenesis for mutations in the candidate gene WNT10A and the genes MSX1, PAX9, IRF6 and AXIN2. The probands all had agenesis with a range of 6 - 28 teeth. Nineteen cases with non-syndromic probands (56%) showed alterations in the WNT10A gene: 8 probands were homozygous, 4 probands were compound heterozygous and 7 probands were heterozygous for a single WNT10A mutation. In individuals, tested as heterozygote for a WNT10A mutation, tooth agenesis was comparable in males (6/9; 67%) and females (7/12; 58%). In conclusion, we identified WNT10A as a major gene in the aetiology of isolated hypodontia. By including this gene, the yield of molecular diagnostics in isolated tooth agenesis has increased significantly from 15% to 71%. This approach will be of help in a more optimal counselling of patients with hypodontia and their family members.

P02.255
Recurrent hypoglycemia due to growth hormone deficiency and resistance in a preterm with Turner syndrome
N. Salem1, W. Bosogi1, K. Hallig1, M. Hempe1, G. Leiderer2, M. Bornkam11, K. Wieland1, P. Lohse1, S. Burdach1, K. Oexle1, 1Department of Medical Genetics, University Medical Center Utrecht, The Netherlands, 2Department of Pediatrics, University Medical Center Groningen, The Netherlands; 3Department of Obstetrics, University Medical Center Groningen, The Netherlands; 4Department of Fixed and Removable Prosthodontics, Academic Centre for Dentistry and Oral Health, University Medical Center Groningen, The Netherlands; 5Department of Oral and Maxillofacial Surgery, Prosthodontics and Special Dental Care, St. Antonius Hospital Nieuwegein, The Netherlands, Nieuwegein, Netherlands.

Maternal isodisomy for chromosome 9 in a patient with IgA nephropathy, short stature and intellectual disability
S. Azzarello-Burri1, B. Oneda1, A. Baumen1, P. Fajadola1, D. Niedrist1, A. Rauch1, Institute of Medical Genetics, University of Zurich, Switzerland.

P02.256
Maternal isodisomy for chromosome 9 in a patient with IgA nephropathy, short stature and intellectual disability
S. Azzarello-Burri1, B. Oneda1, A. Baumen1, P. Fajadola1, D. Niedrist1, A. Rauch1, Institute of Medical Genetics, University of Zurich, Switzerland.

Descriptions of patients with maternal isodisomy 9 are rare in the literature (10 cases of maternal UPD 9 and 2 cases of paternal UPD 9). The probability of hidden mosaic isodisomy, or homozygous mutation of ATRX gene is autosomal recessively inherited diseases hampers the delineation of a clear UPD 9 phenotype. Here we report a 34 years-old man with maternal isodisomy for chromosome 9 detected by genome-wide combined copy number and genotype profiling using a high-resolution CN/SNP array. The major problems in this patient were renal failure because of IgA nephropathy, hypothyroidism, short stature with overweight, hypercholesterolemia, hypertriglyceridemia and hyperuricemia. Other features were dislocation of the patella, atopic eczema, eye problems (strabismus, nystagmus, myopic astigmatism), inguinal hernias and umbilical hernia as an infant. Since infancy a disproportional large distended abdomen was noted with unidentified cause. At the age of about 15 years some hearing problems on the left side were noted. The young man was able to live alone and was working 50% at a protected workplace. No evidence of trisomy 9 mosaicism could be detected in blood and buccal snares.

P02.257
Can we prevent ELST related hearing loss through early audiological ELST diagnosis? - A case of deafness due to microscopic ELST and an international collaborative study
M. M. de Marchi1, C. Themser1, M. Bergsma1, 1Department of Cellular and Molecular Medicine, Copenhagen N, Denmark, 2Department of Audiology, Vejle Hospital, Vejle, Denmark, 3Department of Diagnostic Radiology, Rigshospitalet, Copenhagen, Denmark.

Background
Endolymphatic sac tumours (ELSTs) occur in up to 16% of von Hippel-
Lindau (vHL) patients. Timely diagnosis and surgical excision of tumors is essential to prevent severe audio-vestibular morbidity as even microscopic ELSTs can cause irreversible hearing loss. We present a case in which deafness caused by a microscopic ELST possibly could have been prevented by early pre-symptomatic audiometric diagnosis.

Methods
Full medical records of the patient’s subjective audio-vestibular symptoms, audiological examinations, and Magnetic Resonance Imaging (MRIs) of the inner ear from 1995-2011 were collected and evaluated.

Results
A 42-year-old male VHL mutation carrier with initial normal hearing was followed for twenty years with audiometry and MRI of the brain and inner ear as part of a surveillance program. He reported occasional bilateral tinnitus, but no subjective hearing loss until 2009 when in his right ear hearing began to deteriorate and progress to total deafness. Despite annual MRIs, a right-sided ELST was not visible until 4 months after onset of deafness in 2010, when it appeared as 4 x 3 mm tumor mass. Although his hearing was objectively within normal limits until 2009, a distinct audiometric pattern of low-frequency hearing loss could retrospectively be seen from first audiometry.

Conclusions
Previous reports suggest that certain audiometric patterns as seen in our patient may indicate early ELST development. Accordingly, audiometry may be an important diagnostic tool to detect non-symptomatic ELSTs. To investigate the use of audiometry for this purpose we have initiated an inter-national collaborative study and hope to attract new collaborators: http://kmm.ku.dk/english/kmm-staff/marie_luise_bisgaard/vhl_collaborative_research/

P02.258
A 725 kb deletion within the 22q13.1 chromosomal region detected by array CGH associated with Waardenburg syndrome
E. Siomou1, E. Manolakos1, M. Petersen1, L. Thomaidis2, Y. Gyftodimou1, I. Papoulidis1,1Eurogenetica, Thessaloniki, Greece,2Eurogenetica, Athens, Greece,1Department of Pediatrics, University of Athens, Aglaia Kyriakou Children’s Hospital, Athens, Greece,2Genetics, Institute of Child Health, Athens, Greece.

Waardenburg syndrome (WS) is a rare (1/40,000) autosomal dominant disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. Due to the variety of additional clinical symptoms and genetic heterogeneity, WS is classified into four clinical subtypes (WS1-S4). Mutations in six genes have been identified to be associated with the different subtypes of WS, among which SOX10 (SRY box 10 transcription factor) gene, which is localized within the region 22q13.1. Whole gene SOX10 deletions have been described by Bondurand et al. (2007) suggesting that haploinsufficiency due to SOX10 gene deletions should be encountered when testing for WS. SOX10 is a member of the SOX family transcription factors and is a key transcription factor of neural crest development. In this study we report a case of a 13 year old male with a unique de novo 725 kb deletion within the 22q13.1 chromosomal region, encompassing SOX10 and another 13 OMIM listed genes and presenting clinical features of a neuromalignant variant of WS. Very few patients have been documented with whole gene deletions of SOX10 and also very few data is known regarding deletions within 22q13.1 and of neurologic defect candidate genes such as PLA2G6, KCNJ4 and PICK1, which are localized within the deleted region. In this study we compare the clinical features of our patient to other reported cases with analogous 22q13.1 deletions and look into genotype-phenotype correlations.

P02.259
WAGRO syndrome caused by deletion 11p14.2p11.2

WAGR is a contiguous gene deletion syndrome caused by loss of distal portion of chromosome 1 1p13 band. Its subphenotype WAGRO including obesity is associated with additional haploinsufficiency of BDNF gene with locus 11p14.1. We present a case where diagnosis of the WAGRO was delayed because of the absence of predictable tumor in a mentally retarded female with aniridia and severe obesity with onset at 10 years of age. She had craniofacial dysmorphism, nasal cleft, and large anterior fontanelle. Diagnosis of aniridia and cataracts was confirmed early after birth. Multiple renal cysts sponta-
P02.262
Intersitial X duplication in a male patient - clinical, cytogenetic and arrayCGH characterization of a new case

The Children’s Memorial Health Institute, Warsaw, Poland.

Prevalence of isolated Xq duplications is presently unknown. At least 30 male patients with this aberration have been reported, with the majority localized within Xq12-q24. Large, cytogenetically visible Xq duplication are rare. However, application of microarray-based technique gives the chance for detection of smaller aberrations, as well as defined genes influencing the causative phenotype.

Clinical manifestations in described cases vary depending on the gender of the patient and on the size of duplication, hence gene content of the duplicated segment. Consequences of over-expression of X-linked genes are not well known. In most male cases the consistent phenotype includes profound muscle hypotonia accompanied by severe psychomotor and growth failure, muscle hypertonia, seizures and canonicofacial dysmorphism. Such phenotype seems to be quite specific, however, due to rarity of this disease, it is difficult to suspect it based on clinical symptoms.

In our presentation we report the clinical and laboratory data of 3-year-old boy with profound generalized hypotonia, growth failure resulting from Xq duplication identified cytogenetically as 46, X, dup(X)(q21q22)mat. Further delineation of the duplicated region by arrayCGH refined the breakpoint to Xq11.2-q21.11 and showed the duplication size of 32 Mb. This is the only second case with similar aberration characterized molecularly.

By comparison of our patient’s phenotype with the previously reported male with overlapping duplicated region, we hope that presented detailed results give insight into the geno-phenotype correlation of Xq-linked genes duplication.

The study was partially supported by the grant of the Polish Ministry of Science and Higher Education (Contract No 0605/B/P01/2009/37).

P02.263
A 91kb intersitial deletion of Xq24 encompassing the UBE2A gene, in a boy presenting with intellectual disability, impaired speech, microcephaly, growth retardation VSD and hirsutism.

C. Vinkler1, A. Frumkin2, M. Michalov1, B. Tsiperman, L. Lerman-Sagie1, D. Levy1

1Institute of Clinical Genetics,Wolfsion Medical Center, Holon, Israel, 2Metabolic Neurogenetics Service, Wolfsion Medical Center, Holon, Israel, 3The Department of Genetic and Metabolic Diseases, Hadassah, Hebrew University Medical Center, Jerusalem, Israel.

Intersitial deletions of chromosome Xq24 are rare with only five reported cases so far. In all of these cases the deletions included the UBE2A gene and the size of the deletion was almost identical, ranging from 275kb to 37 kb and encompassing between 5 and 6 genes in addition to the UBE2A gene.

We describe a 2y and 3m old boy with a 91 kb deletion in the Xq24 region detected by array comparative genomic hybridization (array CGH). His phenotype includes: severe intellectual disability with absent speech, hypotonia, feeding problems, mild conductive hearing loss, recurrent aspiration pneumonia and prolonged neonatal hypoglycemia. He has microcephaly (-4.5 SD) and growth retardation (his weight is -4.5 SD and height -5 SD). His dysmorphic features include: large open fontanel, hypertelorism, up-slanted palpebral fissures, synophrys, depressed nasal bridge, marked general hirsutism in a ventricular septal defect and normal genitalia. The mother carries the same deletion. The deleted X chromosome in her blood lymphocytes is completely inactivated (0:100).

This is the smallest deletion encompassing the UBE2A gene reported so far. Only three genes are located in the deleted Xq24 region found in this boy: KSR1, UBE2A and CLCF5. UBE2A, UBE2C, and ZDHHC9 encode for a palmitoyl transferase that catalyses the posttranslational modification of RAS and HRAS. Since this first description, no additional patient has been described. A new family has been identified in France from the systematic screening of X-linked ID genes in 95 families, carrying the UBE2A gene, has been known to cause X-linked intellectual disability (XLD) with dysmorphic features, severely impaired speech, small penis and hirsutism. Our case further supports previous suggestion that deletion of UBE2A is sufficient to cause the UBE2A deficiency syndrome.

P02.264
Intersitial duplication in the case of Yunis Varon Syndrome

A. M. Tarko1, A. M. Pyrkosz2, E. Kortyczko1, E. Musialik-Switlicka1, J. Mraniuk-Chudek1, M. Nycz-Biocheniek1

1Dept of Neonatal Intensive Care, Upper Silesian Centre of Child’s Health, Katowice, Poland, 2Dept. of General and Molecular Biology and Genetics, Medical University of Silesia, Katowice, Poland.

Brief Introduction: The aim was to evaluate the relationship between abnormality in the region of 5p15.31-5p15.2 represented on the microarray analysis, classified as an intersitial duplication and the subsequent clinical presentation of Yunis Varon Syndrome. Materials and Methods: Neonate with dysmorphic, typical phenotypic and radiologic features of Yunis Varon Syndrome, born as 37 weeker, 2300g, Apgar score 1/2/3/3, a first child to a healthy couple. Prenatal ultrasound scans, fetal biometry and fetal MRI were performed showing malformations in central nervous system, hypertelorism, micrognathia, abnormal views of extremities. Chromosomal cytotyping from amniotic fluid cells cultures was done – 46,XX.Xp[del(0.041-0.1)74.47->74.52](ID). ID was either isolated or associated with a marfanoid habitus. Only three genes are located in the deleted Xq24 region found in this boy: ASFM1, FMR1, and MECP2.

Results: In 2007, four families with a mutation in the ZDHHC9 gene have been described, out of the screening of 250 families with X-linked intellectual disability (ID). ID was either isolated or associated with a marfanoid habitus. ZDHHC9 encodes for a palmitoyl transferase that catalises the posttranslational modification of RAS and HRAS. Since this first description, no additional patient has described. A new family has been identified in France from the systematic screening of X-linked ID genes in 95 families, carrying the UBE2A gene, has been known to cause X-linked intellectual disability (XLD) with dysmorphic features, severely impaired speech, small penis and hirsutism. Our case further supports previous suggestion that deletion of UBE2A is sufficient to cause the UBE2A deficiency syndrome.

Abstracts - European Human Genetics Conference 2012

P02.265
Expanding the clinical phenotype of patients with ZDHHC9 mutation

A. Masureul-Paulout1, B. Levy2, C. Thauvin-Robinet2, J. Thevenon2, S. Chancenotte2, M. Raffier-Bourd6te2, M. Bonner3, S. El Chehadeh4, V. Desportes5, J. Chelly6, L. Faivre6

1Centre de génétique et de Référence des Anomalies du développement (CGRAD), Centre des maladies neurodétrophiques, CHU, Dijon, France, 2Centre Référent des Troubles du Langage et des Apprentissages, CHU, Dijon, France, 3Service de neuroradiologie pédiatrique, Hôpital Femme Enfant, CHU, Lyon, France, 4Service de génétique moléculaire, Hôpital Cochin, Paris, France.

In 2007, four families with a mutation in the ZDHHC9 gene have been described, out of the screening of 250 families with X-linked intellectual disability (ID). ID was either isolated or associated with a marfanoid habitus. ZDHHC9 encodes for a palmitoyl transferase that catalyses the posttranslational modification of RAS and HRAS. Since this first description, no additional patient has described. A new family has been identified in France from the systematic screening of X-linked ID genes in 95 families, carrying the UBE2A gene with a p.R298X variant leading to a stop codon, co segregating with the disease. The 18-year-old patient and his 40-year-old maternal uncle have been evaluated. Clinical examination revealed normal growth parameters, lingual fasciculations, a limited extension of the elbows and metacarpophalangeal joints, and acrocyanosis. There was no facial dysmorphism or marfanoid habitus. Brain MRI revealed dysplastic corpus callosum. Neuropsychological
testing demonstrated a mild to moderate mental retardation. The younger suffers of significant impairment of behaviour requiring attention or treat-
ment, and the older a generalised anxiety disorder (ICD 10). Speech evalua-
tion revealed a satisfactory oral language since both were able to provide
information about understanding of everyday life. Occupational therapy
examination revealed impaired visuospatial and visuomotor per-
formance with poor drawing/graphic skills. These manifestations appear
not enough specific to permit to define specific criteria justifying

4.3.5.5 screening in patient with ID, and emphasized the value of next generation screening for genetic counselling in families with X-linked ID.

P03. Cytogenetics

P03.002

A clinical study of patients with pericentric deletion and duplication within 16p11.2-p12.2

N. Okamoto1, R. Saito1, T. Matsui1, N. Harada1, N. Miyake1, N. Matsumoto1;

1Department of Medical Genetics, Osaka Medical Center & Research Institute for Maternal and Child Health, Osaka, Japan, 2Department of Molecular Genetics, Advanced Medical Science Research Center, Mitsubishi Chemical Medience Corporation, Tokyo, Japan, 3Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.

The pericentric region on 16p is susceptible to chromosomal rearrange-
ments. There are many reports that deletions of 16p11.2 are observed
about 1% among patients with autism. The 16p11.2-p12.2 deletion syn-
drome is characterized by developmental delays and dysmorphic features.
We have identified pericentric deletion and duplication, within 16p11.2-
p12.2 in three patients by Cytogenetics. 2.7M array. Patient 1 was a 10-year-
old girl with autism and obesity. She had a heterozygous 593kb deletion in
16p11.2. Her mother with the same deletion was not autistic, but was obese.
Patient 2 was a 2-year-old boy with VSD, hypotonia, developmental delay
and frequent infections. He had dysmorphic features including flat face,
down slanting palpebral fissures, low-set posteriorly rotated ears and thin
upper lip. Autistic features were not seen. Microarray analysis revealed a
7.7Mb deletion at 16p11.2-p12.2. He showed common clinical features to
the 16p11.2-p12.2 deletion syndrome. Patient 3 was an 8-year-old girl with
developmental delay, autism and dysmorphic features including hypertri-
chosis, wide mouth and macrocephaly. She showed poor communication
skills and ritualized patterns of interests and behavior. Microarray analysis
revealed a 6.7Mb duplication at 16p11.2-p12.2. The duplicated region of pa-
tient 3 was very similar with the deleted region of the patient 2. We suggest
that 16p11.2-p12.2 duplication may be a new syndrome with autism.

P03.004

17q21.31 microdeletion syndrome in monozygotic twins

M. Vlckova1, M. Hanusarova1, J. Drobavc1, Z. Zmitkova1, M. Koudova1,2, R. Alanova1,3, K. Mannnik1, A. Kury2, Z. Sedlacek2;

1Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic, 2BioINFO Genetics, Ltd. - Private Medical Facility, Prague, Czech Republic, 3Institute for the Care of Mother and Child, Prague, Czech Republic, 4Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.

Chromosome 17q21.31 microdeletion syndrome is a genomic disorder caused by recurrent ~600 kb deletion of the region containing the common ~900 kb inversion. The inversion is associated with the H2 haplotype present in ~20% of Europeans. H2 carries additional low-copy repeats susceptib-
le to NAHR which can lead to the deletion. The syndrome is characterised
by intellectual disability, hypotonia, long face, tabular or pear-shaped nose,
bulbous nasal tip and friendly behaviour.

We present monozygotic twins sisters carrying the microdeletion and show-
ing only slightly different phenotypes. Both had disproportionate short stature, short upper and lower limbs, thoracic hyperkyphosis, low pitched
voice and similar long, thin and coarse face, coarse hair, thin eyebrows,
pear-shaped nose, smooth broad philtrum, thick lips, mandibular prognas-
thism, and hirsutism. Twin A had high palate and Twin B had wide-spaced
teeth, diastema, more severe intellectual disability, more coarse facial fea-
tures, strabismus, and horizontal nystagmus.

The microdeletion was identified in Twin A using BAC array CGH and con-
ﬁrmed in both twins but not in the parents using FISH. Potential genomic differences were subsequently searched using Illumina Human CytoSNP-12 SNR arrays (~300K) and Nimblegen 2.1M whole-genome CGH array. These analyses identiﬁed no differences potentially responsible for the phenotyp-
ic differences, which could possibly be related to a more severe perinatal
history of Twin B or the variable expressivity of the disorder. The father and
mother were homozygous for H1 and H2, respectively, and the maternal
17q21.31 allele was missing in the twins.

Supported by CHERISH 223692, SF0180027s10, CZ.2.16/3.01/002402 and MZOFNM2012.

P03.005

**De novo ring chromosome 21 with a complex 21q interstitial and
terminal deletion with array-CGH, in patient with several congenital
anomalies, mental retardation and thrombocytopenia**

A. Barcia Ramirez1, 2, G. Cruz Guererra1, L. Alarcon Mar1, A. Moro Ortiz1, M. Villoria1, M. Miranda Diaz1;

1Hospital Universitario Nuestra Sra. de Valme, Seville, Spain, 2Instituto Hispanolense de Pediatría, Seville, Spain, 3Bioarrays, Alicante, Spain.

We present a 20 months old infant with a de novo ring chromosome 21,
detected in prenatal karyotype, with breaking point in p11.1 and q22.3, in
which postnatal array-CGH demonstrated an almost complete loss of the
q arm in the affected chromosome, with little microduplication fragments
within four deleted fragments (1.2 Mb to 23 Mb) between 21q11.2-q21.1 and
the chromosome end. Phenotypically, the infant presents moderate to severe
growth and developmental delay, structural cardiac defects, bilateral
hip dysplasia, microcephaly with cerebral atrophy, mild thrombocytopenia
and facial dysmorphism, with similar features that those described in
patients with partial or complete 21 monosity. There are multiple affected
genes, one of them, RUNX1, has been reported to pedisponse, when in ha-
ploinsufficiency, to thrombocytopenia and acute myelogenous leukemia.
In this case, the array-CGH has contributed to a more accurate diagnosis of
the chromosome disorder, which with at first seemed just a terminal 21q deleti-
on instead of an almost complete 21 monosity.

P03.006

**Homozygous 2p21 deletion syndrome due to maternal uniparental
disomy 2**

U. Siebers-Renelt, B. Dworniczak, P. Wiesacker, A. Böhm;

Institut für Humangenetik, Muenster, Germany.

The 2p21 deletion syndrome (MIM 606407) is a contiguous gene syndrome
caused by homozygous deletions on chromosome 2p21. Depending on the
size of the deletion different clinical symptoms have been described. Dele-
tions of the SLC3A1 and PRKPL genes are responsible for the hypotonia-cy-
tinuric syndrome. Homozygous mutations in the SLC3A1 gene were found
in patients with isolated cystinuria (MIM 220100). We report on a girl born
preterm to non consanguineous healthy parents. At delivery, the mother
was 44 years old. Birth, meconium ileus and a persistent ductus arte-
riosus Botalli had to be corrected surgically. Profound muscular hypotonia
was present and psychomotor development was delayed. Failure to thrive
was so severe that at 2 years age tube feeding was still necessary. Karyotype
on conventional cytogenetic analysis was apparently normal (46XX). Array-
CGH analysis uncovered a small homozygous deletion of approximately 28.6
kb that disrupts the PRKPL and the CAMKMT genes but not the SLC3A1 gene.
Quantitative PCR analysis of both parents demonstrated a heterozy-
gous deletion of the same size in the maternal blood only. We hypothesized
that a maternal uniparental disomy could be responsible for the homozygo-
sity of the deletion in the daughter. A microsatellite analysis showed mater-
nal iso disomy 2 in the critical region 2p21. Possibly meiotic non-disjunction
followed by trisomy rescue led to homogyzosity for the small maternal dele-
tion. This case illustrates a complex multistep process leading to a disease
causing genomic imbalance. Moreover, it underlines the necessity of investi-
gations in the parents for a correct interpretation of array-CGH results.

P03.007

**De novo chromosome 2(q24.2q24.3) deletion in a 17-months old
developmentally delayed girl**

M. Stoian1, V. Belengena1, N. Andreea2, S. Parca2, D. Misce2, T. H. Gamage2, E. Frenkerc;

1University of Medicine and Pharmacy, Timisoara, Romania, 2Department of Medical Genetics, Olso University Hospital and University of Oslo, Oslo, Norway.

We present a 17 months old female patient, first examined at the age of 11
months for developmental delay. The girl is the second child of a healthy and
non-consanguineous couple. The family history was unremarkable. She was
delivered by caesarian section at 31 weeks of gestation with a birth weight
of 2900 g (pc=25th), length of 50 cm (pc=50th) and cranial circumference
of 32.5 cm (pc=10th). Clinical evaluation revealed: hypotonia, microcephaly, high forehead, hypertelorism, palpebral ptosis, strabismus, arched mouth,
low set ears, pectus excavatum, coxofoemoral dysplasia. Development miles-
tones were delayed, she held her head at 6 months, sat at 11 months and

www.eshg.org
started to walk sustained at 17 months. For lack of eye contact and repetitive hand movements we performed FISH analysis using Abbott probes for Angelman syndrome, but result was negative. Cerebral MRI evaluation was normal. Upon last evaluation at age of 17 months, the patient had length of 59 cm (pc=50th), head circumference 44 cm (pc=3rd), weight of 8400 g (pc=3rd). 180k Agilent aCGH detected a deletion on chr2: 16261555-16457102 bp hg19, chromosome (2) [q24.2, q24.3]. The deletion was confirmed using qPCR. Parents were checked and deletion occurred de novo. Nine genes are located in the deleted region including TBRI, SLC4A10, KCNH7 and FIGN, which may be good candidates in generating the phenotype TBRI is involved in cortical development SLCA10 has been previously associated to epilepsy, KCNH7 is involved in the regulation of NMDA receptor level in cortical neurons. FIGN are molecular chaperones with a role in embryonic development.

P03.008
Same genotype, different phenotype in a mother and son with genomic imbalance

S. Custódio, S. Serafim, A. Sousa, R. Silverio-Santos, M. Ávila, P. Dias, A. Medeira, I. Cordeiro
Hospital de Santa Maria - Centro Hospitalar Lisboa Norte, Lisboa, Portugal

With the broad application of molecular techniques like aCGH, findings of inherited chromosomal imbalances from unaffected or mildly affected parents have become more frequent. The phenotypical variability in these cases is often attributed to genetic, epigenetic and environmental modifiers. Here we report a 33 years-old male with cognitive impairment, speech delay, epilepsy and hearing deficiency but no dysmorphic features. The patient's phenotype is consistent with other reported cases of 5q13.2 deletion. However, in our case we were not able to detect any of the genes that have been associated with this deletion, such as SMN1, SMN2, NAIP, GTF2H2, and MCCC2. These genes are known to be involved in the pathogenesis of human obesity. However SIM1 is not involved in the duplication detected in the patient. A recent study found 2 patients with similar clinical features to our patient, having interstitial deletions at 6q14.1q15. The deletion was found on the unaffected mother. Subsequent aCGH analysis further delineated the rearrangement as a 1 Mb terminal deletion of 5p and a 2.1 Mb terminal duplication of 18p.

P03.009
First case of 5q13.2 duplication revealed by array comparative genomic hybridization

O. Kurinovici1, E. Krospovova1,2, V. Yurov1,2, J. V. Jurov1,2
1Institute of Paediatrics and Paediatric Surgery, Ministry of Health, Moscow, Russian Federation, 2Mental Health Research Center, RAMS, Moscow, Russian Federation

We report a case of 5q13.2 duplication uncovered by array comparative genome hybridization (array CGH). The prob repetu (age 9 months) presented with brain malformations (cerebellar hypoplasia and atrophy of frontal and temporal lobes), congenital heart defects, short stature, low-set and deformed ears, short neck, digital and naso hypoplasia. Array CGH revealed an interstitial duplication of 5q13.2 (approximately 3 Mb) spanning chromosome 5 region from 68.9 to 72.7 Mb according to NCBI Build 37.3. The region contains 74 genes, from which 14 are indexed in OMIM. Among notable disease-associated genes of this region are SMN1 (chr5:603054), SMN2 (chr5:601627), NAIP (chr5:600355), GTF2H2 (chr5:601748), MCCC2 (chr5:609014). In addition, a deletion of 2q37.3 (subtelomeric 2q) encompassing 3 genes, two of which are also indexed in OMIM, was detected. Although 2q37.3 deletion can be nature, it’s impact on clinical manifestations in the index case cannot be excluded. It is to note that mapping of spinal muscular atrophy (SMA) genes (i.e. SMN1 and SMN2) to 5q13 has suggested these loci to be dosage-sensitive. However, no cases of large constitutional duplications within 5q13.2 have ever been reported. We can hypothesize that genomic organization of SMA region predisposes both to small intragenic and large constitutional chromosomal duplications.

P03.010
Morbidity, hypogonadism, minor facial dysmorphism and mild mental retardation in a patient with a 2.7 Mb duplication on chromosome 6(q14.1) detected by arrayCGH

K. Andreescu1, V. Bolengeanu1, M. Miczo1, M. Stoian1, A. Bolengeanu1, S. Farca1, T. H. Gamage2, E. Frenger1
1University of Medicine and Pharmacy, ‘Victor Babes’, Timisoara, Romania, 2Department of Medical Genetics, Oulu University Hospital and University of Oulu, Oulu, Norway.

The association of obesity and developmental delay as presenting clinical features was the subject of many reports. Several gene mutations and genomic imbalances of specific loci scattered on different chromosomes have been reported to be involved in the pathogenesis of human obesity. Here we present a 29 years-old male, with hypogonadism, morbidity, minor facial dysmorphism and mild mental retardation evaluated for a suspected diagnosis of Prader-Willi syndrome. His weight was 180 kg (>95th percentile), height was 172 cm (25th percentile) and BMI was 60.84 kg/m2. His clinical and parental history was unremarkable, and no cases of chromosomal abnormalities were reported in his family. The patient had a 2.7 Mb duplication on chromosome 6(q14.1). The duplication was confirmed further using aCGH. The patient had a 2.7 Mb duplication on chromosome 6(q14.1). The duplication was confirmed further using aCGH. The patient had a 2.7 Mb duplication on chromosome 6(q14.1). The duplication was confirmed further using aCGH. The patient had a 2.7 Mb duplication on chromosome 6(q14.1). The duplication was confirmed further using aCGH.

P03.011
Gene regulatory variation in Cynomolgus monkeys

A. Gachwinda1, E. Migliavaccaccia2, Z. Heckel1, S. G. Vorsanova1
1Moscow City University of Psychology and Education, Moscow, Russian Federation, 2Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland

Macaque monkeys are a key model species for various fields of biomedical research such as simian immunodeficiency virus pathogenesis, transplantation biology, drug development and safety testing. Cynomolgus monkeys (Macaca fascicularis) are the most widely used non-human primate species for drug safety testing in pharmaceutical companies and experimental results might be influenced by variation in biological processes among the individuals sampled. Knowledge of genetic factors contributing to variability with respect to biological drug responses could help to design better experimental approaches, which in turn would help to reduce, refine or even replace animal experiments. We attempted to investigate the importance and implications of genetic variation on cellular processes using genome-wide information on copy number variation (CNV) and gene expression from Cynomolgus monkeys originating from three different populations used in pharmaceutical and preclinical research (China, Malaysia, and the Philippines). Using aCGH data and a CNV calling pipeline combining different methods for CNV calling, we quantified copy number variation among our cohorts, which we then correlated with tissue specific gene expression data from five different tissues (heart, kidney, liver, lung, spleen). We identified several loci where copy number variation is associated with changes in gene expression levels of several genes involved in biological processes. In many of these changes occur in the kidney, which is also involved in drug metabolism. Using further downstream analyses, we will attempt to get information on the cellular processes possibly affected by these gene regulatory changes and make statements on potential implications for drug safety testing.

P03.012
Clinical utility of molecular karyotyping using high resolution array comparative genomic hybridization (aCGH)

M. Tzeis1, S. Kittlaus-Teisl1, H. Frysira2, K. Giannikou2, V. Oikonomokiti2, K. Kosma1, A. Spyrou1, A. Vaidarou1, E. Kounou7i1
1Dept of Medical Genetics, Athens, Greece, 2Research Institute for the Study of Genetic and Malignant Disorders in Childhood, "Agia Sophia, Children’s Hospital", Athens, Greece, Athens, Greece

Array comparative genomic hybridization (aCGH) is used to detect small copy number variants (CNVs) within the genome that are not visible by conventional karyotyping. The clinical application of aCGH has helped the

www.eshg.org
P03.013 Back to the karyotype: a case of mosaic marker chromosome 11 detected by aCGH

R. Silveira-Santos, A. C. Sousa, M. Avila, S. Serafim, S. Custódio, A. B. Sousa, I. Cordeiro; Serviço de Genética Médica, Hospital Santa Maria, Lisboa, Portugal.

Array comparative genomic hybridization (aCGH) is currently being used in many cytogenetic laboratories as a first-line approach to detect chromosomal imbalances associated with development delay, mental retardation and congenital anomalies. However some abnormalities are better elucidated by conventional techniques such as standard karyotyping, namely when the presence of a marker chromosome or chromosomal mosaicism is suspected.

Here we report the clinical and cytogenetic findings of a 4-year old girl with intellectually disability, mild dysmorphism and macrocephaly with a 5,9 Mb gain in chromosome 11 detected by aCGH and a previous normal prenatal karyotype.

The size and pattern of the aCGH showing a three and four copies profile suggested a complex rearrangement involving the 11q11-q12.2 region, compatible with a supernumerary marker chromosome (SMC). The case was then reevaluated by karyotyping revealing a de novo mosaic SMC in approximately 70% of the cells analyzed.

Although aCGH accurately identified the chromosome and gene content of the SMC in the patient presented here, karyotype was necessary to determine the presence and structure of the marker and to established the associated abnormal cell line.

We compare our patient with other reported cases of SMC (11), to determine the respective contributions of this rearrangement to the phenotype.

P03.014 Genomic instability in the Alzheimer’s disease brain: cancer-like cellular behavior mediates neurodegeneration via non-malignant aneuploidization

I. V. Iourov1, S. G. Vorsanova1,2, T. Liehr4, A. D. Kolotii2, I. A. Demidova1,2, A. K. Beresheva3, V. E. Logolod2, Y. E. Yarov2,3

1Mental Health Research Center, RAMS, Moscow, Russian Federation, 2Institute of Paradiatics and Paediatric Surgery, Ministry of Health, Moscow, Russian Federation, 3Moscow City University of Psychology and Education, Moscow, Russian Federation, 4Institute of Human Genetics and Anthropology, Jena, Germany.

Uncovering relationships between genomic instability and neuronal cell cycle and death is required for identification of the Alzheimer’s disease (AD) neurodegeneration pathway. A hypothesis considering structural and functional implications to genome landscape was proposed to link ectopic cell cycle events and aneuploidy. Previous experimental evidences suggest that genomic landscape in the AD brain is featured by of genomic or chromosomal instability manifesting as tetraploidy and aneuploidy. Aibrant DNA replication, leading to intracellular replication stress in the AD brain is likely to produce the accumulation of genomic instabilities in vulnerable neuronal populations. Here, we report on molecular cytogenetic analysis of aneuploidy, tetraploidy, and DNA replication events in the AD hippocampus to define the role of neuronal genome instability in AD pathogenesis. Increased aneuploidy rates (4-21%) (monosomy and trisomy) affecting chromosome 21 and chromosome X was observed in the AD brain in contrast to 1.2-3.6% rates in the unaffected brain. However, increased rates of tetraploidy and DNA replication activity in AD were not observed. We were able to demonstrate that the incidence of aneuploid neuronal cells affected by aneuploidy was significantly higher in degenerating brain areas (hippocampus, prefrontal cortex) as to less affected areas (cerebellum). This suggests that cancer-like cellular behavior in the AD brain mediates neurodegeneration via non-malignant aneuploidization and represents the leading genetic factor contributing to AD pathogenesis. Thus, neurogenomics provides for a new molecular/cellular mechanism underlying somatic neural genome diversity in brain diseases. Supported by DLR/RMBF (BLR 11/002).

P03.015 Assessment of genotoxic risks in Tunisian health care workers occupationally exposed to antineoplastic drugs

B. Hernández-Charra, M. Moreno-Igoa, A. Bengoa, A. Pérez-Juana, M. Artigas, M. A. Ramos-Arroyo; Genetics Department, Complejo Hospitalario de Navarra, Pamplona, Spain.

Genomic imbalances detectable by array-CGH have been postulated as the underlying cause of developmental delay and/or congenital abnormalities (DD/MCA) in 10-15% of patients with normal karyotype. Similarly, over 40% of apparently balanced chromosome rearrangement (ABCR) carriers with abnormal phenotype present copy number variants (CNVs), both at the breakpoints and elsewhere in the genome, implying a potential higher risk for DD/MCA.

We present the preliminary results of an on-going genome-wide array-CGH analysis (Agilent 180K) in three populations: G-1) Individuals DD/MCA (n=9), G-2) ABCR carriers with DD/MCA and normal karyotype (n=5), G-3) ABCR carriers with DD/MCA (n=9), G-3) ABCR carriers with normal phenotype (n=6).

A similar total number of CNVs per individual was present in all three groups (Table 1). However, potentially pathogenic imbalances were significantly more frequent among DD/MCA patients, independently of their karyotype (10.3% and 14.4%, in G-1 and G-2 groups, respectively), than in phenotypically normal ABCR carriers (1.5%). All imbalances among ABCR carriers were located outside of the breakpoint regions. Pathogenic imbalances were present in 80%-G1 and 77.8%-G2 of DD/MCA patients and in 16.7% in non-pathologically normal group.

Genomic imbalances have an important role in the pathogenesis of phenotypic abnormalities. However, simple ABCR do not seem to confer a significantly higher risk for tetraploidy and aneuploidy. The level of cellular DNA damage was significantly higher in ABCR carriers compared to controls. The mutagen sensitivity assay showed a significant increase breaks/cell (b/c) frequency in exposed subjects (p<0.05). Our study has shown that increased genomic damage was evident in medical staff due to AND occupational exposure. We suggest that cytogenetic follow up studies should be included in regular health examination for this population, at least in cases of accidental exposure.
We report a female patient with mental retardation, ataxia, microcephaly, and deletions and duplications of 1q43-q44 and P03.018
genomic copy number changes should be considered. In the presence of a de novo deletion at Xp11.4 between positions 41,342,834-
41,342,835 involving 128 Kb, the population. Among these, cytogenetic anomalies explain about 30% of patients with more severe mental retardation. Using conventional methods, detection of subtle structural aberrations is limited to 6-10Mb. We observed a boy in which developmental delay and mild dysmorphic phenotype in spite of a normal karyotype remained highly suggestive for a chromosomal aberration. The most impressive features were microcephaly, absent speech and epilepsy. MLPA analysis for deletions / duplications of subtelomeric chromosome regions using commercial kits P070 and P036 (MRC, Holland) detected a deletion of 3p. Array CGH analysis was performed using custom designed whole-genome oligonucleotide arrays (OGE, UK), covering the human genome at a median density of 2.5 kb. Except the deletion of 3p26.3 encompassing 1,054 Mb arrayCGH revealed a constitutional interstitial deletion of 2.64 Mb at 1q43-q44. Possible impact of both cryptic chromosomal aberrations on the patient’s phenotype is discussed.

Table 1. Summary of patients and imbalances detected by genome-wide array-CGH analysis

<table>
<thead>
<tr>
<th>Patients</th>
<th>Karyotype</th>
<th>Total Nº CNV</th>
<th>Potentially pathogenic</th>
<th>Imbalance</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1-1</td>
<td>46,XX</td>
<td>12</td>
<td>1</td>
<td>dup Yq11.22</td>
<td>296Kb</td>
</tr>
<tr>
<td>G1-2</td>
<td>46,XY</td>
<td>10</td>
<td>1</td>
<td>del 8q24.12, del 17p12</td>
<td>227Kb</td>
</tr>
<tr>
<td>G1-3</td>
<td>46,XY</td>
<td>14</td>
<td>2</td>
<td>del9p12, del7q12, del6q36.3</td>
<td>762Kb</td>
</tr>
<tr>
<td>G1-4</td>
<td>46,XX</td>
<td>10</td>
<td>2</td>
<td>del7p21.1</td>
<td>20Mb</td>
</tr>
<tr>
<td>G1-5</td>
<td>46,XY</td>
<td>12</td>
<td>1</td>
<td>del7p21.1</td>
<td>66 Kb</td>
</tr>
<tr>
<td>Total G1 (n=5)</td>
<td>58</td>
<td>6 (10.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P03.017
CASK gene heterozygous deletion in a female patient with microcephaly and cerebellar hypoplasia
J. B. Melo1, S. I. Ferreira, A. Mascarenhas, A. Jardim, L. Ramos, J. Saravoa, I. M. Carreira2;
1Cyto Genetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal, 2Genetics Department, Pediatric Hospital, CHUC, Coimbra, Portugal.
CASK gene (OMIM 300172) has an important function during neural development, having a crucial role during synaptogenesis and cerebellar and forebrain development. It encodes a member of the membrane-associated guanylate kinase (MAGUK) protein family, highly expressed in the nervous system of both adult and fetuses. CASK gene deletions, duplications and mutations have been recently reported to be associated with mental retardation and microcephaly with pontine and cerebellar hypoplasia (MCPCH - OMIM 300749). Deletions have only been reported in female patients, while mutations have been reported in both males and females. Missense mutations can cause a milder phenotypic spectrum while inactivating mutations and deletions can be associated with reduced male viability or even in utero lethality. We report a female patient with mental retardation, ataxia, microcephaly, cerebellar hypoplasia, ventricular septal defect and scoliosis that was ana-
utaneous array-CGH revealed a constitutional interstitial deletion of 2.64 Mb at 1q43-q44. Possible impact of both cryptic chromosomal aberrations on the patient’s phenotype is discussed.

P03.019
Outcome of Array-CGH analysis in 197 Spanish patients with idiopathic mental retardation, dysmorphic features and/or congenital anomalies.
INTRODUCTION: Array genomic hybridization (aCGH) is being used clinically to detect pathogenic copy number variants (CNVs) in individuals with intellectual disability (ID), dysmorphic features (DF) and/or congenital anomalies (CA). It is now widely adopted as a first-tier clinical diagnostic test. Our aim is to review the diagnostic yield in our unit.
MATERIAL AND METHODS: We performed a retrospective review of aCGH data (180-400k) of 197 patients with ID, DF and/or CA, with normal karyotype and subtelomeric MLPA, between july 2009 and july 2011.
RESULTS: We found pathogenic genomic imbalance in 20 (14.2%) of these 197 patients. Within this group, 4 patients (14.28%) had previous balanced rearrangement in karyotype. The size of the pathogenic structural aberrations found varied from 17 Kb to 1.41 Mb. In 90 patients (45.68%) polymorphic CNVs were detected, non-clinically significant CNVs in 39 (19.8%) and variants of uncertain clinical significance (VOUS) in 40 (20.3%). Parental complementary aCGH analysis was done in 39 patients.
CONCLUSION: 1) The diagnostic yield of our study (14.2%) was consistent with prior reports (11-20%). 2) aCGH is a valuable tool in patients with mental retardation, dysmorphic features and/or congenital anomalies of unknown etiology. 3) Further investigations are needed in order to clarify the role of VOUS in the pathogenesis since they account for a significant proportion of our results. 4) Effective clinical interpretation of these studies requires considerable skill and experience.

P03.020
Additional evidence to support the role of the 20q13.33 region in susceptibility to autism
A. Mosca-Boidron1, M. Valdocco2, C. Touni3, L. Lagarde4, C. Henry4, M. Béri-Deschéimer3, N. Marle1, S. Payet1, C. Ragon1, L. Gueneau2, P. Caller1, E. Guillener4, P. Jonveaux5, L. Faivre4, 1Laboratoire de Cytogénétique CHU Dijon, Dijon, France, 2Laboratoire de Génétique, EA 4002, CHU, Nancy-University, Nancy, France, 3Centre de Génétique et centre de référence maladies rares du développement et syndromes malformatifs, CHU Dijon, Dijon, France, 4Centre de Ressources Autistes de Bourgogne, CHU Dijon, Dijon, France, 5Equipe Génétique et Anomalies du Développement, Université de Bourgogne, Faculté de Médecine, Dijon, France.
Autism spectrum disorders (ASD) are a group of highly heritable complex neurodevelopmental disorders and identifying its genetic bases has been challenging. The susceptibility genes so far identified seem to be involved in the proper establishment of the synaptic cleft, the secretion of surface proteins, the excitation/inhibition balance, or the overall cellular translation processes, suggesting that impacting translation-dependent processes like synaptic plasticity or cell-to-cell connectivity may lead to an ASD phenotype. Chromosomal imbalances identified by conventional or molecular cytogenetic techniques account for 10-15% of patients with autism. Here, we report a third case of pure de novo 20q13.33 deletion in a boy presenting with autism. Metabolic evaluation and standard karyotype were reported as normal, as were FMRI molecular imaging. The Human Genome Microarray CGH 180K from Agilent® used for array-CGH analyses revealed an interstitial deletion of at least 556 kb in the 2q13.33 region (arr20q22q13.1, 61,229,038-61,785,825)x1, hg18). This deletion encompassed 21 genes including CHRNA4 and KCNQ2. These genes are interesting candidate genes in the autistic

P03.018
ArrayCGH analysis of constitutional cryptic deletions of 1q43-q44 and 3p26.3.1 in a boy with microcephaly and developmental delay
R. I. Zuyzharova1, L. Bradinova1, S. Andonova1, S. Bichev1, A. Savov1, V. Bujnovska1, I. Krennensky2, 1National Genetic Laboratory, Sofia, Bulgaria, 2USBALNP Saint Naum, Sofia, Bulgaria.
Mental retardation is a distressing disorder affecting approximately 3% of

www.eshg.org
P03.021
A de novo balanced translocation that affects chromosome bands Xp21.2 and 11q13.1 is associated with an autism spectrum disorder.

1Institute of Human Genetics, Medical University of Graz, Graz, Austria, 2Department of Paediatrics, Medical University of Graz, Graz, Austria.

An autism spectrum disorder was diagnosed in a 3 1/2 year old boy and consecutive cytogenetic analysis revealed a balanced translocation involving the X chromosome and chromosome 11 leading to the following karyotype: 46,XY(X11)(p21.2;q13.1).ish t(X;11)(wcpX+,wcp11+;wcpX+,wcp11+) dn.

No additional obvious phenotype anomalies or dysmorphic features could be recognized. A cryptic genomic unbalance up the achieved resolution which was rule out by application of a 60k Agilent array CGH analysis which showed normal results. Balanced chromosome aberrations in patients with a particular phenotype represent a valuable resource to identify causative genes involved in such cytogenetic rearrangements. Besides conventional but tedious approaches like FISH analysis using tiling path clones to finally identify chromosome breakpoint spanning clones and the gene(s) affected, recently more straightforward methods were demonstrated to be successful. These techniques include so called array painting procedures as well as breakpoint analysis of balanced chromosome rearrangements by next-generation paired-end sequencing. The particular chromosomal breakpoints involved in this specific case are close to or nearly identical to chromosomal regions involved in such cytogenetic rearrangements. Beside conventional approaches like FISH analysis using tiling path clones to finally identify chromosome breakpoint spanning clones and the gene(s) affected, recently more straightforward methods were demonstrated to be successful.

P03.022
Brain-specific X chromosome aneuploidy is likely to contribute to the pathogenesis of autism and can explain the unsolved paradox of male susceptibility

Y. B. Yurov1,2, A. G. Vorsanova2, A. D. Kolotil1, T. Liehr1, Y. I. Iourov1,2

1Mental Health Research Center, RAMS, Moscow, Russian Federation, 2Institute of Paediatrics and Paediatric Surgery, Ministry of Health, Moscow, Russian Federation.

Autism is a common childhood psychiatric disorder characterized by impaired social interaction and communication, repetitive/stereotypic behavior. Numerous studies indicate that chromosomal and genomic imbalances play a role in the etiology and pathogenesis of autism. However, the incidence and role of genomic imbalances in the autistic brain - the prime target of the disease - has not been addressed. Here, we report on the first evaluation of mosaic aneuploidy in the autistic brain. Postmortem brain tissue samples (cerebral cortex and cerebellum) of 12 autistic patients and 12 age-/sex-matched controls were provided by the Brain and Tissue Bank for Developmental disorders, University of Maryland. In the male autistic brain, we observed statistically significant increase of chromosome X aneuploidy rates in the cerebral cortex (0.03%) and cerebellum (0.66%) as compared to control samples. Autistic spectrum disorders currently affect four times as many males as females. Mosaic chromosome X aneuploidy in the brain may help to explain the preponderance of autism among males in addition to specific alterations of the X chromosome genes. We conclude that intercellular genomic variation manifesting as brain-specific low-level mosaic aneuploidy is one of the possible genetic factors likely contributing to autism neuropathology. Our findings support the hypothesis that somatic genomic instability could affect as homoeostasis of neuronal neurons as functioning of the neural network in the whole autistic brain, playing, therefore, an important role in the pathogenesis. Supported by BMFF/DLR (RUS 09/006).

P03.023
Evaluation of genomic imbalances in apparently balanced rearrangements

1UNIFESP, Sao Paulo, Brazil, 2USP, Sao Paulo, Brazil.

Apparently balanced rearrangements are generally balanced rearrangements associated with a normal phenotype. In some cases, however, phenotype alterations are observed, which have been attributed to different pathogenic mechanisms including intragenic rupture, deletions, duplications, translocations, or even may even be a chance association. We investigated 11 patients with altered phenotype and apparently balanced rearrangements: eight de novo translocations, two inherited inversions and one complex de novo rearrangement. Cytogenetic and molecular techniques, including SNP-array and fluorescent in situ hybridization (FISH) detected genomic imbalances in two patients. Using 200 kb filter in array analysis, one female patient with an apparently balanced translocation between chromosomes 6 and 14 was found to have a 1.1 Mb deletion in 6p. In another female patient, who presented a complex rearrangement involving chromosomes 2, 10, 13 and 21, two deletions of 10q were detected, one of them next to the breakpoint measuring 1 Mb, and the other one, more distal, approximately 7 Mb in size, probably related to the phenotype of the patient. We had genomic imbalances smaller than 200 kb, involving genes which might be related to their phenotype. We concluded that molecular techniques such as arrays, associated to cytogenetic methods can help in detecting genomic imbalances which are invisible under the microscope and unveiling the role of genes involved in the phenotype variability of patients with apparently balanced rearrangements. Furthermore, the molecular characterization of the alterations found provides information for the follow-up of the patients and genetic counseling of their families (Financial support: FAESP, Brazil).

P03.024
Inherited chromosomal modifications transmitted from parents to their offspring

D. Mierla, L. Neago, S. Grigorov, V. Radoi; Life Memorial Hospital, Bucharest, Romania.

A 33 years old pregnant woman was investigated by amniocentesis. Prenatal karyotype from cultured amniocytes was performed due to increased risk for trisomy 21 at serological test without ultrasonographic abnormality.

Fetus’ karyotype established by GTG banding was: 46,XX(X;3)(q28;q13);inv(5)(p14q11.2). We performed chromosome analysis in the parents for checking if chromosome modifications in fetuses are “de novo” or are inherited from parents. Mother’s karyotype revealed the inversion on chromosome 5;46,XX,X inv(5)(p14q11.2) and father’s karyotype showed the other modification, the translocation t(3;6)(q28;q13). We informed the family about results and we found out that the mother’s brother has the same modification as her and this man was cytogenetic investigated because his infertility.

Conclusion: Karyotypes of fetuses and his parents were performed for correct counseling of their families.

P03.025
Cyto genetic effect in vivo and in vitro of the antihypertensive drugs ARBs on human lymphocytes

I. Huerta1, M. Barasoa1, M. Téllez2, P. Gurtubay3, B. Crudele4, A. Dominguez de Bidezurrite5, E. Ortiz-Latre5, E. Barrerez5, G. Barrenechea1, J. Arrieta1

1Department of Genetic, Physical Anthropology and Animal Physiology, Faculty of Science and Technology. University of the Basque Country, Bilbao, Spain, 2Primary Care Unit. Interior Comarca, Bilbao, Spain, 3Department of Medical-surgical Specialties. Faculty of Medicine. University of the Basque Country, Bilbao, Spain.

Hypertension is the most prevalent, treatable risk factor for diseases of the heart, brain and kidneys. The majority of hypertensive patients need long-term administration of antihypertensive agents and that is why the duration of the pharmacological treatment requires documentation of long-term safety and efficacy, including sensitive indices of genotoxic damage. Angiotensin II receptor blockers (ARBs) are a widely used class of drugs that are growing in popularity due to the excellent blood pressure control and tolerability. However, recent concerns have surfaced about possible links between ARBs and increased cancer risk.

Chromosomal aberrations (CAs) represent the most extensively used and validated biomarker in populations exposed to genotoxic agents and it is also associated with a higher cancer risk. This study aimed to evaluate the
genotoxic potential of five kinds of ARBs (candesartan, valsartan, eprosartan, telmisartan and olmesartan), assessed in vivo and in vitro for their capacity of inducing CA on lymphocytes of 55 patients and 10 controls. Results showed that total number of GAs as well as the mean frequency of CA/cell and % of aberrant cell were increased for the patients and at the therapeutic doses tested in vitro compared to the controls. Chromatid type aberrations were the predominant CA. Most of the chromosomal breakpoints locations coincided with specific loci known as fragile sites, which are preferential targets for mutations and carcinogens. The results are consistent with our previous studies of beta-blockers genotoxicity and provide evidence for an association between antihypertensive therapy and DNA damage in human lymphocytes.

P03.026
Step by Step, Formation of Complex Chromosomal Rearrangements
R. Sakin, B. Karaman, K. Yilmaz, D. Albunoglu, S. Basaran;
Medical Genetics Department of Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.

Complex Chromosome Rearrangements (CCR) are defined for the aberrations involving three or more breakpoints on two or more chromosomes. The occurrence is extremely rare. There is no available classification according to the formation mechanism. We report here a new familial case of CCR involving chromosomes 3, 6, and 10 with 4 breakpoints.

Proband, 33 years old male, was referred to our cytogenetic laboratory for chromosome analysis due to the history of repeated miscarriages.

Chromosome analysis revealed a balanced CCR in the proband (Karyotype: 46,XY,t(3;6;10)(3pter->3q12::6q24->6qter)t(3pter->3q12::6q14.2::10p11.2-10pter). The mother with a history of two alive sibs and four miscarriages, was the carrier of the same CCR. Surprisingly the brother of the proband was a carrier of a simple reciprocal translocation, (46,XYt(6;10)(q14;p12)).

CCR was confirmed with FISH study by using Chromoprobe Multiprobe System (Cytocell) and centromeric probes of 3, 6, and 10.

We suggest that the CCR in the family most likely have arisen in two consecutive steps; the first step was the translocation t(3;6;10)(q14;p12) and the second step was the new translocation occurred between the chromosomes 3 and derivative 10.

We concluded that the mother was hidden mosaic for both of the cell lines, derivative 3 and derivative 10.

P03.027
3D position of constitutive heterochromatin regions within the nucleus of chorionic villi and embryonic tissues.
I. Trofimova, T. Soloveyov, E. Fedorova, V. Vasilev, T. Karazuevo;
1Saint-Petersburg State University, Saint-Petersburg, Russian Federation, 2Ot's Institute of obstetrics & gynecology RAMS, Saint-Petersburg, Russian Federation, 3Institute of Experimental Medicine of the North-West Branch of the Russian Academy of Medical Sciences, Saint-Petersburg, Russian Federation.

Nuclear architecture and chromatin organisation during interphase are known to play crucial roles in the regulation of gene expression. Constitutive heterochromatin regions (CHR) in chromosomes of embryonic tissues are characterized by tight condensation, late replication and methylation. Meanwhile decondensation, hypomethylation, early replication and DNAse I hypersensitivity CHR in human trophoblast cells were registered. These data could be indicated CHR in chromosomes of chorionic villi has unusual functional state.

The aim of study was analysis of 3D position of CHR of chromosome 1 (1q12) in human trophoblast and embryonic cells. It is known that CHRs are associated with nuclear periphery and form chromocenter. Our 3D-FISH results showed a significant repositioning of 1q12 towards the centre of the nucleus and near of chromocenter in chorionic villi sample from early pregnancy (4-5 week). We found no change in the position of 1q12 in human embryonic tissues and chorionic villi from 5-6 week to 36 week pregnancy. Almost all of FISH-signals (correspond to 1q12) were closer to the nuclear periphery and in chromocenter.

In conclusion, today little is known about the nuclear organization in extraembryonic and embryonic tissues. Data of 3-D FISH analysis of this work have indicated in possible functional role of CHR in embryogenesis of human.

P03.030
Frequency of chromosomal aberrations among general human population
I. Aganovic, M. Mackic, S. Ibrulj;
Center for genetics, Sarajevo, Bosnia and Herzegovina.

Genetic monitoring is used for surveillance of professionally exposed people to ionizing radiation, chemicals and medical treatments and rarely to investigate the state of general population exposed to environmental mutagens that include all mentioned and life-style factors and habits. We have performed cytogenetic analyzes of chromosomal aberrations (CA) in blood lymphocytes among healthy population, including the data of their age, gender and smoking habits. The results are consistent with our previous studies of beta-blockers genotoxicity and provide evidence for an association between antihypertensive therapy and DNA damage in human lymphocytes.

P03.032
Submicroscopic duplication of the Wolf-Hirschhorn critical region.

I. Aganovic, M. Mackic, S. Ibrulj;
Center for genetics, Sarajevo, Bosnia and Herzegovina.

Wolf-Hirschhorn syndrome (WHS) - characterized by severe growth delay, mental retardation, facial dysmorphism and congenital anomalies. Genotype-phenotype correlations of patients with WHS point to a critical locus (4p16.3) to be responsible for the main characteristics of this disorder. In addition it was shown that not only deletions but also duplications of the WHS critical region cause mental retardation and anomalies. The duplication phenotype overlaps partially with the deletion phenotype, but facial dysmorphism is different.

We report clinical and laboratory data of one month old patient. He was born to young unrelated healthy parents, 1G/1P, pedigree unremarkable. Patient was macrosomic, head circumference compared to body was microcephalic, he had dysmorphism- periorbital fullness, large hands and feet, macroglossia, umbilical hernia, developmental delay, but no congenital anomalies. Cytogenetic investigation using Giemsa banding revealed karyotype 46,XX,der(Y)t(Y;4)(q12;p16)dn.ish der(Y)t(Y;4)(Yqh2-,WHSCR+). With FISH-analysis using WHS Region Probe (Cytocell, UK).

The patient had pathological unbalanced translocation and his final karyotype was 46,X,der(Y)t(Y;4)[q12;p16]dn.ish der(Y)t(Y;4)[Yqh2-,WHSCR+].

Conclusion: using different laboratory cytogenetic methods allowed to get a correct diagnosis, the family got appropriate genetic consultation and prenatal invasive diagnostics during following pregnancy.

P03.033
Impact of different chromosomal inversions on infertility
Department of Pediatrics, University of Tartu, Tartu, Estonia.

Objective: One of the frequent occurrences in chromosome rearrangements is inversion of different Chromosomes. An inversion does not usually have phenotypic effect in the majority of inversion heterozygous carriers, when it is a balanced rearrangement. However, infertility, miscarriages and/or chromosomally unbalanced offspring can be observed in carriers of either type of inversions especially per centric inversions.

Material and Methods: We investigated the karyotypes of 13017 fertile individuals being referred to Genetic laboratory of Roiny infertility institute between 2005 and 2011, using standard GTG banding.

www.esgh.org
P03.034
Mosaic trisomy 1q and Fryns-like phenotype
A. Rajaei, A. Kariminejad, R. Kariminejad, K. Najafi, S. Ghaderi-Sohi, M. Kariminejad; Kariminejad-Najmabadi Path. & Genetics Center, Tehran, Islamic Republic of Iran.

Fryns Syndrome is a lethal condition characterized by diaphragmatic hernia, coarse facial features, lung hypoplasia, cardiac defects, and the characteristic distal limb defects. Autosomal recessive inheritance has been suggested on the basis of occurrence in both sexes and recurrence in sibs with healthy parents. Cases with chromosomal abnormality have been reported with clinical findings very similar to Fryns syndrome. Duplication and or deletion of long arm of chromosome 1, and anomalies of chromosomes 15, 6 and 22 have been reported in cases with Fryns-like syndrome.

Herein, we reported a case of midtrimester fetus with multiple congenital anomalies. Prenatal ultrasound at 21 weeks of gestation demonstrated congenital hernia of diaphragm and hydrocephaly. Pregnancy was terminated and fetus was sent for autopsy, karyotyping and aCGH. Autopsy examination showed microphthalmia of left eye, hydrocephaly, hypoplasia of corpus callosum, left optic nerve hypoplasia, congenital hernia of diaphragm, micrognathia, dysplastic ears, lung hypoplasia (left lung), malformed uterus and right club foot. Chromosomal study showed mosaic female karyotype with a duplication 1q21→q41. Array comparative genomic hybridization (a-CGH) confirmed mosaic duplication of long arm of chromosome 1q21 to 1q41. The fetus has many of the clinical features of Fryns syndrome. Our case gives further evidence that 1q duplications are associated with a Fryns-like phenotype including congenital hernia of diaphragm, pulmonary hypoplasia, micrognathia, long philtrum and joint contractures.

P03.035
Mosaic interstitial duplication of the long arm of chromosome 20 associated with vertebral malformations as the only major phenotypic manifestation
B. Pater, K. Miller, B. Bobrova1, J. Weidemann2, J. Schmidtke1, M. Arslan-Kürschner1; 1Institute of Human Genetics, Hannover Medical School, Hannover, Germany, 2Department of Paediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany, 3Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.

Duplication of the long arm of chromosome 20 as the only chromosomal aberration is rarely described. Better known are reports on patients with a mosaic trisomy 20 or a rearranged chromosome 20 with additional imbalances. We report on a girl born in the 35th week of gestation to a 31 year old mother. The patient is the second child of healthy parents. Birth weight, length and ONA at the 50th and 75th centile were within the normal range according to the gestational week. The girl presented with some mild dysmorphic features, e.g. low set and dysplastic ears, short nose with depressed nasal root, simple philtrum and thin lips. Ultrasound of heart, abdomen and kidneys were normal while the corpus callosum was shortened and thicker than usually. Multiple vertebral anomalies, e.g. hemi as well as cleft vertebral and rib fusion were identified by radiography. Cytogenetic and molecular cytogenetic analysis revealed a mosaic female karyotype with a duplication of part of the long arm of chromosome 20 in 8% of blood cells. The karyotype is described as 46,XX, dup(20)(q11.2q12.1). The parents have normal karyotypes. Hemi and cleft vertebral as well as rib fusion have been described in cases with duplication 20 associated with other chromosomal imbalances. The present case helps to further establish the correlation of these malformations with duplication of a part of the long arm of chromosome 20.

P03.036
Chromosome kissing in association with the ATR-X syndrome
H. Tanabe1, T. Watabi2; 1The Graduate University for Advanced Studies (Sokendai), Kanagawa, Japan, 2Kanagawa Children’s Medical Center, Kanagawa, Japan.

ATR-X (X-linked α-thalassemia / mental retardation) syndrome is one of the syndromes associated with abnormal epigenetic gene regulation, which appears males with X-linked mental retardation, HbH disease, skeletal abnormalities, and autistic behavior. ATR-X syndrome is caused by a mutation in the ATRX gene localized on the X chromosome (Xq21.1), which encodes ATRX protein, one of the chromatin-remodeling proteins. However, the details of molecular mechanism with symptoms of this syndrome are still unknown. Here to learn more about the relationships between nuclear architecture and failure of epigenetic regulation in the ATR-X syndrome, we examined characteristics of spatial positioning of following three chromosome arm specific regions by 3D-FISH technique: 1) Xq (ATRX gene has mapped on), 2) 16p (HBA has mapped on), and 3) 11p (HBB has mapped on). A high image acquisition by confocal laser scanning microscope, analysis of relative spatial positioning of three painted regions was performed. The results showed that neighborhood association of particular two chromosome territory regions called as chromosome kissing was observed with high frequency between Xq and 16p and between 11p and 16p in cell nuclei from the ATR-X syndrome patients, respectively. The frequency of the same combination from the normal individual is approximately halved of them, respectively. Thus we considered that the spatial arrangement of nuclear architecture has been affected after one has been attacked with the ATR-X syndrome.

P03.037
Use of customised array CGH to investigate the sequence composition around the breakpoints of de novo CNVs according to their parental origin
S. Thomas, S. Laird, S. Huang, J. Crofta, P. Jacobs; Wessex Regional Genetics Laboratory, Salisbury, United Kingdom.

Among a large series of de novo CNVs identified by array CGH, we found the proportion of non-LCR-mediated imbalances (formed by non-allelic homologous recombination) to be significantly higher among paternally-derived CNVs. To investigate the contribution of repetitive sequences other than LCRs to the formation of CNVs, we refined the breakpoint intervals (BPIs) of 37 patients with de novo non-LCR mediated CNVs (18 maternal and 19 paternal) using an Oxford Gene Technology customised oligonucleotide array and screened the BPIs for the presence of homologous and/or repetitive sequences. Twelve BPIs (in 10 patients) could not be refined further due to the high repetitive sequence content. For the remaining BPI the average size was reduced from 113kb (range 14 - 391kb) to 2.6kb (121bp - 34kb). At least 17/36 maternal and 18/38 paternal breakpoints occurred within the intron of a gene. The majority (76%) of BPI contained at least one repetitive sequence element and for 8/18 maternal CNVs and 5/19 paternal CNVs, the same or similar repetitive sequence element was present at both BPI. However, for those CNVs where both breakpoints were mapped to intervals below 1kb, only 1/9 showed significant homology between the BPI. Therefore, although we have demonstrated the utility of large scale breakpoint mapping using customised array CGH, further work to try and determine the exact breakpoint site by junction fragment cloning will be required to assess the contribution of repetitive sequences other than LCRs to the formation of CNVs.

P03.038
A case of de novo complex chromosomal abnormality involving a (q33.1) and an interstitial deletion 5q33.1→q34) characterized by GTG banding, FISH and cCGH

Interstitial deletions of the long arm of chromosome 5 involving the region 5q33.1→q34 are rare occurrences. The clinical features of patients carrying similar deletions include dysmorphic facial features, such as epicantus, retrornogata, protruding left ear and asymmetric mouth, high-arched palate, four finger lines and clinodactyly of digits II and V on both hands. We report on a female child aged 13 presenting with development delay, hypertrichosis of the corpus callosum, hallux divaricatum of 3rd, 4th and 5th fingers, obesity, hepatic steatosis, vesicular lithiasis and bilateral macular changes. Classical karyotyping using high resolution GTG banding revealed a de novo complex rearrangement including three abnormal chromosomes: 5, 8 and 10: apparently there was an inversion in the long arm.
A de novo complex chromosomal rearrangement involving four chromosomes in an infertile male with oligospermia. Case report

Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for reproductive Biomedicine, ACECR, Tehran, Islamic Republic of Iran.

Purpose: Complex chromosomal rearrangements (CCR) are rare events involving more than two chromosomes and more than two breakpoints. They are usually associated with infertility or subfertility in male carriers. We examined a 29 year oligosperm man with a history of Varicocelectomy, normal testes size and normal endocrinology profile, who referred for chromosome analysis to genetic laboratory of Royan infertility institute.

Method: Chromosomal analysis was performed from peripheral blood lymphocytes cultured by GTG banding. Additional tools such as C banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome micro deletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed.

Result: The case was a complex chromosomal translocation: 46,XY(1;5;16;14;18)(q31.2;p13.2; q24.2-q21.2). No micro deletion in Y chromosome was detected. Just his monoygous twin brother has the same de novo reciprocal exchanges. The other siblings and parents were normal.

Conclusion: CCR are associated with male infertility as a result of the disruption of spermatogenesis due to complex meiotic configurations and the production of chromosomally abnormal sperm. In other words, it is likely that these chromosomal rearrangements might have influence in decreasing the number of sperms. To have a chance of healthy offspring, preimplantation genetic diagnosis (PGD) method is suggested.

Complex translocation involving 13, 15 and 16 chromosomes: a case report

L. Letica, R. Lasan Trsic, K. Crkvenac Gornik, I. Tonkovic Drurisevic, M. Mikloš, S. Huljev

Department of Genetics, Department of Pediatrics, University Hospital Centre, Zagreb, Croatia.

Complex chromosomal rearrangements (CCR) occurring in phenotypically normal persons are rare. CCR are usually considered to include severe reproductive impairment by disturbing the meiotic process and producing unbalanced gametes responsible for high reproductive risk. Most of CCR are reported to be de novo.

We report a case of a complex translocation in a 38 years old female with menopaue praecox and sterility. Conventional chromosomal analysis revealed an apparently balanced translocation involving 13, 15 and 16 chromosomes. This balanced complex translocation (BCT) involves three chromosomes and three different breakpoints. Molecular cytogenetic analysis with whole chromosome probes, centromeric and locus specific FISH probes showed breakpoints 1q22.1, 16p23.3 and 16p23.2. Carriage of balanced complex translocation have a high risk of having spontaneous abortions or a child with an unbalanced karyotype. Our patient was informed by genetic counselor.

High frequency of copy number abnormalities in adult patients with mental disabilities and psychiatric disorders

M. Viñas1,2, N. Baena, E. Gabrás1, C. Mata3, S. Estebar, N. Ribas1, R. Novell, M. Gautier4

1Genetic Laboratory, UDIAT-CD. Corporación Sanitaria Parc Taulí, Sabadell, Spain. 2Cellular Biology, Immunology and Physiology Department. Universitat Autònoma de Barcelona, Cardanyola, Spain. 3Pediatric Service. Corporació Sanitaria Parc Taulí, Sabadell, Spain. 4Specialized Service in Health Mental and Intellectual Disability. Parc Hospitalari Martí i Juliá, Girona, Spain.

Background: Copy number variants (CNV) are associated with a significant increased risk of diseases for the individual and/or their family members. They are contributing to the development of congenital anomalies, intellectual disabilities, spectrum autism disorder and other psychiatric disorders.

It is thought that the prevalence of psychiatric disorders among adults with intellectual disability is higher than in control population.

Methods: We analyzed a cohort of 100 adult patients affected by mild/moderate intellectual disability associated with psychiatric disorders and minor dysmorphic features. Genetic analysis included array comparative genomic hybridization (aCGH) (Agilent 40K), performed in 45 cases at present.

Results: We detected 89 rare and potentially pathogenic CNVs in 37 cases, with an average of 2.4 CNV/case (1-8). These CNVs include 184 genes (20 genes/CNV). At present, we can correlate known CNVs with intellectual disability and/or psychiatric disorders in 13 patients (31,1%). Deletions and duplications found in these cases are: del2p12, del2p16.3, dup3q29, del12p11.3, dup15q15q13, del15q13.1q13.3, dup5q25.2, del5q26.2, dup15qter, dup7q24.1q24.2, del22qter, and dup4q22.1. Genes responsible of psychiatric disorders and some of them also with intellectual disability are: NTNR2A, NRXN1, PKD, SOX5, GABRB3, CHRNA7, ADATM7, MCP2, APOH and SHANK3. Del12p16.3 is present in three patients and is the only recurrent CNV associated with psychiatric disorders. NRXN1 gene is related with susceptibility to autism, schizophrenia and mental retardation.

Conclusion: We most emphasise the high frequency of rare CNVs associated specially with psychiatric disorder in patients with mild/moderate intellectual disability. This work was supported by a grant of FIS (PI080778).

Detection of cryptic chromosomal rearrangements by BAC Genome Array-CGH in five patients, with normal and/or abnormal karyotypes, associated with Mental Retardation, Autism and/or Epilepsy: new insights for genotype/phenotype correlation

V. Gabras1, A. Milčík1, C. Montaldo2, A. Nucaro3

1Experimental Medical Pathology Department, Cabagli, Italy, Cabagli, Italy. 2Experimental Biology Department, Cabagli, Italy, Cabagli, Italy. 3Surgical Sciences Department, University, Cabagli, Italy, Cabagli, Italy, "Genetic and Biomedical Research Institute-CNR, Ciudadela Universitaria, Monserrato, Italy, Monserrato(Cabagli), Italy.

We re-examined ten patients with normal and/or abnormal karyotypes and dysmorphic features, associated with Mental Retardation, Autism and/or Epilepsy. We applied a fast BAC Genome Array-CGH platform (Cytochips Blue-gnome, Techno-genetics - Bouty). Cyto-Chips are high quality BAC microarrays (4898 BAC Clones spotted in quadruplicate 0.6 Mb). This approach led us to discover further cryptic chromosomal rearrangements, previously undetected by conventional cytogenetic procedures. We identified two genes: SLC8A3 (human gene for member 3 of solute carrier family 8), a sodium-calcium exchanger effectively expressed in the brain, and a possible candidate gene for epilepsy (Nucaro et al 2010) and the CSM1D1 gene (Cub and sushii multiple domains 1) a candidate gene for Autism associated with Mental Retardation (MR) and Epilepsy (Nucaro et al 2011). This approach allows us to better delineate the genotype/phenotype correlation in our patients. Our experience shows the validity of the BAC platform as a reliable method for genome-wide screening of chromosomal aberrations, as well as oligonucleotide-based Array CGH, in patients with idiopathic Mental Retardation and/or in association with Autism and Epilepsy.

A de novo interstitial deletion at 1p36.11 in a patient presenting with severe psychomotor delay, sensorineural hearing loss, congenital heart defect and dysmorphic features

V. Pottier1, A. Van der Auwera2, N. Baena2, E. Gabrás1, C. Mata3, S. Estebar, N. Ribas1, R. Novell, M. Gautier4

1Genetic Laboratory, UDIAT-CD. Corporación Sanitaria Parc Taulí, Sabadell, Spain. 2Cellular Biology, Immunology and Physiology Department. Universitat Autònoma de Barcelona, Cardanyola, Spain. 3Pediatric Service. Corporació Sanitaria Parc Taulí, Sabadell, Spain. 4Specialized Service in Health Mental and Intellectual Disability. Parc Hospitalari Martí i Juliá, Girona, Spain.

A de novo interstitial deletion at 1p36.11 was detected by arrayCGH (400K). In 45 cases at present.

Results: We detected 89 rare and potentially pathogenic CNVs in 37 cases, with an average of 2.4 CNV/case (1-8). These CNVs include 184 genes (20 genes/CNV). At present, we can correlate known CNVs with intellectual disability and/or psychiatric disorders in 13 patients (31,1%). Deletions and duplications found in these cases are: del2p12, del2p16.3, dup3q29, del12p11.3, dup15q15q13, del15q13.1q13.3, dup5q25.2, del5q26.2, dup15qter, dup7q24.1q24.2, del22qter, and dup4q22.1. Genes responsible of psychiatric disorders and some of them also with intellectual disability are: NTNR2A, NRXN1, PKD, SOX5, GABRB3, CHRNA7, ADATM7, MCP2, APOH and SHANK3. Del12p16.3 is present in three patients and is the only recurrent CNV associated with psychiatric disorders. NRXN1 gene is related with susceptibility to autism, schizophrenia and mental retardation.

Conclusion: We most emphasise the high frequency of rare CNVs associated specially with psychiatric disorder in patients with mild/moderate intellectual disability. This work was supported by a grant of FIS (PI080778).
either. Besides, the main clinical features of our patient are also common for 1p36 monosomy syndrome. The critical region for 1p36 monosomy syndrome is located at 1p36.33 and is 25 Mb proximally from the interstitial deletion at 1p36.11 detected in our patient. We predict that the overlapping phenotype of nonoverlapping deletions within 1p36 region could be caused both by haploinsufficiency of one or more genes because of their deletion and because of the disturbance of their expression by disruption of an essential regulatory element or position effect as the juxtaposition of a euchromatic gene with a region of heterochromatin. The expression studies of candidate genes, especially PIGV gene in cases of 1p36 deletions are indicated.

P03.044
A 3.8 Mb deletion in 10q11.21-q11.22 in a 7-year-old Iranian boy with mild dysmorphic features and developmental delay
A. Rajaei, A. Kariminejad, E. Afrozoua, M. Mirzaeejaz, K. Kariminejad, M. H. Kariminejad; Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran.

Here we report on a 7-year-old Iranian boy with mild dysmorphic features including high nasal bridge, low-set prominent ears. The patient also had developmental delay, mild intellectual disability, increased deep tendon reflexes, talipes equinovarus. Brain MRI performed on our patient showed fluid collections in temporal lobe beside of sylvian fissure compatible with arachnoid cyst. Whole genome BAC Array CGH was performed using CYTOCHIP genomic BAC array and showed a 3.8 Mb interstitial deletion on long arm of chromosome 10 encompassing bands 10q11.21-q11.22. Thirteen OMIM genes are located in this region. To date, ten patients with deletion of 10q11.22 documented with routine karyotyping, and an additional 19 patients with deletion of 10q11, overlapping 10q11.21-11.22 region, confirmed by array comparative genomic hybridization (aCGH) have been reported. Intellectual disability and developmental delay were the only clinical features common to all cases. Ataxia and increased deep tendon reflex, additional findings in our patient, were reported in only a few of the aCGH confirmed patients. Our case is of interest in that it is the first case of pure deletion of 10q11.21-q11.22 region.

P03.045
Difficulties in the molecular diagnosis of a patient with features of 1p36 deletion
A. Jezela-Stanek, M. Kucharczyk, A. Gatkowska, M. Pelc, K. H. Chrzanowska, M. Krajewska-Walasek; Department of Medical Genetics, The Children’s Memorial Health Institute, Warsaw, Poland.

Deletion 1p36 is one of the most common subtelomeric aberration with an estimated incidence of 1 in 5 000 to 1 in 10 000 live births. It is characterized by severe developmental delay, microcephaly with distinct facial phenotype which is often accompanied by internal organs malformations and seizures. We present a case of 8-year-old boy with multiple congenital anomalies/mental retardation in whom neither classical G-banding karyotype nor FISH for 1p36 deletion and subtelomeric MLPA test revealed any aberration. He presents with aggressive behavior, craniofacial features consisting of microbrachycephaly, straight eyebrows, deep-set eyes, epicanthal folds, micrognathia, microphalangy of fingers, 4th and 5th metacarpals and metatarsals hypoplasia, broad and flat nasal bridge, long philtrum, pointed chin, small low-set ears, hypertelorism, strabismus. The patient also had spastic quadriplegia, spasticity and ataxia. Brain MRI performed at ages 5 and 6 showed fluid collections in temporal lobe beside of sylvian fissure compatible with arachnoid cyst. Whole genome BAC Array CGH was performed using CYTOCHIP genomic BAC array and showed a 3.8 Mb interstitial deletion on long arm of chromosome 10 encompassing bands 10q11.21-q11.22. Thirteen OMIM genes are located in this region. To date, ten patients with deletion of 10q11.22 documented with routine karyotyping, and an additional 19 patients with deletion of 10q11, overlapping 10q11.21-11.22 region, confirmed by array comparative genomic hybridization (aCGH) have been reported. Intellectual disability and developmental delay were the only clinical features common to all cases. Ataxia and increased deep tendon reflex, additional findings in our patient, were reported in only a few of the aCGH confirmed patients. Our case is of interest in that it is the first case of pure deletion of 10q11.21-q11.22 region.

P03.048
A 25 Mb Deletion of Chromosome 4q13.2-q23.2 in a Male Fetus with severe skeletal abnormalities
M. Mirzaeejaz, A. Kariminejad, A. Rajaei, K. Najafi, K. Kariminejad, S. Ghaderi-sohi, M. H. Kariminejad; Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran.

We report on a 20-week-old male fetus with interstitial deletion of the long arm of chromosome 4q13.2-q23.2. Ultra-sound examination at 19 weeks revealed multiple congenital anomalies and therapeutic abortion was performed at 20 gestational weeks. Fetus was sent for autopsy examination and aCGH study. Autopsy examination revealed micromelia of upper and lower limbs, long philtrum, micrognathia, small low-set ears, hypertelorism, abnormal segmentation of both hind and renal agenesis. Radiology showed triangular shaped hypoplastic ossification representing the humerus. There was absent ossification of the radius and ulna with marked micromelia of all long bones. In the lower extremities, a thin single ossification of the femur with absence of a severely hypoplastic tibial anlage was seen. The pelvis was tiny, high, narrow ileum and only ischial ossification was present. The skull showed a posterior ossification defect. The thorax showed

Deletions involving chromosome 1q43q44 generate a recognizable phenotype, including psychomotor retardation, characteristic dysmorphic features, microcephaly, hypoplasia or agenesis of the corpus callosum and various other anomalies.

Obregia "Clinical Hospital of Psychiatry", Bucharest, Romania.

Obregia et al. Because of our patient’s early death we will not know if there would have been a mental retardation or behavior abnormality. The 5.7 Mb deleted segment identified in our patient encompasses at least 81 genes and 9 miRNAs.

Our case adds new information to characterize the phenotype of patients with rare proximal microdeletion (20q).
Clinical consequences of 8pter deletion - new case of a girl with subtle facial dysmorphism and moderate mental retardation

A. Gutkowska, A. Kucharczyk, M. Pole, M. Kogusdo, M. Jędrzejewska, M. Krajewska-Wałasek;
The Children’s Memorial Health Institute, Warsaw, Poland.

Microscopically visible 8pter deletions are associated with growth and mental impairment, minor facial anomalies, congenital heart defect and behavioral problems. Submicroscopic subtelomeric 8p deletion is fairly uncommon. The patients either with microcephaly, normal facial appearance, mild mental retardation or clinical phenotypes of autism were described. One could speculate that there is strong correlation between the clinical phenotypes and the size of 8pter deletion.

We present a case of pure 8pter deletion found in a 17-year-old girl with microcephaly, mild dysmorphic features, developmental delay, moderate mental retardation, facial and limb anomalies, and failure to thrive. In her family history there were no cases of neither miscarriages nor mental retardation.

CGH classic study revealed no visible aberrations, but no high resolution analysis was performed. The diagnosis of deletion of 8pter region was established by MLPA, confirmed by FISH and delineated by array-CGH. Our patient has the terminal deletion of the 8p with the proximal breakpoint at 10075000 bp in band p23.1. The deleted region has the size of ~ 10.1 Mb and contains 154 genes possibly involved in the phenotype of our patient. Examination of the mother did not show this deletion, the father was unavailable for this study. Our report shows that the clinical phenotype of 8p deletion is determined not only by the size and location of the deleted region but also by other factors.

The study was partially supported by the grant of the Polish Ministry of Science and Higher Education (Contract No 0605/B/P01/2009/37).

P03.050

Multiple Genomic Rearrangements in a consanguineous family

1 Carmona de Mota’s Pediatric Hospital - CHUC, Coimbra, Portugal; 2 Cytogenetics Laboratory - Faculty of Medicine, University of Coimbra, Coimbra, Portugal.

Introduction

The birth prevalence of congenital disorders in children of first-cousin parents is about double of the general population (4-5%). Some cases can be explained by the cumulative inheritance of susceptibility genetic variation, including unbalanced genomic rearrangements.

Clinical Report

The proband, a 2 year-old boy, born to consanguineous parents (r=1/8), was referred to the medical genetics clinic due to global psychomotor development delay, unspecific facial dysmorphism, oesophageal atresia and failure to thrive. Since there was a family history of learning difficulties, the parents and the siblings were also studied. The etiologic investigation revealed a heterozygotic 19q13 deletion on subtelomeric MLPA analysis in the proband, in both affected parents and in the two healthy sisters, and a 19q13nullisomy in the older brother. As this was the more severely affected member an arrayCGH was performed which revealed a 1p33 duplication and a 3p21.31 duplication. The parents’ arrayCGH identified a 1p33 duplication in both parents and a 3p21.31 duplication in the mother.

Proper genetic assessments were performed to all members and array-CGH analysis is being carried out to the proband and his sisters.

Discussion/Conclusion

Co-inheritance of genomic abnormalities may explain the developmental disorders and cognitive deficits in this family. The affected genomic regions include putative relevant genes, such as CHIMP2A, which participates in cell cycle progression regulation, NSUN4, which interferes with DNA methylation and TREX1 that interferes in cell apoptosis. It is likely that the cumulative effect of aberrations contributes more pronounced clinical phenotypes. Genotype-phenotype relation is under investigation and will be discussed in the presentation.

P03.051

ArrayCGH characterization of a deletion on 2q13 associated with developmental delay and facial dysmorphism (case report)

I. Slanové1, E. Zrnova-Hladilkova1, T. Baray2, V. Vranova2, S. Prasilova1, E. Frengen3, P. Kuglik1,2;
1 Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Brno, Czech Republic; 2 Department of Medical Genetics, University Hospital, Brno, Czech Republic; 3 Department of Medical Genetics, Oslo University Hospital, Ullevål, Norway, Oslo, Norway.

Genomic imbalances play a major role in the pathogenesis of many human genetic diseases. The modern genome-wide analysis tools (such as array-CGH) have led to the discovery of novel copy-number variations (CNVs); many of them are known to be associated with diseases. Recently, CNVs at 2q13 have been described in literature and the DECIPHER database as increasing risk for developmental delay and cranial facial dysmorphism.

Here we present on a case with de novo dic(8;8)(p11.23::p11.23->q11). An eight years old boy was referred for genetic studies. He had microcephaly, autism, developmental delay, mental retardation, a dysmorphic face, joint problems and failure to thrive. Since there was a family history of learning difficulties, the parents and the siblings were also studied. The etiologic investigation revealed a heterozygotic 19q13 deletion on subtelomeric MLPA analysis in the proband as normal.

We present a case of pure 8pter deletion found in a 17-year-old girl with microcephaly, mild dysmorphic features, developmental delay, moderate mental retardation, facial and limb anomalies, and failure to thrive. In her family history there were no cases of neither miscarriages nor mental retardation. Inherited chromosomal aberrations from parents in which the variant was insufficient to cause such disease might be still causative for a pathological phenotype in the next generation. The mother and the grandmother had normal phenotype (except a mother’s speech delay in childhood). Distinguishing pathogenic and benign CNVs is still challenging in the clinical practice.

Trisomy 8p11.23 as a result of a dicentric chromosome 8

S. Midya1, A. Horshannisyan1, A. Gasparany1, E. Klein1, T. Liehr2, H. Mørkmyr1,
1 Center of Medical Genetics and Primary Health Care, Yerevan, Armenia; 2 Iena University Hospital, Institute of Human Genetics, Jena, Germany.

Here we present on a case with de novo dic(8;8)(p11.23::p11.23->q11). An eight years old boy was referred for genetic studies. He had microcephaly, autism, developmental delay, mental retardation, dysmorphic face, joint problems and chest deformation. GTG banding analyses of the index patient and his parents were done according to standard protocol. The parents karyotypes were normal. To characterize the aberrant chromosome 8 found in the patient fluorescence in situ hybridization (FISH) was performed using centromeric probe for chromosome 8 and subcentromeric probes set (partial chromosome paint probes for 8p and 8q, BAC probes RP11-503A24 located on 8p11.21, RP13-116A4 located on 8q11.21 and centromeric probe). The dicentric chromosome 8 with duplication of a small region 8p1.23 was discovered.

Partial trisomy 8p is a relatively frequent anomaly as this can be result of an inversion-duplication or be found in the offspring of balanced translocation carriers; different breakpoints related to 8p have been reported, even though genes from the olfactory receptor gene family are involved more frequently. Still, there are controversial information about clinical features of these patient. In the SMC database (http://www.fish.uniklinikum-iona.de/SMChtm) cases with duplication of the same region with and without clinical findings are described. Our report provides one more case with features which shares some common clinical descriptions of partial trisomy 8p syndrome. Supported in parts by DFG (LI 820/38-1) and the Else Kröner-Fresenius-Stiftung (2011, A42).

Atypical chromosomal rearrangements in Down syndrome - clinical and cytogenetic study

S. Popa1, C. Rusu1,2, M. Gramescu1, R. Popescu1, R. Ciorucea1, M. Gramescu1, V. Vasilica1, E. Graur1,
1 University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania; 2 “Sf Maria” Children’s Hospital, Iasi, Romania; 3 “Cuza Voda” Obstetrical Hospital, Iasi, Romania.

Down syndrome (DS) is one of the most common genetic disorder, and is caused by complete or partial 21 chromosome trisomy. The incidence of DS has a wide geographic variation, and is related directly to prenatal medical care assistance (country economic status). A variety of chromosomal abnor-
Severe phenotype in a child with inverted duplication 10q24.1>q26.3:
profitably on the involvement of 10q24.2 suggesting a dosis effect in
unbalanced fashion. Here we report on microarray analysis of a large de
novo inverted 10q duplication & subtelomer deletion.

Case report. The female patient was term-born, small for gestational age,
refered because of growth and psychomotor delay, microcephaly, severely
handicapped vision due to right-sided microphthalmia, coloboma of the iris
and choirodea, small palpebral fissures and bilateral ptosis, ventricular
arrhythmias and atrial septum defect.

Lab results. GTG studies with a lymphocyte culture showed an extended long
arm of chromosome 10. FISH using wcp 10 and subtelomic probe 10q revealed
the extra material to be exclusively derived from chromosome 10q and
lack of the subtelomeric region 10q, respectively. Microarray inversion
affirmed the 10q24.1-q26.3 duplication and adjacent subtelomic deletion
including a 6kb single copy stretch within the duplicated segment.

Conclusion. The clinical severity of chromosome 10q duplication seems to
depend particularly on the involvement of 10q24 suggesting a dosis effect in
the respective genes. The subtelomeric deletion most likely does not in-
fluence the phenotype. This report adds to the still few patients with 10q
duplication delineated by array methods and the increasing understanding of
phytype-phenotype correlations. Also, our results provide molecular evidence
for the inverted long copy repeat model postulated by Bonaglia (2000).

We focus our study on the latter 5 cases that present atypical cytogenetic DS,
ink to illustrate some rare variants of chromosomal abnormalities and
cytogenetic particularities. Each individual case is compared to literature
data.

P03.054 Mosaic interstitial duplication 14q
K. Hansen1, C. Ruivenkamp1, A. Gijbbers1, L. Rövekamp-Abel1, L. Smitt1, M. Laurense-
Blik1, K. Heijboer1, M. Kriek1, M. Koopmans1, L. M. E. Smitt1;1, Leiden University Medical
Centre, Leiden, Netherlands, 2, Juliana Children’s Hospital, The Hague, Netherlands.

Intertstitial duplications in the long arm of chromosome 14 are rarely en-
countered. We report a male patient who was born with multiple congeni-
tal anomalies. The patient had microcephaly with structural brain abnor-
malities on MRI, polykydycic kidneys, a VSD and an ASD. Newborn hearing
screening showed mild-moderate hearing loss. He had low-set, posteriorly
rotated dysplastic ears and a cleft of the soft palate. Furthermore a sacral
dimples was present, a small penis and overlapping toes of the left foot with
of proximal placement of the 5th toe.

Conventional karyotyping demonstrated a mosaic (95%) interstitial duplica-
ion in the long arm of chromosome 14. SNP array analysis was performed to
categorize the duplication in more detail. Both parents had a normal
karyotype. Detailed molecular characterizations and reports of chromoso-
mal imbalances in combination with clinical phenotypes are important for
accurate genotype-phenotype correlations in genetic counseling.

P03.055 A new case with de novo proximal duplication of 10q11.21q21.3
H. Mirtchyan1, S. Midyan1, A. Gasparyan1, T. Liehr2, H. Mirtchyan1;1, Centre of Medical
Genetics and Primary Health Care, Yerevan, Armenia, Jena University Hospital, Institute of
Human Genetics, Jena, Germany.

Here we report on a case with de novo duplication of proximal 10q11.2 to
10q21.3. An eleven months boy with developmental delay was referred for
遗传性 studies. The patient was the first child of a healthy, non-consan-
guineous parent. He presented with microcephaly, deep set eyes, arched pa-
te, hypertelorism, strabismus, down slanted corners of the mouth, hypotro-
phy and motor development delay. Cardiac problems included coarctation
of aorta and open arterial duct. His right hand showed an absence of the
middle metacarpal bones.

The patient karyotype was 46,XY,dup(10)q(10q24.3-qter)dn. To characterize the
der(10) fluorescence in situ hybridization (FISH) was applied using whole chromosome painting, multicolour banding (MCB) and subcentromeric specific probe sets for chromosome 10. Finally, the aberration was described as dup(10)[q10.21q21.3]. To the best of our knowledge only seven-
teen cases with proximal duplication 10q11-1q22 were reported, yet. All of
them had common dysmorphic features, cardiac or renal defects. Our pati-
ent shares some of these features but others as kidney defects, muscle hypo-
or hypertonia, feedings difficulties are absent. In conclusion, only molecular
cytogenetics allows us to precisely describe aberrant chromosomes; here we
report a new case with proximal duplication 10q11 to q21.3 without in-
volving chromosomal band q22 as in other previously found cases. Supported
in parts by DFG (LI 820/38-1).

P03.056 Severe phenotype in a child with inverted duplication 10q24.1-q26.3:
array-based evidence for the inverted long copy repeat model
O. Rittinger, S. Kalh, G. Kronberger, I. Vlasak, G. Sander; Universitätssie, rKinder- und Jugendheil, Salzburg, Austria.

Malformations can be associated with this disorder. In the last 10 years in the Cytogenetic laboratory of University of Medicine and
Pharmacy ‘Grigore T. Popa’ last were performed 2491 constitutional karyotypes with G banding and were confirmed cytogenetically 571 cases
with DS. From the number of diagnosed patients we discriminate: (i) 510 cases (89.00%) with homogenous trisomy of chromosome 21 (from these
five cases also present chromosome 9 inversion); (ii) 31 cases (5.41%) with chromosome 21 trisomy in mosaic without translocations; (iii) 25 cases
(4.36%) with unbalanced Robertsonian translocations between the follow-
ing groups of chromosomes: 14 and 21 (14 cases), 21 and 21 (6 cases),
13 and 21 (3 cases), 15 and 21 (one case), 22 and 21 (one case); (iv) 4 cases
(0.87%) with different abnormalities other than chromosome 21 trisomy: one
case of chromosome 21 inverted duplication, one case of chromosome 21
dicentric, one case of chromosome 21 insertion into chromosome 18, and
two cases involving one or more translocations of chromosomes other than
chromosome 21.

We focus our study on the latter 5 cases that present atypical cytogenetic DS,
ink to illustrate some rare variants of chromosomal abnormalities and
cytogenetic particularities. Each individual case is compared to literature
data.

Background. Duplication of the distal long arm of chromosome 10 causes a
clinically recognizable dysmorphic syndrome. Most patients are severely
mentally retarded. Congenital malformations including microphthalmia and
heart defects are suggested to occur only in larger duplications including
q24. Generally the neurocutaneous anomaly is caused by a translocation in an
unbalanced fashion. Here we report on microarray analysis of a large de
novo inverted 10q duplication & subtelomer deletion.

In conclusion, only molecular

...ent shares some of these features but others as kidney defects, muscle hypo-
or hypertonia, feedings difficulties are absent. In conclusion, only molecular
cytogenetics allows us to precisely describe aberrant chromosomes; here we
report a new case with proximal duplication 10q11 to q21.3 without in-
volving chromosomal band q22 as in other previously found cases. Supported
in parts by DFG (LI 820/38-1).

P03.056 Severe phenotype in a child with inverted duplication 10q24.1-q26.3:
array-based evidence for the inverted long copy repeat model
O. Rittinger, S. Kalh, G. Kronberger, I. Vlasak, G. Sander; Universitätssie, rKinder- und Jugendheil, Salzburg, Austria.

Malformations can be associated with this disorder. In the last 10 years in the Cytogenetic laboratory of University of Medicine and
Pharmacy ‘Grigore T. Popa’ last were performed 2491 constitutional karyotypes with G banding and were confirmed cytogenetically 571 cases
with DS. From the number of diagnosed patients we discriminate: (i) 510 cases (89.00%) with homogenous trisomy of chromosome 21 (from these
five cases also present chromosome 9 inversion); (ii) 31 cases (5.41%) with chromosome 21 trisomy in mosaic without translocations; (iii) 25 cases
(4.36%) with unbalanced Robertsonian translocations between the follow-
ing groups of chromosomes: 14 and 21 (14 cases), 21 and 21 (6 cases),
13 and 21 (3 cases), 15 and 21 (one case), 22 and 21 (one case); (iv) 4 cases
(0.87%) with different abnormalities other than chromosome 21 trisomy: one
case of chromosome 21 inverted duplication, one case of chromosome 21
dicentric, one case of chromosome 21 insertion into chromosome 18, and
two cases involving one or more translocations of chromosomes other than
chromosome 21.

We focus our study on the latter 5 cases that present atypical cytogenetic DS,
ink to illustrate some rare variants of chromosomal abnormalities and
cytogenetic particularities. Each individual case is compared to literature
data.
Partial duplications of the short arm of the X chromosome (Xp) in males result in intellectual disability, facial dysmorphism, and variable malformations. In females, a normal phenotype should be expected if the abnormal X chromosome is preferentially inactivated. Recently, duplications of X encompassing band p11.2 were found in females with developmental delay and other anomalies. Unexpectedly, most of them showed preferential activation of the duplicated X chromosome.

Clinical Report and Genetic Findings:
We describe female twins of twenty-five months of age with developmental delay, seizures, EEG and MRT abnormalities, and facial dysmorphism. Both children were sociable and smiled frequently. The first child had a small atri septum defect, the second had a patent foramen ovale and a dilated renal pelvis. SNP-Array analysis in one child and both parents showed a de novo ~5 Mb duplication of Xp11.23-p11.3 in the child. Subsequent FISH analysis confirmed this duplication in both children. The twins showed selective inactivation of the normal X chromosome in more than 80% of blood cells.

Discussion:
The described twins have phenotypic features in common with other males and females carrying a partially overlapping Xp duplication. These individuals have developmental delay, seizures, EEG abnormalities, similar behavioral phenotypes and facial dysmorphism. The described twins as well as almost all reported affected females show selective inactivation of the normal X chromosome, suggesting that increased expression of a gene within the common duplicated region leads to skewed X-inactivation. Functional disomy for genes within the duplication results in the described phenotype.

P03.059
A de Novo 5 Mb duplication of Xp11.23-p11.3 with non-random X inactivation: Clinical report of female twins and molecular cytogenetic characterization
C. Evers1, J. W. G. Janssen1, A. Jauch1, K. Hinderhofer1, B. Maas1, U. Haug1, U. Moog1; 1Institute of Human Genetics, Heidelberg University, Heidelberg, Germany, 2Center for Child Neurology and Social Pediatrics Maulbronn, Maulbronn, Germany.

Introduction:
Partial duplications of the short arm of the X chromosome (Xp) in males result in intellectual disability, facial dysmorphism and variable malformations. In females, a normal phenotype should be expected if the abnormal X chromosome is preferentially inactivated. Recently, duplications of X encompassing band p11.2 were found in females with developmental delay and other anomalies. Unexpectedly, most of them showed preferential activation of the duplicated X chromosome.

Clinical Report and Genetic Findings:
We describe female twins of twenty-five months of age with developmental delay, seizures, EEG and MRT abnormalities, and facial dysmorphism. Both children were sociable and smiled frequently. The first child had a small atri septum defect, the second had a patent foramen ovale and a dilated renal pelvis. SNP-Array analysis in one child and both parents showed a de novo ~5 Mb duplication of Xp11.23-p11.3 in the child. Subsequent FISH analysis confirmed this duplication in both children. The twins showed selective inactivation of the normal X chromosome in more than 80% of blood cells.

Discussion:
The described twins have phenotypic features in common with other males and females carrying a partially overlapping Xp duplication. These individuals have developmental delay, seizures, EEG abnormalities, similar behavioral phenotypes and facial dysmorphism. The described twins as well as almost all reported affected females show selective inactivation of the normal X chromosome, suggesting that increased expression of a gene within the common duplicated region leads to skewed X-inactivation. Functional disomy for genes within the duplication results in the described phenotype.

Here a new fluorescence in situ hybridization (FISH)- based probe set is presented and its possible applications are highlighted in thirty-four exemplary clinical cases. The so-called pericentric-ladder-FISH (PCL-FISH) probe set enables a characterization of chromosomal breakpoints especially in those cases in which supernumerary marker chromosomes (sSMC), but can also be applied in large inborn or acquired derivative chromosomes. PCL-FISH was established as 24 different chromosome-specific probe sets and can be used in two- up multicolor-FISH approaches. PCL-FISH enables the determini- on of a chromosomal breakpoint with a resolution between 1 and ~10 megabases and is based on locus-specific bacterial artificial chromosome (BAC) probes. Thus, PCL-FISH leads to a better resolution than most FISH- targeting approaches. In 29 sSMC cases, we could study the breakpoint of the inactivation with the described FISH probe set and were able to assign a breakpoint region in almost all cases.

P03.060
Late innovations in oligo FISH enable high resolution detection
S. Fulmer-Smcentek1, M. Ruvolo1, V. Kulkarni1, P. Tsang2, P. Gasta1, N. Faravashi1, A. De Witte1, M. Srinivasan1, E. LeProust1, 1Agilent Technologies Genomics, Santa Clara, CA, United States, 2Agilent Laboratories, Santa Clara, CA, United States.

The discovery of complex structural variations that exist within individual genomes has prompted a need to visualize chromosomes at a higher resolution than previously possible. In response to the need for such high-resolution visualization, we have developed a new generation of fluorescent in situ hybridization probes targeting specific regions of the genome. These new probes, Agilent SureFISH probes, are designed using an in silico strategy that specifically avoids placing oligonucleotides in repetitive regions of the genome, allowing for highly specific detection of the region of interest. Each SureFISH probe is designed to a specific region of the genome and is generated from complex libraries containing hundreds to thousands of unique high-quality long oligonucleotides. The resulting probes provide high resolution and enable users to detect aberrations in targeted regions of the genome as well as aberrations near highly repetitive elements. Because Agilent SureFISH probes are designed for specific, non-repetitive, regions of the genome, they provide superior resolution as compared to other available technologies.

P03.061
How to narrow down chromosomal breakpoints in small and large derivative chromosomes - a new probe set
M. Voigt1
1Jena University Hospital, Institute of Human Genetics, Jena, Germany.
Hyperpectral Imaging of Chromosomes: A New Approach for Label Free Karyotyping

S. Luckow, A. Lorenz, K. Rebner, R. W. Kessler; Reutlingen Research Institute, Process Analysis and Technology, Reutlingen University, Reutlingen, Germany.

Staining techniques are routinely used to identify metaphase chromosomes based on their unique banding pattern. Advanced molecular cytogenetic techniques like Fluorescence-In-Situ-Hybridization (FISH) provide a more sensitive tool for complex and small structural aberrations. In both cases a broad expert knowledge is necessary to understand and diagnose diseases. We have developed a new technique for fast and label free karyotyping using a Hyper spectral Imaging System (HSI) which can be easily integrated into a standard light microscope. With this system we measure the stray light interference pattern of an unstained chromosome or substrates of the chromosome with a diode array spectrometer. The complex spectra can be interpreted as spectra of “nanostructured particle arrays” of different size and refractive indexes. The signature of each spectrum is due to the superposition of the interference pattern of the different layer thicknesses, the spectral interference of the band pattern and changes in refractive indexes along the chromosome axis. The hyper spectral data can be analyzed using multivariate data analysis and the chromosomes can be classified by their individual spectral features.

The results are confirmed with model particle array measurements. These measurements show strong correlation with calculated interference spectra. Furthermore, FDTD (Finite Difference Time Domain) simulations of metaphase chromosomes confirm the photon diffusion pattern as well. Substructures of chromosomes can also be analyzed by Near Field Spectroscopy (imaging beyond diffraction limit) measuring the stray light pattern of substructures of chromosomes as small as 50 nanometers.

Low level mosaicism of chromosomal aneuploidies in intellectual disability

R. Chevret, R. Riera-Baldinger, D. Bartholdi, S. Azzarello-Burri, D. Niedrist,
1Institute of Medical Genetics, University of Zurich, Switzerland, Zurich, Switzerland,
2Institute of Human Genetics, Friedrich-Alexander University of Erlangen- Nurnberg, Erlangen, Germany
3Department of Hematology, Medical University, Innsbruck, Austria

It has been shown that oligonucleotide array comparative genomic hybridization (array-GH) allows the identification of mosaic aberrations. The detection sensitivity was reported to correlate with aberration size. We used a high resolution array to molecular karyotype 73 patients with intellectual disability. In 47/3 (5.5%) patients, mosaicism was found. The first one for chromosome 18 of 21 Mb, with a copy number variant of 1.7, indicating a deletion mosaicism. The second and the third one for chromosomes X and 3, of 18 Mb and 19 Mb, respectively. The copy number level was for both 2.3, pointing to a trisomy mosaicism. In the last case, a trisomy 14 in mosaic form was detected, with a copy number level of 2.4. Importantly, this finding matched, perfectly the phenotype, which reflected the mosaicism on the skin. Despite the size of this aneuploidy, it had gone unrecognized with classical karyotyping due to the low mosaic rate and possibly due to selection that might occur during culturing the lymphocytes. For the first three cases, we performed a fluorescence-in-situ-hybridization (FISH) and we confirm the mosaic aneuploidy. The abnormality was detected in 4/26 (15%), 1/31 (3%) and 6/41(15%) metaphases, respectively.

Our findings demonstrate the power of molecular karyotyping using high resolution arrays to detect low level mosaicism, which would go undetected using classical karyotyping. Moreover, they raise the question whether low level mosaicism of certain chromosomal regions are indeed the cause of some cases of intellectual disability and warrant further investigation.

Evaluation of the SNP 6.0 Array for molecular karyotyping in patients with intellectual disability

M. Zweier, J. Hoyer, S. Lebe, A. R. Ehrlich, A. Reit, A. Rauch; 1
1Institute of Medical Genetics, University Erlangen-Nuremberg, Erlangen, Germany
2Institute of Medical Genetics, University of Zurich, Switzerland

In the last years molecular karyotyping has evolved into a common technique for diagnostic testing in patients with intellectual disability (ID). It has been shown that high resolution array systems uncover apparently pathogenic copy number variations (CNVs) in up to 15 % of patients with ID and normal conventional karyotype.

In this study we analyzed 79 patients with intellectual disability with the Affymetrix 6.0 SNP array and scored CNVs with a minimum size of 100 kb and 5 markers. We detected a total of 655 aberrations with a mean of 10.82 CNVs per patient. A group of 830 molecularly karyotyped patients. We report here the clinic findings and cytogenetic analysis of a girl with mental retardation. The child has a clinic who should suspect a chromosomal aberration because she has a developmental delay, hypotonia and dysmorphic features. Standard cytogenetic techniques and FISH analysis using painting and locus specific probes were performed to identify and characterize the chromosomal anomaly. A supernumerary marker chromosome formed by the inverted duplication of proximal chromosome 15q was identified. FISH using chromosomal 15 specific centromeric probes (Spectrum Green,CEP 15q11.2.D5ST1) and SNP, UBE3A and PML genes confirmed the duplication of 15q11-13 region in the dicentric marker chromosome. The critical region involved in duplications is a gene-rich region that comprises the three y-amino butyric acid (GABA) A-receptor subunit genes (GABRB3, GABRA5, and GABRG3). These subunit genes may contribute to the clinical picture. In fact, even if it is still unclear how GABAergic neuromodulators influence the developing brain, alterations of this system may cause both epilepsy and behavior problems to occur. Therefore, unexpected prenatal diagnosis, for maternal age or serum screening, of such a chromosomal abnormality would certainly lead to difficulties in genetic counselling and prognosis.
Cocchella et al. evaluated the effects of dexamethasone on the development of heart abnormalities and facial dysmorphisms in a mouse model.

D. Bondavalli et al. described a patient with a de novo 7 Mb deletion in the short arm of chromosome 13.4 Mb at 9p23-p24.3.

Our patient presented more severe clinical features and a deletion larger in size than the parental paracentric inversions.

We used microarray (Affymetrix) to define 12 cases of cytogenetically diagnosed terminal deletions with breakpoints at 3p25.3, 5p15.3, 5p15, 6q25.3, 7q34, 9p23, 10p13, 10q26.3, 10q26.12, 15q26.1, 18p11.2, 18p22.3.1.

Pure interstitial deletions were confirmed in 9 cases. Inv dup del was diagnosed in one patient, with a terminal deletion of 13.4 Mb at 9p23-p24.3 accompanied by a contiguous, 82 kb duplication at 9p22.2-p23.

In conclusion, we identified potentially disease causing CNVs in 22.8% of affected individuals, exceeding the prognosticated rate.

PO3.069

A 7 Mb microdeletion in chromosome 2 band p13.3p15 associated with developmental delay, heart abnormalities and facial dysmorphisms

D. Bondavalli, V. Uliana, M. Malacarne, P. Forzano, E. Di Maria, C. Marcianno, A. Cosci, G. Viola, M. Loizzo, M. Mocchegiani, F. Coletti

Division of Medical Genetics, Galliera Hospital, Genova, Italy, 1Laboratory of Genetics, Galliera Hospital, Genova, Italy, 2Dept. of Health Sciences, University of Genova, Genova, Italy.

We report on a patient with a de novo 7 Mb deletion in the short arm of chromosome 2 from band 13.3 to 15. The proband, a girl, presented congenital heart abnormalities, mental retardation and craniofacial dystrophy with a characteristic phenotype. In conclusion, we identified potentially disease causing CNVs in 22.8% of affected individuals, exceeding the prognosticated rate.

PO3.070

A new interstitial deletion of the long arm of chromosome 4 (q13.2:q13.3) in a girl with growth hormone deficiency

Servicio de Pediatría-Hospital Clínico Universitario “Lozano Blesa”, Zaragoza, Spain, 1Dpto. Fisiología, Facultad de Medicina-Universidad de Zaragoza, Zaragoza, Spain.

We report on a patient with a de novo 2p14p deletions. One patient with a de novo 2p14 deletion was reported in ECARUCA database.

Our patient presented more severe clinical features and a deletion larger in size than patients reported to date.

We suggest that the complexity of our phenotype is caused by the haploinsufficiency of several genes in the region or by different molecular mechanisms described in chromosomal rearrangements, such as impaired expression patterns.

PO3.071

How common are the cryptic inverted duplication deletion rearrangements among cytogenetically visible terminal deletions?

I. M. Bradinova, R. Vazharova, S. Bichev, S. Andonova, V. Bojinova, A. Savov, I. Kremensky

Isochromosome 18p is a rare chromosomal disorder that occurs once in about every 14 000 live births, affects males and females equally and results in tetrasomy 18p. Most of the cases are due to a de novo formation but in the literature familial cases were reported. The phenotype of tetrasomy 18p has been primarily delineated by published case series and reports. Findings reported in more than 25% of these cases include neonatal feeding problems, growth retardation, microcephaly, strabismus, muscle tone abnormalities, scoliosis/kyphosis, and variants on brain MRI. Developmental delays and cognitive impairments have been described.

Marker chromosomes are seen in the 0.06% of the population and are small chromosomal rearrangements characterized by the presence of terminal deletions with contiguous interstitial duplications. They originate through asymmetrical breakage of a dicentric intermediate, formed after the repair of a double strand break. Some, like the inv dup 8p, are recurrent and mediated by either paracentric or pericentric inversions.

Non-recurrent inv dup dels have been described for many chromosome arms, usually with the cytogenetically visible duplicated region longer than the deleted one. Inv dup dels associated with large deletions and small duplications can be misdiagnosed cytogenetically for pure terminal deletions, with consequences for genotype-phenotype correlations and patient management.

We used microarray (Affymetrix) to define 12 cases of cytogenetically diagnosed terminal deletions with breakpoints at 3p25.3, 5p15.3, 5p15, 6q25.3, 7q34, 9p23, 10p13, 10q26.3, 10q26.12, 15q26.1, 18p11.2, 18p22.3.1.
diagnosis in such patients. Here, we report a young female with dysmorphic features as microcephaly, dolichocephaly, high arched palate, low-set ears, open mouth appearance, high palate and long philtrum, clinodactyly, presenting a small metaeucentric chromosome at the routine chromosomal analysis. Besides the dysmorphic features she also has muscle hypotonia, spasticity, strabismus growth andintellectual retardation.

The performed GGH array revealed the presence of chromosome 18p tetrasomy in this patient. The diagnosis of tetrasomic 18p syndrome is consistent with the complex clinical features in our patient.

P03.074 High resolution array GGH study in newborns with isolated cleft/lip palate
K. W. Derwinska1, K. Szczubalew, E. Obersztyn, J. Castañeda, R. Smigiel, E. Bocian2
1Institute of Mother and Child, Warsaw, Poland, 2Department of Genetics, Wrocław, Poland.

Clefting is a common condition, found in 1/700-1/1000 births, with a complex etiology. Although most cases are isolated, a subset is associated with other abnormalities and linked to already known syndromes involving cleft lip or palate (CL/P), such as van der Woude syndrome. Until now, a number of genes have been suggested to be involved in clefting events, but they account for small proportion of the recognized etiology. With the implementation of high resolution array GGH for diagnostics purposes, among the mechanisms leading to clefting, microdeletions have been hypothesized to play a significant role. Herein we present a study of 33 patients with isolated CL/P with the use of whole genome Agilent 180k microarray with mean resolution of 16kb. We have found 10 copy number variations (CNV) overall (9 deletions and 1 duplication), ranging in size from 27 kb up to ~8Mb. Microaberrations found in the study are not covering any known microdeletion/microduplication syndrome regions. The summary of all cases and genotype-phenotype correlation will be presented. The most interesting ones will be presented in details, i.e del 17q22 where only only SLFN12 is deleted.

Our results demonstrate that a high resolution array GGH is an efficient tool in diagnostics of patients with isolated cleft lip/palate. Furthermore characterization of the novel pathogenic CNVs identified in our study can help in understanding the role of defined genes in clefting.

The research is funded by the grant of the Polish Ministry of Science and Higher Education NN 07459438.

P03.075 Chromosomal aberrations and Microinuclei frequency in patients treated with J-131 for therapeutic causes
M. Mackic-Djuricic1, I. Aganovic, S. Bagovic-Hadzimatovic2, E. Kucakalic1, S. Ibrulj3
1Center for Genetics, Sarajevo, Bosnia and Herzegovina, 2Department for nuclear medicine, Sarajevo, Bosnia and Herzegovina.

Patients with thyroid diseases have been treated with different doses of J-131 for therapeutic causes. Using standard method (cultivation 48 hours of peripheral blood lymphocytes) 12 patients have been cytogenetically analyzed two times. First culture was set before treatment with J-131, and another was set 7 days after application of J-131. Chromosomal aberrations (CA) were analyzed 200 cells per patient and microinuclei frequency (MN) 1000 cells per patient. Microinuclei appear during cell division as result ofacentric fragment or whole chromosomes condensation left in anaphases (it is considered as marker of structural or/and numerical chromosomal aberrations existence).

Applied doses of J-131 were 10mCi; 15 mCi and 20 mCi for 4 patients per each dose. At first set of analyses as initial no significant CA or MN's were found. At second set of analyses for patients who received doses of 10 mCi and 15 mCi it is apparent slow increase of CA and MN frequency (small aberrations); while for those who received dose of 20 mCi there is apparent increase of CA (even biceentric chromosomes) as well as increase of MN’s frequency alone or with 2 microinuclei per cell.

This is initial phase of research that is going to be further investigated on large number of patients.

P03.076 Comparative array-GGH platform analysis in a clinical setting for diagnosing individuals with intellectual disability and developmental delay
E. Villegas1, L. Rodriguez-Revenge, J. Madrigal2, M. Palomares3, A. Muri4, F. Santos5, P. Lapunzina6, M. Mil6, J. Nevado6
1INGEMM-IDP2E2-HU1E, Madrid, Spain, 2Biochemistry and Molecular Genetics Department, Hospital Clinic, Barcelona, Spain, 3Paediatrics Service, Hospital del Mar, Barcelona, Spain, 4Paediatrics and Obstetrics Department, Universitat de Barcelona.

We investigate the practical performance of three different microarray platforms for their implementation in our diagnostic setting in two hundred cases of Spanish DD/DD in 2 hospital centers. The total cohort consisted of 200 patients, 100 of who were analyzed with KaryoArray®v3.0, 32 on the Agilent Human Genome CGH 44K and for the remaining 68 patients, on the Agilent Human Genome CGH 44K. As we expected targeted array revealed less common CNVs than did the whole-genome arrays, which has a clear advantage in clinical use. Nowadays it is straight forward to recognize alterations against background of CNVs. These data suggest that higher yields mainly depend on patient inclusion clinical criteria and the microarray design. When non-strict criteria are followed, higher yields are also found using KaryoArray. The frequency of VOIS was similar in all three platforms (around 5% of cases). Although more studies are required in order to assess the real significance of these CNVs with unclear clinical relevance, we speculate that some of them are likely to be pathogenic. The classification and interpretation of all the CNVs detected in both groups showed that CMA is a clinical useful tool for genetic diagnosis of ID/DD, with an overall diagnostic yield of around 15%. However and considering the resolution of each of the array platforms, all pathogenic imbalances, except one case, would have been identified despite the platform used.

Agilent 44K
Pathogenic

Department of Genetics, Reproductive Biomedicine Research Center, Rayan Institute for reproductive Biomedicine,ACECR, Tehran, Islamic Republic of Iran.

Klinefelter syndrome is the first human sex chromosomal abnormality to be reported. The majority of Klinefelter syndrome patients have the XXY karyotype. Approximately 15% of Klinefelter patients, however, are mosaics with variable phenotypes. A 39-year-old male was investigated for primary infertility. Clinical examination showed an intelligent man with normal facial appearance and small firm testes. Testicular histopathology revealed marked atrophy of the testes with no spermatogenesis and absence of germ cells. Hormonal profile showed elevated levels of FSH, LH and low levels of testosterone. Chromosome analysis from whole blood culture showed cells with 48,XXXY/47,XXY/46,XX/45,X/46,XY karyotype studied by GTG-banding and fluorescence in situ hybridization.

Department of Genetics, Reproductive Biomedicine Research Center, Rayan Institute for reproductive Biomedicine,ACECR, Tehran, Islamic Republic of Iran.

We investigate the practical performance of three different microarray platforms for their implementation in our diagnostic setting in two hundred cases of Spanish DD/DD in 2 hospital centers. The total cohort consisted of 200 patients, 100 of who were analyzed with KaryoArray®v3.0, 32 on the Agilent Human Genome CGH 44K and for the remaining 68 patients, on the Agilent Human Genome CGH 44K. As we expected targeted array revealed less common CNVs than did the whole-genome arrays, which has a clear advantage in clinical use. Nowadays it is straight forward to recognize alterations against background of CNVs. These data suggest that higher yields mainly depend on patient inclusion clinical criteria and the microarray design. When non-strict criteria are followed, higher yields are also found using KaryoArray. The frequency of VOIS was similar in all three platforms (around 5% of cases). Although more studies are required in order to assess the real significance of these CNVs with unclear clinical relevance, we speculate that some of them are likely to be pathogenic. The classification and interpretation of all the CNVs detected in both groups showed that CMA is a clinical useful tool for genetic diagnosis of ID/DD, with an overall diagnostic yield of around 15%. However and considering the resolution of each of the array platforms, all pathogenic imbalances, except one case, would have been identified despite the platform used.

Agilent 44K
Pathogenic

VOIS

4.4% 6.25% 5%

Benoign

75% 75% 42%

None CNV detected

17.6% 0% 31%
and apparently balanced. Array analysis revealed two uncommon novel deletions in 2q22.1 and 18q22.1, which contribute to the genomic instability. Infertility might be caused by several factors including both genomic instability and a high frequency of sperm aneuploidies reported in a male carrier of a reciprocal translocation. Glaucoma was probably caused by the mutation(s) of LRPL1B gene, located in the breakpoint region 2q22.1.

Case 2: 46,XY,t(5;13)(q33;q12.1) in an infertile man with allergy. It was recT confirmed by FISH (CytoCell). Array analysis showed that it was balanced, but also revealed a novel 681-kb microduplication at 9q31.1 (arr 9q31.1(102,352,111-103,033,172)x3). Infertility might be caused by the haplinsufficiency of tubulin (TUBABC) gene located at breakpoint region 13q12.1. This gene encodes an essential cytoskeletal protein. He also had allergy unlike his non-allergic parents with normal karyotypes but with microduplication in the same region, where allergy-related quantitative trait locus (QTL) 12 is localized. In our patient, probably both QTL 12 and balanced translocation gave rise of genetic over threshold, and disorder.

These findings show that one aberration can often predispose to the formation with phenotypic consequences. Supported by target financings SF0180096d8 and SF0180027s10.

P03.079 Molecular-cytogenetic analysis of marker chromosomes - clinical importance and diagnostic possibilities
P. Tesner1, R. Mihalovič2, V. Zimanová1, J. Drábová1, D. Novotná1, E. Kočárek1
1Department of Biology and Medical Genetics, Charles University - 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic; 2Institute of Biology and Department of Medical Genetics, 1st Faculty of Medicine, Charles University and General Teaching Hospital, Prague, Czech Republic.

Supernumerary marker chromosomes (SMCs) are structurally abnormal chromosomes unidentified by classical cytogenetic methods. Their general incidence is about 1:2,000 (regardless of gender, ethnicity, etc.). SMCs represent a highly heterogeneous group of chromosomal aberrations associated with different clinical consequences: The majority of SMC-carriers have no clinical symptoms, but some SMC could be related to fertility problems (particularly in males), to mental retardation or to congenital defects.

To determine the clinical importance, it is essential to identify an original chromosome, from which the SMC was derived and determine as accurately as possible the genetic material that is present in the SMC. We demonstrate four cases of predominantly mosaic non-acrocentric SMCs and diagnostic procedures which enabled their determination. These patients represent all groups with higher SMC frequency mentioned above. All cases were examined postnatally, but one of them is closely related to ongoing pregnancy (previous pregnancy of this female with primary finding of SMC was terminated due to multiple foetal defects). Our report discusses diagnostic possibilities, reliability, and limitation of some common molecular cytogenetic techniques, especially standard fluorescence in situ hybridisation (FISH) using satellite probes, whole chromosome painting probes and/or locus-specific probes, and multicolour FISH (painting and centromeric one). Some SMC samples were submitted for further examination by array-GH, but this analysis failed in cases with low frequency mosaics. Our work is supported by Grant Agency of Charles University (No. 264811) and Technology Agency of the Czech Republic (No. TA01010931).

P03.080 SNP array evaluation of a mosaic supernumerary marker chromosome in a girl with developmental delay
R. Mazzuceni1, J. Gravéjsen1, A. Skytte1, U. Dønhaug-Hein1, A. Bøjesen1
1Department of Clinical Genetics, Vejle Hospital, Sygehus Lillebaelt, Vejle, Denmark; 2Department of Pediatrics, Kolding Hospital, Sygehus Lillebaelt, Kolding, Denmark.

Clinical report

The propositus is a 7-year-old female, who is the second child of non-consanguineous parents. Pregnancy was uneventful with an uncomplicated delivery at term. Births weight 2.7 kg and birth length 50 centimeters. In infancy she had problems feeding and showed delayed motor milestones and speech development. She has no malformations or dysmorphic features. Materials and methods

G-band chromosome analysis was performed on PHA-stimulated peripheral blood lymphocytes; 20 metaphases were analyzed revealing 5 metaphases with a small supernumerary marker chromosome and 15 metaphases with a normal karyotype. The identity of the marker was investigated by FISH analysis using a chromosome 15 and a chromosome 14/22 centromere probe. None of these FISH analysis revealed the chromosomal origin of the marker chromosome.

SNP-array detected a mosaic gain of chromosome 1 material. The genotypedata clearly showed the presence of a third allele but the intensity data were only slightly differed from normal.

FISH using a chromosome 1 centromeric probe subsequently confirmed the chromosome 1 origin of the marker chromosome. In order to estimate the mosaicism level, 300 metaphases were scanned detecting 44 metaphases with the marker chromosome.

Both parents had a normal SNP-array.

Discussion

SNP array provides a high-resolution method to detect mosaic gains and losses and can be used as a first choice to characterize a marker chromosome. This strategy is both cost and time efficient.

Marker chromosomes of chromosomal 1 origin without phenotypic consequences have been described. We believe that this marker chromosome explains the phenotype of the patient.

P03.081 Recognition of three small supernumerary marker chromosomes originated from chromosomes 1, 12 and 18 in a girl with congenital abnormalities
M. Gogiel1, J. Haggl1, H. Schülers1, I. Rud1, M. Omrani2, R. Egggermann3, S. Spengler1, U. Gamberdinger1, G. Schwantitz1
1Department of Human Genetics, University Hospital, RWTH Aachen, Germany; 2Praxsgemeinschaft für Medizinische Genetik, Düsseldorf, Germany; 3Department of Medical Genetics, University Motahhari Hospital, Urmia, Islamic Republic of Iran.

Our work is supported by Grant Agency of Charles University (No. 264811) and Department of Medical Genetics, Tehran, Islamic Republic of Iran, Department of Pathology, University Hospital, Gießen, Germany, Department of Human Genetics, University Hospital, Bonn, Germany.

The genetic relevance of small supernumerary marker chromosomes depends on their amount and type of additional euchromatin. If they are present as mosaics the phenotype of the carrier depends on the amount of pathologic cells and their equal or unequal distribution in the patient. Three different SMCs are therefore an extreme rare finding.

We present the case of a patient showing 3 different autosomal markers as a mosaic combined with a normal cell line.

Two of the markers were identified as derivatives of chromosome 12 and 18 which are classified as frequent aberrations, the third was originated from chromosome 1. The extra chromosomes were analysed by a combination of SNP array and FISH (cen and wp probes). The size and the frequency were striking different. Besides, we observed an unequal combination of the 3 derivatives.

We report on a four years old girl. She revealed a mosaic karyotype in her lymphocytes: mos48,XX[2]/46,XX[2] (arr [1p32.1,1q21.1-1q23.1(102,352,111-103,033,172)x3]. In order to estimate the mosaicism level, 300 metaphases were scanned detecting 44 metaphases with the identified gains of 1p12, 1q21.1, 1p32.1 and 1q23.1.

Clinical evaluation revealed severe mental retardation, absent speech, prominent forehead, epicanthus folds, hypertelorism, large ears, depressed nasal bridge, long smooth philtrum and a wide mouth with thin upper lip. She still walks on the tips of her toes.

A karyotype-phenotype correlation was set up and the clinical findings of our patient were compared with the patients features of patients with isolated duplications of the three regions mentioned above.

P03.082 Genomic imbalances in a cohort of Iranian patients affected by multiple congenital anomalies (MCA)
A. Rashidi-Nezhad1, S. M. Akrami2, E. Amini1, F. Farzanfar4, C. Azimi3, A. Reymond1
1Department of Medical Genetics, Tehran, Islamic Republic of Iran; 2Center for Integrative Genomics, Lausanne, Switzerland; 3Maternal, Fetal and Neonatal Research Center, Tehran, Islamic Republic of Iran; 4Department of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran, Islamic Republic of Iran.

Congenital anomalies (CA) affect 2-3 % of live births and are seen in 25% of deaths in perinatal period and the first year of life. Cryptic genomic imbalances might be an important cause of CA. New high resolution oligo array platforms have been shown increased detection rate as well as potential to discover new regions involved in CA. In this study genomic imbalances were studied in a cohort of MCA patients using conventional and newer molecular cytogenetic techniques and compared their cost effectiveness in routine clinical perspective.

Eighty five Iranian patients affected by MCA were studied for chromosomal aberrations using G-banding. Three MLPA kits were used to screen for genomic imbalances in subtelomeric and 21 microdeletions syndromes. Nimblegen Human CGH 3x720K Whole-Genome tiling v3.1 Array was used to interrogate genomic imbalances through the genome.

In G-banding 8 patients showed aneuploidies. Two patients diagnosed with
marker chromosomes and 1 patient with an additional segment on 4q. The last three patients and other patients with normal results in karyotype were further analyzed with MLPA and array CGH. MLPA detected 8 and array CGH detected additional 4 clinically significant genomic imbalances. The overall detection rate was 28%. In conclusion, array CGH detects all genomic imbalances detected by karyotype and MLPA. Array CGH recommended as the first line test in MCA patients and karyotyping just if be necessary. The exception is for those who are suspected to aneuploidies according to their phenotypes that karyotype is suggested first then array CGH if karyotype be normal.

P03.083

Mental retardation, speech delay, attention-deficiency/hyperactivity disorder, and delicate microangiopathy in a boy with 11p13 deletion

A. Kuznetsova1, O. Soloviova1, L. V. Tavokina2, A. O. Brovko2, G. M. Bychkova3, C. Graziano4, J. A. Hettinger5

1Institute of Medical Genetics, Tomsk, Russian Federation, 2University of Bologna, Bologna, Italy, 3Vilnius University, Department of Human and Medical Genetics, Vilnius, Lithuania.

Deletions of the 11p14-p12 region has been previously described in WAGR and Potocki-Shaffer syndrome both by mental retardation (MR). SLC1A2, PRR5L, and BDFN were hypothesized to contribute to the abnormal mental development in patients with 11p13 deletion. Here we report on a 5.9-year-old boy with MR, speech delay, attention-deficiency/hyperactivity disorder; delicate microangiopathy, and 11p13 deletion. Parental DNA was not available for analysis. A 1.155 Mb deletion was detected by array CGH and confirmed by real-time PCR. Deletion region includes CD44, SLC1A2, PAMR1, FX11, TRIM44, LDLRAD3, MIR3973, COMM9, and PRR5L. Some of these genes are expressed in brain. In particular, SLC1A2 protein is responsible for glutamate transport. Accumulation of extracellular glutamate causes calcium homeostasis dysfunction, increased production of NO, free radicals, and cytotoxic transcription factors, proteases activation, and, as a consequence, neuronal damage leading to neurodegenerative disease, inflammation or ischemic events. Yet although the function of FX11 in human remains unknown, in rodent it regulates dendrite extension. TRIM44 may play a role in neuronal differentiation and maturation. LDLR3 participates in amyloid precursor protein proteolysis leading to beta amyloid formation which fibrillar form is the primary component of amyloid plaques found in the brain of patients with Alzheimer disease. COMMD9 presumably regulates inflammation or ischemic events. Yet although the function of COMMD9 remains unknown, in rodent it regulates dendrite extension.

P03.084

Submicroscopic chromosomal rearrangements in Ukrainian families with severe syndromic mental retardation

V. V. Hryshchenko1, O. O. Soloviova1, L. V. Tavokina2, A. O. Brovko2, G. M. Bychkova3, C. Graziano4, J. A. Hettinger5, L. L. Livshitz2

1Institute of Molecular Biology and Genetic NAS of Ukraine, Kiev, Ukraine, 2Clinic SSIDA-IVF, Kyiv, Ukraine, 3Research Centre for Radiation Medicine, NAMS of Ukraine, Kyiv, Ukraine, 4U.O. Genetica Medica, University of Bologna, Bologna, Italy, 5Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.

Upon the identification of de novo genomic/chromosomal malrearrangements, the recurrence risk is considered very low. We report on two Ukrainian mental retardation (MR) families with paternal origin unbalanced translocation grown out of balanced ones in their healthy fathers. The first proband is a 16 years old girl with severe MR, trigonocephaly, dystrophic features. The proband’s aunt has derivative chr10 of paternal origin generated by translocation t(2;10)(q35;q26)pat. 44K array-CGH of proband showed del10q26.3-qter (2257 kb) together with dup2q35-qter (24378 kb). The proband’s aunt has the same MR phenotype. The second proband is a 20 years old woman with severe MR, hypertelorism, generalized hirsutism, dystrophic features. Two pathogenic CNVs have been identified by 400K CGH-analysis: del5p15.2 (10 Mb) and dup10q25.3-26.3 (18 Mb). Karyotype analysis showed: mother - 46,XX,der(5);10(q15.2;q25.3) and proband - 46,XX,der(5);10(p15.2;q25.3). Pathogenic CHNG was also performed in proband’s father. Clinical features of the proband’s father are similar to the mother but the deletion in proband is de novo. In conclusion, array CGH detects all genomic imbalances detected by karyotype and MLPA. Array CGH recommended as the first line test in MCA patients and karyotyping just if be necessary. The exception is for those who are suspected to aneuploidies according to their phenotypes that karyotype is suggested first then array CGH if karyotype be normal.

P03.085

Identification of recurrent chromosomal syndromes in patients with mental retardation using 44K array-CGH: report of two cases

H. Ben Kheil1, S. Mougou1, N. Sayah1, I. Ben Abdallah1, H. Hannechi1, S. Bouraoui1, A. Saada1

1Laboratory of Cytogenetics, Molecular Genetics and Reproductive Biology - Farhat Hached Hospital, Sousse, Tunisia, 2Laboratory of Cytogenetics, Molecular Genetics and Reproductive Biology - Farhat Hached Hospital, Sousse, Tunisia, 3Department of Pediatrics, Sousse, Tunisia, 4Laboratory of Cytogenetics, Molecular Genetics and Reproductive Biology - Farhat Hached Hospital, Sousse, Tunisia.

Mental retardation (MR) is a condition of incomplete development of the brain with the onset occurring before 18 years and is estimated to affect 1-3% of the population. The etiology of MR is very heterogeneous and in about half of cases the cause still elusive. Chromosome imbalances are one of the most important causes. The advance of cytogenetic technologies has improved the diagnostic rate of small chromosome abnormalities such as microarray-based comparative genomic hybridization. The complementarity of cytogenetic tools (Karyotype, Fluorescent in Situ Hybridization and array-CGH) is still needed to characterize the cryptic chromosomal imbalances.

In this study, genomic DNAs from 13 patients with unexplained MR were analyzed by genome wide high-resolution 44K Agilent® oligonucleotides arrays. Pathogenic microdeletions have been detected in two patients presenting MR and congenital malformations, encompassing regions of Xp22.3 and 8p2.3 containing dosage sensitive genes critical for normal development. These results were in accordance with those observed in previous studies: the detection rate of our pathogenic CNV’s was 15.4% (14.4% in other studies). The causality of these rearrangements were determined as well as their parental origin.

It is true that whole genome arrays have significantly succeeded in revealing recurrent chromosomal syndromes but in other way, these high sensitive technologies have complicated the clinical interpretation of many studies: the detection rate of our pathogenic CNV’s was 15.4% (14.4% in other studies). The causality of these rearrangements were determined as well as their parental origin.

P03.088

Microcephaly and Blepharophimosis in a girl with 46,XX,ins(6;3) (q23;q27q21)

G. Yesil1, C. Sayar1, G. Toksoy2

1Bezmialem Vahd University of Medicine, Istanbul, Turkey, 2Zeynep Karim Pediatric Gynecology & Obstetrics Training and Research Hospital, Istanbul, Turkey, 3Istanbul University Faculty of Medicine, Istanbul, Turkey.

This clinical report describes a one year old girl with severe microcephaly, moderate developmental delay and blepharophimosis. She had no internal organ malformations and structural brain abnormalities. Frequent upper respiratory infections were noted. The chromosome analysis revealed 46,XX,ins(6;3)(q23;q27q21) de novo. 44K array was also performed and showed no abnormalities. The Blepharophimosis phenotype is known to be associated with the FOX1L2 gene which is located at 3q22.3. The ATR gene that is responsible for the Seckel Syndrome phenotype is located at 3q23. We are awaiting targeted array analysis results, which will show us the etiology of overlapping microcephaly and blepharophimosis phenotypes.

P03.089

A patient with moderate intellectual disability and a deletion of 2p14-p15 overlapping with deletions of previously published cases

A. Vazna1, M. Hancarova1, S. Vejvalkova1, J. Drabova1, M. Trkova2, Z. Sedlacek1

1Department of Biology and Medical Genetics, Prague, Czech Republic, 2Institute of Genetics, Medical Faculty of Charles University, Prague, Czech Republic.

Microdeletions spanning 2p14-p15 have been described in two patients with developmental and speech delay and intellectual disability (ID) but no congenital malformations or severe dysmorphism. One additional patient with a similar deletion has been identified in the ISCA study of developmental delay. We report a woman born with a deletion overlapping the deletion overlap of these three cases. He had clinical features partly consistent with the first two cases from whom detailed description is available including absent speech, severe microcephaly, long face, bulbous...
nasal tip and thin upper lip. He had thin short stature and moderate ID, and his overall clinical picture was more severe compared to the first two cases. His karyotype was normal but Illumina HumanCytoSNP-12 BeadChip analysis revealed a 3.7 Mb long deletion of 2p14-p15 between (and including) the dinMed1 and SPRED2 genes. FISH confirmed the deletion in the patient but not in the parents. The deletion affected 17 protein-coding RefSeq genes and 3 non-coding RNA genes. The shortest region of overlap of the four deletions contained 10 genes. Some of them including SLCA14A and CEP66 could be candidates for ID. The Decipher database and two recent studies of large ID cohorts (ISCA and Washi/Signature) list additional patients with deletions extending proximally into the region of the 2p15-p16.1 microdeletion. The deletion was confirmed by qPCR and found to be de novo. To our knowledge this is the third case reported with microdeletion 15q26.1 encompassing only these two genes. So far CHD2 haploinsufficiency has been associated with lordokyphosis, reduced body fat and growth retardation in mouse model. RGMA seems to perform several functions in the developing and adult nervous system and could be a candidate gene for mental deficiency and seizure disorder. We review the clinical features of the reported cases and discuss the role of CHD2 and RGMA as critical genes in microdeletion syndrome 15q26.1.

P03.093
3q26.33-3q27.2 microdeletion: a new microdeletion syndrome?
F. Forzano1, F. Faravelli2, G. Mandrilé3, V. Uliana4, E. Di Maria5, M. Malacarne6, D. Covelli7, M. Dubois8, S. Zwozlinski9, A. Dubois10
1Medical Genetics Unit, Galliera Hospital, Genova, Italy, 2Department of Health Sciences, University of Genova, Genova, Italy, 3Laboratory of Genetics, Galliera Hospital, Genova, Italy, 4Institute of Genetic Medicine, Newcastle upon Tyne, United Kingdom.

We describe two unrelated patients carrying the same 3q26.33-3q27.2 microdeletion.
Patient 1, 6 years old, was initially seen at age 2 years. Parents reported IUGR since the first month. Cesarean section was performed at 32 g.w due to growth arrest; BW 1380 g, L 39.5 cm, OFC 29.5 cm. Array-CGH: de-novo 3q26.33-3q27.2 microdeletion.

Patient 2, 17 years old, was initially seen at 5 months. Pregnancy was remarkable; emergency Cesarean section was performed at 37 g.w because of maternal hypertension. BW 1500 g, OFC 29.5 cm; he required resuscitation. Tonic seizures developed at three hours of age. Array-CGH: 4:28 Mb deletion.
Both presented with neonatal hypotonia, muscular hypertrophy, severe feeding problems (gavage feeding), recurrent upper airways infections, developmental delay (both at 18 months; Pt1: at 6 years has no language, nor spastic control, and does not walk independently; Pt2: walked at 4 years and has language delay), severe growth impairment (all measures below 3rd centile).
Both patients share common dysmorphic features: thin skin, flat facial profile, mediately sparse eyebrows, epicanthal folds, flat nasal bridge and tip, short philtrum, downturned corners of mouth.
Patient 1 had also oral aversion, gastroesophageal reflux, bladder diverticula and vesicourethral reflux, retractable lift right testicle, markedly delayed teeth eruption. Patient 2 had also micropenis, which required testosterone replacement, and mirror movements.

P03.094
A comparative cytogenetic analysis of miscarriages following natural conception and assisted reproductive technologies
A. V. Tikhonova1, A. A. Pendina2, O. G. Chryvannaya3, L. I. Petrova4, V. S. Dubina2, N. A. Sadil5, O. A. Efimova1, L. A. Galembo1, I. G. Kethnina6, T. V. Kaznetzova4, V. S. Baranov1
1St-Petersburg State University, Saint-Petersburg, Russian Federation, 2D.O.Ott’s Institute of Obstetrics and Gynecology, Saint-Petersburg, Russian Federation.

Chromosomal abnormalities are the most common cause of spontaneous miscarriage during the first trimester. We performed a comparative study of abnormal karyotype frequency and type in miscarriages following natural conception (group I, n=129) and assisted reproductive technologies (ART) (group II, n=121). Standard karyotyping was made on QF/Ac band metaphase chromosomes, obtained from chorionic villi samples. The rate of abnormal karyotypes was 66,5% in group I vs. 50,4% in group II. The difference is explained by the lower percentage of abnormal karyotypes in miscarriages from patients under 35 in group II compared to group I (36,5% vs. 63,1%). In miscarriages from patients over 35 the frequency of abnormal karyotypes was higher compared to normal in both groups: 76,7% vs. 23,3% in group I and 65,5% vs. 34,5% in group II). This tendency was registered when the terms of miscarriages were analyzed: in miscarriages under 7 weeks of gestation from group I the frequency of chromosomal pathology was lower, than in their counterparts from group I (45,6% vs. 66,2%). In miscarriages over 7 weeks from group II the frequency of abnormal karyotypes increased up to 57,7%. These results demonstrate a leading role of non-genetic factors in early pregnancy loss for ART clinic patients under 35. A wide spectrum of aberrations, including trisomies, monosomy X, polyploidy and structural chromosomal rearrangements, detected in miscarriages did not differ between groups, indicating no increased risk of chromosomal pathology, associated with ART.
P03.095 Microduplication 22q11 in two patients with learning disabilities

C. C. Legnaro, R. M. C. S. Sandri, B. F. Cambarra, L. A. Ribeiro-Bicudo; *Hospital de Reabilitação de Anomalias Craniofaciais - HRAC - OSM Bauru, Brazil, †Universidade Estadual Paulista - Unesp/Brasil, Bauru, Brazil.

Susceptibility of the chromosome 22q11 region rearrangements has been recognized in clinical disorders as DiGeorge/Velo-cardiofacial syndrome. The 22q11.2 microdeletion syndrome is the most common of these conditions, representing a spectrum of clinical anomalies affecting multiple organ systems. 22q11.2 duplication syndrome has also been recently characterized as a different clinical entity with features overlapping 22q11.2 deletion syndrome. Evidence has implicated low-copy repeats (LCRs) on 22q as mediators of these rearrangements that result in the generation of a spectrum of clinical features.

We present the cases of two unrelated patients presenting with clinical findings suggestive of 22q11.2 microdeletion syndrome. Both cases were referred for genetic counseling due to developmental delay/intellectual disability and dysmorphic features. The patients' karyotypes were verified and breakpoints were estimated by FISH techniques. For the analysis of additional material of unknown origin, we applied mFISH, subtelomeric probes, LSI, and also multicolor technologies - mFISH, mBAND, and m-cenFISH.

Rearrangements detected in patients with developmental delay/intellectual disability were of 22q11.2 microdeletion syndrome. Patient 1 showed a microduplication including the region between LCR22-Z and LCR22-H involving the SMARC1 gene. Patient 2 showed a microduplication at LCR22-D, involving the TOM3B gene. Chromosomal rearrangements in distal 22q11 region, as well as microduplications, are less common than rearrangements in the proximal region. One possible explanation is that LCR22-H is smaller than the proximal LCRs are thus less susceptible to rearrangements. The preliminary results do not support a correlation between the size of the duplication and the severity of the phenotype presentation.

P03.096 MLPA as screening method in detection of submicroscopic rearrangements detected in patients with developmental delay/intellectual disability

L. Morozin Pohovski, I. Barisci; Children's University Hospital Zagreb, Clinical Hospital Centre Sisters of Mercy, Zagreb, Croatia.

Chromosomal rearrangements represent a significant cause of developmental delay/intellectual disability (DD/ID). The implementation of Multiplex Ligation-Dependent Probe Amplification (MLPA) has enabled the analysis of chromosomal abnormalities beyond the range of routine karyotyping. In this study we presently screened 150 patients with DD/ID with or without dysmorphic features or additional congenital abnormalities using SALSA MLPA P036, SALSA MLPA P070 and SALSA MLPA P245 kits, which are specifically designed to detect subtelomeric chromosome imbalances and 21 microdeletion syndromes respectively. The aim of the study was to determine the ability to detect chromosomal abnormalities in patients with DD/ID using a combination of MLPA kits and to analyze the feasibility of the use of additional MLPA specific telomere and microdeletion probe mix as an additional confirmatory test. The MLPA screening revealed chromosome aberrations in 21 (14.4%) cases: 11 subtelomeric rearrangements (3 deletions: del4p, del5q and del2q; 4 duplications: dup 9p, dupX/yp, 3 deletions and 1 duplication homologous recombination that result in rearrangements of 22q. We performed Multiplex ligation-dependent probe amplification (MLPA) using SALSA MLPA kit P250 DiGeorge in two patients presented with learning disabilities and detected variable microduplication of 22q11 region. Patient 1 showed a microduplication including the region between LCR22-Z and LCR22-H involving the SMARC1 gene. Patient 2 showed a microduplication at LCR22-D, involving the TOM3B gene. Chromosomal rearrangements in distal 22q11 region, as well as microduplications, are less common than rearrangements in the proximal region. One possible explanation is that LCR22-H is smaller than the proximal LCRs are thus less susceptible to rearrangements. The preliminary results do not support a correlation between the size of the duplication and the severity of the phenotype presentation.

P03.097 NRXX1 deletions identified by array comparative genome hybridisation in a clinical case series - further understanding of the functional relevance to neurodevelopmental disorders.

C. Ogilvie, J. Abru, H. Grayton, D. A. Collier, S. Curran; *Guy’s & St Thomas’ NHS Foundation Trust, London, United Kingdom, †Institute of Psychiatry, King’s College, London, United Kingdom.

Microdeletions in the NRXX1 gene have been associated with a range of neurodevelopmental disorders, including autism spectrum disorders, schizophrenia, intellectual disability, speech and language delay, epilepsy and hypotonia. We carried out array CGH analysis on 10,397 individuals referred for diagnostic cytogenetic testing, using a custom oligonucleotide array, which included 215 NRXX1 probes (median spacing 4.9kb). We found 34 NRXX1 deletions (0.33% of referrals) ranging from 9 to 942kb in size, of which 18 were excised (0.17%), and predominantly affected the alpha isoform of NRXX1. No NRXX1 duplications were found. Several patients had exonic deletions in both NRXX1 and other loci implicated in neurodevelopmental disorders (CNTNAP2, CSM3 and the Williams-Beuren syndrome locus) and two patients had duplications of 22q11.2. locus. Patients with NRXX1 deletions had a range of phenotypes including developmental delay, learning difficulties, ADHD, autism, speech delay, social communication difficulties, epilepsy, behaviour problems and microcephaly. The targeting of dense oligonucleotide probes to the NRXX1 locus on array comparative hybridisation platforms provides detailed characterisation of deletions in this gene, and is likely to add to understanding of the function and mechanism of action of NRXX1 in neural development.

P03.098 Clinical phenotypes and genotype-phenotype analysis of intragenic NRXX1 deletions

NRXX1 (NRXX1a) is a presynaptic neural cell adhesion molecule and receptor which functions in the stabilization of the synapse by interaction with postsynaptic neurelin proteins. The NRXX1 gene is 1.1MB in size and codes for two protein isoforms NRXX1a and NRXX1b, each of which has multiple promoters and collectively may code for thousands of different transcripts. Previous reports have demonstrated a significant association of copy number variation within this gene to both autism spectrum disorder and schizophrenia, as well as addiction, intellectual disability and vascular anomalies. We have identified 11 patients with NRXX1 intragenic deletions by chromosomal microarray. Deletions ranged in size from 88k to 352 kb. Family study was conducted for six cases and identified three as de novo changes and three as maternally transmitted. Cognitive or behavioral reasons for referral were given for 10 of the 11 patients (90%) ranging from profound intellectual disability and encephalopathy to developmental delay. Five of 11 patients had a diagnosis of autism or autism spectrum disorder (45%). The characterization of these patients will expand the clinical phenotype associated with NRXX1 deletions, and aid in the genotype phenotype correlation of deletions within this structurally complex gene.

P03.099 Structural chromosomal aberrations diagnosed by FISH

GTG-banded karyotyping provides gold standard in clinical cytogenetics which is widely used in medical-genetic consultations, despite of development and adoption of up-to-date molecular methods. However, GTG-method often is limited in sensitivity. Accuracy of cytogenetic diagnostics of chromosomal rearrangements increases with using FISH, which is an excellent approach to this aim. We used FISH-method with different DNA-probes and have developed the algorithm of investigations. We analyzed the karyotypes of 31 patients with dysmorphic features and congenital malformations. When the analysis of GTG-karyotypes at level 550 bands revealed presence of chromosomal structural rearrangements (deletions or duplications), we investigated parents’ karyotypes to establish the origin of aberrations. In 27 cases these aberrations arisen de novo, and in other cases were non-balanced variants of parents’ translocations. For identification of chromosomal rearrangements we used FISH with different DNA-probes: WCP, PCP, CEP, subtelomeric probes, LSI, and also multicolor technologies - mFISH, mBAND, m-cenFISH. In cases of deletions we used appropriate chromosome-specific subtelomeric probes. In cases of additional material of unknown origin we used mFISH, subtelomic probes then mBAND. When derivate chromosomal rearrangements - m-cenFISH, in cases of additional material of unknown origin we used mFISH, subtelomic probes then mBAND. When derivate chromosomal rearrangements - m-cenFISH. In cases of additional material of unknown origin we used mFISH, subtelomic probes then mBAND.
P03.100
The cytotokinetic-blocked micronucleus (CBMN) assay in workers at stone-crushing units
G. Kasur, G. Gandhi
Department of Human Genetics, Guru Nanak Dev University, Amritsar, India.

The stone-crushing industry is a labour-intensive sector where most of the operations are performed in a highly dust-polluted area often violating the pollution control board guidelines. Since the cytotokinetic-blocked micronucleus assay (CBMN) assay provides a deeper insight into the mechanisms contributing to genome damage events that could increase risk of developmental and degenerative diseases, in the present study chromosomal damage was assessed by CBMN in peripheral lymphocytes of 23 stone-crushing unit workers (32.69±1.42 y) employed for more than six years (7.7±4.25 y) with a daily work schedule of 8-12 h/day, in com parison with 9 (33.0±0.50 y) controls matched for gender, age, and socio-economic status and smoking habits with no past/present history of any exposures. The study was cleared by the Institutional Ethics Committee. Voluntary written informed consent was obtained from all study participants and a face-to-face interview was conducted using a pre-designed questionnaire. The results of the assay reveal a statistically significant (p<0.000) two fold elevated percent frequency of MNd cells in the workers (0.55±0.02) compared to the control group (0.26±0.03). As these workers are continuously being exposed to workplace genotoxicants (causing structural alterations to chromosomes which can lead to altered gene dosage and expression), the evaluation of chromosomal damage in these occupationally exposed workers can be an important pathogenetic and prognostic predictor of future disease-related changes.

P03.101
Cytogenetic abnormalities in peripheral blood lymphocytes of patients with malignant salivary gland tumors during neutron therapy
A. Melnikov, S. Vasilyev, E. Smolnikova, L. Urazova, L. Musabaeva, V. Velikaya, O. Grbiová, I. Lebedev, E. Choyznová
1Research Institute of Oncology, Tomsk, Russian Federation; 2Research Institute of Medical Genetics, Tomsk, Russian Federation; 3The Siberian State Medical University, Tomsk, Russian Federation.

Neutron therapy is used in more than 25 leading radiology centers in the world, however, cytogenetic monitoring of cancer patients during this type of therapy has not been performed. The frequency and spectrum of cytogenetic damages in peripheral blood lymphocytes were investigated in 9 patients with malignant neoplasms of the parotid salivary glands during the treatment by fast neutrons in the cyclotron U-120. There were three time points: before treatment, 24 h after the first fraction and at the end of the neutron therapy. Mode of exposure included: single focal dose - 1.6-2.4 Gy, 3-4 sessions, and the total tumor dose - 5.5-8.4 Gy (equivalent to 23-44 Gy of photon radiation). Chromosomal aberration analysis was performed according to protocol in the first mitosis of PHA-stimulated lymphocytes. Cytokinesis-blocked micronucleus test was performed in combination with FISH using a pancentromeric DNA probe. It was shown that chromosome-type aberrations were prevalent among all cytogenetic abnormalities both before and after neutron therapy. The frequencies of chromosome-type aberrations and all micronuclei increased significantly after both the first fraction and the whole therapy comparing with the levels before the therapy (p<0.05). The predominant chromosome-type aberrations were paired (acentric) fragments (57% of all chromosome-type aberrations). The observed mutagenic effect could be considered to optimize the neutron therapy in patients with tumors of the salivary glands. This research is supported by the target Federal Program of “Research and development on priority directions of scientific-technological complex of Russia for 2007-2013 years” No. 16.512.11.2063.

P03.102
Clinical and molecular characterization of a patient with de novo 0.45 Mb deletion of 2p16.1
1Department Of Biology And Medical Genetics, Prague, Czech Republic; 2Institute of Molecular and Cell Biology, Tartu, Estonia.

The widespread use of microarray methods has contributed to the identification of several new rare microdeletion syndromes including that associated with deletions of 2p15-p16.1. The 2p15-p16.1 microdeletion syndrome is characterized by developmental delay, intellectual disability, autism, microcephaly, growth retardation, facial abnormalities, disturbed vision and other symptoms. We report here an 11-year-old autistic girl showing clinical features consistent with the syndrome. Conventional cytogenetic analysis of the patient showed a normal female karyotype. Illumina HumanCytoSNP-12 BeadChip analysis revealed a 0.45 Mb long deletion of the paternal allele of 2p16.1. FISH analysis confirmed the deletion in the patient but not in any of her parents. The deleted region contains only 3 protein-coding RefSeq genes, BCLA1, PAPOLG and REL, and 1 long non-coding RNA gene FLJ16541. We suggest that the phenotypic similarity of the 2p15-p16.1 microdeletion syndrome with the 2p15-p16.1 microdeletion syndrome we propose that the critical region of the syndrome can be narrowed down and that these brain expressed genes can be considered candidates for the clinical symptoms. However, multiple deletions of very length within the interval between 2p14 and 2p16.1 have been described in patients with intellectual disability but not necessarily the other typical symptoms of the syndrome and some of these deletions do not overlap. This observation indicates that also other genes located in this broader unstable region are associated with cognitive functioning. Supported by CHERISH 223692, SF0180027s10, CZ.2.16.1.00/24022 and MZ0FN2012.

P03.103
A de novo 3.8 Mb duplication of chromosome 14q22.3q23.1, including OTX2 and ARIAD4, in a developmentally delayed boy
K. Bjergø, T. Barøy, E. Ornerød, Ö. Redningen, E. Frenjen, D. Miscoe, M. Fannemel
Dept. of Medical Genetics, Oslo University Hospital and Oslo University, Oslo, Norway.

We present a three year old developmentally delayed boy with a vocabulary of 15 words. On 20 words he started walking two years after age. He has fine hair and a preauricular tag, but otherwise no dysmorphic features. Magnetic resonance imaging (MRI) of the brain revealed a subarachnoidal cyst. A de novo 3.8 Mb duplication involving chromosome 14q22.3q23.1 was detected by aCGH analysis (chr1:455331483-59107556 bp, hg19). There are no previous reports of patients carrying a duplication of similar size in this region, but in addition to the relatively high number of genes involved make genotype-phenotype correlations challenging. Among the 32 RefSeq genes affected by the duplication, genes of potential interest are OTX2, ARIAD4, GCH1 and DACT. OTX2, orthodenticle homeobox 2, is a homeodomain-containing transcription factor expressed in brain, whose haploinsufficiency is linked to ocular developmental anomalies and developmental delay. ARIAD4, AT rich interactive domain 4A, is a gene involved in chromatin remodelling, therefore likely to have pleiotropic effect. GCH1, GTP cyclohydrolase 1, partially duplicated at the proximal border of the imbalance, causes dopa responsive dystonia and malignant hyperphenylalaninemia with autosomal recessive inheritance, although the patient’s phenotype is not consistent with this syndrome. DACT, dapper, antagonist of beta-catenin, homolog 1, partially duplicated at the distal border, is involved in the Wnt-mediated developmental processes. We suggest that increased dosage of OTX2 and ARIAD4 might have a relevant role in the emergency of the clinical phenotype in our patient.

P03.104
Complex X-chromosome rearrangement. How could it happen?
A. T. Hoejland, J. Grauhaier, S. Koelvera, A. Bojesen
Department of Clinical Genetics, Vejle Hospital, Vejle, Denmark.

We report the SNP-array finding of a complex X-chromosome rearrangement in a now 4 year old girl with delayed psychomotor development and failure to thrive. We found on the short arm of the X-chromosomes neighbouring regions with different aberrations, namely a duplication (Xp22.2), a krossoveryotrygosity (LOH) segment (Xp22.11-Xp22.2) with normal allele frequency and a deletion (Xp21.1-Xp22.11). There were no other findings on SNP-array to suggest different reasons for the girls symptoms. SNP-arrays on both parents were also performed. The mother had a duplication (Xp22.11-Xp22.2) matching the duplication and LOH segment in the girl. The father had no deletions or duplications, G-band karyotypes from the girl showed visible aberrations in both X-chromosomes; one with a duplication in Xp and one with a deletion in Xp (46,X,dup(X)(p22.1p22.2);mat(X)(p22.1p22.2)dn) Results of additional FISH analyses, using probes corresponding to the duplicated segment Xp22.2, the segment containing LOH (Xp22.11-Xp22.2) and the deleted segment (Xp21.1-Xp22.11), showed that the paternally derived X-chromosome had not harbour any of these three segments, suggesting that the unbalanced complex duplication/LOH was a result of inheritance of two derivative X-chromosomes. A maternal derivative X-chromosome with a duplication segment corresponding to the LOH region combined with insertion of the paternal duplication segment and a derivative paternal X-chromosome with a deleted segment encompassing all three regions. We speculate that the reason for this complex rearrangement could be a postzygotic mitotic miconbination, perhaps caused by an inverted duplication on the maternal X-chromosome, although this could not be verified.
P03.105

Chromosome evolution 180 degrees backwards - a case report
S. Müller, M. Neusser, M. Pföh, V. Mehrzein, O. Steinhöchel
Institute of Human Genetics, University Hospital Ludwig-Maximilians-University, Munich, Germany.

We present molecular cytogenetic evidence that the carrier of a paracentric inversion inv(7)(q11.23q22.1) has reversed the evolutionary inversion that distinguishes the chromosome 7 homologs of human and gorilla. The inversion was observed in a 41 years old patient with incommunicable phenotype after routine cytogenetic analysis because of recurrent abortions in the partner of the patient. FISH experiments with a panel of RAC probes localized the inversion breakpoints at 76,5-76,9 Mb and 102,2-102,4 Mb (GRCh37. p5, Feb 2009), respectively. The proximal breakpoint maps approximately 2 Mb distal of the Williams-Beuren Syndrome critical region. Important, both breakpoints reside in large clusters of primate specific segmental duplications, which by non-homologous allelic recombination (NAHR) may have facilitated both the evolutionary inversion in the human/chimpanzee common ancestor and the inversion in the case presented here, and possibly also in several other cases described in the literature as inv(7)(q1gq22). In summary, this example adds to the mounting body of evidence that some structural chromosomal aberrations in humans can be caused by inherent instability of genomic regions that were already prone to break during evolution, thus demonstrating that evolutionary genomic changes and human chromosome pathology may be two sides of the same coin.

P03.106

A novel report of partial trisomy of distal 7q and partial monosomy of distal 13q in a child with mental retardation, dysmorphism and ambiguous genitalia
A. Shojaei1, J. Tavakoly-Bazzaz1, R. Kariminejad2, M. Razaghey-Azar1, I. Bahman1, F. Behjati1;
1Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Islamic Republic of Iran, 2- Kariminejad & Najmabadi Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran, Tehran, Islamic Republic of Iran.

A four year old boy was hospitalized with neurodevelopment delay, growth delay, mental retardation, brachycephaly, neuromuscular abnormality, several dysmorphic features and ambiguous genitalia. Cytogenetic investigation using high resolution GTG banding technique showed an abnormal chromosome 13 described as 46, der(13)(17pter→13q32)×2mat. The mother had a balanced reciprocal translocation between chromosomes 7 and 13. FISH technique using subtelomeric probes for 7q and 13q confirmed the translocation and the der 13 in the child. For further characterization of the breakpoints at 7q and 13q we used whole genome oligo array was performed using CYTOCHIP ISCA 4X44K version 1.1. The involved chromosomes using array analysis showed a 7.7 Mb deletion at 13q31.33 to qter and a 22 Mb gain at 7g33 to q36.3. The breakpoints using conventional cytogenetic technique were further refined with array CGH from 1q22 to 7q33 and from 13q22 to 13q33. The concomitant occurrence of partial monosomy 13q with other chromosomal abnormalities is uncommon. The patient’s intellectual disability seems to be in accordance with 13q deletion syndrome and his ambiguous genitalia is more likely to be due to 7q partial trisomy.

P03.107

Partial Trisomy 1q associated to Partial Monosomy 11q: Cytogenomic and Clinical findings
L. D. Kulikowski1, V. F. A. Melo1, S. S. Tokener1, A. L. P. Luce1, C. B. Mellor1, M. I. Melarragon1;
1Department of Pathology, Cytogenomics Laboratory, LIM 03, Universidade de São Paulo, Brazil, 2Department of Anatomy and Genetics, Universidade Federal de São Paulo, Brazil, 3Núcleo de Atendimento Neuropsicopediatria Infantil Interdisciplinar, APF, Universidade Federal de São Paulo, Brazil, São Paulo, Brazil.

Cytogenomics methods have provided significant improvement in the diagnosis of rare diseases in individuals with developmental delay, multiple congenital anomalies and autism spectrum disorders. We describe a patient with partial trisomy 1q and partial monosomy 11q and a 46,XY,der(11) t(11;11)(q141q24)×2pat karyotype. Further investigations using FISH-BACs and SNP-array (60 Affymetrix) disclosed a ~37 Mb duplication of 1q32.3q44 associated to a ~2 Mb deletion of 11q25. The patient, a 13-year-old boy, has short stature, facial and corporal dysmorphism. Cardiac evaluation showed atrial septal defect corrected by surgical treatment. He presents intellectual disability, aggressive and hyperactive behavior, limited verbal language range, and dystaphyria. To the best of our knowledge, this is the first report of a partial trisomy 1q32 associated to a partial monosomy 11q in the literature. Thus, the patient revise karyotype is 46,XY,ish der(11) t(11;11)(q32.3;2q5) pat (RP11-1163C5-RP11-262H5-RP11-115J5-RP11-265P9)×2arr 1q32.3q44[212,508,952-249,224,376]×1,1q12q5[132,927,027-134,944,770]×1. Among the duplicated genes at 1q region, DISC1 and TRAX are crucial in neural development and TBCE and RAB3GAP1 are associated with neurodevelopmental disorders and mental retardation. Also the genes RYR2, VSP1, ARVD2, ARVC2 are associated to cardiac abnormalities. Comparing the molecular karyotype and the phenotype of our patient to few similar cases, the clinical features of our patient are more likely due to partial trisomy 1q than to partial monosomy 11q. Although one of the critical regions for congenital heart defects, that include JAM3 gene, is within 129.0-130.6 Mb at 11q25. Cytogenomic methods extended the scope of molecular diagnosis thus making possible a more comprehensive approach to identity pathogenic genomic imbalances.

P03.108

A girl with partial trisomy 2p and monosomy 9p syndromes and sex reversal
SARAH Network of Rehabilitation Hospitals, Brasilia, Brazil.

Partial trisomy 2p is associated with multiple distinct findings including psychomotor delay and dysmorphic facial features. The deletion 9p syndrome is characterized by mental retardation, trirgonocephaly, mideye hypoplasia and a long philtrum. Distal 9p deletions have also been reported in patients XY and sex reversal, with or without 9p deletion syndrome. Our patient presented low birth weight, developmental delay, generalized hypotonia and seizures. Facial dysmorphism included high forehead, wide nasal root, atrophied ears, short neck, and normal external female genitalia. Conventional cytogenetic analysis was performed. Array-CGH was carried out using the Constitutional Chip 4.0 BAC Array platform. The karyotype was 46,XY,der(9)[1q29][p12:p24]×2arr 2p25.3p21[366,137-42,681,415]×3,9p24.3p24[97,018-2,299,539]×1mat. She inherited the chromosome 9 derivative from her mother who had the karyotype 46,XX,t(2;9)(p21;p24). Our patient did not present with trirgonocephaly, but presented with other features characteristic for 9p deletion phenotype. Considering the extent of the 9p deletion in this patient (~2 Mb from the telomere), our results support the observations made by some authors, suggesting a more distal critical region for 9p deletion syndrome phenotypes. Our patient also had a 2p duplicated segment an average of 42 Mb. This segment was larger than those described by some authors (in general, 2p23-2p2pter), but presented more features in common with partial trisomy 2p. The differences could be explained due the different breakpoints and genes involved in each patient. The present study could contribute to the description of unusual chromosomal aberrations affecting chromosomes 2 and 9 with sex reversal.

P03.109

A boy with partial trisomy 3p and monosomy 10q due to an unbalanced 3p:10q translocation
M. S. Fildrim, A. G. Zamani, E. Tunçez;
Department of Medical Genetics, Mersin Medical Faculty, Konya University, Konya, Turkey.

Trisomy 3p syndrome is a rare syndrome characterized by psychomotor and mental retardation, decreased muscle tone, seizures, short neck, hypertelorism/telecanthus, dysmorphic ears and congenital heart defects. Partial deletion of the long arm of chromosome 10 is a relatively frequent cytogenetic abnormality and exists considerable heterogeneity in the clinical presentation among family members who share the same deletion boundaries. Common facial appearance, cardiac and urogenital anomalies, and a high incidence of neurodevelopmental deficits are relatively consistent features for deletion 10q syndrome. We report a 6 years old boy presented with dysmorphic features such as microcephaly, hypertelorism, narrow palpebral fissures, epicanthal folds, flat nasal bridge, deep philtrum, prognathism, malocclusion of teeth, large ears, upslanting palpebral fissures, short neck, waddling gait, umbilical hernia, camptodactyly of third fingers, clinodactyly of fifth fingers, syndactyly of fourth toes, cryptorchidism, micropenis. The patient also had seizures, growth retardation and...
ment of motor retardation. Abdominal USG showed hydro nephrosis and a cranial MR examination revealed enlarged posterior fossa. After conventional cytogenetic screening the karyotype of the proband was described as 46,X,i(10)(q10)(p22q26). This karyotype confirmed by microarray analysis. This analysis showed a 9.45 Mb gain in chromosome 3 and 5.07 Mb loss in chromosome 10. His father is a carrier of a balanced translocation between chromosomes 3 and 10 [46,X,Y(3;10)(p24;q26)]. So our patient has a partial duplication of 3p and partial deletion of 10q. This case presented to contribute the literature owing to rarity of the trisomy 3p and distal monosomy 10q syndrome.

P03.110

Partial trisomy of 7q34 with loss of the heterochromatic region of Y chromosome

D. Begovic1,2, S. Tumasic1, S. Sinic1, D. Krivacic1, M. Bucan2, A. Mory1,3, T. Tatic1.

We present a male infant with partial trisomy of the long arm of chromosome 7. The patient is the first child of healthy and unrelated parents, born on term, birth weight 3750 g (50 to 75 centile), length 58 cm (+4 SD). Because of dysmorphism, cardiac defect and delayed psychomotor development the cytogenetic examination at the age of 6 months was performed. The karyotype 46,XY,del(Y)(3)(q10) was revealed. Array CGH showed a partial trisomy 7q34 and loss of heterochromatic region of chromosome Y. High resolution GTG banding revealed de novo derivate Y chromosome from translocation (Y)(Y)(q10)(q34) in all metaphases and normal karyotype in the patient’s father. FISH with wcp from chromosome 7 showed two normal signals, and an extra signal in the long arm of chromosome Y. Chromosome Y showed the presence of SRY, centromere and loss of heterochromatic region.

Cases with a 7q34 pure partial trisomies are uncommon. Patient shares most of the findings with previously described patients such as post natal growth retardation, hypertelorism, epicanthus, low-set ears, micrognathia, short neck, hypotonia, skeletal anomalies, cardiac defect and developmental retardation with IQ 47. He is also characterized by hyper flexible fingers, Sydney line and and right testicular retention, a feature that has previously been described. Cases like these are useful, given clinical manifestation are only due to pure 7q trisomy: however, further molecular studies are needed to determine genes located in this region of the long arm of chromosome 7, and to elucidate the phenotypic correlation of the regions of this chromosome partial trisomy.

P03.111

Two distinct phenotypes in 11 individuals, demonstrating alternate unbalanced recombinants derived from a cryptic paternal balanced translocation between chromosomes 10 and 14

Rambam Medical Center, Institute of Human Genetics, Haifa, Israel, 8BioRap Technologies Ltd. at the Rappaport Institute, Haifa, Israel, 9Department of Nursing, University of Haifa, Haifa, Israel, 10The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.

Background: Two syndromes, each characterized by a distinct cluster of clinical features, segregated in 11 individuals from one kindred. All affected children were the products of non-consanguineous matings. However, all affected individuals shared a common progenitor. The diagnosis of unbalanced chromosomal abnormalities was sought. Yet, cytogenetic studies were reported to be normal. Molecular cytogenetic tools were undertaken to further investigate this prototype of abnormalities.

Methods: Following signed informed consent (parental), blood samples were drawn, for DNA extraction, from all available patients (n=110) and parents (n=6), pertaining to three nuclear families, from one kindred. Clinical, neurological and developmental assessments were undertaken in selected patients and two distinct phenotypes, A and B were delineated, marked by mental retardation, either moderate or severe, respectively, and salient dysmorphic features associated with early senescence (phenotype B). Whole genome SNP array analysis using the o-HumanCytoSNP-12v1.1 DNA Analysis BeadChip Kit (Illumina) was undertaken on two affected individuals demonstrating distinct phenotypes.

Results: Whole genome SNP array analysis identified an unbalanced cryptic translocation involving a terminal 5 Mb deletion (100273988-106354822) of 14q32.2-14q32.3 and a terminal 5 Mb duplication (125708-5329074) of 10p15.3-10p15.1 in patient with phenotype A. An alternate unbalanced recombinant, namely terminal 5 Mb deletion (125708-5329074) of 10p15.3-10p15 and terminal 5 Mb duplication (100273988-106354822) of 14q32.2-14q32.3, was shown in patient with phenotype B. Conclusions: Investigations of apparently balanced chromosomal rearrangements in patients with abnormal phenotype by molecular cytogenetics tools, especially by array CGH, has become the gold standard for deciphering cryptic chromosomal abnormalities.

P03.112

Application of array-CGH in prenatal diagnosis and aborted fetuses

P. E. Evangelidou1, C. Sismani1, A. Ioannidou1, A. Alexandrou1, M. Moustafi, P. Patatsia

Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.

Array -CGH, in postnatal diagnosis for intellectual disability is currently being used as a first-tier diagnostic test. However, in prenatal diagnosis, chromosomal analysis remains the method of choice. Its introduction in routine prenatal diagnosis is still in its infancy and further studies are needed prior to its implementation. Here we present our results from application of array-CGH in selected amniotic fluid and CVS samples as well as in first and second trimester samples from aborted fetuses (POC Products Of Conception or skin biopsies). Fifty-one prenatals cases were referred for array-CGH for ultrasound abnormalities (N=37) or for further investigation of chromosomal abnormalities (N=14). The 105K Cytochip array, (BlueGene Ltd.) was applied and two de novo and one inherited, from an affected parent were found. The SRY chromosome origin of de novo origin of two marker chromosomes was identified. One of the abnormalities detected, would have been missed with conventional cytogenetics highlighting the importance of array-CGH in prenatal diagnosis. In addition the characterization of chromosomal abnormalities with array-CGH offers valuable information for the pregnancy outcome. Forty-six samples from aborted fetuses that failed to grow in vitro were analyzed using the Cytochip BAC array and six (15%) autosomal full trisomies were detected. No cases were detected with submicroscopic copy number changes that could have been missed with conventional cytogenetics. However since BAC arrays were used further studies are necessary with higher resolution arrays in order to evaluate the importance and the value of array-CGH in miscarriages.

P03.113

Identification of common chromosome disorders by QF-PCR.

1. O.O.I Research Institute of Obstetrics and Gynecology, Saint-Petersburg, Russian Federation.

The quantitative fluorescent PCR assay, implemented during the last few years, opens the way for common chromosome disorders prenatal diagnosis within a few hours after amniocentesis. Study summarizes 3 years prenatal diagnosis for chromosome abnormalities by QF-PCR experience. 17 STR markers (D21S11, D21S1437, D21S1411, D21S226, D13S628, D13S634, D13S754, D13S830, D18S386, D18S391, D18S535, AMXY, DXS981, DXS6854, X22, P39, XHPRT) were used throughout the study. Altogether 53 aneuploidies (34 trisomy 21 cases, 11-trisomy 18, 3-47 XXY, 2-45X and 2-69 XXY) out of total 1105 fetuses were picked up. Submicroscopic polymorphic microsatellites duplications were observed in 12 cases as clear trisomic triallelic or diallelic patterns for one chromosome-specific STRs. Duplications were detected in two sample for one STR on chromosome 21 (D21S1437), in six cases for one of the markers selected on chromosome 13 (4 cases for D13S634 and 2 for D13S742), in three sample for STRs on sex chromosome (2 cases for X22 and 1 for P39) and in the remaining case with D18S35 marker. The maternal duplication origin have been demonstrated in 5 cases by QF-PCR analysis of the same marker in both parents, in one sample polymorphism was found as inherited from the father. Three cases de novo origin of duplication was proved.

The submicroscopic duplications in microsatellites should be treated with caution as it needs further discrimination for both partial trisomy or full trisomy. The submicroscopic patterns should be treated with caution as it needs further discrimination for both partial trisomy or full trisomy. The submicroscopic patterns should be treated with caution as it needs further discrimination for both partial trisomy or full trisomy.

P03.114

De novo pure subtelomeric microduplications as a cause of dysmorphic syndromes of unexplained etiology

M. Kacharczyk, D. Sieksta-Roblum, A. Gutowski, M. Kagaudo, A. Jezela-Stanek, A. Marczak, M. Blascheck, K. Chrzanowska, M. Krajewska-Walasek

Department of Medical Genetics, The Children’s Memorial Health Institute, Warsaw, Poland.

Unbalanced chromosomal rearrangements in gene-rich subtelomeric regi-
P03.115
Submicroscopic Xq28 deletions are frequent in “MECP2-mutation-negative” Rett syndrome girls
S. G. Vorsanova1,2, Y. B. Yurov1,2, O. S. Kurinnaia1,2, V. Y. Voinova1,2, M. A. Zelenova1,2, A. P. Silivonovich1, V. V. Louriev3.
1Institute of Paediatrics and Paediatric Surgery, Ministry of Health, Moscow, Russian Federation, 2Mind Health Research Center, RAMS, Moscow, Russian Federation, 3Moscow City University of Psychology and Education, Moscow, Russian Federation.

MECP2 mutations are a well-recognized cause of Rett syndrome (RTT). From 60 to 90% cases of RTT usually demonstrate point or frameshift mutations of MECP2. In the remainder, the cause of the disease is usually unidentified. Occasionally reported cases of Xq28 deletions encompassing MECP2 suggest that at least a small proportion of MECP2-mutation-negative RTT cases might result from submicroscopic Xq28 losses. Using array comparative genome hybridization (array CGH) with a higher coverage of chromosome X, we have tested whether submicroscopic Xq28 deletions (encompassing MECP2) contribute to the etiology of RTT in “MECP2-mutation-negative” cases. We have found that 4 girls among 28 RTT females without MECP2 mutations (addressed by direct sequencing) exhibited submicroscopic Xq28 deletions. The size of the deletions was estimated to be approximately 60kb. It is noteworthy that all the deletion cases demonstrated almost exactly the same breakpoints located at 153.25 and 153.86 Mb of chromosome X according to NCBI Build 37.3. Clinical manifestations in these cases resembled to classical RTT with additional clinical manifestations such as atypical facial dysmorphism, congenital heart malformation, intrauterine growth retardation, congenital eye malformations probably due to losses of other genes located at Xq28. Two deletion cases were associated with late-onset regression (at 24 and 38 months). Our observations along with literature data suggest that at least a small proportion of MECP2-mutation-negative RTT cases might be attributed to submicroscopic Xq28 losses. This finding supports the hypothesis of a separate dup9p22.3-p24.3 phenotype, distinct from the well-described 9p duplication syndrome, thus confining its critical region to the proximal 14q11.2-q12 region, and behavior disorders, susceptibility to infections and typical facial characteristics to the 14q32 region. We consider that haploinsufficiency is the most likely underlying mechanism for facial dysmorphism, susceptibility to infections and behavioral disorder, and gene silencing for seizures and retinal abnormalities.

P03.117
Array CGH characterisation of ring chromosome 9 formation due to inverted duplication and terminal deletion in a patient with sex-reversal
I. Barisic, L. Morozin Pohovski, K. Dumić, I. Petković, M. Biegele, A. Schinzel2.
1Children’s University Hospital Zagreb, Clinical Hospital Centre Sisters of Mercy, Zagreb, 2Institut für Medizinische Genetik, Medizinische Fakultät Universität Zürich, Zürich, Switzerland.

We present the molecular characterisation of the case of ring (9) chromosome arose as a healing mechanism in a patient with inverted duplication and terminal deletion. Ring chromosome 9 was initially diagnosed by high resolution karyotyping and shown to have an additional duplication of band p23. Fluorescent in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA) and quantitative fluorescent-polymerase chain reaction (QF-PCR) maker analysis were used to characterise additionally the aberration and to establish parent origin. The final karyotype was designated as 46,Y,r(9)(p24.3q34.3) inv dup(9)(p24.3p22.3)mat. Array-CGH was performed to further map the aberration. The result revealed a complex rearrangement involving deletion of 841,839 bp at the band 9p22.43, followed by an intact segment approximately 926,016 bp in size, and a large duplication of 127,535 Mb extending from band p24.3 through p22.3. The patient presented overlapping clinical features of the terminal deletion and associated duplication. The deletion involved sex reversal critical region which resulted in ambiguous external genitalia and bilateral ovoid testes. In addition, she presented with growth retardation, dysmorphic features, cerebellar hypoplasia, a small atrial septal defect and low-normal intellectual development. There is only one report of a patient with ring chromosome 9 containing an inverted 9p22.3-p23.3 duplication, but without terminal deletion. Phenotypic characteristics are similar to our patient, confirming the hypothesis of a separate dup9p22.3-p24.3 phenotype, distinct from the well described 9p duplication syndrome, thus confining its critical region to 9p22.1-p22.2.

P03.118
Clinical consequences resulting of the ring chromosome 13 configuration
R. S. Guilherme, C. A. Kini, S. Bragagnolo1, M. A. Ramos1, N. B. Spinner1, L. K. Conlin1, R. Dabernig1, L. D. Kulikowski1, M. I. Melaragno1.
1University Federal of São Paulo, São Paulo, Brazil, 2University of São Paulo, São Paulo, Brazil, 3Children’s Hospital of Philadelphia, Philadelphia, PA, United States.

Ring chromosomes usually result from two terminal breaks in both chromosome arms followed by fusion but can also be formed by different mechanisms. We studied three patients with ring13 karyotyping with 6-h banding, array platform Illumina Quad610 and FISH with bacterial artificial chromosome probes, as follows. Patient I. Three-year-old boy, preterm, IUGR, microcephaly, narrow and oblique forehead, upslanting palpebral folds, ocular hypertelorism, prominent nasal bridge, high palate, prominent incisors, large and dysmorphic ears, smooth philtrum, small nose, prominent nasal bridge, wide philtrum, broad holices, low set dysmorphic ears, high palate, thin upper lip, thoraco-lombar scoliosis, right foot pes-vasali, polydactyly, hypoplasia of the proximal 14q11.2-q12 region, and behavior disorders, susceptibility to infections and epilepsy to be observed. Patient II. One year-old boy, IUGR, microsomia, microcephaly, micrognathism, bilateral epicantus folds, low eyelashes, small nose, prominent nasal bridge, large philtrum, broad holices, low set dysmorphic ears, high palate, thin upper lip, thoraco-lombar scoliosis, right foot pes-vasali, polydactyly, hypoplasia of the proximal 14q11.2-q12 region, and behavior disorders, susceptibility to infections and epilepsy to be observed. Patient III. Five-year-old boy, preterm, IUGR, microcephaly, ocular hypertelorism, prominent nasal bridge, long nose, spaced nipples, otitis, leucopenia, speech delay, hypotonia and neuro-muscular development delay: 46,X(X13)13(q34.3)arrr 13q21.33q34(70.141.036-113. 656,958)x2,13q34(113,759.040-114,123,122)x1. The
patients I and II present a duplicated segment associated with the terminal deletion that was inherited in patient I, while the patient III showed simple terminal deletion. We can observe the three patients present clinical features usually found in del(13q), partial duplication 13q and r(13) considering that these phenotypes are influenced by many factors such as the size of the deletion, presence or not of interstitial duplication, ring instability and epigenetic factors, showing the difficulty in defining a specific phenotype in 13 patients. (FAPESP)

P03.119

Robertsonian translocation and consanguinity
T. Coru, N. Kocab, A. Kalayci, H. Acar;
Selcuk University, Selcuklu Medical Faculty, KONYA, Turkey.

Robertsonian translocation, which occurs with a prevalence of ~1 in 1000 in the general population, result from the rearrangement of two acrocentric chromosomes. The most common Robertsonian translocation is between chromosomes 13 and 14. This translocation can occur de novo or be transmitted by one of the parents. The rearrangement form trivalents at meiosis may result in unbalanced gametes. Zygotes carrying monosomy are not compatible with life and most translocation trisomy concepts are expected to result in the First trimester loss. However, some of them survive beyond the second trimester and to term. There may be infertility problems and miscarriage in couples carrying these translocations. In the present report, a couple was referred to our clinic during an 8 years history of infertility. There was a first cousin marriage between their families. Their families also present numerous consanguineous marriage. Cytogenetic analyses were done in the couple and their families. Both couples have a 45,XX(t;13;14)q10;q10 and 45,X(X;13;14;13;14)q10;q10 karyotypes. Cytogenetic analyses were also extended to the parents. Female proband’s mother and male proband’s father were found to be 44,XX(t;13;14;13;14) and 44,X(t;13;14;13;14), respectively, indicating double Robertsonian translocation while their couples have normal karyotypes. All other possible carriers of Robertsonian translocation in the family were analysed. Each couple in this family was given genetic counselling who has been seeking pregnancy and healthy child. Thus, they were taken under preimplantation genetic diagnosis programme.

P03.120

De novo and inherited copy number variants are a common cause of short stature
D. Zahnleiter1, U. Trautmann1, A. B. Ekici1, D. Wieczorek2, D. A. Ochiana1, D. Wieczorek2, A. Rauch1, C. T. Thié1;
1Institute of Legal Medicine “Mina Minovici”, Bucharest, Romania, 2Institute of Human Genetics, University of Essen, Essen, Germany, 3Private clinic, Würzburg, Germany, 4Department of Pediatrics and Adolescent Medicine, University Erlangen-Nuremberg, Erlangen, Germany, 5Institut de Medecine, University of Bucharest, Bucharest, Romania, 6Molecular Medicine, Mina Minovici Institute of Legal Medicine, Bucharest, Romania.

Shortness of stature is one of the most common paediatric concerns. 3% of the general population present with a body height below -2 SD score. In the majority of cases the underlying cause remains unknown. Recent GWAS found numerous association for both single nucleotide and copy number polymorphisms associated with height variation in the general population. These associations explain only a small fraction of the overall variability of human height. To identify novel genetic causes of growth retardation under a “rare variant - frequent disease” hypothesis we performed molecular karyotyping in 121 families with idiopathic short stature using Affymetrix SNP 6.0 array and scored copy number variants (CNVs) with a minimum size of 10 kb and 5 markers. A total of 4,432 aberrations with an average of 36 copy number changes per individual were identified. After exclusion of common polymorphisms using 820 healthy control individuals and comparison with known pathogenic CNVs, we carried out a gene-centric analysis by investigating known gene functions, tissue expression and murine knock-out phenotypes. We found 14 potentially pathogenic CNVs (11.6 %) in 14 patients, including phenotypic and copy number aberrations. All aberrations were found in 100 kb. 6 were de novo with 1 overlapping the 22q11.1 microdeletion region, and 8 inherited from the affected parent, including the 1q21 region in 2 cases and 3q29 in 1 case. In conclusion, our data indicate that CNVs are one of the main causes of growth retardation in a frequency comparable to other conditions as. e.g. intellectual disability.

P03.121

Genetic complexity in a girl with short stature and mental retardation - case report
D. A. Ochiana1, V. Piaiová1, G. Motej, E. Neagu1, D. Ioncu2, L. Iancu2, L. Barbară2;
1Mother and Child Care Institute “Prof. Dr. Alfred Busescu”, Bucharest, Romania, 2National Institute of Legal Medicine “Mina Minovici”, Bucharest, Romania.

SHOX (short stature homeobox-containing gene) is a member of the highly conserved paired homebox (HOX) family and is known to control important aspects of growth and development. This gene, located in the PAR1 region of chromosomes X and Y, is the first gene shown to be involved in the development of characteristic features of Turner syndrome. We present the case of a female patient, the first child of a Caucasian unrelated family with mild dysmorphic features, microcephaly, growth and mental retardation. MLPA analysis of the telomeres revealed an Xpter duplication, later confirmed with FISH analysis using commercially available SHOX probes. Also, the blood karyotype investigation showed a deletion on the long arm of chromosome 13, region q12q14, which includes CDX2, HMGB1, BRCA2, KLF4 and TNSF11 genes. The implications of SHOX duplication and interstitial deletion of 13q for the phenotype individually and in combination are discussed, along with a short review of the literature.

P03.122

High resolution oligo array-CGH analysis of single cells
P. Costa, A. De Witte, J. Palmers-Smettenck;
Agilent Technologies, Santa Clara, CA, United States.

Genomic imbalances are a major cause of constitutional and acquired disorders. The ability to characterize single cells isolated from solid tumors or to implement samples represents an important advancement. FISH and PCR-based methods have been used to analyze chromosomas of a single cell. However, these approaches can only analyze a limited number of genomic loci simultaneously. By contrast, analysis of genome-wide copy number changes at the single-cell level can be performed by comparative genomic hybridization (CGH). Bacterial artificial chromosome (BAC) arrays have been used for this purpose. However, typically BAC arrays only contain a few thousand probes and are prone to batch-to-batch variation in performance. Here we describe a method for researchers that combines single-cell whole genome amplification (WGA) with copy number analysis employing high-resolution in situ synthesized Agilent SurePrint G3 8x60K oligo CGH microarrays. As a proof-of-principle experiment, we assayed the copy number difference between a reference sample and a test sample with a known aberration, each using amplified DNA that was diluted to single cell levels. We visualized the expected aberrations in Agilent CytoGenomics software. We then assayed the genomic aberrations in single cells biopsied from embryos, in which not only we detected whole chromosome losses or gains, but also found smaller aberrations of portions of chromosome arms. The ability to detect abnormalities involving any of the 24 chromosomes represents a major advantage over FISH and PCR-based methods. The high reproducibility of high-resolution oligo CGH microarrays offers new possibilities for research on genetic analysis of single cells.

P03.123

SNParray-detected seemingly neutral familial CNVs as causative pathogenic events
M. Tricková1, V. Bečvárová1, L. Hnykoř1, J. Horiček1, V. Krutilková1, E. Hlaváčová1, D. Balonka1, M. Hejtmánek1, E. Žemánek1, A. Baxová1, G. Kříčková1, D. Čabra1, D. Stepička1; 1Gennet, Prague, Czech Republic, 2Med, Benešov, Czech Republic, 3UK 1.1.FA VFN, Prague, Czech Republic, 4Gennet, Liberec, Czech Republic, 5GLG, České Budějovice, Czech Republic.

SNP array represents a unique technique for the identification of cytogenetically undetectable submicroscopic alterations (microdeletions, microduplications) and copy number neutral events (LOH, UPD). Routine use of whole genome genotyping by the Illumina HumanCytoSNP-12v2.1 generates both types of results; the definite pathogenic/benign CNVs and CNVs or LOH regions of uncertain clinical significance. In 686 analysed samples during 2 year period (10/11 to 26/11) of 269 CNVs was detected; 913 CNVs in fetuses with abnormal ultrasound findings and 1756 CNVs in children with psychomotor retardation and/or genetic manifestation; 4.4% (441/1013) and 6.6% (116/1756) of clinically relevant pathogenic CNVs in prenatal and postnatal samples, respectively; 3.9% (36/913) and 4.1% (72/1756) of uncertain clinical significance in prenatal and postnatal samples, respectively. 85 parent samples were analysed to clarify the CNV relevance and 18 of CNVs were confirmed as de novo and likely pathogenic microdeletion/microduplications. Out of the total of 49 maternally or paternally inherited CNVs, 26 were assessed as the genomic variants. Interestingly, 23 of the parental CNVs are likely pathogenic as different mechanisms of the variable expressivity or incomplete penetrance of each of the familial alterations were documented: mosaic, X-linked CNV, discreet parental phenotype, second hit model, different aberration size and copy number and uncovered
mutation on the second chromosome. Therefore, we conclude that the proof of inheritance of seemingly neutral genetic aberration does not exclude its pathogenic role.

P03.124 Characterization of a postnatal “de novo” sSMC derived from chromosome 20
M. Garcia1, M. Gazmür, M. Sánchez, E. Arbarca, L. Rodríguez.1

Agentic imbalance induced by the presence of a SMC (Small Supernumerary Marker Chromosomes) is the major reason for clinical symptoms in SMC carriers, although the 44% of prenatally ascertained cases with SMC are familial cases without clinical effect. Nevertheless, the risk of an abnormal phenotype associated with a de novo SMC is 7%-28%.

SMCs cannot be easily characterized by conventional cytogenetic banding techniques generating a lot of diagnostic problems, nevertheless, the recent application of new molecular techniques has resolved the limitations of those techniques and therefore increased the right prognosis for all patients.

Here we report a 2 months old girl who showed at birth a weight of 2050 gr ± (–3) S.D with a height of 52 cm ± (–3), and a length of 45.5 cm ± (–3), together with hypotonia. She was the second child of a healthy couple with a previous healthy child and 3 previous miscarriages. Her evolution at home was with no gain weight and after 2 months, an intrathoracic stoma with duodenal bulb infradiaphragmatic, a light colpocephaly and corpus callosum hypoplasia were diagnosed. After surgery she is having good evolution, getting oral alimentation and at 4 months old she weights 4110 gr. She had a normal prenatally karyotype: 46XX but a postnatal karyotype showed a “de novo” small marker in all cells: 46, XX + X. The application of an Array-CGH showed a gain in the gene dosage [min(20):p11.1→q11.21)] which was confirmed by FISH to be present in the SMC. Array-CGH and FISH are essential for diagnosis of SMC.

P03.125 Structural abnormalities of the sex chromosomes in gonadal dysgenesis
L. Cabré1, M. Covici1, C. Roca1, M. Volosicov1, L. Butnar1, E. Bratu1, M. Panszéri1, R. Popescu1, C. Bujor1, V. Martinu1, M. Gramessi1, I. Ivanov1, A. Sireteanu1, M. Măceșan1, E. Corduzov1.
1University of Medicine and Pharmacy “Cuza-Vodă” Obstetrics and Gynecology Hospital, Iasi, Romania, “Cuza-Vodă” Obstetrics and Gynecology Hospital, Iasi, Romania.

Introduction: Gonadal dysgenesis are characterized by absence or underdevelopment of the gonads which produce sterility (infertility) and sexual characteristics remain underdeveloped. They are caused by numerical and structural abnormalities of the sex chromosomes.

Material and methods: Our group is formed by 23 patients with structural abnormalities of the sex chromosomes diagnosed in Medical Genetics Center Iasi, Romania, between January 2001-December 2010 from a number of 2362 karyotypes. Chromosomal analysis was done using cultures of lymphocytes and GTG bands. In selected cases we used fluorescence in situ hybridization (FISH) postnatal and in one case antenatal FISH discover the abnormality.

Results: There were 20 cases with X chromosome structural abnormalities and just 3 of the Y chromosome, in all cells or in mosaic form. For X chromosome, the abnormalities were: isochromosome (12 cases of q arm isochromosome), ring (5 cases) and deletions (2 for p arm and 1 for q arm). For Y chromosome there were three abnormalities: dicentric, ring and marker chromosome.

Conclusions: Structural abnormalities of X and Y chromosome are less common than aneuploidy in gonadal dysgenesis and the most frequent clinical picture for female gonadal dysgenesis is Turner syndrome. The karyotype and FISH are useful for cytogenetic characterization of these abnormalities.

P03.126 Subtelomere deletion and additional chromosomal segments in mental retardation
A. M. Mohamed2, A. K. Kamei1, M. O. El-Raby1, J. H. Mazeni1, H. A. Hussein1.
1National Research centre, Cairo, Egypt, 2Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.

The prevalence of mental retardation is estimated to be 1 to 3% of the general population. Mental retardation has many etiologies which can be broadly classified into genetic and environmental causes. The condition is common and the cause of MR is still largely unknown in 30-50% of cases.

We reported on three female cases with mental retardation and multiple congenital anomalies and have additional (add) chromosomal segments. The parents of the three cases have normal karyotype. Karyotype in the 1st case was 46.XX,add(X)q, the second 46.XX,add(2)q, the third case 46.XX,add(2)q (Xtranslocation subtelomere). Case 1 has an additional segment of chromosome 7(q31-36) and deletion of chromosome Xq subtelomere. Case 2 has additional segment of chromosome 15(q25-26) and del of chromosomes 14q2telomere. Case 3 has additional segment of chromosome 17q22-25 and deletion of 21 subtelomere. Deletion of the subtelomere may be the underlying mechanism of these abnormalities. The FISH technique can identify to a certain limits the sites and extent of deletion and duplication. We recommend array CGH to detect the exact copy number of deletion and duplication and this can explain the relation of genotype/phenotype.

P03.127 Molecular screening for subtelomeric aberrations in Thai patients with idiopathic mental retardation and autism by multiplex ligation-dependent probe amplification (MLPA)
S. Rujirabanjerd, O. Plong-on, T. Sriro, P. Limprasert; Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.

Chromosomal rearrangements involving telomeres have been identified to account for approximately 5-10% causes of mental retardation (MR). This finding leads to the suggestion that all cases of undiagnosed MR should be screened for subtelomeric aberration. Nevertheless, resolution of standard karyotyping using G-banding is limited and cannot detect this anomaly. Therefore, in this study, multiplex ligation-dependent probe amplification (MLPA) technique, was used to screen 129 patients with idiopathic MR. Twelve of them were also diagnosed with autistic disorder. We identified 5 patients (3.87%) with subtelomeric aberration. All have MR with normal karyotypes. One patient has a submicroscopic deletion at 1p36.33 which was confirmed by real-time PCR. There are two patients with subtelomeric duplication at 15q11.2 and 11p15.5 subsequently. Two patients have the same duplication at Xp22.33. Results were confirmed by using additional MLPA probes. Parental samples were also examined when available. Interestingly the deletion at 1p36.33 and duplication at Xp22.33 fall into the regions where copy number variation (CNV) have been reported. However the pathologic effect of these aberrations is still inconclusive. Further characterization of these aberration boundaries and screening in normal population should be performed. Nonetheless this study shows that MLPA technique is able to detect subtelomeric aberration in patients with idiopathic MR and may increase diagnostic yield especially where array facility is unavailable.

P03.128 De novo supernumerary dicentric marker chromosome 15 with contained Prader-Willi Angelman Critical Regions in a girl with a subtle phenotype
A. K. Feik1, L. Strand2, M. Svendsen2, K. O. Clausen3, G. J. Braathen1
1Department of Laboratory Medicine, Section of Medical Genetics, Telemark hospital, Skien, Norway, 2Head and Neck Research Group, Research Centre, Akershus University Hospital, Lørenskog, Norway, 3Campus Aarhus, Aarhus University Hospital, University of Odense, Northyhagen, Norway.

Background: Supernumerary marker chromosomes (SMC) are structurally abnormal chromosomes that most often are derived from the acrocentric chromosomes and especially chromosome 15. Large SMC (15) which include the Prader-Willi Angelman Critical Region (PWACR) are nearly always sporadic and maternally derived when parental origin has been established. Most cases with large SMC (15) have a severe phenotype typically including hypotonia, motor and speech delay, seizures, moderate to severe learning disability and autism while dysmorphic features are absent or subtle and growth is usually normal. Hence chromosome analysis may not be thought of. Cases are most easily ascertained through chromosome and fluorescence in situ hybridization (FISH) studies.

Method: A three year old girl from a bilingual family was investigated. She had hypotonia, a modest speech delay and unsteady gait due to a foot deformity. Different genetic methods such as chromosomal analysis, FISH, Multiplex Ligation-dependent Probe Amplification (MLPA), array comparative genomic hybridization (AGH) and single nucleotide polymorphism array (SNP array) were used to elucidate her phenotype.

Results: The results will be presented at the meeting.
Deletion of the 3q26 region including the Evi1 and MDS1-gene in a neonate with congenital thrombocytopenia and subsequent aplastic anaemia

M. Nielsen, C. L. Vermont, E. Aten, G. Santen, C. A. Ruivenkamp, M. H. Breuning; Centre of Human and Clinical Genetics, Leiden, Netherlands.

Gene-targeting studies in mice showed a key role of Evi1-protein in maintaining hematopoiesis and argue for gene dosage requirement of Evi1 in the regulation of hematopoietic stem cells. Furthermore, a fusion transcript of Mds1 and Evi1 was shown to play a critical role in maintaining long-term hematopoietic stem cell function. Inappropriate activation, usually due to a translocation, of Evi1 is a well known and unfavorable change in several myeloid malignancies. We report for the first time a constitutional deletion encompassing the Evi1 and Mds1 in a human, and argue that this is causative for the congenital bone marrow failure in this patient.

A phenotypically normal male carrying an unbalanced translocation 47,XY,+der(22)(X;22)(q13;q11.2)

T. D. Jensen, A. L. Frederiksen, M. Rasmussen, A. A. Rasmussen, A. Bojesen; Department of Clinical Genetics, Vejle Hospital, Vejle, Denmark.

Background We have carried out genetic counselling of a pregnant couple expecting their first child. The mother was nine weeks pregnant at first contact. A known translocation, (X;22)(q13;q11.2), runs in the father’s family. The father has been told, based on chromosome analysis on a CVS from his mother, that he carries an unbalanced translocation, which may result in a Klinefelter syndrome phenotype. He is phenotypically normal, also as regards stigmata consistent with Klinefelter syndrome, but has never been karyotyped postnatally.

Methods In light of this, we performed chromosome analysis of the father using standard karyotyping, whole-chromosome painting (WCP) with chromosome X and 22 centromeric probes and finally SNP-array analysis. CVS taken from the mother was analysed using routine qPCR, MLPA subtelomere analysis and standard karyotyping.

Results The results showed that the father carries two normal chromosomes 22, a normal X chromosome and an additional chromosome consisting of X and 22 material. His karyotype is 47,XY,+der(22)(X;22)(q13;q11.2). The derivative chromosome harbours the X-inactivation center (XIC) at Xq13, which undoubtedly explains its lack of severe phenotypic impact. The results of the CVS analyses were normal, showing that the parents were expecting a child with a normal 46,XY karyotype.

Triploidy masicism in a six -year-old dysmorphic girl with mild mental retardation

F. Behtas1,2, S. Ebrahimian Motlaghe1, N. Zarbati1, E. Bagherisadat1, Z. Hadipour3, N. Mohammadkhani1, M. Asad1, Z. Hadipour1, N. Pashmian1, Y. Shogenbati4; 1Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran, 2Sarem Cell Research Center & Department of Medical Genetics, Sarem Hospital, Tehran, Islamic Republic of Iran.

A 6-year-old dysmorphic girl with mild mental retardation and dysmorphism is described. Clinical features of the child included patchy hyper pigmented skin, high nasal bridge, short philtrum, micrognathia, simple ear, simian crease, brachydactyly and syndactyly in all foot fingers. Chromosomal study was performed using GTG banding technique on peripheral blood sample and skin biopsy to rule out chromosomal mosicism. Interphase FISH investigation on peripheral blood and skin biopsy, using X and Y chromosome centromeric probes, was carried out. The child’s peripheral blood karyotype was triploidy with 69, XXX chromosome complements. Metaphase spreads obtained from skin biopsy revealed two cell lines: the majority of cells (42 cells, 84%) were 69,XXX and 8 cells (16%) were 46,XX. FISH result was as follows: interphase cells of cultured peripheral blood revealed 3 signals indicating X chromosomes and none for Y signal; in all studied cells and skin biopsy culture showed 34% of cells with 2 X chromosome signals and 66% with 3 signals confirming mosicism for triploidy. Parent’s karyotypes were normal. Triploidy is usually an univiable situation unless a normal diploid cell line is present. The peripheral blood karyotype was pure triploidy while the skin cells demonstrated a mosaic pattern. The interphase FISH showed a higher percentage of normal karyotype. This study reiterates the use of cytogenetic studies on skin biopsy and interphase FISH for the evaluation of mosicism. To our knowledge, this is one of the rare reported cases of triploidy in a patient surviving to the age of 6 year.

A boy with partial trisomy 10q due to an unbalanced 1q:22p translocation

E. Zehra, A. G. ZAMANI, M. S. YILDIRIM, A. AÇAR; Department of Medical Genetics, Meram Medical Faculty, Konya University, Konya, Turkey.

Distal trisomy 10q syndrome is a rare syndrome characterized by microcephaly, facial dysmorphism, hypotonia, joint laxity, scoliosis, short neck, growth retardation, mental motor retardation, cardiac, ocular and renal abnormalities. Most of the cases are diagnosed in infancy or in childhood and includes prenatal findings and minimal postnatal findings. We report a 15 years old boy presented with dysmorphic features such as microcephaly, round face, facial hirsutism, frontal upslope, low frontal hairline, hypertelorism, epicanthal folds, blepharophimosis, thick eyebrows, long curved eyelashes, flat nasal bridge, hypoplastic alae nasi, macrostomia, bow-shaped mouth, malocclusion of teeth, prominent incisors, high palate, gum hypertrophy, micrognathia, simple ear, short neck, kyphosis, scoliosis, hypogonadism, fusedom, digits, bilateral ballus valgus, short third toes on right foot, syndactyly 2-3 of toes on left foot. The patient also had hypotonia, growth retardation and mental motor retardation. Echocardiography showed pulmonary stenosis and a cranial MR examination revealed thin corpus callousum, small anachrohd cyst on anterior temporal lobe but hearing test was normal. After conventional cytogenetic screening the karyotype of the proband was described as 46,XXqder(22)(p11.22:p12:1)). His mother is a carrier of a balanced translocation between chromosomes 10 and 22 [46,XX(10:22)(q24;p11)]. So our patient has a partial duplication of 1q and partial deletion of 22p. Rearrangement of 22p11–pter does not have clinical implications. So clinical features of the proband suggested as a result of trisomy 1q24–qter.

This case presented to contribute the literature owing to rarity of the partial trisomy 1q syndrome.
E. Gorduza1; sequencing. Patients with r(X) are reported to have a higher incidence of a more severe phenotype and usually present mental retardation. Some studies have utilized include standard karyotyping, probe-specific FISH and structural abnormalities of the Y chromosome. Experimental approaches that would contain a structurally abnormal Y chromosome. In the Jordanian population studied in the current study, we have reviewed 136 positive Turner syndrome cases that have been referred to the National Center for Diabetes, Endocrinology and Genetics, Amman, Jordan.

Chromosomal number and structure determine the normal gender phenotype in humans. Carrying a copy of the X and Y chromosomes determines the male phenotype and carrying two copies of the X chromosome determines the female phenotype. However, in some cases abnormalities in number and/or structure of the chromosomes are associated with a wide range of syndromes, including Turner syndrome. Turner syndrome affects approximately 1 in 2,500 liveborn females, with the most common karyotype in the affected individuals being 46, X0. The reminder of the patients, however, carry mosaic cell lines containing a sex chromosome (either X or Y chromosome). In about 6% of the female Turner syndrome patients, the second cell line would contain a structurally abnormal Y chromosome. In the current study, we have reviewed 136 positive Turner syndrome cases that have been referred to the National Center for Diabetes, Endocrinology and Genetics, Amman, Jordan. We summarize the data obtained, with a special focus on 2 cases with unique karyotypes and 16 cases which present with structural abnormalities of the Y chromosome. Experimental approaches used in the study include standard karyotyping, pme-specific FISH and STR gene sequencing.

P03.135 Study of Turner Syndrome and presentation of unique cases within the Jordanian population

H. Doggag1, W. Trac, M. El-Khoudary, K. Aljouni; National Center for Diabetes, Endocrinology and Genetics, Amman, Jordan.

Turner syndrome is a disease characterized by ovarian dysgenesis determined by partial or complete absence of one X chromosome. Approximately 6% of patients have ring X chromosome. Clinical features are heterogeneous and typical physical anomalies are often mild or absent. The 3 years 10 months old girl was referred to the genetic department due to myelomeningocele and severe developmental delay. The patient had short stature, a broad forehead, dysmorphic face Kabuki-like, myelomeningocele, bilateral hydromecephaly, possible cardiac anomalies (heart murmurs 2/6 degree on left sternal border) and mental retardation. The karyotype shows mosaicism 45X/46XX(51.06%)/46X,t(X)(89.9%).

P03.136 Turner syndrome with a ring X chromosome and atypical manifestation

E. Braha1, M. Gramescu1, C. Bujoran2, M. Panzaar1, R. Popescu1, M. Volosociuc1, C. Rusu1, E. Gomuza1; University of Medicine and Pharmacy-Griгорie Tpapă; Iași, Romania, "Pediatric Hospital „Santa Maria”, Iași, Romania.

Turner syndrome is a disease characterized by ovarian dysgenesis determined by partial or complete absence of one X chromosome. Approximately 6% of patients have ring X chromosome. Clinical features are heterogeneous and typical physical anomalies are often mild or absent. The 3 years 10 months old girl was referred to the genetic department due to myelomeningocele and severe developmental delay. The patient had short stature, a broad forehead, dysmorphic face Kabuki-like, myelomeningocele, bilateral hydromecephaly, possible cardiac anomalies (heart murmurs 2/6 degree on left sternal border) and mental retardation. The karyotype shows mosaicism 45X/46XX(51.06%)/46X,t(X)(89.9%). PIS test for XIST locus is in study.

Patients with r(X) are reported to have a higher incidence of a more severe phenotype and usually present mental retardation. Some studies have shown a correlation between the phenotype severity and the presence or absence of a functional XIST. Our patient showed a atypical clinical features with remimcent features of Kabuki syndrome. The prognosis of the patient is poor, largely based on the severity of clinical condition.

P03.137 The power of SNP array: incidental diagnosis of paternal uniparental disomy of chromosome 15 in a child with a large chromosomal deletion of 11q21q22.3

K. Schlae-Bourthais1, T. Tucker1, T. Olt1, T. Nelson1, P. Syroda1, M. Van Allen1, M. Steinath1; 1Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada, 2Child and Family Research Institute, Vancouver, BC, Canada.

Array analysis is a first line diagnostic test used to search for copy number changes in children with developmental delay and/or congenital anomalies. SNP-based arrays provide additional information about copy number neutral large contiguous regions of homozygosity (LCSH), which can reflect parental relatedness or uniparental disomy (UPD). A proportion of Prader-Willi and Angelman syndromes are caused by maternal and paternal UPD of chromosome 15, respectively. Both syndromes have distinct phenotypes and are usually suspected clinically and confirmed with molecular studies. Here we report a patient with prenatal onset of growth impairment, developmental delay, bilateral iris colobomas and dysmorphic features. SNP array (Affymetrix) analysis showed a 12.9 Mb deletion of chromosome 11q21q22.3, as well as a 25 Mb LCISH on chromosome 15q11.2q12. As a single LCISH detected on SNP array is suggestive of UPD, molecular analysis of the methylation pattern and parental inheritance was performed and confirmed the presence of paternal UPD of chromosome 15. On reevaluation at 20 months of age, the patient showed global developmental delay but overall good health including no seizures. In general, she was felt clinically to be doing better than expected for a child with both Angelman syndrome and additional large chromosomal imbalance.

This is a first report of a patient with a UPD syndrome and additional, apparently unrelated, chromosomal rearrangement. The diagnosis of Angelman syndrome was not suspected clinically in our patient and represents a fortuitous finding. This case highlights the power of SNP based arrays in providing relevant clinical diagnosis.

P03.138 Maternal segmental uniparental disomy 14 in an adult patient with typical upd(14)mat phenotype

B. Niedrist1, B. Oneda1, A. Baumer1, A. Rauch1; 1Institute of Medical Genetics, University of Zurich, Schwerzenbach-Zurich, Switzerland.

We report on a 26 year old graduate student with short stature (161cm), low birth weight (2010g at term), feeding difficulties in the first 3 years of life followed by abiding hunger, truncal obesity, muscular hypotonia, small hands and feet, precocious puberty and hyperlipidemia. Chromosomal examination revealed a normal male karyotype 46,XY and methylation/deletion testing on 15q11-q13 gave no clue for Prader-Willi-Syndrome. In the following marker testing for upd 14 only 2 out of 4 markers were informati ve and the 2 informative markers showed biparental inheritance. Molecular karyotyping was performed (Affymetrix CytoGenetics 2.7M Array) and no known chromosomal aberration was found. However on chromosome 14 a very long homozygosity was suspicious. We repeated marker testing on chromosome 14 with 7 markers and could verify segmental maternal uniparental disomy 14q24.2-qter. The phenotype of our patient fits well for maternal uniparental disomy 14. We conclude upd in the region 14q24.2-qter being responsible for the full phenotype of upd (14) mat and emphasise the importance of testing several informative markers in this region in patients with suspected upd 14. Our results are confirmed by different reports in the literature about patients with epimutations at 14q32.2.

P03.139 Simultaneous occurrence of a duplication encompassing the Wolf-Hirschhorn-Syndrome critical region 2 and a terminal deletion of chromosome 4p in a patient with multiple congenital malformations and developmental delay.

S. Leubner1, S. Anders1, S. Demuth1, S. Riedel1, C. Ramel1, A. Junge1; 1Mitteldeutscher Praxisverbund Humangenetik, Dresden, Germany.

We report on a female patient with multiple congenital malformations (e.g. anal atresia, tetralogy of Fallot, club foot and cervical spine abnormalities), delayed motor skills and language impairment that shows a small duplication in the short arm of chromosome 4 and a terminal deletion of 4p. Conventional cytogenetic analysis (GTG-banding), fluorescence- in situ hybridization (FISH), multiplex ligation- dependent probe amplification analyses (MLPA) and array- based comparative genomic hybridization (aCGH) were performed.

We used an oligonucleotide- based array with an average probe distance of 100 kb (CytoChip Oligo 2x105k v.1.1, BlueGnome). The aCGH analysis re-
We have reported three patients with 20p12.3 microdeletion, without complete penetrance for WPW syndrome and cognitive impairment. Mosaicism might escape detection by array-based karyotyping techniques. This underscores the importance of employing FISH analysis whenever mosaicism is suspected.

P03.140
Wolf-Hirschhorn syndrome phenotype due to der(4)(t(4;8) (p16.1;p23.1) characterized by aCGH
1 SARA Network of Rehabilitation Hospitals, Brasilia – DF, Brazil; 2 Brasilia – DF, Brazil; 3 SARA Network of Rehabilitation Hospitals Rio de Janeiro – RJ, Brazil; 4 Rio de Janeiro, Brazil; 5 SARA Network of Rehabilitation Hospitals, Brasilia – DF, Brazil; 6 Brasilia – DF, Brazil.

A partial 4p deletion causes a Wolf-Hirschhorn syndrome (WHS) phenotype. On the other hand, 8p32.1->pter duplication was reported without phenotypic effect. We report on 5-year-old female with deletion of 4p and duplication of 8p presenting WHS phenotype. GTW-banding, FISH and array-CGH were performed and the karyotype was 46,XX,der(4)(t(4:8)(p16.1;p23.1)dnarr 4p16.1(1300000-820,790)@8p16.1(304,160-3,396,578)x3. She had developmental delay, seizures and dysmorphisms as long eyelashes, synophysis, malrotated ears of nose, micrognatia, a posterior cleft palate, feeding difficulty, cardiac disease and hiper-rotated kidneys. At five years, she has no verbal communication, and does not walk. The patient phenotype is likely due to 4p deletion and the small 8p duplication seen in five years has no phenotypic effect as reported in the literature. A report of the same band region 8p23.1 is referred to interrupt on GATA4 gene related to congenital heart disease. However, our patient has a 8p duplication started at 5Mb from that gene, thus we think that her cardiac disease could not related to GATA4 gene. Furthermore, the breakpoint in 8p is related as recurrent in the same region on patients presenting t(4;8) with about 8 Mb trisomic 8p segment. Differently, our patient has an average 6.09 Mb duplication 8p, and lead to smaller size duplication than referred in the related reports. Although the basic genodic defect and the phenotype in WHS is heterogeneous, most of the morphological traits of the hybrid phenotype in the child with der(4) t(4:8)(p16.1;p23.1) can be attributed to deletion of 4p16.1, since terminal duplication of 8p likely have no phenotypic effect.

P03.141
Delineation of syndromic Wolff-Parkinson-White due to a 20p12.3 microdeletion
M. Nyström, A. Jørgensen, B. Nilsen1, V. Martin2
1Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital North North, N09308 TROMSOE, Norway; 2Department of Clinical Medicine – Medical Genetics, Faculty of Health Sciences, University of Tromsø, N0937 Tromsø, Norway.

OBJECTIVE: We report on the clinical and genetic findings in a family with variable phenotypes, expression of a 20p12.3 microdeletion. The proband was a young man with re-entrant tachycardia due to Wolff-Parkinson-White syndrome (WPW). Dysmorphic features, skeletal findings and cognitive deficits.

METHODS: DNA from the patients, the father and an older, healthy sister of the proband were analyzed for available family members, as well as in the female fetus. SNP analysis was performed on DNA from mother to check for mosaicism. FISH-analysis of metaphase chromosomes (>50 metaphases) and interphase nuclei (>100 nuclei) were done using BAC FISH probes (RP1-1-184L8 (BMP2-gene) and a control probe RP1-1477N11 (20q13.2)) were obtained from Empire Genomics (http://www.empiregenomics.com).

RESULTS: Agilent 105k aCGH analysis revealed a 970 kb deletion, including the BMP2-gene, with genome position g.62653.13,3332051 (7,158672,7723595), at 20p12.3, in the proband, and in the mother. FISH-analysis of the proband and his younger sister detected a microdeletion of the BMP2-gene in all cells analyzed. Fifty seven percent of the mother’s blood cells manifested the deletion, revealing a mosaic state. aCGH and SNP array analysis provided no cells for mosaicism.

CONCLUSIONS: We found a small microdeletion with complete penetrance for WPW syndrome and cognitive impairment. Mosaicism might escape detection by array-based karyotyping techniques. This underscores the importance of employing FISH analysis whenever mosaicism is suspected.
growth hormone and thyroid hormone levels were normal. The karyotype was abnormal and revealed a Xq duplication: 46,X.dup(X)(q13;q22) who included "critical region" (Xq13-q21) involved in premature ovarian failure. The proximal region of Xq contains genes that normally escape X chromosome inactivation. In this context we appreciate that the patient may have fertility problems such as primary or secondary amenorrhea. We could not do the karyotypes of the parents, necessary to establish the origin of the chromosomal abnormality, because the child was placed in a institutional care setting.

P03.145
Familial interstitial direct duplication of chromosome (X)(q23q25) detected by aCGH associated with phenotypic variability
V. Belengeanu1, D. Moscov1, M. Stoian1, N. Andreescu1, S. Farca1, D. Belengeanu1, T. H. Gamage2, T. Barøy2, E. Frengen2;
1University of Medicine and Pharmacy, Timisoara, Romania; 2Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.

Chromosomal rearrangements occur frequently in patients with mental retardation associated or not with other anomalies. Two brothers and their mother were investigated for mental retardation. Initially, a 32-years-old man was evaluated due to short stature, facial dysmorphism with prognathism, obesity, hypoplastic genitalia, developmental delay and behaviour problems, especially with regard to eating. His brother presented with mild facial dysmorphism, mental retardation and misbehaviour. The mother had milder phenotypic features and mild mental retardation. For this family the IQ varies from 40 for propositus, to 50 for his brother, and 60 for their mother.

Standard cytogenetic analysis for propositus was normal. Because the clinical signs were suggestive for Prader-Willi syndrome, FISH analysis was performed, but no deletion on 15q11q13 was found. Additional testing with MS-MLPA for Prader-Willi syndrome was also negative. Array CGH analysis (180K Agilent) on patient revealed a chromosome X duplication, chrX:11556807-126991540 bp, hg19. By quantitative Real-Time PCR the duplication was verified in the proband and also detected in his brother and mother. BAC FISH established that the duplication is in situ and has a direct orientation. Result of the X inactivation study in the mother showed 100% skewing in leukocytes.

In our case the duplicated region Xq23q25 seems be associated with phenotypic variability. Because the phenotypic variability of the two brothers couldn’t be explained we suspected a possible influence of other genes on the expression of the genes within Xq23q25 region, as well as epigenetic factors influence.

P04. Reproductive genetics

P04.02
Partial deletion of DMRT1 causes 46,XY ovotesticular disorder of sexual development (DSD)
S. Ledig1, G. Hiort2, L. Wünsch2, P. Wieacker2;
1Westfälische Wilhelms Universität Münster, Münster, Germany; 2University of Lübeck, Lübeck, Germany.

Ovotesticular disorder of sexual development (DSD) is an unusual form of DSD, characterized by the presence of testicular and ovarian tissue in the same individual. In a subset of patients ovotesticular DSD is caused by 46,XY/46,XXY chimerism or mosaicism. To date only few monogenic causes are known to be associated with XX and XY ovotesticular DSD like mutations in RSPO1, SRY and SOX9.

We performed high-resolution array-CGH (comparative genomic hybridization) in a female patient with 46,XY ovotesticular DSD with testicular tissue at the one side and an ovary harbouring germ cells on the other. We identified in the patient a small deletion affecting exons 3 and 4 of the DMRT1 gene. Results obtained by array-CGH were confirmed by RT-qPCR (quantitative PCR).

To this point of time, deletions and missense mutations of DMRT1 are associated only with XY gonadal dysgenesis. But according our present findings we conclude that haploinsufficiency of DMRT1 can cause both, XY gonadal dysgenesis and XY ovotesticular DSD. Furthermore, to the best of our knowledge, this is the smallest deletion affecting DMRT1 in a patient with DSD presented to this point of time.

P04.03
High throughput copy number counting in single cells - a method for the detection of meiotic and mitotic errors
A. Darsie1, E. Day2, B. Konfortov2, A. Immesberger1, H. Turley2, T. Hahn2, U. Zechner1, T. Hoor3, P. H. Deur3, M. Schorch2;
1Maximilian University, Munich, Germany; 2Westfälische Wilhelms Universität Münster, Münster, Germany, 3Children’s Hospital of the Medical University of Graz, Graz, Austria.

High throughput copy number counting in single cells offers a powerful tool to detect chromosome aberrations caused by meiotic and mitotic errors. Using this approach we developed a novel method for the detection of meiotic and mitotic errors by analysis of single cells with next generation sequencing (NGS) data. We developed a method that allows detection of errors on a genome-wide level with high sensitivity and specificity.

P04.04
M2/ANXA5 is a risk factor for recurrent pregnancy loss (RPL) in a population undergoing in vitro fertilisation (IVF)
F. Tütte1, R. Pavlik2, S. Hecht2, N. Bagadovan1, M. Nothnagel2, T. Balaschun3, M. Krawczak2, C. Thaler2, A. Markoff4;
1Institute of Human Genetics, Münster, Germany; 2Hormone and Fertility Center LMU, Obstetrics and Gynecology, Munich, Germany; 3Institute of Clinical Molecular Biology, UKSH, Kiel, Germany.

Recurrent pregnancy loss (RPL) is defined as pregnancy losses in two or more consecutive pregnancies before the 20th week of gestation. The major reason is the high frequency of chromosomally abnormal (i.e. aneuploid) oocytes. Selection of euploid oocytes is thus an attractive strategy to increase the number of live births following IVF. The ploidy status of oocytes can be indirectly investigated by analysing the chromosome content in polar bodies (PB) I and II which are results of the first and second meiotic division before and after fertilisation; errors in meiotic divisions are due to chromosome non-disjunction and early sister chromatid separation. Therefore investigation of the chromosome content of PB I and II requires techniques which allow investigation of all chromosomes at the resolution of chromatids.

In contrast to microarray formats we count chromatinids directly - molecular copy number counting (MCC) applied to a single cell, i.e. polar body. MCC is based on limiting dilution of the DNA to a concentration of less than one molecule per PCR reaction and digital PCR. The number of chromatids per chromosome is analysed by counting the numbers of positive PCR reactions representing target sequences on all chromosomes. To investigate all chromosomes with several markers we run a multiplex PCR followed by single marker PCRs with the BioMark system from Fluidigm.

This method is simple and applicable to monitor not only meiotic but also mitotic cell divisions, copy number changes in general and to establish haplotypes for regions of interest in any given single cell.

P04.05
Y chromosome AZF deletions/duplications and spontaneous pregnancy loss
S. Madjunkova1, A. Kumnova1, K. Stankova3, P. Gerasimova1, M. Madjunkov1, D. Plaseska-Karanfilova1;

There is a possible protective effect of M1 carriage on pregnancy outcomes as previously suggested. Carriage of the M2 promoter haplotype of ANXA5 was verified as risk factor for RPL in various patient cohorts. M2/ANXA5 results in reduced expression levels of the protein in placenta leading to various thrombophilia related placental pathologies and ultimately RPL. We performed a risk stratification study in women undergoing IVF.

The IVF cohort of 695 women from the Hormone and Fertility Center, Munich, 500 fertile female controls from the Institute of Human Genetics, Münster and 533 population controls from the PopGen biobank, Kiel were genotyped via sequencing. Equal genetic backgrounds were confirmed through genome-wide SNP analysis.

Carriers of M2 faced a higher relative risk of 1.2 to belong to the IVF group compared to population controls and of 1.4 in comparison with fertile women. This overall elevated risk was contributed by a subgroup of women with previous pregnancy losses, where the appropriate relative risks amounted to 2.3 and 3.8 accordingly. Carriage of M1 or M2 was not associated with biochemical pregnancy loss, implantation rates, ovary reserve, hormone status, number and quality of egg cells and general embryonal development. Interestingly, successful pregnancy outcomes tended to be more frequent for M1 carriers with comparable losses rate. This would signify a possible protective function for M1 in pregnancy, as previously suggested. In conclusion, the effect of M2/ANXA5 on pregnancy losses was reconfirmed. This excludes biochemical pregnancy losses and implantation failures. There is a possible protective effect of M1 carriage on pregnancy outcomes that needs further evaluation in other patient cohorts.
Abstracts - European Human Genetics Conference 2012

P04.07 Mutation analysis of CYP21A2 gene in couples with unexplained infertility problems
S. Stangler Heroz1,2, B. Zapardiel3, A. Erjavec Stjernej1, V. Vaiasvieli1, M. Dosen1, I. Tabori1, L. Lork1, N. Volf1
1Laboratory of Medical Genetics, University Clinical Centre Maribor, SI-2000 Maribor, Slovenia, 2Department of Reproductive Medicine and Gynecologic Endocrinology, University Clinical Centre Maribor, Slovenia, 3Department of Gynaecology and Obstetrics, University Clinic Centre, Slovenia.

Introduction. Infertility is a worldwide reproductive health problem that affects approximately 15% of married couples. Defects in the CYP21A2 gene cause steroid 21-hydroxylase deficiency, which is the most frequent cause of congenital adrenal hyperplasia (CAH). CAH is a genetic condition that can affect both men and women. In this study we have analyzed mutations of the CYP21A2 gene in couples with unexplained fertility problems and healthy controls.

Methods. DNA was extracted from peripheral blood samples. Allele specific PCR was performed for the detection of mutations IVS2-12 A>C and 1172N. Gene deletion/conversion was detected with competitive PCR and capillary electrophoresis.

Results. 160 couples with unexplained fertility problems and 200 healthy controls were included in the study. All three mutations were detected as present in the table. Detection of CYP21A2 mutations in couples with unexplained infertility problems when compared with controls without an infertility history. The prevalence of CYP21A2 mutations can be found in probands with fertility problems when compared with controls without an infertility history. The prevalence of CYP21A2 mutations can be found in probands with fertility problems when compared with controls without an infertility history.

P04.08 Spectrum of chromosomal heteromorphism variants of infertile couples undergoing for Assisted Reproductive Technology (ART)
S. Zoukoukayas1, N. Rumiantseva1, L. Sovonc1, H. Abramchik1, L. Shagina2
1Center of Reproductive Medicine, Minsk, Belarus, 2Republican Medical Centre “Mother and Child”, Minsk, Belarus.

Cytogenetic studies of infertility patients, couples with recurrent pregnancy loss are important part of ART service. Variation in length of heterochromatin regions, stalks, satellites are described as phenomena without phenotypic effects, but relationships between chromosome polymorphism and reproduction are under investigation.

We present the data of chromosomal heteromorphism variants (ChHV) detected in couples, referred to ART.

Among 2418 patients, examined by standard karyotyping during 2010-2011 years, ChHV were revealed in 460 cases (22%, sex ratio 1:1). The spectrum of involved chromosomes included: 1 (2.4%), 9 (6.1%), 13 (23.5%), 14 (26.3%), 15 (23.5%), 16 (2.2%), 21 (17.7%), 22 (11.5%), Y (3.7%). Heteromorphism of single chromosome was detected in 92.8%, two chromosomes in 14.6%, three chromosomes in 2.6% cases. Total number of ChHV was 68. Single variant (ps+, pss, pstk+, phq, qhp, qhp) was revealed in 80.4% patients. Association of 2 variants in the same (13pstk+ ps+; 14pstk+ pss+; 15pstk+ pss+, etc) or different chromosomes (1qh+, qhp; 1ps+, 2pstk+; 14pstk+, 15pstk+; 15pstk+, 15pstk+ pss+; 14pstk+, 15pstk+ ps+; 14pstk+, 15pstk+ pss+; 14pstk+, 21pstk+ pps+; 21pstk+, 22pstk+ ps+; 21pstk+, 22pstk+ pps+ etc). One patient showed 4 variants: 46,XX,14pstk+,21pstk+,21pstk+ps+. The common ChHV were: 14pstk+ (17.4%), 15pstk+ (13%), 13pstk+ (12.2%), 21pstk+ (9.3%). Polymorphism of heterochromatic segments of chromosomes 1, 9, 16, Y identified in 13% cases. Variants 9phq, 15ps, var15 (q11.2q13) registered rarely.

Results demonstrate a wide spectrum of ChHV in infertile couples. For best understanding of relationships “ChHV-reproductive failure-outcome prognosis”, especially in rare sporadic variants, the balance of karyotype is to be confirmed with suitable methods, including molecular cytogenetic analysis.

www.eshg.org
MAT7 mutation also had a heterozygous mutation, C389X, in KISS1R, a gene implicated in autosomal recessive nHH and encoding kisspeptin receptor with an important role in regulating GnRH secretion. No other KISS1R mutation was found in the patient when genomic DNA and cDNA was sequenced. We hypothesize that the nHH of this patient could result from a combination of a reduced number of GnRH neurons and a reduced number of functional kisspeptin receptors in them. Our findings provide support for the role of SEMA7A mutations in the pathogenesis of HHH in human, and for the proposed digenic or oligogenic inheritance in this disorder.

P04.11 Evidence for expression of Cyp19A1 (cytochrome P450, family 19, subfamily A, polypeptide1) in human embryonal carcinoma cell line K. Fallah-Zadeh1, R. Favaedi1, M. Khoaravifar2, P. Afsharifar1, M. Nahom1, M. Shabhaee1
1Department of Genetics, Reproductive Biomedicine Center, Royan Institute for Reproductive Biomedic, Tehran, Islamic Republic of Iran, 2Department of Animal Biology, Faculty of Biological Science, Kharazmi University (TUM), Tehran, Islamic Republic of Iran.

Introduction
Cyp19A1 is a single copy gene located on chromosome 15q21.2 in human genome which encodes aromatase, the key enzyme for estrogen biosynthesis. In the final step of mentioned process, this integral membrane enzyme catalyzes the removal of 19-methyl group of the A-ring of androgens in an irreversible manner, resulting in conversion of androgen to estrogen which named aromatization. In human, aromatase gene is expressed in a tissue specific manner. The way that expression of Cyp19A1 has been reported in organs such as gonads, brain, skin, placenta and adipose. Embryonal carcinoma (EC) cells derived from testicular tumors are valuable models for studying embryogenesis and developmental biology processes. Since EC cells are malignant but their terminally differentiated derivatives are not, understanding the expression profile of these embryonal cells may be of diagnostic and maybe therapeutic purposes in embryology. Material and methods
In the current work, the mRNA expression level of Cyp19A1 gene was evaluated in a human EC cell line named NT2/NTERA2, using quantitative real-time PCR technique. Result and discussion
Our results clearly showed the expression of Cyp19A1 in NT2 cell line. Our finding implies a dynamic role of Cyp19A1 aromatase gene in developmental processes and maybe in cancer.

P04.12 Performance Evaluation of the Celera Cystic Fibrosis Genotyping Assay with the 3500xL Genetic Analyzer (RUO*) and Three Nucleic Acid Isolation Technologies
K. C. Young, P. P. Wadis, D. A. Best; Celera, Alameda, CA, United States.

Cystic Fibrosis is a recessive inherited genetic disorder, resulting from an unregulated cystic fibrosis transmembrane conductance regulator (CFTR) gene. Detection of this disorder is crucial in deciding timely treatment, leading to a better quality of life. The Celera Cystic Fibrosis Genotyping Assay is a qualitative in vitro diagnostic device used to genotype a panel of 32 mutations (plus poly-T and exon 10 polymorphisms) in the CFTR gene from genomic DNA isolated from human whole blood. The assay provides information intended for use in the carrier screening of adults of reproductive age, as an aid in newborn screening, and in the confirmatory diagnostic testing of newborns and children. Due to differences in sample preparation technologies, three different methods were used to assess the isolation of genomic DNA from EDTA human whole blood. Two operators independently processed 22 samples on two days using the MagnA Pure Compact Nucleic Acid Isolation Kit (Roche), the QIAamp DNA Blood Kit (Qiagen), and the PureGene Blood Core Kit (Qiagen). The extracted DNAs were characterized for concentration, purity, and performance in the detection of wild-type and mutant alleles using the Celera Cystic Fibrosis Genotyping Assay with the 3500xL genetic analyzer (Life Technologies; RUO*).

The results demonstrated that DNA isolated by these sample preparation methods were of sufficient concentration and purity to allow accurate genotyping by the Celera Cystic Fibrosis Genotyping Assay with the 3500xL genetic analyzer.

*Research Use Only

P04.13 The former annotated pseudogene DHFRL1 is expressed and functional

Dihydrofolate reductase (DHFR) is a folate enzyme which reduces dihydrofolate into tetrahydrofolate in the presence of NADPH. DHFR was previously thought to be the only enzyme capable of this reaction however we show that humans have a second dihydrofolate reductase enzyme encoded by the former annotated pseudogene DHFRL1 (dihydrofolate reductase-like 1) on chromosome 3. We demonstrate that the DHFRL1 gene is expressed and shares some commonalities with DHFR. Recombinant DHFRL1 can complement a DHFR negative phenotype in both bacterial and mammalian cells. Enzyme kinetics shows that the Km for NADPH is similar for both enzymes but DHFRL1 has a higher Km for dihydrofolate when compared to DHFR, indicating a lower affinity for the substrate. Localization of DHFRL1, visualized using confocal microscopy, shows that DHFRL1 has a strong presence in the mitochondria, where it is proposed by Anderson et al (2011) to participate in de novo thymidylate synthesis to support mitochondrial DNA replication. We also found that DHFRL1 has the ability to bind its own mRNA in the same translational auto-regulation method as DHFR; with both enzymes capable of replacing each other. Methotrexate (MTX), a potent inhibitor of DHFR, is known to disrupt this regulation mechanism. We demonstrate that DHFRL1, which has a lower binding affinity for MTX, requires a higher concentration of the drug to disrupt the protein: RNA binding complex. The identification of a second dihydrofolate reductase enzyme encoded by a previously unrecognised retrogene will have a major impact on previous research surrounding DHFR.

P04.14 Maternal stress factors associated with Down syndrome birth
S. K. Dey, S. Gosh; West Bengal University of Technology, Kolkata, India.

Down syndrome due to trisomy 21 is the most common human chromosomal abnormality. In order to gain insight into maternal stress factors responsible for nondisjunction, we genotyped 12 microsatellite markers spanning along 21q from centromere to telomere in 138 individuals with free trisomy 21 and in their parents and analyzed the association among reduced recombination, maternal age and nondisjunction. The approach was informative for 119 families in determining parental origin with 89.91% being maternal and 10.09% is paternal. The distribution of nondisjunction in maternal meiotic I and meiotic II stages were 81.19% and 19.81% respectively. The mean maternal age of nondisjunction in our Indian population is 27.58±6.4 years which is significantly lower than that of Caucasians. We created a genetic map of long arm (21q) in maternal meiosis I nondisjoined chromosome 21. The distribution of chiasma shows a difference throughout the length of 21q with more recombination towards telomeric end in comparison to control data. The telomeric exchange is found to be a significant risk factor for meiotic I nondisjunction, irrespective of the age of the mother. An increase in both zero- and one-exchange events in younger mother (< 29) suggests reduction of recombination. The linkage map of 21q (39.58cm) was significantly shorter than the control female linkage map, indicating an overall reduction of recombination. Telomere length estimation indicates that telomere length attrition may be associated in some way with meiosis I and meiosis II nondisjunctions of chromosome 21. Reduced recombination & telomeric exchange are important maternal stress factors.

P04.15 FMR1Genotype Repeat Size Analysis as a Genetic Test Necessary Prior Fertility Treatments
R. Pepeño1, A. Zúñiga2, L. Pedrola1, V. Romero1
1Hospital de la Ribera, Albacete (Spain), 2Hospital de la Ribera, Albacete (Spain).

Premature ovarian failure [POF (MIM 311360)] is an early ovarian dysfunction characterized by cessation of menstruation before the age of 40 years. The aetiology of this disorder is complex and the underlying genetic defects are largely unknown. It has been estimated that ~21% of POF cases are associated with expanded alleles of the Fragile X mental retardation [FMR1, FXS (MIM 309050)] gene. Intermediate and pre-mutated FMR1 alleles may become unstable generating a full mutation with further expansion in the following generations, when passed from a female to her offspring. Such females, also called Fragile X intermediate or pre-mutation carriers, are phenotypically normal although with an increased risk of POF. We report a case of a healthy, 34-year-old woman who had premature ovarian failure (POF).
P04.16 Genetic polymorphisms of Glutathione S-transferase M1, T1 and P1 in Tunisian infertile men
M. Cherif1, S. Boklouti1, M. Ghorbel1, N. Zribi1, S. Daoudi1, A. Sellami1, N. Chakroun1, F. Fahibkhel1, L. Ammar-Keskes1;
Laboratory of Molecular Genetics, Sfax, Tunisia, 1Laboratory of Histology, Sfax, Tunisia.

Introduction: Genetic causes are responsible of 60% of cases of idiopathic male infertility. Polymorphisms of genes that encode Glutathione S-transfases (GSTs), a group of phase II enzymes that detoxify endogenous and exogenous electrophiles, can affect the biotransformation of toxic compounds to which the male productive system is exposed. Some reports attested the association of GSTs gene polymorphisms with male infertility. In order to investigate whether there is an impact of genetic variations of GSTs on semen quality and male fertility, we studied three genetic polymorphisms in GSTT1, GSTM1 and GSTP1 in infertile men and controls from Tunisia.

Methods: Participant’s were 159 men with idiopathic infertility and 102 fertile men. Basic semen analysis was performed including total sperm count and concentration, motility and morphology. Genotyping of GSTM1 and GSTT1 polymorphisms were performed using multiplex PCR. The GSTP1 Ile 105 Val polymorphism was identified using PCR-RFLP.

Results: GSTM1 null genotype (GSTM1 0/0) was significantly associated with reduced sperm count in infertile men semen (p=0.001) and GSTT1 null genotype (GSTT1 0/0) was significantly associated with low sperm motility (p=0.001). However, infertile men had a higher prevalence of the wide type of GSTP1 allele (GSTP1 Ile 105) than the fertile group (80.5% and 72.54%, respectively; p=0.034) and the presence of the homozygote mutant genotype (GSTP1 Val/Val) was less common in infertile men than in fertile group.

Conclusion. Our results suggest that both GSTM1 and GSTT1 gene polymorphisms have a negative impact on semen quality and are associated with male infertility in Tunisia.

P04.19 The role of thrombophilia in implantation failure and recurrent spontaneous abortion
E. Kovacinska1, T. Kahovec1, D. Murametz1, R. Zordania1;
1Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia, 2Department of Pediatrics, University of Tartu, Tartu, Estonia.

It’s accepted, that thrombophilia is one of the possible etiological factors of in vitro fertilization (IVF) failure and recurrent pregnancy loss (RPL). We conducted this study to determine the role of thrombophilic inherited and acquired factors in the etiology of infertility in 150 families. We analysed clinical, laboratory and genetical data of families in two groups: in the first group we enrolled women who had had at least two IVF failure (n=75), but no deliveries. Second group consisted of women (n=75) who had conceived spontaneously and had uneventful pregnancies (at least two pregnancy loss previously). All the women underwent a whole screenig for congenital (factor V Leiden, factor II c.2010G>A, antithrombin, protein C, protein S deficiency, MTHFR c.677C>T and c.1298A>C) and acquired (APC resistance) thrombophilia risk factors. Conventional cytogenetical analysis was performed in all women and their partners. Inherited thrombophilia mutations were revealed in 82.4% of the first group versus 64.8% in RPL group. APC resistance was diagnosed in 3% among IVF failure patients and 30% in RPL patients. About half of the cases in both groups it was caused by F V Leiden mutation. No differences was found between groups concerning MTHFR mutations. Combined thrombophilia (the presence of two genetic factors of thrombophilia) was present in 5% of first and 12% among second group of patients. Our data suggest that factor V Leiden mutation alone or combined with acquired factors can have a role in recurrent fetal loss in families without conceiving problems.

P04.20 Application of a Scoring System in PGD for late onset diseases and cancer predispositions.
V. Gold1, S. Peleg1, V. Lissansky1, N. Mey-Ruz1, I. Wagman1, B. Ben Yosef1, A. Amit1, Y. Yaron1,2, M. Malcov1;
1Racine IVF Unit, Lias Maternity Hospital. Sourasky Medical Center, Tel Aviv, Israel, 2Prenatal Diagnosis Unit, Genetic Institute, Sourasky Medical Center, Tel Aviv, Israel, 3Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Introduction: PGD is widely used for cancer predisposition mutations with variable penetrance and additional late onset diseases. The number of families affected by these conditions that opt for PGD increases continuously as molecular techniques are advancing. Nonetheless, the indication for PGD in these cases keeps raising ethical issues.

Aim: to summarize our experience in PGD for couples affected with late onset diseases following the evaluation of each case by a quantitative Scoring System (SS).

Methods: PGD was performed by embryo biopsy, followed by single cell multiplex nested PCR for the familial predisposition mutation and for 4-8 flanking polymorphic markers. The devised SS considers disease characteristics (onset, severity, penetrance, inheritance pattern) and patient clinical variables (carrier status, infertility, objection to terminate pregnancy, additional genetic syndrome) resulting in an absolute numeric value for every patient.

Results: the evaluation of 31 couples by the SS showed that some conditions such as FAP or Huntington definitely justify PGD while others like BRCA or HNPPC require the contribution of patient variables in order to justify inclusion into PGD program. Seven healthy pregnancies were achieved.

Conclusion: the employment of a SS that takes into account the disease characteristics as well as the patients’ clinical variables allows for the objective determination wherein PGD is justified. We envision that the continuous discovery of cancer predisposition and late onset mutations will highlight PGD as the most appropriate reproductive option for preventing the perpetuation of severe inherited predisposition in families with several affected or deceased members.

P04.21 Interleukin 6 polymorphism in recurrent pregnancy loss
V. Roda1, C. Bara1, L. Bohiltea1;
1Life Memorial Hospital, Bucharest, Romania, 2UMF Carol Davila, Bucharest, Romania, 3UMF Carol Davila, Bucharest, Romania.

Introduction About 15 - 20% of clinically recognized pregnancies end in miscarriage among Caucasians. The etiology of recurrent pregnancy loss remains unclear and the possible immunological etiologies of pregnancy failure have been intensively investigated.

The maternal immune system confronts the embryo/ fetus with a host
defense reaction, based on the recognition of paternally derived antigens. Cytokines have been described to play a major role in the pathogenesis of recurrent miscarriage.

Objective
We propose to investigate the relationships between recurrent pregnancy loss and single nucleotide polymorphism -174 G/C in the promoter region of the interleukin 6 gene in Romanian population.

Material and methods
The diagnosis of RPL was based on a documented history of at least two spontaneous consecutive miscarriages. Each woman underwent a diagnostic work-up to rule out a verifiable cause for the recurrent miscarriage. We studied 57 women with recurrent spontaneous abortions (2-4) and 40 women experiencing at least one live birth and no abortions referred to Life Memorial Hospital. DNA extraction and PCR were employed to genotype women for the presence of a polymorphism in the promoter region of interleukin 6 gene.

Results
There was not a significant difference in the -174 G/C genotype frequency (GG vs. GC/CC) between the women with RPL and controls (p value = 0.47). We did not detect any homozygote for C allele in 77 subjects.

Conclusion
The interleukin 6 polymorphism investigated was not associated with recurrent pregnancy loss in Romanian population.

P04.22 Iron deficiency and targeted deletion of iron regulatory protein 2 affect sperm motility and male fertility
B. Marohn1, P. Granit1, E. C. Meyron-Holzer1, J. Schmidt2, S. Schubert1; 1Institute for Human Genetics, Hannover Medical School, Hannover, Germany; 2Institute for Human Genetics, Georg August University, Göttingen, Germany; 3Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.

The iron metabolism is regulated both, at the systemic and cellular level, amongst others, by the iron regulatory proteins (IRP) 1 and 2. IRP2 regulates proteins involved in iron transport and storage such as transferrin receptor 1 (TfR1), ferropontin and ferritin. Irp2 knockout mice exhibit misregulated expression levels of these proteins and develop anaemia and a late onset progressive neurodegeneration.

Fertility of Irp2−/−; Irp2−/+ breeding pairs and the abundant expression of IRP2 in the testis of wild-type mice indicate an important role of IRP2 in the regulation of testicular iron homeostasis. This project focused on how testicular iron metabolism, spermatogenesis and spermiogenesis are affected by IRP2 deficiency. Spermatogenesis and fertility of Irp2−/− mice are not affected. However, sperm motility of IRP2-deficient males is significantly enhanced in comparison to age-matched C57BL/6j wild-type controls. We kept Irp2−/− and age-matched controls on a low iron diet in order to analyze if the increased sperm velocity is a result of iron deficiency and if lack of iron could affect spermatogenesis and male fertility in general. While sperm of wild-type mice on a low iron diet mimic the behaviour of IRP2-deficient mice under normal conditions, sperm motility and fertility of homozygous Irp2 knockout mice on a low iron diet are significantly reduced. Whether this effect is mediated by structural abnormalities of the sperm flagellum and/or due to a lower ATP production in IRP2-deficient sperm is currently under investigation.

P04.24 Array-CGH analysis in male infertility
W. Lissemore1, D. Vandenbaeren1, S. Seneca1, B. Menter1, G. Vandyck2, H. Tournaye3, K. Stouffs4; 1 Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; 2Center for Reproductive Medicine, UZ Brussels and Vrije Universiteit Brussel, Brussels, Belgium; 3Human Center for Reproductive Medicine, UZ Brussels and Vrije Universiteit Brussel, Brussels, Belgium.

In order to identify genetic causes of male infertility, many individual genes have been studied for the presence of mutations in infertile patients. However, these studies were rather disappointing. Therefore, we looked for the presence of copy number variations (CNVs) in 9 infertile men with a maturation arrest of spermatogenesis and in 20 control males with normal sperm parameters. After several elimination steps, 7 regions remained. These regions including four deletions and three duplications, were further investigated by qPCR in patients and in a large number of controls. The 4 deletions were present in heterozygous form and contained the SLC25A24, FAM82A1, C17orf51 and SIRT4 genes. By sequencing no mutations were detected in the non-deleted copies of these genes. These three duplications involved the genes THRAP3+ C10orf13, SYT6 and PLSCR2. Due to their known function the genes SYT6, PLSCR2 and SIRT4 have a potential role in male infertility.

P04.25 A methylation-sensitive SNP in PIWIL2 is associated with male infertility
C. Friemel1, S. Bens1, A. Caliebe1, J. Gutwein1, J. Richter1, A. Schmutzler1, R. Siebert1, O. Ammerpohl2; 1Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany; 2Center for Reproductive Medicine, Christian-Albrechts-University Kiel, Kiel, Germany.

Epigenetic mechanisms have recently emerged as playing a crucial role in the pathogenesis of various common diseases. We hypothesized that aberrant DNA methylation patterns also contribute to the causes of male infertility. To test the validity of this study we identified Cpg loci differentially methylated in infertile men as compared to fertile male controls. Using the HumAnMethylation450k BeadChip DNA from peripheral blood cells obtained from 33 infertile men, as well as 10 fertile male controls was analyzed. A total of 596 differentially methylated CpG loci were revealed by this approach (p<0.001). These genes were enriched for PIWIL family members [Enrichment score = 39.32]. As PIWILs are involved in the regulation of spermatogenesis, we further focused on this group of genes. Notably, one differently methylated CpG site, which was located in the X-chromosome region of PIWIL2 showed a significantly lower methylation level in patients as compared to controls (p<0.01). Remarkably, DNA methylation at this site showed a bimodal distribution with very low levels in a subgroup of 8 patients (mean methylation = 37.8% vs. 63.7% in controls). Further experiments revealed that this site contains a rare single nucleotide polymorphism (SNP) and that lower methylation levels in the affected patient subgroup were reflected by heterozygosity for this SNP. Based on our findings we propose that heterozygosity for a methylation-sensitive SNP in PIWIL2 is associated with male infertility.

P04.27 Y chromosome haplogroups do not confer susceptibility to partial AZFc deletions in Tunisian infertile men
M. Ghareb1, S. Babbouti Gargouri1, A. Zribi1, F. Ben Abdallah1, M. Cherif1, R. Keskes1, N. Chakravorti1, A. Sellami1, K. McDreavney1, F. Fakhfakh1, L. Ammar-Keskes1; 1Laboratory of Human Molecular Genetics, Faculty of Medicine, Sfax, Tunisia; 2Laboratory of Histology & Embryology, Faculty of Medicine, Sfax, Tunisia; 3Human Developmental Genetics, Institut Pasteur, Paris, France.

Introduction: Partial AZFc deletions related to testis-specific gene families and common mutations of the Y chromosome, but their contribution to spermatogenic impairment is still unresolved, and the risk factors related to the onset of microdeletions remain unknown. With this in mind, we investigated the possible association between Y chromosome haplogroups and predisposition to partial AZFc deletions a Tunisian population. Material et methodes : The study involved 216 infertile patients (68 azospermic, 63 oligospermic and 85 normospermic). The diagnosis of haplogroups was made by PCR using a set of binary markers. We also screened partial microdeletions of Y chromosome AZFc region by polymerase chain reaction (PCR) according to established protocols. Results : Eleven haplogroups were identified (E3b2, J1*, E1, E3b*, F, G, K, P/Q, R*, R1 and R1a), with a high frequency of E3b2 (35.18%) and J1* (30.9%), knowing that E3b2 is the most frequent haplogroup in the north African populations. Only 30 patients carried a partial AZFc microdeletion (13.88%). Gr/gr was found in 80% of patients (24/30) with seven different haplogroups (E1, E3b*, E3b2, F, J1*, R1 and R1a). E3b2 was the most frequent (54.16%). However, the frequency of J1* was only 16.66%. Conclusion : This study suggests lack of significant evidence of increased of AZFc partial microdeletion in a specific haplogroup of Y chromosome in Tunisian infertile men.

P04.28 Application of mFISH in identification of supernumerary marker chromosome in a female with infertility
T. E. Zeronova1, M. I. Kononenko1, A. S. Dariy1, S. V. Denisenko1, M. I. Kononenko1, A. S. Dariy1, S. V. Denisenko1; The Human Reproduction Problems Clinic, Kyiv, Ukraine.

In order to identify genetic causes of male infertility, many individual genes have been studied for the presence of mutations in infertile patients. However, these studies were rather disappointing. Therefore, we looked for the presence of copy number variations (CNVs) in 9 infertile men with a maturation arrest of spermatogenesis and in 20 control males with normal sperm parameters. After several elimination steps, 7 regions remained. These regions including four deletions and three duplications, were further investigated by qPCR in patients and in a large number of controls. The 4 deletions were present in heterozygous form and contained the SLC25A24, FAM82A1, C17ORF51 and SIRT4 genes. By sequencing no mutations were detected in the non-deleted copies of these genes. These three duplications involved the genes THRAP3+ C10orf13, SYT6 and PLSCR2. Due to their known function the genes SYT6, PLSCR2 and SIRT4 have a potential role in male infertility but are presumably not involved in maturational arrest at the spermatocyte stage. SLC25A24 has two transcript variants of which only variant 2 is testis-specific. Besides multiple heterozygous deletions of the start codon region, we detected one patient with a maturational arrest of spermatogenesis (not tested by array CGH) who was having a homozgygous deletion of this region. More patients and controls are being investigated. In addition, immunohistochemistry is performed to determine the localization of the SLC25A24 proteins in testicular tissues. The role of the genes FAM82A1 and C17ORF51 is under investigation. These studies will clarify whether these genes are linked to male infertility.
Results: Heteroduplexes were repaired in nuclear and whole cell extracts. Control studies in the absence of nuclear and whole cell extracts showed no repair. Repair was observed in the mouse blastocysts though the efficiency was not as high as the nuclear/whole cell extracts.

Conclusion: MMR efficiency in designed mismatched heteroduplexes was successfully analysed in the presence of nuclear/whole cell extracts and in mouse blastocysts. This assay can easily be modified to detect different/multiple mismatches with different lengths in addition to modifying the construct into assessing insertion/deletion loops with different sizes.

P04.31

Cytogenetic analysis of 102 missed and spontaneous abortions in the western regions of Ukraine

I. Tkach, N. Huleyuk, H. Beskorovajna, I. Sedneva, O. Lototska-Savchek

Institute of Hereditary Pathology, NAMS of Ukraine, Lviv, Ukraine.

Background: Approximately 15% to 20% of pregnancies result in spontaneous miscarriages and missed abortions and most often occur in the first trimester. In 60-80% of cases they are caused by chromosomal changes in the embryo/fetus. The present study displays frequency and spectrum of chromosomal abnormalities in embryos derived from missed and spontaneous abortions in the western regions of Ukraine.

Methods: The study population consisted of 102 embryo tissues from women with the final diagnosis of miscarriages (95 cases) and spontaneous (3) abortions. Cytogenetic analysis was performed in the uncultured chorionic villus samples, using standard G-banding.

Results: Karyotype results were obtained in 50 of 102 cases (49%), one of them from spontaneous abortion. Among the abortions the gonosomal constitution of XY prevailed (n = 36), followed by XX (n = 14). Chromosomal abnormalities were found in 25 cases (50%) autosomal trisomies in 9 cases (36%), gonosomal trisomies 47,XXY in 2 cases (9%) and triloidy in 14 cases (5%) (9 XXY : 5 XXX). Autosomal trisomies involved chromosome 2 in one case, 16 (two cases), 19 (one case), 20 (one case, spontaneous abortion) and 22 (two cases). One case of triloid abortion showed mosaicism with chromosome 20 - 47XXX, +20/69,XXX.

Conclusions: Conventional method of cytogenetic investigation of material from missed abortions produce results in half of the cases. Presence of Y chromosome in 72% of incidents shows prevalence of male gender in affected pregnancies. Triloidy was predominant followed by autosomal and gonosomal trisomy. Among autosomal trisomies, chromosomes 16 (12%) and 22 (12%) were prevalent.
P04.36
Birth of healthy twin after implanting a singleton male embryo, a hemophilia PGD case
S. Zeinali1, P. Fouladi2, H. Bagheri1, S. Kianfar2, S. Sarbudi1, F. Zandieh1, R. Bamezazadeh1, S. Amanpour1, S. Amanpour2
1:Pasteur Institute of Iran & Kawasaki Human Genetics Research Center, Tehran, Islamic Republic of Iran, 2:Kawasaki Human Genetics Research Center, Tokyo, Japan

A family with one hemophilic child who had come for prenatal diagnosis (PND), requested to have a healthy child via preimplantation genetic diagnosis (PGD). The affected boy’s mutation had been characterized in the previous PND and the mother was an obligate carrier. For performing PGD we tested several STR markers on the affected boy and his mother’s DNA to determine the informative ones. Reprogrammed unidirectional super-ovulation was performed by HCG injection and 34 to 36 hours later oocytes were picked up using ultrasound guide. Three days after insemination, embryo biopsy was performed using SATURN laser. The biopsy pipette was inserted through the hole, and the selected blastomere was removed gently by aspiration. In total eight cells were removed from eight embryos. Each cell was analyzed by two rounds of multiplex nested PCR for STRs and direct DNA sequencing. Only one healthy male and two none carrier female embryos were identified. The mother insisted on the transfer of only the male embryo. Pregnancy progressed well and sonography in week 8 indicated twin pregnancy. The mother was disappointed in having twin boys and decided to terminate pregnancy. Intensive counseling was provided and she was persuaded to continue the pregnancy. Both fetuses were checked for hemophilia during 11 weeks of gestation using CVS. Chromosomal abnormalities were checked by means of QF PCR and karyotyping. The children were delivered with no complication and later coagulation analysis revealed no complication. The mother is now happy in deciding to continue the pregnancy to term.

P04.37
Translocation and aneuploidy analyses of polar bodies and trophectoderm cells using 24sure: First results in a clinical setting
M. Stumm1, R. Wegner2, C. König3, M. Schlawinsky1, M. Klein1, J. Gerike1, S. Marr1, M. Bloechle1
1:BG Berlin-Genetics GmbH, Berlin, Germany, 2:Institute for Medical Genetics, Siberian Branch of Russian Academy of Medical Sciences, Tomsk, Russian Federation, 3:Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia

Objective: Recent studies have shown that biopsy of polar bodies (PB) from oocytes and trophectoderm cells (TE) from blastocysts followed by array comparative genomic hybridisation (aCGH) might be a good strategy for the detection of genomic imbalances in human embryos. The combined detection of aneuploidies for all chromosomes and of unbalanced aberrations in the paternal genome using aCGH would improve the overall clinical performance of PGS, which could be an alternative to PGD.

Methods: From November 2009 to June 2010, we obtained at least 10 PNDs with PB biopsies from several clinics in Germany and Russia. In total 24 PBs and 37 TE from 29 patients were examined using aCGH. PB samples were directly extracted using the SurePlex Kit (BlueGnome) and amplified using the 24sure System (BlueGnome). TE were obtained by biopsy from the inner cell mass (ICM) of blastocysts following blastocyst biopsy using the SATURN laser system and whole genome amplification using the 24sure System (BlueGnome). Results: aCGH results of more than 150 PB- and more than 50 TE-samples are presented. Technical problems and methodological limitations are discussed. Different strategies are shown for practicable and cost effective analyses of polar bodies and trophectoderm cells in a clinical setting using 24sure and 24sure+ CytoSets.

P04.38
Detection of PRDM9 variations in patients with meiotic disorders
A. Alemany-Schmidt1, D. Heine-Suñer2, M. Navarro-Palou3, A. Voltes-Cobo3, E. Píotero-Martos1, J. Rosell1, Burgués Gassió, M. Oliver-Bonet; Hospital Universitari Son Espases, Palma, Spain

In the last seven years genetics and molecular biology have begun to uncover the role of PRDM9 in mammalian meiosis as a major determinant of meiotic recombination hotspot positioning, which is crucial for the generation of recombinant haplotypes. The PRDM9 gene encodes an unusual family of zinc fingers that act as transcriptional repressors.

Conclusions: Molecular karyotyping by aCGH allows a combined detection of aneuploidies and structural aberrations and therefore, may help to identify euploid embryos with higher implantation potential.
progression of the disease, we investigate global placental gene expression in preeclampsia using microarray technology. Genome-wide transcriptional profiling was performed on decidua basalis tissue from preeclamptic (n=10) and normal (n=11) pregnancies. Among the 26,000 genes that were screened, 2,055 were found to be differentially expressed between normal and pre-eclamptic tissues. Among these candidates, 59 were up-regulated and 20 were down-regulated. The up-regulated genes included LEP, BHLHB2, S 1GL6C, RHD13, BCL6, SYDE1, which are well-known differentially expressed genes for pre-eclampsia, as well as CORO2A, CEPIA, HK2 which was recently proved to be linked with the etiology of this disease. Gene ontology analysis further revealed several biological processes that could be associated with the development of pre-eclampsia, including response to stress, immune system process, regulation of cell communication, intracellular signaling cascade etc. Furthermore, when our patients were classified as cases of mild or severe pre-eclampsia, the expression of 10 genes could be correlated with the severity of this disorder. This finding may provide insight into the pathophysiology of the disorder and lead to new therapeutic possibilities for this disease. This work was supported by the Russian Foundation for Basic Research.

P04.43

First pregnancy after preimplantation genetic screening (PGS) in a balanced translocation carrier with 46,XX,(t(4;14)(q25;q32.1)) karyotype

U. Noex1, U. Bug1, J. Prletic1, B. Groff1, M. Stecher1, B. Becker1, C. Nevinnny-Stichel-Hinzpeter1;
1Center for Reproductive Medicine, München, Germany, 1symbol Medizinisches Versorgungszentrum Humane Genetik, München, Germany.

We report on the outcome of assisted reproductive treatment comprising PGS of a couple with a healthy daughter and the desire for a second child. The 33 year old consulter was diagnosed as balanced translocation carrier of a t(4;14)(q25;q32.1), her non-consanguineous partner showed a normal karyotype. They reported a history of seven pregnancy losses. Cytogenetic diagnostic on the most recent product of conception revealed a genetic cause demonstrating in the karyotype of 46,XX,der(14)(4;14)(q25;32.1)mat. The couple agreed to array based PGS, which was performed by trophectoderm biopsy for PGD. Even more, the pregnancy rate strikingly increased to a rate above 60% per embryo transfer.

P04.42

Preimplantation genetic diagnosis (PGD) after trophectoderm biopsy - results from 2010 to 2012

U. Koehler1, U. Schon1, V. Mayer1, A. Stegerer1, K. Sendelbach1, M. Locher1, B. Paulmann1, D. Shakeshaft1, R. Sattner1, B. Seifert1, W. Wurfl1, E. Holinski-Feder1;
1MGZ - Medizinisch Genetisches Zentrum, Munich, Germany, 2IBTV - Kinderwunscht Therapie im Zentrum, Regensburg, Germany, 3Kinderwunsch Centrum Munchen, Munich, Germany.

The German Supreme Court (BGH) stated in July 2010 that preimplantation genetic diagnosis, PGD (or PID) is included in the Embryo Protection Act (ESchG) and can be offered couples at risk for monogenic diseases and chromosomal aberrations. Here we present the results of PGS for monogenic diseases as well as for reciprocal and Robertsonian translocations employing trophectoderm (TE) cells from day 5 blastocysts. Protocols for mutation analysis for a number of genes involved in severe monogenic inherited disorders were established and optimized to fit into the short time span of 24 hours between biopsy and embryo transfer. PCR strategies for mutation detection involved either indirect methods (linkage analysis with polymorphic markers), or direct mutation detection by sequence or fragment analysis. For couples, who are carriers of a reciprocal or Robertsonian translocation, array CGH (24sure technology) was performed. Here, only a minority of TE samples (approx. 33%) revealed an euploid, balanced result, whereas the majority of samples (approx. 66%) were aneuploid showing an unbalanced karyotype due to the balanced translocation in the parents, or due to aneuploidies of other chromosomes than expected from the parents’ karyotype. In the majority of cases, at least one embryo was unaffected, which led to a transfer of one or two embryos in each cycle. Our results of >100 samples clearly demonstrates the reliability of trophectoderm biopsy for PGS. Even more, the pregnancy rate strikingly increased to a rate above 60% per embryo transfer.
derived VEGF (EG-VEGF) is a newly found angiogenesis-associated gene. The role of EG-VEGF and its two receptor genes (PKR1, PKR2) in human early pregnancy was believed to have a direct effect on both endothelial and trophoblastic cells and are likely to play important roles in placentalization. We previously found gene polymorphisms of PKR1, PKR2 were significantly associated with human RPL using tag SNP analysis. We now direct sequenced these genes in 100 RPL patients and 100 normal controls, trying to find gene that interferes with early pregnancy and further functional validate in vitro studies. We found allele and genotype frequencies of PKR1 (rs3797) and PKR2 (rs3171) were significantly higher in the normal controls and may play protective roles in RPL (p<0.05). Both variants induced nonsynonymous change of amino acids and located in the intracellular C-terminal domains of G protein-coupled receptors. We further demonstrated PKR1 (rs3797) and PKR2 (rs3171) overexpressed cell had altered intracellular calcium influx and significantly higher ability of cell invasiveness in both HEK293 and JAR (trophoblast) cell lines. Therefore we therefore that PKR1 (rs3797) and PKR2 (rs3171) may play protective roles in preventing RPL by altering intracellular calcium signaling and enhancing trophoblast cell invasion ability.

P04.47

The Distribution of HLA-G 14 bp insertion/deletion polymorphism and IL-10 SNP -1082G/A,-592C/A,-819C/T in the case of recurrent pregnancy loss (RPL)
K. Nosrati, D. Zastavna, O. Tsylynyk, M. Tyryk;
Institute of Hereditary Pathology, NAMS of Ukraine, Lviv, Ukraine.

Pregnancy prolongation considerably depends on non-classical HLA-G antigen and is associated with HLA-G 14bp (+/-) insertion/(-/+) deletion polymorphism. The HLA-G gene transcription in trophoblast cells is under control of cytokines secreted by placenta. The interregation of HLA-G and IL-10 genes expression is discussed. The aim of our research is to analyze the distribution of HLA-G 14bp insertion/deletion polymorphism and IL-10 SNP-1082G/A,-592C/A,-819C/T among the families with RPL. Methods: DNA extraction from peripheral blood cells and chorionic villi, PCR, agarose gel electrophoresis. Results: 140 women with RPL, 86 spontaneously aborted embryos, 140 reproductively healthy women have been observed. Significantly higher HLA-G gene genotype +14bp/+14bp frequency has been shown in the group of women with RPL (P<0.05) and in the group of spontaneously aborted embryos (P<0.05) in comparison with the control group. The presence of this genotype in women, or embryos is associated with 3-fold increased risk of RPL (OR=3.41; CI: 1.99-6.18 and OR=2.75 CI: 1.10-6.90). The analysis of distribution of IL-10 SNP-1082G/A,-592C/A,-819C/T genotype has shown the significantly higher 1082G-genotype (P<0.01) and 592C/C, 819C/C-genotypes (P<0.05) frequency in the group of women with RPL in comparison with the control group. The increasing of risk of RPL up to 4 times with 1082G-genotype (OR=3.43; CI: 1.72-6.84) and 592C/C, 819C/C-genotypes, (OR=3.87; CI: 1.23-12.20) has been established. Conclusions: HLA gene mutations and changes in the genes which interact with HLA system and affect trophoblast cell invasion ability may cause the nonproductive dysfunction among women and lead to early fetal loss.

P04.48

Problems with Robertsonian translocations between chromosomes 13 and 14 may also cause problems for men.
A. Klímová;
Department of Medical Genetics, Ústí nad Labem, Czech Republic.

Robertsonian translocation is the most common type of chromosome rearrangement with a prevalence of 1 in 1000 in the general population. The most common subtype of Robertsonian translocation is seen between chromosomes 13 and 14. According to available literature, the der(13;14) women have a 1% chance of having a baby with trisomy 13, whereas the males with any Robertsonian combination have a slim chance - below 1%, of their children being affected. We present three cases of unbalanced form of Robertsonian translocations detected by fluorescent in situ hybridisation, quantitative fluorescent polymerase chain reaction (QF-PCR) and spectral karyotyping. The first case is represented by a fetus in whom trisomy 13 syndrome 46,XX,+13,der(13;14) Jej1:10) was revealed during prenatal screening. Consequently, oligohydramnion and cheloniogathalaschis was observed in the fetus and the pregnancy was terminated. Translocation 45,XX,der(13;14) was found in the mother. Her medical history was significant for eight spontaneous abortions. The second case features a fetus with trisomy 13 syndrome 46,XX,+13,der(13;14) [q10;q10]. The pregnancy was terminated because of multiple malformations. Balanced translocation 45,XX,der(13;14) was found in the father. In most cases couples carrying Robertsonian translocation may request pre-implantation genetic diagnosis in order to select embryos with no genetic imbalance and hence increase their chances of a successful pregnancy. But our third case describes a couple evaluated for primary sterility - translocation 45,XY,der(13;14) was found in men. The couple had a history of three unsuccessful attempts on in vitro fertilisation with PGD. Their first spontaneous pregnancy ended in miscarriage. It was found karyotype 46,XX,+13,der(13;14) [q10;q10] from the sample.

P04.49

Role of TNF-α, IFN-γ, IL-6, TGF-β1 and IL-10 in Pathogenesis of Recurrent Pregnancy loss
E. Oztrak, S. Pehlivan, S. Ozgukar-Balcı; M. G. Uğur, Y. Özkan, D. Balat;
1University of Gaziantep, Faculty of Medicine, Department of Obstetric and Gynaecology, Gaziantep, Turkey; 2University of Gaziantep, Faculty of Medicine, Department of Medical Biology and Genetics, Gaziantep, Turkey.

Aim: According to previous investigations, certain cytokines may play a role in recurrent pregnancy loss (RPL) and also some cytokine gene polymorphisms may affect the level of cytokine production. The aim of our study was to investigate the potential associations between IL-6 (-174), IL-10 (-1082,-819), IFN-γ (+874), TGF-β1 (codon 10/25) and TNF-α (-308) gene polymorphisms and RPL.

Method: A case control study was carried out in 49 RPL patients and 39 healthy control women. Cytokine genotyping was performed by PCR-SSP.

Results: RPL patients had significantly higher frequencies of TNF-α polymorphism in both GA genotype (high expression) (p=0.020) and A allele (p=0.026). No statistically significant differences were observed between groups in genotype and allele frequencies of IL-6 and IFN-γ genes. The homozygous genotype for TGF-β1 and IL-10 were compared in terms of their expressions and it was shown that the CC/GC, CC/CC, TT/CC, TC/CC haplotypes (low expression) of TGF-β1 had significantly decreased in the patients (p=0.049), whereas there were no statistically significant differences in the haplotypes of IL10 (p=0.05).

Conclusion: Our results showed that the high expression of TNF-α gene was associated with susceptibility RPL. The low expression of TGF-β1 gene may be a risk factor for the development of RPL. This would further help in efficient management of immunologically mediated recurrent miscarriages at the sample/individual level. This study which is the first to search eight polymorphisms of five cytokine genes at the same time in RPL patients. * E.O. and S.P. contributed equally to this work.

P04.50

DNA fragmentation status in patient’s with necrozoospermia
S. Jaffal, S. Brahman, S. Ibala, A. Sand, M. Ajina, M. Mehdi;
Laboratory of Cytogenetic Molecular Biology and Human Biology of Reproduction, Sousse, Tunisia.

Introduction: Necrospermia is still a poorly documented cause of male infertility. Several hypothesis have been made forward to explain the relationship between necrospermia and DNA fragmentation. Our aim was to determine if a relationship exists between the levels of sperm DNA fragmentation and necrospermia in infertile men.

Patients and methods: Semen samples obtained from 70 infertile men were analysed according to world health organization guidelines. The eosin-nigrosin viability test was performed and the percentage of viable and non-viable sperm were assessed by counting a minimum of 100 spermatozoa. We analyzed if a relationship exists between the levels of sperm DNA fragmentation and necrospermia in infertile men.

Patients and methods: Semen samples obtained from 70 infertile men were analyzed according to world health organization guidelines. The eosin-nigrosin viability test was performed and the percentage of viable and non-viable sperm were assessed by counting a minimum of 100 spermatozoa. The relationship between necrospermia and DNA fragmentation. Our aim was to determine if a relationship exists between the levels of sperm DNA fragmentation and necrospermia in infertile men.

Patients and methods: Semen samples obtained from 70 infertile men were analyzed according to world health organization guidelines. The eosin-nigrosin viability test was performed and the percentage of viable and non-viable sperm were assessed by counting a minimum of 100 spermatozoa. The relationship between necrospermia and DNA fragmentation. Our aim was to determine if a relationship exists between the levels of sperm DNA fragmentation and necrospermia in infertile men.
P04.50

Association study of single nucleotide polymorphisms in SLC6A14 gene with male infertility

Z. Moreva1, D. Flasheškov-Kornjalka, P. Noveski, T. Plasheški1
1Macedonian Academy of Sciences and Arts, Research Center for Genetic Engineering and Biotechnology, Skopje, The Former Yugoslav Republic of Macedonia, 2Institute of Endocrinology and Metabolic Disorders, Faculty of Medicine, Skopje, The Former Yugoslav Republic of Macedonia.

The gene SLC6A14, encoding for amino acid transporter related to appetite control has been found to be in association with X-linked obesity. The results of several studies point to an increased likelihood of abnormal semen parameters among overweight men. Possible association of three single nucleotide polymorphisms (SNPs) in the SLC6A14 gene and male infertility was the subject of our study. We have analyzed 123 infertile males of different ethnic origin (83 Macedonian, 30 Albanian, 10 of other origin) which have previously been diagnosed either with idiopathic azoospermia (50%), oligozoospermia (73%) in comparison to 127 fertile men (98 Macedonians and 29 Albanians) as controls. The methodology included multiplex PCR followed by single nucleotide extension reaction and capillary electrophoresis on ABI 3130 Genetic Analyzer for detection of SLC6A14 303 A/T (SNP1), 20649 C/T (SNP2) and 22510 C/G (SNP3). The allele frequencies showed a significant difference between the infertile patients and fertile controls (p=0.007 0.000 for SNP1 and SNP2 respectively). The distribution of haplotypes including the three SNPs, as well as only SNP 2 and 3 that lie less than 2kb apart was also analyzed. The ACC and CG haplotypes were more frequent among fertile control men than among infertile patients (0.520 vs. 0.366; p=0.014 and 0.661 vs. 0.537; p=0.044 respectively). In conclusion, this is the first report that links the SLC6A14 polymorphisms with male infertility.

P04.51

PRM1 and PRM2 gene polymorphism in Czech and German men with idiopathic oligozoospermia

P. Krenkovsk1, F. Tüttelmann, S. Kliessch, P. Paulusová, J. Diblikh, M. Mackov, J.1 Macek, J.1
2Department of Biology and Medical Genetics, Prague, Czech Republic, 3Institute of Human Genetics, University of Münster, Münster, Germany, 4Department of Clinical Andrology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany.

The aim of our study was to verify the impact of the most frequent ACC haplotype formed by PRM1 230A>C and PRM2 298C>G/373C>A variants on spermato genesis in Czech and German males with idiopathic oligozoospermia. PRM1 and PRM2 sequencing was performed on 3130xl Genetic Analyzer in 52 men with idiopathic oligozoospermia, in 52 normozoospermic and in 75 Czech males with proven fertility. The three SNPs were also analysed by Tagman assays in 108 German males with less and 160 with more than 20 million sperm per millilitre.

In PRM1 we detected the common variant (230A>C) with an overall minor allele frequency (MAF) of 28.5% and three rare variants (c.54G>A, c.102G>T and c.166C>T) with overall frequencies of 0.56%, 0.28% and 0.28%, respectively. In PRM2 we detected the two common polymorphisms (298C>G and 373C>A) with overall MAFs of 49.1% and 29.3%, respectively, and two rare variants (c.201C>T and c.377C>T), both with overall frequencies of 0.28%. Despite the ethnic difference the allele prevalences of the most frequent PRM1 and PRM2 polymorphisms are identical in Czech normozoospermic and Czech fertile as well as German normozoospermic males, except the four rare PRM1 and PRM2 SNPs were present only in Czech males. The prevalence of all detected variants and the ACC haplotype was not significantly different between men with idiopathic oligozoospermia and controls in Czech and German males. In conclusions, we could not confirm the impact of PRM1 and PRM2 gene variants on sperm counts.

Supported by MZ0FMN2005 and ČZ.2.16/3.1.00/2.4022.

P04.52

Investigation of mutations in the Synaptonemal Complex Protein 3 (SYCP3) gene among azoospermic infertile male patients in the Turkish population

H. Gurkan, F. Aydöer, A. Kadoglu, S. Palanduz
1Trakya University, Medical Faculty, Department of Medical Genetics, Edirne, Turkey, 2Istanbul University, Istanbul Medical Faculty, Department of Medical Biology, Istanbul, Turkey, 3Istanbul University, Istanbul Medical Faculty, Department of Andrology, Istanbul, Turkey, 4Istanbul University, Istanbul Medical Faculty, Department of Medical Genetic, Istanbul, Turkey.

Objective: To investigate possible mutations and/or single nucleotide polymorphisms in the synaptonemal complex protein 3 (SYCP3) gene among non-obstructive azoospermic infertile males in a Turkish population.

Design: Nine exon deep intrinsic primers belonging to the SYCP3 gene were designed and amplified by PCR, and the nucleotide sequences were identified by automated DNA sequence analysis.

Patients: Seventy-five non-obstructive azoospermic infertile male patients were included in the study. These patients were unrelated to each other and had 46,XY chromosome structure without Y microdeletion. In addition, 75 individuals whose fertility was proven by reproduction were enrolled in the study as controls.

Main Outcome Measure(s): PCR and automated DNA sequence analysis to detect mutations and/or single nucleotide polymorphisms in the SYCP3 gene.

Results: No mutations were detected in the 9 exons of SYCP3. A total of 11 variations, however, were detected: 7 have been identified in the NCBI SNP database, whereas 4 have not.

Conclusions: Based on the results, we agree with the idea that SYCP3 mutations are not associated with the genetic susceptibility for meiotic arrest in infertile male patients with non-obstructive azoospermia in the Turkish population and that further studies investigating the other components of the synaptonemal complex protein (SYCP1, SYCP2) should be conducted.

P04.53

Factor II G20210A and factor V G1691A mutations and methylenetetrahydrofolate reductase C677T polymorphism in 155 women with repeated pregnancy loss

S. Seyedhassani1, M. Houshmand, M. Neshan1, F. Saeed, S. Salari, M. Saffar, M. Ostaj1
1Dr. seyedhassani genetic center, Yazd, Islamic Republic of Iran, 2National Institute of Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran, 3Yazd welfare organization, Yazd, Islamic Republic of Iran, 4Yazd medical science university, Yazd, Islamic Republic of Iran.

Introduction: pregnancy is the process from the fertilized ovum to the fetus with capability of extra uterine survival. Pregnancy loss is the most common complication of pregnancies. About 1 in 300 couples and 0.5-2% of women are involved in repeated pregnancy loss (RPL). Various etiological factors involve in RPL and the main part of them remains unknown. Among them the thrombophilic factors are important.

Material and methods: Genetic counseling program was done for 158 couples suffering from RPL. Three molecular genetic variations were investigated in main thrombophilic agents: G20210A in factor II, G1691A in factor V and C677T in MTHFR gene. The method was PCR-RFLP.

Results: No G20210A mutation was found in Factor II gene. Heterozygote G1691 mutation in factor V gene was found in 3 women (1.94%). But, C677T polymorphism in MTHFR gene was found in 33 women (21.3%). Among them, 4 cases (12.12%) were homozygote and 29 cases (87.88%) were heterozygote.

Discussion: Assessment of variations in thrombophilic related genes can be useful in etiologic evaluation and planning of effective treatment in RPL women. Genetic counseling, clinical aspect of abortions and genotype-phenotype correlation should be considered for request of molecular thrombophilic tests in RPL.

P04.54

DNA fragmentation in chromosomal translocation carriers

E. Shinkova1, I. Fedorova1, A. Gagan1
1Saint-Petersburg State University, Saint-Petersburg, Russian Federation, 2Ott’s Institution of Obstetrics and Gynecology, Saint-Petersburg, Russian Federation.

Carriers of a chromosomal structural abnormality, as reciprocal or robertsonian, have a normal phenotype but often have fertility problems. Infertility of men with chromosomal translocations could therefore be partly explained by high DNA fragmentation in sperm. The aim of this study was to analyze the sperm DNA fragmentation in translocation carriers.

One robertsonian translocation carrier 46,XY,t(1;5)(p22;q32) and 46,XY,t(6;12)(q15;q21) with overall frequencies of 0.56%, 0.28% and 0.28%, respectively. In PRM2 we detected the two common polymorphisms (298C>G and 373C>A) with overall MAFs of 49.1% and 29.3%, respectively, and two rare variants (c.201C>T and c.377C>T), both with overall frequencies of 0.28%.

Despite the ethnic difference the allele prevalences of the most frequent PRM1 and PRM2 polymorphisms are identical in Czech normozoospermic and Czech fertile as well as German normozoospermic males, except the four rare PRM1 and PRM2 SNPs were present only in Czech males. The prevalence of all detected variants and the ACC haplotype was not significantly different between men with idiopathic oligozoospermia and controls in Czech and German males. In conclusions, we could not confirm the impact of PRM1 and PRM2 gene variants on sperm counts.

Supported by MZ0FMN2005 and ČZ.2.16/3.1.00/2.4022.

DNA fragmentation in sperm from donors was 0.26±0.09%, whereas that from translocation carriers was 0.91±0.5%. Significantly increased rate was seen among oligoasthenoteratozoospermia patients: 46,XY,t(1;5)(q10,q10) and 46,XY,t(2;3)(q33,q29) (0.14% and 1.35%, respectively). Sperm DNA fragmentation rate in 46,XYt(6;19)(p22;q12) and 46,XYt(1;5)(p22;q32),(t;12)(q15;q21) teratozoospermic patients in both

www.eshg.org
cases was 0.45%. In the present study, the DNA fragmentation rates were significantly different between the carriers of a chromosomal structural abnormality with abnormal and normal spermogram (p=0.0007). Therefore, the present results suggest that the DNA fragmentation rate may depend not only on the presence of a structural abnormality but also on the spermogram parameters.

In conclusion, the infertility of men carrying a chromosomal structural abnormality could be explained by the poor-quality semen, and/or the elevated rate of DNA fragmentation.

Supported by Carlz Zeiss, RFBR, Administration of Saint-Petersburg.

P04.55
TSPY1 copy number variation and male infertility
P. Nowesker1, L. Chakalova1, T. Plasecki2, D. Plesaeva-Saranifusha3
1Macedonian Academy of Sciences and Arts, Skopje, The Former Yugoslav Republic of Macedonia, 2Clinical of Endocrinology and Metabolic Disorders, Faculty of Medicine, Skopje, The Former Yugoslav Republic of Macedonia.

Testis-specific protein, Y-linked 1 (TSPY1) gene is located on the short arm of Y chromosome (Yp1.1) and is present as an array of approximately 18-76 gene copies. It encodes a testis-specific protein that is thought to have a role in sperm differentiation and proliferation. It has recently been suggested that TSPY1 copy number variation may influence spermatogenic efficiency.

In this study, we compared the relative TSPY1 copy number between men with spermatogenic failure and fertile controls. The study group included 60 azoospermic men, 66 men with oligozoospermia and 119 fertile controls of similar ethnic origin. Relative TSPY1 copy number was determined by quantitative PCR compared to a single copy HPRT1 gene. Y chromosome haplogroups were determined by analysis of 28 single nucleotide polymorphisms (SNPs) by multiple SNPShot. Infertile patients showed higher mean dCt values in comparison with the fertile control men with a borderline statistical significance (p=0.0785). Oligozoospermic men showed statistically higher mean dCt value when compared with the fertile controls (p=0.0170). This difference was even higher when Macedonians with oligozoospermia were compared with the Macedonian fertile controls (p=0.0099). The dCt difference between different Y chromosome haplogroups was (p=0.0027), but no difference was observed between infertile and fertile men with the most common Y chromosome haplogroups. In conclusion, the initial results of the study investigating relative TSPY1 copy number in infertile men showed an association of TSPY1 gene copy number with oligozoospermia. Our results also showed that the TSPY1 gene copy number differs between different Y chromosome lineages.

P04.56
Association between ubiquitin-specific protease 26 (USP26) gene variations and male infertility in Iranian men.
H. Gourabi1, M. Totonchi1
1Andrology, Reproductive Biomedicine Research Center, Royan Institute for reproductive biomedicine, ACECR., Tehran, Islamic Republic of Iran.

The human X chromosome is enriched with testis-specific genes that may be crucial for male fertility. Recently, mutations in ubiquitin-specific protease 26 (USP26) gene have been proposed to be associated with male infertility.

This gene locates on Xq28. Some mutations and haplotypes on this gene have been proposed to be associated with male infertility. In this study, five different mutations on USP26 were investigated: 1737G>A, 1090C>T, 370-371insAC, 494T>C and 1423C>T. The study included 120 infertile men with non-obstructive azoospermia and 60 fertile men. Besides family history and clinical examination including genital exam. He had severe oligozoospermia in two semen samples with slightly elevated FSH levels of 7.6 U/l and otherwise normal hormone values.

Conventional cytogenetic analysis on peripheral lymphocytes revealed a mosaicism of cells with an unbalanced Yautosome translocation found in 10 metaphases and in 20 metaphases an apparently normal karyotype summarised as 45,X,der(Y)(p12;q21)-,21[10] /46,XY[20]. FISH analysis demonstrated the presence of the subtelomeric probe DXYS224 on the derivative Y chromosome indicating a breakpoint closely to the telomere region of Yqter. CGH analysis using the 400k array set from Agilent revealed loss of 9.2 Mb spanning the chromosomal region 2q14.1-2q12.1 with loss of 13 genes. Loss of Y chromosomal material was not observed. Both, FISH and CGH also indicated mosaicism with aberrant and normal cells. Furthermore, we analysed spermatozoa by FISH using BAC probes for region 21q11.2 (inside the deleted region) and 21q23.3 (as control probe) and centromeric probes for the X and Y chromosomes. The FISH results demonstrated a normal signal pattern with one normal chromosome 21 and one X or one normal Y chromosome in most spermatozoa (73%). On the other hand, 10% of the analysed spermatozoa showed only one normal chromosome 21 without any specific gonosomal signal. These spermatozoa would lead to fertilised eggs with only one X chromosome. Other signal constellations were only found in few spermatozoa each.

P04.58
Screening for Microdeletions in the AZF Region of the Y Chromosome in Patients with Disorders of Sex Development due to 45,X/46,XY Chromosome Abnormalities
M. Y. Nishi1, P. T. L. Santos1, M. F. Costa1, B. B. Mendonca1, S. Domenice2, M. Y. Nishi1, P. T. L. Santos1, M. F. Costa1, B. B. Mendonca1, S. Domenice2
1Laboratorio de Hormonios e Genetica Molecular LIM42, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil.

The etiology of the disorders of sex development (DSD) in patients with 45,X/46,XY karyotype is not yet completely understood. Deletions of AZF region (AZFa, AZE, AZFb and AZFc sub-regions), which might predispose to Y loss, have been identified in Klinefelter syndrome (KS) and in 45,X/46,XY subjects. Objective: to screen Yq microdeletions in Brazilian patients with DSD due to 45,X/46,XY chromosomal abnormalities. Twenty-six 45,X/46,XY or 45,X,46,XY(Xidic)Y subjects were selected: 16 with mixed gonadal dysgenesis (MGD) and 11 with Turner syndrome (TS). Eight Y loci were screened using PCR: DY33 (centromere), DY5200, UTY (AZR), DYS12, DYS216, DYS231, DYS254 (AZFc), DAZ, PPP1R12BP1 (AZFb). Results: Yq microdeletions were detected in 6 (2.2%) patients (3 MGD; 3 TS). Regarding MGD patients, the 3 deletions span at least 6, 4.5 and 3 Mb. In the 3 TS patients the deletion spans at least 3 Mb. Discussion: Yq deletions identified in these patients involved the AZFb and AZFc regions. The longest deletions of Yq were identified in 2 MGD patients with male phenotype. The AZFb region was deleted in all 6 patients. Likely, the AZFc deletions are the most common identified in patients with idiopathic infertility due to oligozoospermia or complete absence of germ cells as in KS. In 45,X/46,XY patients, there are a few reports identifying deletions in AZFb/AZFc regions. Extensive studies are needed to establish the exact association between Yq microdeletions and the various degrees of gonadal dysgenesis in these patients and to confirm the role of this mechanism for the formation of 45,X cell line.

P05. Prenatal and perinatal genetics

P05.02
Changes in age of pregnant women who undergo amniocentesis
I. Tanovic Djurisic1, M. Miklos, K. Crvenkovic Gornik, L. Letic, R. Lasa, S. Huljev-Frakovci, D. Bogovci
1Division of Genetics, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.

Karyotyping of fetal cells obtained by amniocentesis reveals the number and structure of chromosomes. Amniocentesis is offered to all women of advanced maternal age, in Croatia 35 years of age and older. Serum screening and ultrasonography are noninvasive techniques and can assist all women, regardless of their age, in a decision concerning invasive testing. There has
been an increasing trend among women to delay childbearing, a characteris-
tic in the most countries, including Croatia. The reason is associated with
the increasing number of women wanting to receive higher education and to
achieve financial independence.
During the last two decades the average age of mothers at birth of their child
in Croatia increased by 3.3 years. Our results show that the average age of
pregnant women who undergo amniocentesis follows the increasing trend
of maternal age by four years, from 33 to 37 years of age. At the same time,
the percentage of pregnant women with the single indication for the amnio-
centesis of advanced maternal age (AMA) is slightly decreased, while those
with pathological ultrasound and/or biochemical screening increased. Alth-
ough the majority of pregnant women who performed amniocentesis were
aged 35 years or older, during the 15-year period, the proportion of women
under 35 increased from 17.5% to 23%.
These results are evidence of an increased access to prenatal diagnosis of
younger women in Croatia at increased risk for fetal chromosomal aberra-
tion. Decision about accepting or declining the prenatal testing should be
made by pregnant women with their partners after genetic counseling.

P05.04
Moving from chromosome analysis of cultured amnioncytes: implementa-
tion of SOGC guidelines for amniotic fluids in a Canadian setting
J. McGowan-Jordan1, E. McCreedy1, E. Sinclair-Bourque1
1CHEO, Ottawa, ON, Canada, 2University of Ottawa, Ottawa, ON, Canada.
Chromosome analysis has been gold standard for prenatal detection of an-
euploidies for decades. To supplement this procedure many diagnostic labs
have introduced QF-PCR as a rapid aneuploidy screen for chromosomes 13,
18, 21, X or Y. There is also an increasing use of microarray testing for more
complex prenatal cases with ultrasonographic abnormalities. In Sept 2011, the So-
ociety of Obstetricians and Gynaecologists of Canada (SOGC) and the Canadi-
an College of Medical Geneticists (CCMG) published a joint clinical practice
guideline that supports replacement of conventional karyotyping with QF-
PCR whenever prenatal testing is performed solely because of an increased
risk of aneuploidy for chromosomes 13, 18, 21, X or Y. Implementing this
approach and its implementation are discussed.

P05.05
Chromosome microarray analysis in routine prenatal diagnosis practice: a prospective study on 2800 clinical cases
F. Fiorentino1, F. Caiazzo1, S. Napoliello1, L. Spizzichino1, S. Bono2, M. Chiocchetti1, A. Nucetti1, A. Gorlier2, G. Rizzo2, M. Sesami2, M. Baldi2
1"GENOMA": Molecular Genetics Laboratory, HOME, Italy, 2Bluegnome Ltd, Cambridge, United Kingdom.

Objectives: Although several studies have demonstrated the usefulness
of chromosome microarray analysis (CMA) in clinical prenatal diagnosis
practice, only limited conclusions could be drawn due to the small size of
the cohorts analysed. To assess the feasibility of offering CMA for prenatal
diagnosis as a first-line diagnostic test, a large-scale prospective study was
performed on a cohort of 2800 consecutive prenatal samples, with parallel
processing for both CMA and conventional cytogenetic analysis.

Methods: Women undergoing amniocentesis or chorionic villus sampling
(CVS) for standard karyotype were offered CMA. A total of 2800 prenatal
samples were processed in parallel using both CMA and G-banding for stan-
dard karyotyping.

Results: Clinically significant copy number variations (CNVs) were identi-
fied in 94(3.4%) samples, 70(74.5%) of which were also detected by con-
vventional karyotyping. In 24 cases (0.9%), CMA identified pathogenic CNVs
that would have remained undiagnosed if only a conventional karyotype
had been performed, 16 of which were concerning well-established syndro-
moses. The selection of an array platform specifically developed for prenatal
applications, allowed us to detect a single occurrence of variation of unclear
significance. CMA was also able to detect chromosomal mosaicism as lower
than 3.3% level.

Conclusions: The results of this study demonstrate that CMA improves the
detection of fetal chromosomal aberrations than conventional karyotyping,
without missing potential pathogenic chromosomal abnormalities, with no
appreciable increase in results of unclear clinical relevance. These findings
provide substantial evidence for the feasibility of introducing CMA into rou-
tine prenatal diagnosis practice as a first-line diagnostic test.

P05.06
Array-CGH as diagnostic tool for genetic analysis of spontaneous abortions
A. Lott, H. Gabriel, M. Gencic
diagonas, Osnabrueck, Germany.

Spontaneous abortions are common, with 10-15% of all clinically recogni-
tized pregnancies ending in early pregnancy loss. In 40-50% of these cases,
fetal chromosomal abnormalities are responsible. Identification of these ab-
normalities helps to estimate recurrence risks in future pregnancies.

For the last decades chromosome analysis has been the golden standard
to detect genomic imbalances in spontaneous abortions. However, due to
culture failure or maternal contamination often no fetal karyotype can be
obtained. Since DNA-based technologies do not require dividing cells, array
comparative genomic hybridization can overcome some of these limitati-
ions.
To evaluate the efficiency of array-CGH as an alternative method for iden-
tification of chromosome anomalies in abortion material, we present the
results of a study on more than 50 cases referred to our laboratory for cyto-
genetic analysis. So far, about 40 percent of our cases show genomic im-
balances. We present two cases with an interesting correlation of clinical
observation and genomic imbalance.

P05.07
Array-CGH results in fetuses with central nervous system abnormalities
S. Ergin1, B. Karaman2, B. Satkin1, I. H. Ratelloghi1, H. Kayserilli1, A. Yuksek1, S. Basaran3
1Department of Gynecology and Obstetrics of Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey, 2Obstetrics and Gynecology Department of Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.

The central nervous system (CNS) anomalies are seen in 1:1000 ratios in
new born population. 5-50 % is identified to have chromosome anomalies
referred during antenatal ultrasonography (USG) due to any CNS abnor-
malities. CNS malformations are related to specific chromosome abnormalities,
such as ventriculomegaly with trisomy 13, 18, 21, and microduplications of
16p, holoprosencephaly with trisomy 13, 18, microdeletions of 7q, 2p, 13q,
18p, 21q, and microduplication of 3p; hydrocephaly with trisomy 13, 18, 19,
microdeletion of 4p, microduplications of 1q, 3q, 5p, and mosaicism of
trisomy 8; corpus callosum agenesis (CCA) with trisomy 8, 18, 13, microde-
letions of 2q, 6q, 15q, 13q, 1q, 3p, microduplication of 8p, 11q, and tri-
Abstracts - European Human Genetics Conference 2012

P05.09
Optimization and validation of RHD and KELL genotyping for non-invasive prenatal diagnostics

Introduction: There are two reasons for establishing a methodology for non-invasive determination of RHD and KELL genotypes in early pregnancy.

1) To identify fetuses which are at risk of hemolytic disease of fetus and newborn by alloimmunized pregnant women.

2) To prevent alloimmunization during pregnancy.

There is no method validation on a representative number of samples in the Czech Republic, which would allow to introduce methodology into clinical practice. Project is supported by IGA MZ CR: NTI2225.

Aim: Evaluate two different cell free fetal (cff) DNA separation procedures based on adsorption on the surface of silica gel and on the separation on magnetic particles. Optimize and evaluate RHD and KELL genotyping.

Material and methods: We tested both isolation procedures in 76 cffDNA samples. Together 200 control samples were used for genotype assessment. Optimization and calibration of RHD and KELL genotyping was done using Real-Time PCR and by capillary electrophoresis minisequencing.

Results: There were found significant differences in the yield of cell free fetal DNA between the tested cffDNA isolation methods. Silicagel membrane-based method for isolation of cffDNA shorter molecules is more suitable than the magnetic particle one.

To determine the sensitivity threshold there were performed RHD and KELL calibrations by Real time PCR and capillary electrophoresis with a dilution series RHD and KELL genotypes. Both methods are able to clearly recognize the fetal genotype.

The optimization was further examined to detect RHD and KELL genotypes simultaneously and to detect multiplex SNP assay as an internal cffDNA control.

We aimed to investigate 35 fetuses, with various CNS anomalies, for potential chromosomal mosaics by FISH technique and the need for other methods to elucidate the causes of facial dysmorphia was made a constitutional chromosome analysis.

P05.10
Clinical application of array-CGH in prenatal diagnosis: case reports of pregnancies with abnormal ultrasound findings and apparently normal karyotype

D. Grochova1, Z. Dobashlova1, I. Grochova1, D. Leznarova1, E. Pospelinska1, P. Vlasin1.1, 2 Cytogenetics laboratory Brno, Brno, Czech Republic, 1Center of prenatal diagnosis, Brno, Czech Republic.

Conventional G-banding karyotyping is a standard method used in prenatal diagnosis to detect chromosomal abnormalities larger than 5 Mb. However, many genetic syndromes are often associated with sub-microscopic deletions or duplications. Array-CGH is a modern method, which allows detection of small variations in the genome. Its application is mainly in postnatal diagnostics of small variations in the genome. Its application is mainly in postnatal diagnosis of submicroscopic aberrations detected by array-CGH have not been described and their clinical significance is unknown. Due to this fact we use a BAC-based array (BlueGnome), which is focused on areas in the genome having demonstrable connection with 110 microdeletion syndromes described in the OMIM database.

We used array-CGH to detect sub-microscopic aberrations in carefully selected 67 prenatal cases, which were primarily indicated for conventional cytogenetics based on serious ultrasound findings. Case reports, in which array-CGH enabled detection of changes that conventional cytogenetics did not reveal and cases, where array-CGH clarified the origin of a genetic extra...

P05.11
Limitations of prenatal detection by FISH method - a case report with a complex chromosomal mosaic with 6 cell lines

E. Gorduza1, V. Martinu1, M. Holcov1, A. Breoleamov1, M. Volosciuc1, M. Gramescu1, C. Bujor1, E. Broha1, C. Rusu1, L. Gabe1, R. Popescu1, M. Macovei1, C. Avatagie1, M. Onofriescu1, M. Stamat1.1 University of Medicine and Pharmacy, Iasi, Romania, 2Maternity „Cuza-Voda”, Iasi, Romania, 3"St. Mary" Children Hospital, Iasi, Romania.

In the period 2004-2011 in Prenatal Diagnosis Laboratory of "Cuza-Voda" Maternity Iasi were made 1425 prenatal cytogenetic analysis by FISH method. A total of 2300 prenatal samples were processed in 18, 21 and X. Unfortunately, conventional chromosomal analysis based on amniocytes culture could not be applied and thus the results were formulated only by FISH. We present a case showing one of the limitations of FISH technique in prenatal diagnosis. Pregnant women, aged 26 years, were investigated in our laboratory at 16 weeks of pregnancy because of a risk of 1/200 for trisomy 21 at trisomy 18. As a result of this analysis on the microarray fluorescence signals for chromosomes 13, 18, 21 and X, and one signal for chromosome Y. Because the XXY trisomy is not a reason for therapeutic abortion, pregnancy continued and resulted in the birth of a male child with 2750 g weight and 47 cm length. Neonatal clinical examination showed saphocephaly, hypertelorism, epicantus, antevertate nostrils, prominent upper lip, micrognathia, bilateral cryptorchidism and hypotonia. In order to elucidate the causes of facial dysmorphism was made a constitutional chromosomal analysis, which revealed a mosaic with 6 cell lines and chromosomal formula: 48,XY,+mar[29]/47,XY,mar[14]/48,XY,r(X),mar[10]/49,XY(r)(X),+mar, +mar[3]/50,XY(r)(X),r(X),+mar,+mar[3]. By FISH technique with probes for centromere of chromosome X the X ring chromosomal was confirmed, while the origin of marker chromosomes has not been established. Our paper shows the failure of characterization of prenatal chromosomal mosaics by FISH technique and the need for other methods to confirm the diagnostic.

P05.12
The use of chromosome microarray analysis as a first-line test in pregnancies with a priori low risk for detection of submicroscopic chromosomal abnormalities

F. Fiorentino1, S. Napoletano2, P. Gaiasso1, M. Sessa2, S. Bono1, L. Spizzichino1, S. Michiorri1, A. Gordon1, A. Nuccitelli1, G. Rizzo1, M. Baldi2.1 "GENOMA" Molecular Genetics Laboratory, NOME, Italy, 2Bluegene Ltd, Cambridge, United Kingdom.

Objectives: In this study we aimed to explore the usefulness of chromosome microarray analysis (CMA) in groups of pregnancies with a priori low risk for detection of submicroscopic chromosomal abnormalities, usually not considered an indication for testing, in order the assess if CMA improves the prenatal detection rate of chromosomal aberrations.

Methods: A total of 2800 prenatal samples were processed. The indication for CMA was a priori low risk for detection of submicroscopic chromosomal abnormalities only. The indications included: advanced maternal age (AMA), abnormal results of maternal serum screening tests (MSS), abnormal ultrasound findings (AUS), known abnormal fetal karyotype (AFK), parental anxiety (PA), family history of a genetic condition (FIS), cell culture failure (CCF).

Results: The use of CMA resulted in an increased detection rate regardless of the indication for analysis. This was evident in high-risk groups AUS-AFK (7/114, 6.1%), and also in low-risk groups, such as AMA (7/1033, 0.7%) and PA (10/1569, 0.6%). A total of 24 (0.9%) fetal conditions would have otherwise been overlooked if only a standard karyotype had been performed, 17 (0.6%) of which if offering CMA to high-risk pregnancies only. Conclusions: The results of this study demonstrate that more widespread testing by CMA in fetuses would result in a higher detection of chromosome abnormalities at lower risk pregnancies. Our findings provide substantial evidence for the utility of using CMA as a first-line diagnostic test to all pregnant women undergoing invasive prenatal testing, regardless of risk factors.
P05.13 Optimization of isolation of cell-free fetal DNA from plasma of pregnant women

G. Repiška1, T. Sedlacková1, G. Mihraňová2,3;
1Comenius University in Bratislava, Faculty of Medicine, Bratislava, Slovakia; 2Genetol Ltd, Bratislava, Slovakia.

Cell-free DNA released from fetal cells (cfDNA) represents important alternative source of material for non-invasive prenatal diagnoses. Because of the low quantity and increased fragmentation of cfDNA in maternal plasma, the DNA extraction method is crucial step for further analyses of cfDNA. The aim of this study was to directly compare the yield of extracted DNA after using three commercial kits widely used for isolation of nucleic acids. For cfDNA extraction from plasma of pregnant women carrying male fetuses three commercial kits and corresponding original protocols were used (QIAamp DNA Blood Mini Kit, QIAamp DSP Virus Kit, QIAamp Circulating Nucleic Acid Kit). Extracted DNA was used for amplification by qPCR. Markers - gene DFS1 located on the Y chromosome was used for comparison of circulating fetal DNA recovery. Gene for androgen receptor located on the X chromosome was used as a marker for detection of total circulating DNA. Ct values from qPCR were used for determining the relative quantity. Variability between categories was estimated by Repeated measures ANOVA and Tukey’s test.

Statistically significant difference was proved after Ct values comparison (F=48.16, p<0.0001). The yield of isolated DNA was significantly higher using Virus Kit than Blood Mini Kit (p<0.0001) and CNA Kit than Blood Mini Kit (p<0.0001). Virus Kit and CNA Kit did not significantly differ in the amount of isolated cfDNA.

According to our finding CNA Kit and Virus Kit are equally suitable for extraction of fragmented circulating DNA derived from fetal cells, when yield of isolation is important.

P05.14 Do uniparental isodisomies or microimbalances lead to early losses of pregnancy?

S. Bug1, B. Solfanjk, J. Pricecius2, C. Andrew3, M. Butcherby, V. Stoccher, S. Bengamann, B. Becker, C. Nevinny-Stockel-Hinpetter2;
1synlab Medizinisches Versorgungszentrum Humane Genetik, München, Germany; 2BlueGene Ltd, Cambridge, United Kingdom.

Aneuploidy is known to be a common cause of spontaneous abortion. We designed a combined platform utilizing array based comparative genomic hybridization (aCGH) and single nucleotide polymorphisms (SNPs) to further elucidate genetic causes underlying pregnancy losses displaying 46,XX- or 46,XY-karyotypes. Simultaneous determination of imbalances at high resolution and genome-wide heterozygosity state was performed on a targeted CGH+SNP 860K microarray (BlueGene, Cambridge, UK). Results were juxtaposed to those of a second panel displaying aneuploidies. Copy number imbalance and loss of heterozygosity (LOH) findings were compared to cases reported in the literature to determine their clinical relevance. There was no difference in the type or frequency of microimbalances between the group of samples with aneuploidies and the group of samples with normal karyotypes. Most small imbalances could be identified as copy number variations, only few unknown variants remained and were equally distributed to cases with and without aneuploidy. No aberration associated with any common microdeletion or microduplication syndrome was detected in cases with normal karyotype. A complete hydatidiform mole was identified showing genome wide uniparental isodisomy. Segmental stretches of copy number neutral LOH occurred at comparable frequency in both groups of samples. They varied from 8.9-14.2 Mb in size and mapped to various chromosomes with very little overlap. A thorough investigation was done to differentiate pathogenic changes from statistically unusual but benign features of the genome.

Overall, even in this relatively small number of cases, aCGH+SNP analysis picked up aberrations of putative pathological relevance, which were missed following standard diagnostic procedure.
P05.18
Prevalence of dehydrated hereditary stomatocytosis in pregnancy
M. Milos, T. Tonkovic Djuracovic, K. Crvjenac-Gorilla, L. Letica, R. Lasan, S. Huljev
Division of Genetics, Department of Pediatrics, University Hospital Centre Zagreb,
Zagreb, Croatia.

Double trisomy is extremely rare in liveborns, but it is a relatively common event in pregnancies ending in early abortions and usually involves at least one nonviable trisomy. Prevalence of double trisomy is higher within first trimester spontaneous abortions (~2%) than within the second trimester pregnancy (~0.01%). Double trisomy is associated with advanced maternal age and mean gestational age has been described to be significantly lower for double trisomy cases than that reported for single trisomy ones. Our results of only two double trisomy cases from samples of amniocentesis, compared with potentially viable autosomal trisomies such as 21, 18 and 13. Both of these cases were lethal in first trimester of pregnancy due to the presence of nonviable autosomes in double trisomies or combination of autosomal and gonosomal trisomies. Our cases emphasize the importance of genetic counseling to assess the current risk of double trisomy.

P05.20
Investigation of MTHFR and MTHFD polymorphisms as maternal risk factors for Down syndrome
L. C. Boltezie, R. Cretu, D. Neagoe
Genetic Department, UMF Carol Davila, Bucharest, Romania.

Members of the family of B9 vitamins are commonly known as folates. A number of studies have associated polymorphisms found in genes involved in folate metabolism to an elevated maternal risk for Down syndrome (DS). Central role in this process is played by MTHFR, MTR, RFC1 and MTHFD genes. In this study, we evaluated the role of three common polymorphisms in folate metabolism as genetic markers for having a child with DS. The prevalence of these variant genotypes in mothers of DS children (case mothers) (n=26) was compared with controls (n=46). Investigated polymorphisms include methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C and methylenetetrahydrofolate dehydrogenase (MTHFD) 1958G>A. Present results indicate that none of the, MTHFD 1958G>A, MTHFR 677C>T, and MTHFR 1298A>C polymorphisms is an independent risk factor for a DS offspring at a young maternal age. The combined MTHFR 1298C/1298A 1958G, MTHFR 1298A (or CC)/MTHFD 1958G, MTHFR 1298AA/MTHFD 1958G, MTHFR 1298AA/MTHFD 1958C and MTHFR 1298C/MTHFD 1958AA genotypes compared with the MTHFR 1298AA/MTHFD 1958GG genotype was associated with increased DS risk (with relative P values: 0.019, 0.038, 0.046, 0.05 and respectively 0.019). These results show that maternal polymorphisms of folate metabolism could be implicated in pathogenesis of Down syndrome.
and ultrasonographic (USG) markers allowed us to get higher detection rates for common trisomies in all pregnancies.

We retrospectively evaluated the results of 25808 prenatal cases obtained in 2 periods (from 1989 to 1999 and 2000 to 2011), under the aspect of the presence of MYCN amplification, biochemical screening and USG findings prior to the cytogenetic diagnosis. This series covered 23427 amniotic fluid and 2381 chorionic villi samples in which 462 trisomy 21, 127 trisomy 18 and 51 trisomy 13 cases were diagnosed.

We determined to reveal the alterations of the indications of the fetal karyotyping over time, and further more to identify the most frequent USG findings detected in trisomies. AMA, which was the most common parameter in the 1st period, decreased, while MS - biochemical and USG screening tests became more effective over time.

The most common observed USG findings was nuchal translucency in all trisomies. Cystic hygroma, ascites in trisomy 21 and 18; cardiac anomalies in trisomy 18 and 13; urogenital anomalies in trisomy 13; omphalocele in trisomy 13 and nasal bone frequently identified USG findings. Widely usage and increased experience in screening tests led to detect more cases with common aneuploides with reduced number of prenatal invasive procedures in high risk pregnancies. Further more, younger women gained a chance for prenatal diagnosis for chromosome anomalies.

Discussion:

Alpha thalassemia is the most common inherited disorder of hemoglobin synthesis in the world. Single nucleotide mutation in α1 or α2 genes produce abnormal α-chain hemoglobin. Hb Q disorders are regarded as rare Hb variants. Several Hb Q have been reported so far including Hb Q-iran, Hb Q-thailand, Hb Q-india.

Materials & Methods:

In this study one couple referred from primary health care (PHC) centers to Pasteur Institute of Iran with MCV>80, MCH>28, HbA2=2 and Hb variant=14. Genomic DNA was extracted by salting out method. DNA sequencing using Big Dye from ABI was used.

Result:

A total of 1000 individuals with microcytic hypocromic anemia were screened for the most common type of α-thalassemia. We investigated molecular basis of Hb variant in the couple using multiplex gap PCR, MLPA &direct DNA sequencing. No deletion was found. DNA sequencing revealed codon 75 G>C, Asp-His in α2 gene mutation in both couple.

Discussion:

Heterozygous individuals for Hb Q -Thailand generally present with moderate red cell microcytosis due to the association of the mutation with deletions on -α2.2 kb, but those carrying Hb Q-Iran or Hb Q-India are hematologically normal and no association with α-thalassemic phenotype has been reported. Since Hb Q-Iran is usually associated with normal CBC, it may not be detected through routine screening. Therefore it’s true frequency can not easily be determined.

P05.29

Chromosomal Imbalances in Holoprosencephaly Sequence; Results of 87 Cases Diagnosed Prenatally

B. Karunan,1 S. Tailkin,1 I. Khalekholiga,1 R. Has,1 S. Ergini,1 H. Kayserili,1 E. Erms,1 A. Yuksef,2 S. Basaran;1

1Medical Genetics Department of Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey; 2Obstetrics and Gynecology Department of Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.

Holoprosencephaly sequence (HPE, # MIM 236100) is the most common developmental defect of midline cleavage in human embryonic forebrain, with a variable phenotypic expression. Several mechanisms play a role in the etiopathogenesis; is genetic, environmental, multi-factorial, and unknown.

The rate of chromosome abnormalities is ~40% in patients with HPE. The most common chromosomal abnormality involved is trisomy 13, followed by trisomy 18, triploidy and deletion 7q36.3. In approximately 18%-25% of cases monogenic syndromes are diagnosed. To date, 12 genes are known to be associated with HPE. Human Sonic Hedgehog gene (SHH) located on chromosome 7q36 is the best known gene related. This study comprises the results of cytogenetic, molecular cytogenetic and molecular karyotyping studies obtained in tissue samples (51 fetal blood, 19 chorionic villus and 17 amniotic fluid) of 87 fetuses diagnosed ultrasonographically as having HPE.

Karyotype analysis was performed in all cases. Molecular cytogenetic technique using subtelomeric probe 7q36.3 was applied in 12 cases. Six cases with normal karyotype were investigated by oligonucleotide Array-CGH (Roche NimbleGen). Chromosomal abnormalities were detected in 51.7% of cases (45/87). The predominant chromosomal abnormality was trisomy 13 (n:24), which was followed by trisomy 18 (n:5), and triploidy (n:5). Terminal 7q deletion being criteria (NT, FA, NB, TR, DV) were analyzed in 538 cases. Based on the results of the screening we performed 31 invasive procedures: 28 CVS and 3 amniocentesis (the amniocentesis cases refused CVS).

Results:

Our results are the detection of a number of 7 chromosomal abnormalities: T21 - 4, T18 - 1, T13 - 1 and 1 case of triploidy. At a cut-off level at 1: 150 we obtained a FPR of 3.5% and if we set the cut-off level at 1: 100 - the FPR is 2.38%. All the cases with chromosomal abnormalities belong to the group of risk > 1: 100.

Conclusion: The setting of the cut-off level at 1: 100 and at 1: 150 doesn’t modify the rate of detection of chromosomal abnormalities, only the FPR increases from 2.38% to 3.5%.
the most frequent structural anomaly observed (n:9), was de novo in 6 cases and unbalanced product of maternal translocations in 3. Furthermore, deletion of 18p and paternally inherited balanced inversion of chromosome 11 was observed in single cases.

The clinical and laboratory findings will be discussed in view of the literature.

P05.30
Prenatal screening for aneuploidies in Iranian families using QF-PCR

Quantitative fluorescence polymorphism chain reaction (QF-PCR) has been introduced in a number of genetic laboratories as an inexpensive, rapid and reliable method for prenatal recognition of aneuploidy in chromosomes 13, 18, 21 and X and Y. The aim of this study was to investigate the efficacy of QF-PCR for the prenatal recognition of common aneuploidies and compared our findings with cytogenetic results in Iran.

A multiplex-PCR involving 15 short tandem repeat (STR) sequences was established for aneuploidy screening and chromosomal study was performed in 2 sample and the results were compared.

Total of 654 prenatal samples were analyzed including 616 amniotic fluid and 38 chorionic villous samples (CVS). The following abnormalities were detected in 21 (3.2%) individuals: 11 (1.7%) with Down syndrome, 4 samples (0.6%) with Edward syndrome, 2 (0.3%) samples with Patau syndrome, 1 (0.15%) sample with Turner syndrome, and 1 (0.15%) 47,XY,Y. All of the CVS samples were normal. In addition, 2 cases (0.3%) showed triploidies. All aneuploidies detected by QF-PCR, were confirmed by cytogenetics results. Elevensamples (1.7%) showed maternal cell contamination in which the results were found normal. Additional chromosomal aberrations; inversion 9, t(9;14) and XX/XY mosaicism, were detected in 3 cases by karyotyping.

In conclusion, using QF-PCR with cytogenetic study simultaneously for all prenatal cases provide a rapid and reliable method in families at risk for aneuploidies. We also recommend all families that are seeking prenatal diagnosis of single gene disorders a QF-PCR to be added to their work up.

P05.31
Prenatal diagnosis of a complex de novo translocation without ultrasound abnormalities
R. Wimmer1, R. Chauvi3, F. Wagner1, K. R. Heidtke1, D. Liebel1, G. Thiel1; 1Praxis für Humangenetik, Berlin, Germany, 2Praxis für Pränataldiagnostik, Berlin, Germany, 3ATLAS Biologabs GmbH, Berlin, Germany.

Apparently balanced de novo aberrations without any abnormalities in the ultrasound at prenatal diagnosis are a challenging setting for genetic counselling, especially if multiple breaks have occurred.

Here, we report on a case of a de novo translocation involving chromosome 2, 7 and 18, and showing multiple breakpoints on each of the implicated chromosomes. The risk for mental retardation in balanced de novo aberrations increases by the number of chromosomal breaks. As we could find at least eight breaks by chromosomal analysis, a high risk for mental retardation was assumed even without ultrasound findings. A prenatal microarray analysis was recommended. Four major abnormalities were found, on chromosome 2 two deletions (3288kb in 2q22.1 and 2415kb in 2q22.1-q22.3) and one duplication (777kb in 2q14.3), a further deletion in 1q12.2 (1935kb), as well as additional minor changes on chromosome 7. The genetic content of the rather large aberrations on chromosome 2 was not helpful with regard to the postnatal prognosis. Nevertheless, the deletion in 1q12.2 including the gene KIAA1328 was found to be described in association with increased risk finding at maternal serum and nuchal translucency screening.

The cytogenetic analysis detected a supernumerary marker chromosome: 47,XY.+mar(56)/46,XY(47), in three independent cultures, confirmed using FISH as chromosome 19. To define the exact duplicated region array-CGH was performed. The aCGH finding indicated three copies of 19q12q13.11, 5,05 Mb in range. The final cytogenetic result was: 47,XY.+mar(56)x3. FISH using a centromeric probe wcp19+arr 19q12q13.11(32545077-37601048)x3 dn. To define the exact duplicated region array-CGH was performed. The aCGH finding indicated three copies of 19q12q13.11, 5,05 Mb in range. The final cytogenetic result was: 47,XY.+mar(56)x3. FISH using a centromeric probe wcp19+arr 19q12q13.11(32545077-37601048)x3 dn.

According to involved genes in the duplicated region on 19q carrier could have a phenotypic consequences, especially developmental delay. Although the ultrasound scan was normal, the parents decided to terminate the pregnancy.

In order to offer appropriate genetic counselling an accurate identification of marker chromosomes, aCGH and determination of genotype-phenotype correlation for better risk evaluation.

P05.32
Prenatal diagnosis of multiple small supernumerary marker chromosomes (sSMCs) of different centromeric origin
M. Volleth1, T. Liehr2, D. Schanze3, M. Zenker4, P. Muschke5, I. Schanze1; 1Dept. of Human Genetics, Magdeburg, Germany, 2Institute of Human Genetics, Friedrich Schiller University, Jena, Germany.

Small supernumerary marker chromosomes (sSMCs) are structurally abnormal chromosomes that cannot be identified or characterized unambiguously by conventional banding techniques alone (Lieber et al. 2004). Fluorescence in-situ hybridization (FISH) with centromeric and subcentromeric probes enables the rapid identification of sSMCs originating from pericentromeric regions. We report on a fetus with up to 5 markers of different origin in one cell. Aomiocentesis was undertaken for the reason of advanced maternal age. Chromosome analysis revealed the occurrence of one to six sSMCs (mean 2.6 per cell) in both independent cultures. Molecular karyotyping using an SNP-Array (Affymetrix) revealed amplification of 6.7 Mb from 4p12-p12 (arr 4p12q12[46.567.172:53.241.307)x3). FISH using a centromere probe confirmed the homology to chromosome 4 of one of the sSMCs. The largest marker amongst the other sSMCs, probably a ring chromosome, originates from chromosome 9 and includes mainly the heterochromatic band of the long arm: min(9)(p12→q21). The remaining markers are very small and contain centromeric material from chromosomes 6, 14 and 22 only. Due to the fact that phenotypic abnormalities have been described in patients with duplications of the 4p12 region, the couple decided to terminate the pregnancy. The aborted fetus could not be investigated. Chromosome analyses of the parents’ lymphocytes were inconspicuous.

The maternal origin of markers from the amplified 4p segment and the different centromeric origin of the sSMCs, point to the possibility that the degrading second polar body had been incorporated into the zygote. We compare the present case with previously published cases. Supported by Else Kröner-Fresenius-Stiftung (2011_A42).

P05.33
Array-CGH identification of de novo mosaic supernumerary marker chromosome 19 in prenatal diagnosis
A. Zagorac, R. Oertel, L. Hills, A. Boys, F. Norris, I. Burns, D. L. Bruno, H. R. Slater; Murdoch Childrens Research Institute, Melbourne, Australia.

Small supernumerary marker chromosomes (sSMCs) are relatively rare in the general population, found in approximately in 0.1-1/1000 live births. They are defined as additional structurally abnormal chromosomes which cannot be identified with conventional cytogenetic techniques. The frequency of supernumerary markers found in prenatal diagnosis is about 0.076%. The clinical significance of sSMC varies widely, and the phenotype associated with presence of a de novo sSMC may differ from normal to severely abnormal. We describe a finding of a de novo mosaic supernumerary marker chromosome 19, its genomic characterisation and its possible impact on the phenotype.

Aomiocentesis was performed on a 33 year old primigravida because of an increased risk finding at maternal serum and nuchal translucency screening.

We have used whole genome microarray as a replacement for conventional chromosome analysis to investigate genomic abnormalities in approximately 2,024 miscarriage, stillbirth and fetal malformation referrals M. D. Pertel1, R. Oertel1, H. R. Slater1, Murdoch Childrens Research Institute, Melbourne, Australia.

We have used whole genome microarray as a replacement for conventional chromosome analysis to investigate genomic abnormalities in approximately 2,024 miscarriage, stillbirth and fetal malformation referrals. Whole genome microarray as a replacement for conventional chromosome analysis to investigate genomic abnormalities in approximate-
case), 15q11.2q13 (Angelman deletion) (1 case) and 22q11.21 (Di George) deletion (2 cases), accounting for approximately 1 in 285 (0.35%) referrals. We found little evidence for submicroscopic, unbalanced rearrangements being transmitted by balanced carrier parents. Such rearrangements do not contribute significantly to the burden of miscarriage or stillbirth. Large (>6 Mb) genomic imbalances were identified in 31 cases. Uniparental disomy (UPD) was rare. One case of paternal isodisomy 14 was identified in 762 informative results obtained by SNP array. Chromism was identified in 4 pregnancies; complete mule in 12 cases. Our data demonstrate that whole genome microarray is a powerful tool for investigating genomic abnormalities that contribute to miscarriage, stillbirth and fetal abnormality.

P05.35
Prenatal diagnosis of microdeletion 17q12 in a fetus with cystic kidney disease

Genomic rearrangements such as deletions, duplications and insertions result in copy number variation (CNV) that may cause phenotypes by affecting dosage-sensitive genes, disrupting genes, creating fusion genes, and other mechanisms. Until now, numerous microdeletion and microduplication syndromes with characteristic phenotypes have been described. We report a case of a 32-year-old pregnant woman. Sonographic examination in the 22nd week of gestation showed bilateral cystic kidney disease and oligohydramnios. Amniotic fluid sampling was performed for molecular genetic testing and karyotyping. The cytogenetic karyotype was normal (46, XY) HNF1B analysis by sequencing showed no mutation but MLPA revealed a heterozygous deletion of the complete gene. For precise characterization of the deletion Array CGH analysis was done showing a deletion of at least 1.3 Mb corresponding to the cytogenetic region 17q12 (arr17q12(234473524x2, 3481722-3618604x1, 36473175x2). This contiguous gene deletion syndrome comprises 11 OMIM genes, including HNF1B.

Involvement of the HNF1B gene causes cystic renal disease and maturity onset diabetes of the young (Renal cysts and diabetes syndrome, RCAD, OMIM 137920). According to data of the literature and DECIPHER database, patients with microdeletion 17q12 may exhibit cognitive impairment, speech delay, seizures, autism and psychiatric disorders, possibly due to haploinsufficiency of the LHX1 gene. Dysmorphic features are reported to be only mild.

The pregnant woman decided to continue pregnancy. Delivery date is in March 2012. The pregnancy outcome will be reported. This case report underlines the importance of Array CGH analysis in the diagnostic work up of prenatally detected fetal anomalies.

P05.36
The Efficiency Of Multiplex Ligation-Dependent Probe Amplification Technique In The Diagnosis Of Fetal Chromosomal Abnormalities
G. Toksoy, B. Karaman, Z. Uğuner, K. Yılmaz, R. Has, H. Kayserili, S. Basaran; 1Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey; 2Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.

With standard karyotyping techniques chromosomal abnormalities are detected in only about 20% of patients with multiple congenital abnormalities/mental retardation (CMR/MA). At the 500-600 band level the resolution for detection is about 5 Mb. Fluorescence in situ hybridization (FISH) technique can unveil submicroscopic aberrations (<5Mb), which increases the detection rate an additional 4-8% in the etiology of MCA/MR. Molecular techniques can identify abnormalities <5 Mb. The clinical findings of MCA/MR cases can guide the clinician toward syndromic-specific FISH probes. However, this is usually limited for prenatal cases. Multiple Ligation-dependent Probe Amplification (MLPA) extends the boundaries of the diagnosis of chromosomal anomalies that are undetectable by classical methods.

In this study, we aimed to search for subtelomeric aberrations and syndrome-related microdeletions/duplications by using SALSA P070 and P245 probe-sets of MLPA in 66 samples of fetuses with major ultrasonographic abnormalities carrying normal karyotypes with conventional methods. Two microdeletions (18p11.3->pter and 7q11.23) and one microduplication (18q23.2) were identified (4.5 % - 3/66) by MLPA. Deletions were confirmed by FISH and duplication was confirmed by microarray.

The advantage of MLPA is the ability of searching multiple loci in one test run, which could be very helpful in prenatal diagnosis of cases with abnormal ultrasound findings where the karyotypes were normal.

P05.37
Possibility of MLPA prenatal detection of the most clinically important chromosomal abnormalities
L. Drvaskulová, J. Padlová, B. Chudoba, D. Novotná, H. Kucielová, P. Křenková, J. Drábová, Z. Zmítková, M. Macek, M. Macek sr.; Department of Biology and Medical Genetics, Prague, Czech Republic.

The aim of this study is the verification of the possibility to extend to the diagnostic spectrum of MLPA by simultaneous implementation of aneuploidy, centromeric and subtelomeric kits to detect aneuploidies of all chromosomes.

The 65 samples of fetal cell cultures derived for prenatal diagnosis with normal karyotypes (20) and different chromosomal abnormalities (45) were reexamined by MLPA MRC Holland kits. The combination of kits for the examination of aneuploidies of chromosomes 13, 18, 21 and X (P095-A2), centromeres (P181-A2/182-B1) and subtelomeres (P036-E1 and P070-B2) was used.

MLPA kits were identical with karyotypes in all euploid samples as in cultures with trisomies 2, 4, 5, 6, 9, 13, 14, 15, 16, 18, 21, double trisomy 15 and 18, syndromes XXX, XYY and XXX, except trisomy 69XXX. Normal clone in mosaics was disclosed in 3/4 cases except 45X/46XX. All four balanced Robertsonian and reciprocal as well as unbalanced Robertsonian (13;14, 14; 14, 15; 21) and 4 reciprocal translocations (3;4, 3;6, 4;21, 9;15) were confirmed. The origin of 4 extra marker chromosomes derived from chromosome X,Y, 15,X,Y, 15.5 and 22. The 5 cases with the deletions of chromosomes Y, 9p and 18p and 1 case of duplication 3p were disclosed. Only ins(3;4)(p21;q26) and Y chromosome inversion were missed, because the breaks were not in the detectable regions of used kits. This pilot study suggests that the MLPA kits combination might allow rapid, reliable prenatal detection of clinically significant abnormalities of all chromosomes, except 69XXX inversion/isodisomy.

Supported by MZ0FNM2005 and C22.16/3/100/24022.

P05.38
Discrepancies between QF-PCR and karyotype results in a rare prenatal case of mosaic trisomy 18 and supernumerary marker chromosome 18
A. Pavel, L. Dimos, F. Nedelec1, I. Cassidy, R. Simioni, D. Stambovski; 1Cytogenomic Medical Laboratory, Bucharest, Romania, 2Filantropia Hospital, Bucharest, Romania, 3University of Medicine and Pharmacy, Bucharest, Romania, 4Cantacuzino Hospital, Bucharest, Romania.

Chromosomal aneuploidy is a common cause of human genetic disorders and cytogenetic analysis remain the standard method of diagnosis. Quantitative Fluorescence PCR (QF-PCR) is a rapid assay used to identify most common aneuploidies of chromosomes 13, 18, 21, X, Y. This method uses highly DNA polymorphic markers (STRs) specific for each chromosome, to determine the number of alleles of the analyzed chromosomes. In this rare case a sample of amniotic fluid was referred for prenatal diagnosis with a high risk indication 1.2 for Edwards Syndrome after combined first trimester screening, in the absence of any detectable fetal malformation. QF-PCR was followed by cytogenetic analysis of cultured cells. The results of QF-PCR revealed an abnormal pattern of allele ratio suggesting mosaic of three full copies of chromosome 18, whereas cytogenetic analysis revealed a 50% mosaic of a supernumerary centromeric marker 18. Due to the discrepancy of these results, genetic counseling advised to continue the investigation with a second sample either fetal blood or amniotic fluid. Also, array-CGH was recommended to clarify these unusual results. The results of the second amniotic fluid sample confirmed the presence of extra marker 18. After counseling about the associated risk of abnormal outcome, parents decided to continue the pregnancy. Postnatal blood karyotype revealed a third cell line of trisomy 18 in 5% of peripheral cells, confirming the QF-PCR findings. QF-PCR technique is a trustworthy method for detecting aneuploidies and even mosaics in a low percentage. The results should always be considered in any circumstances.

P05.39
Prenatal diagnosis of a case with mosaic 22q11 microdeletion syndrome

Mosaic microdeletion syndromes are rarely reported and the prenatal diagnosis of those cases might be difficult because low levels of mosaicism can be easily misdiagnosed. We present a case of a pregnant woman who at the 20 weeks of gestation, after a routine ultrasonography screening found polyhydramnios, intrauterin developmental delay, tetralogy of Fallot, timus hypoplasia for the fetus. Amniocentesis was performed and FISH analysis was
done. Besides common aneuploidies probes, also LSI TUPEL1 probe (Abbott) for DiGeorge syndrome was used for diagnosis confirmation. A total number of 100 cells were evaluated for each probe. Results were normal for common aneuploidies. In 13 cells a 22q11.2 microdeletion was found and the finding was conclusive for 22q11.2 microdeletion (13%). Genetic counselling was offered to parents who decided to terminate the pregnancy and requested to be informed about the risk for the following pregnancy. The informed parents were screened for the same deletion by using FISH analysis which revealed that the father also presents a very low level of mosaic for microdeletion of chromosome 22q11.2 in his peripheral lymphocytes. This case sustains the importance of widening the FISH studies spectrum when ultrasonography shows cardiac malformations in association with other defects which can be a hallmark of a specific chromosomal defect allowing an ethologic diagnosis. The prenatal diagnosis of an affected fetus facilitated in this case the identification in a parent with normal phenotype of a very low level of 22q11.2 microdeletion and allowed an adequate genetic counselling.

P05.41 Next-generation sequencing application for a heterogenous disorder: a pilot study on inherited peripheral neuropathies
C. Buxton,1 P. LeBelle,1, L. Brown,2 E. Grunewald,1 T. Antoniadis;1 1Bristol Genetics Laboratory, Southmead Hospital, Bristol, United Kingdom, 2Dept of Clinical Genetics, St Michaels Hospital, Bristol, United Kingdom, 1Dept of Clinical Genetics, Royal Devon and Exeter Hospital, Exeter, United Kingdom.

Inherited peripheral neuropathies (IPN) are a heterogeneous group of disorders with an overall prevalence of 1 in 2,500 and more than 50 genes implicated. Bristol Genetics Laboratory currently provides a specialist UKGTN Sanger sequencing service for 12 neuropathy genes. The aim of this project is to evaluate the application of targeted capture NGS technology to the diagnosis of IPN using a pilot cohort of ten recruited/consented patients; three unrelated individuals with a known mutation/ SNP profile including quantitative changes and seven with an uncharacterized genetic aetiology. A solution-based oligonucleotide capture array was designed using Agilent eArray (SureSelect) to capture a 450KB target encompassing coding exons and 5’ and 3’ UTRs of 65 neuropathy genes. DNA libraries were run on Illumina GAII and MiSeq sequencers for comparison and to aid in evaluating bioinformatics approaches to variant calling and dosage enumeration. Data analysis will be performed using open source tools (Galaxy).

We aim to assess the quality of genetic data, the extent of genetic variation in patients with IPN, the utility of current bioinformatics packages and databases in assigning variant status, the ability to detect quantitative changes, and potential new genotype-phenotype correlations. The experience gained through validating a new technology in a clinical context and the workup of various approaches to downstream analysis together with clinically relevant variant findings will be presented. This work will further the knowledge of the genetics of IPN and contribute to improved genetic testing for patients with these diseases.

P05.42 The non-invasive prenatal tests available in Romania
A. M. Stan,1 C. Dragomir1, E. Severin2, L. Savu1;1Genetic Lab S.R.L., Bucharest, Romania, 2UniverMed, Bucharest, Romania.

The detection of cell-free fetal DNA in maternal circulation opened a new, noninvasive approach for prenatal diagnosis (NIPD). The NIPD approach has been studied for more than a decade. It started with the fetal RHD genotyping and gender determination, allowing at the moment the noninvasive detection of specific mutations causing diseases and selected chromosomal aneuploidies. We performed the noninvasive detection of fetal RHD genotype in Romania since 2010 and we considered this approach an improvement in the management of mother-fetus RhD incompatibility in our country. This short study aim was to improve the protocol for non-invasive fetal RHD genotyping in our laboratory since we notice a nonspecific amplification band in some RHD negative samples. A three-step method was used for noninvasive fetal RHD genotyping. For the ccfDNA extraction we proceed from 1ml maternal plasma using the QIAamp® DSP Virus kit. The fetal RHD genotyping was determined using specific primers for two sequences in the exon 5 and exon 7 of the RHD gene; we also included the GAPDH, β-globin, DYS14 and SRY sequences detection as internal controls. To overcome our issue, five different PCR reactions were performed. The PCR products were automated analyzed by high-resolution capillary electrophoresis. We tested 93 plasma samples using both protocols and the results were confirmed by the invasimethode. We conclude that our protocol for RHD genotyping is rapid and feasible. Also, the fetal gender determination is currently performed as a useful tool for screening the pregnancies at risk for inheriting an X-linked recessive disorder.

P05.43 Clinical application of non invasive RHD genotyping using cell free fetal DNA in maternal plasma
M. Grandal;1 E. Ordonez;1 A. Payaró1, N. Domínguez1, I. Teisidá1, V. Ciriglione1, A. Borrell1;11Department of Maternal-Fetal Medicine, Instituto Ginecología, Obstetricas and Neonatología, Hospital Clinic Barcelona, Barcelona, Spain, 2Department of Molecular Genetics, General Lab, Barcelona, Spain, ‘ASSIR Manos, Instituto Català de la Salut, Barcelona, Spain, ‘ASSIR Numancia, Instituto Català de la Salut, Barcelona, Spain.

To assess the accuracy of non invasive fetal RHD genotyping in the second trimester of pregnancy using cell free fetal DNA in maternal plasma and the practicality of avoiding the use of prophylactic antenatal anti-D gammaglobulin in RhD negative fetuses.

Fetal RHD genotyping was offered to RhD negative pregnant women attending the West Barcelona Health district. A total of 284 cases were collected at 24-26 weeks of gestation and tested for fetal RHD status using multiplex real-time PCR amplification of exons 5, 7 and 10 of the RHD gene. Women carrying RhD negative fetuses were counseled about the possibility of avoiding prophylactic anti-D gammaglobulin. Diagnostic accuracy and feasibility of routine application of non invasive RHD genotyping were compared with established postnatal RhD typing in umbilical cord blood. A total of 183 fetuses were genotyped as RhD positive (64.5%) and 96 RhD negative (34%). Two samples were not informative as RHD sequences were detected in amount compatible with a maternal positive genotype. Three RHD variants were identified (1%), all results were confirmed in the newborns. No false positive or negative results were observed in singleton pregnancies. One false positive result was observed in a twin pregnancy, followed up allowed determining a paternal RHD variant as its cause. Antenatal anti-D gammaglobulin was only requested in 5 cases of RhD negative fetuses.

Non invasive fetal RHD genotyping in the second trimester of pregnancy proved to be efficient and reliable. This approach allowed avoiding unnecessary use of antenatal immunoglobulin in our population.

P05.44 Preimplantation genetic diagnostic of metabolic diseases in Gennet
I. Soldatova,1 M. Putzová,1 J. Borgulova, V. Krutilková, J. Miša, R. Křen, D. Stejskal;1 GENNET, Prague, Czech Republic.

In 2007 we completed the first in vitro fertilization cycle (IVF) followed by preimplantation genetic diagnosis (PGD). Since then, we have performed over 170 cycles with scheduled PGD for 53 different monogenic disorders. One third of those were metabolic diseases with X-linked and autosomal recessive types of indications. PGD in our centre is based on principle of haplotyping analysis for determination of disease-associated haplotype derived from family members. During the IVF cycle haplotyping technique by multiplex PCR is used on products of multiple displacement amplification (MDA) from one blastomere biopsied from the cleavage-stage embryo on the day 3 (in rare cases of ambiguous result from the blastomere, analysis may be repeated from trophectoderm and embryo is still managed to be transferred on the day 5).

PGD is available for a large number of monogenic disorders. Presented group of metabolic disease forms the most frequent group of examined disorders in our centre. We have completed 15 IVF cycles - in 11 cases the embryo was transferred. The success rate of PGD procedures of metabolic diseases is approximately 40% (gravity confirmed by the fetal heart beat).

PGD is a reproductive option for couples at substantial risk of conceiving a pregnancy affected with known genetic metabolic diseases who wish to avoid the emotional burden associated with an affected child or termination of pregnancy.

P05.45 Preimplantation genetic diagnosis and polar body diagnosis for Fragile X syndrome
A. J. Hey,1 E. Paulmann2,1 Z. Kowalzyk1, C. Gassner1, B. Seifert2, U. Mehrs2;1Centre for Human Genetics Regensburg, Regensburg, Germany, 2KITZ Regensburg, Regensburg, Germany.

Introduction: Fragile X (FRAXA) syndrome is one of the more frequent indications for preimplantation genetic diagnosis (PGD). However, FRAXA pre-embryo transfer is carried at increased risk for premature ovarian failure and
have to cope with significantly lower pregnancy rates per oocyte retrieval (ESHRE data collection X: 17.5%) when compared to PGD for other single gene disorders (ESHRE 22.1%).

Methods: 13 oocyte retrieval cycles (ORC) for polar body diagnosis in 8 families. Risk for FRAXA and 26 ORC for 15 families at risk for Cystic Fibrosis (CF) as control group.

Results: For the FRAXA group less metaphase II oocytes could be retrieved (mean 8.31/cycle; CF: 12.15/cycle). With identical embryo transfer rates of 77% per ORC a significantly lower rate of clinical pregnancies (2/10=20%; CF: 9/20=45%) and life births (2; CF: 8 + 1 ongoing pregnancy) was obtained in the FRAXA group per embryo transfer cycle when compared to the CF group.

Discussion: PBD allows the earliest view on oocyte maturation in heterozygous FRAXA carrier females in a diagnostic setting. Our data indicate that PBD results for FRAXA are at least comparable to PGD on day 3 embryos. However, in concordance with the ESHRE PGD data we also observed a reduced number of metaphase II oocytes, lower impregnation and pregnancy rates for Fragile X syndrome when compared to PBD for Cystic Fibrosis, which should be emphasized early during genetic counseling.

P05.47 Virus detection from amniotic fluid and peripheral blood in pregnant women

L. Lazar, M. Caire, B. Pâlyi, E. Barcsay, M. Tabaczi, A. Beke, C. Papp, B. Nagy, J. Rigó Jr., G. Berencsi 1
1Semmelweis University, Budapest, Hungary; 2National Epidemiological Center, Budapest, Hungary.

Background: Transplacental viral infections was widely investigated in last decades. Embryo-fetal infections have been reported to cause recurrent spontaneous abortions, and fetal malformations. The possible mechanisms include production of toxic metabolic byproducts, fetal or placental infection, chronic endometrial infection, and chorio-aminotrophs. The aim of our study was to detect EBV, CMV, HHV-6, HHV-7, HPV and Torque teno virus DNA from amniotic fluid samples.

Materials and methods: Amniotic fluid (during artificial membrane rupture) and peripheral blood samples were collected at delivery, from 106 pregnant women. DNA was isolated with silica adsorption method. Viral DNA was determined with real time PCR method. IgG and IgM was also determined form peripheral blood samples.

Results: Viral DNA was detected in 27 of 106 amniotic fluid samples. We detected CMV DNA in nine, HHV-7 DNA in eight, HHV-8 DNA in five, EBV DNA in four amniotic fluid samples. CMV, HHV-7 and EBV positivity was two-two-fold higher in amniotic fluid samples than in peripheral blood samples. 69.81% of maternal blood samples was positive for HHV6 IgG.

Conclusions: Our results suggest that viral infections occur more often in pregnancy, than previously where supposed. In case of abnormal prenatal/ultrasound findings, and amniotic fluid sampling rises the possibility of PCR viral detection from amniotic fluid.

P05.48 Deletion 18q21.2-q21.31 encompassing TCF4 diagnosed by CGH-Array in a fetus presenting with hypoplastic corpus callosum

N. Marle 1, F. Callier 1, A. Mosca-Boidron 1, C. Thauvin-Robinet 1, N. Laurent 2, M. Gérard 1, A. Masurel-Paulet 1, T. Roussaux 1, M. Payet 1, C. Bagyon 1, F. Mugneret 1, L. Olivier-Faivre 1, L. Pochet 2, C. Ragon 1, F. Mugeneret 1, L. Olivier-Faivre 1, C. Ragon 1
1Laboratoire de Cytogénétique, CHU Le Bocage, Dijon, France; 2Département de Génétique, Hôpital d’enfants, Dijon, France; 3Laboratoire d’Anatomie-Pathologie, CHU Le Bocage, Dijon, France; 4UF de Génétique Clinique, CHU Robert Debré, Paris, France. 1Maternité du Bocage, Dijon, France.

We report on a fetus with a subtotalar corpus callosum agenesis and bilateral ventriculomegaly diagnosed by ultrasonography at 25 weeks of gestation. After MRI confirmation, pregnancy was terminated. Conventional cytogenetic analysis on amniotic fluid cells revealed a normal karyotype (46,XX). CGH-Array showed hypoplastic corpus callosum with fragmented fibers and bilateral ventriculomegaly. Array-CGH analysis (Agilent®, 4x44K) was performed on DNA extracted from frozen fetal tissue samples and showed a 3 Mb interstitial 18q deletion; arr 18q21.2q21.31 (49,190,680-521,885,365)X1. FISH on metaphase spreads from amniotic fluid cultures with RIP1-1,344A12 BAC probe confirmed the deletion. This deletion which occurred de novo, encompasses 10 genes including TCF4. Haploinsufficiency of TCF4 was identified as the underlying cause of Pitt-Hopkins syndrome. Pitt-Hopkins syndrome (PTHS, OMIM 601954) is characterized by severe intelletual disability, typical facial gestalt and daily episodes of hyperventilation followed by apnea. Other common findings are epilepsy and brain abnormalities such as hypoplastic corpus callosum. About sixty cases of PTHS confirmed by molecular studies have been reported in the literature. Most of them result from mutations or intragenic deletions or insertions. In 30% of cases, PTHS results from submicroscopic deletion including TCF4 and detected by Array-CGH analysis. Clinical re-evaluation found facial features suggestive of PTHS.

This is the first report of a submicroscopic deletion including TCF4 found after prenatal diagnosis of a corpus callosum abnormality. These results allow reassuring genetic counseling for later pregnancies and give the opportunity to discuss the usefulness of Array-CGH in isolated hypoplasia/agenesis of the corpus callosum.

P05.49 Study of the methylenetetrahydrofolate reductase and the reduced-folate carrier-1 gene polymorphism in healthy and severe pre-eclamptic patients

A. Ondzikova 1, P. Seeman 1, E. Balas 1, L. Bregu 1, I. Borgulova 1, V. Krutilkova 1, M. Brandejska 1, J. Miku 1, M. Matkova 1, M. Putzova 1
1Centre for Medical Genetics and Reproductive Medicine GENNET Prague 7, Czech Republic; 2Institute of Biology and Medical Genetics,2nd Medical Faculty, Charles University, Prague 5, Czech Republic.

In our centre we have been providing preimplantation genetic diagnosis (PGD) since 2007. Up to now we have accomplished 173 IVF cycles followed by PGD in about 50 genetic diseases. We used genetic haplotyping technique by multiple PCR on products of MDA (multiple displacement amplification) from 1 blastomere biopsied from embryo. On average 5-6 embryos were biopsied in one IVF cycle. The success rate of the procedure (calculated on the female heart beat pregnancy) is approximately 30%. We present four families in which both parents are heterozygous for 35delG mutation in GJB2 gene (Connexin 26) and have one deaf child, homozygote of the same mutation.

One family with Waardenburg syndrome, autosomal dominant inherited, where the mutation p.Phe45Leu in PAX3 gene was confirmed and the haplo-typic analysis for PGD is prepared.

Our centre has subjected to PGD for other single gene disorders (ESHRE 22.1%) when compared to PGD for other single gene disorders (ESHRE 22.1%).
P05.51
A generic, fast and flexible protocol for preimplantation HLA-typing alone or in combination with a monogenic disease
G. Kersting1, J. Trumpp1, B. Dörschner1, A. Deslauriers1, D. Davier2, G. Kokkoli3, M. Mastromonas1, K. Pentos3, A. Kattamis1, P. Delaporta1, C. Sofolou3, E. Kanavakis1
1University of Athens, Department of Medical Genetics, “Agia Sophia” Children’s Hospital, Athens, Greece, 2Research Institute for the Study of Genetic and Malignant Disorders in Childhood, “Agia Sophia” Children’s Hospital, Athens, Greece, 3Embryogenyss, Assisted Conception Unit, Athens, Greece, *Genesis Athens Clinic, Center for Human Reproduction, Athens, Greece, 4Thalassaemia Unit, University of Athens, “Agia Sophia” Children’s Hospital, First Department of Paediatrics, Athens, Greece.

HLA-typing of in-vitro fertilization (IVF) embryos aims to establish a pregnancy that is HLA-compatible with an affected sibling who requires haemato- poietic stem-cell transplantation. The procedure can be performed with or without preimplantation genetic diagnosis (PGD) for exclusion of a single-gene disorder (SGD). HLA-PGD is, however, a multistep, technically challenging procedure at every stage. To address the aspect of genetic analysis through simplifying patient work-up and PGD application, we developed a fast, reliable HLA-PGD protocol, allowing minimal working-up time and high flexibility for combination with any SGD.

Recent HLA-PGD requests included 11 families to treat β-thalassaemia and 1 family each for Diamond-Blackfan anaemia, Chronic Granulomatous disease, Sideroblastic anaemia and preimplantation-HLA-typing only. For HLA-haplotyping we selected 22 short tandem repeats distributed across the entire HLA locus (4 Mb) following published guidelines. PCR primers were designed with properties allowing multiplex analysis in any combination. The resulting one-step, single-tube, multiplex fluorescent touchdown-PCR, was minimally modified to incorporate multiplex protocols for direct and indirect genotyping of the SGDs, supporting concurrent SGD exclusion and HLA-typing. Amplification efficiency and allele-dropout, from single lymphocyte testing, ranged from 97.6-100% and 0-6.2% respectively. Five clinical cycles were performed with a diagnosis achieved for 92.8% of amplified biopsied blastomeres. Embryo transfer took place in three cycles and one pregnancy was established.

Our protocol enables HLA-typing in a single-PCR, reducing risk of contamination and cost and providing faster results. For different SGDs, it requires minimum optimization before clinical application, decreasing the waiting time from referral to treatment for all HLA-PGD cases.

P05.52
Prenatal BoBs complements excellently karyotyping in routine prenatal diagnostics
N. J. Horelli-Kuitunen, A. M. Slunga-Tollberg, K. J. Kiski; Media Laboratories Ltd, Espoo, Finland.

The new bead-based multiplex assay Prenatal BACs-on-Beads (PN_BoBs®) was validated and utilized for routine use in prenatal diagnostics. PN_BoBs® assay detects aneuploidies (13,18,21,XY) along with nine of the most common microdeletion syndromes. The validation contained 57 different fetal samples with a success rate of 98.2%. The diagnostic cases included fresh amniotic fluid (AF), chorionic villus (CV) samples (group A) and tissue samples (skin or placenta) from cases with unexplained fetal loss (group B). We have now studied 118 samples (group A 55 and group B 63 cases) the success rate being 96.6%. In group A PN_BoBs revealed two microdeletions (monosomy 22q11), one monosomy X, trisomy 18, and trisomy 21. No false positive results were detected, but one false negative result (6,9,XXX) was reported, and one sample with maternal cell contamination (MCC) was detected. In group B three cases of trisomy 21 and one trisomy 13 were detected. The overall abnormality detection rate was 1/12 and the additional detection rate of PN_BoBs over karyotyping was 1/59, revealing two microdeletions. The advantage of PN_BoBs is the simultaneous detection of both trisomies and microdeletions in addition to reliability and quickness. Furthermore, PN_BoBs is unsensitive for MCC and it detects even 30% mosaicism.

Undetected sex chromosome aneuploidy by chromosomal microarray - practical implications
K. Markus-Bustani1, Y. Yaron2, M. Goldstein1, O. Dor-Ortégus1, S. Ben-Shachar2; 1The Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel, 2Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel, Israel.

We report on a case of a female fetus found to be mosaic for Turner syndrome (45X) and trisomy X (47,XXX) by karyotype, with 3:1 ratio between the two cell lines respectively. However, chromosomal microarray analysis (CMA) failed to detect the aneuploidy due to a normal average dosage of the X chromosome in the direct amniotic fluid sample. This case represents an unusual instance in which CMA may not detect chromosomal aberrations. Such a possibility should be taken into consideration in similar cases where CMA is used in a clinical setting, and especially in cases suspected for sex chromosome aberrations, in which mosaic states are common.

P05.53
24 chromosomes in 24 hours: Validation study of a new assay for rapid detection of aneuploidies and terminal imbalances of all chromosomes in chorionic villous samples

Conventional karyotyping after cell culture still represents the gold standard in prenatal diagnosis. In general, results are available 10-12 days after sample reception. To bridge this gap, rapid testing for common aneuploidies using qF-PCR or FISH is performed. In chorionic villous samples (CVS), direct or short-term incubation preparations are recommended to obtain an early molecular karyotyping analysis. However, the labour input is substantial and the results are often of poor quality. As the likelihood for chromosomal aberrations other than trisomies 21, 18 and 13 in CVS is higher than compared to amniocytes, we evaluated the KaryoLite™ BACs-on-Beads® technology (Perkin Elmer, Turku, Finland) as an alternative testing method for aneuploidies and terminal imbalances of all chromosomes within 24 hours. Endpoints of the study were analytic sensitivity and ease of use.

Five clinical cycles were performed with a diagnosis achieved for 92.8% of the 102 CVS with known aneuploidies (n=93, autosomal=69, gonosomal=24), polyplodies (n=3) and terminal imbalances (n=6) previously analysed by qF-PCR and karyotyping. From our data we conclude that KaryoLite™ BoBs® provides correct and rapid results on all aneuploidies and - if covered by the assay - terminal imbalances, based on minute (<50ng) amounts of DNA in a single assay. As expected, due to methodological restrictions, female triploidies could not be diagnosed. The test has an acceptable workload and is easy to use.

P05.54
Chromosomal mosaicism in invasive prenatal investigations in 1998-2010 in a fetal medicine department
V. Curtissova, F. Capoliovì, I. Dhaffallah; Department of Human Genetics and Fetal Medicine, FalakSkin nemoicni Gymnázium, Olomouc, Czech Republic.

Counselling after a diagnosis of chromosomal mosaicism in a prenatal invasive sample is difficult, as the impact of the finding on the fetus is difficult to predict. We review all cases of level I and II mosaicism in our prenatal invasive samples between 1998 and 2010 and present the results. 4803 amniocenteses (Amnio) were performed with 26 (0.5%) cases of mosaicism, and 643 CVS with 23 (3.6%) cases of mosaicism. Of 23 ascertained outcomes of Amnio pregnancies 4 were terminated, 1 miscarried, 16 resulted in a birth of a normal baby and 2 babies had abnormalities, which were probably unrelated to the cytogenetic finding. Of 22 ascertained outcomes of CVS pregnancies 5 were terminated, 2 miscarried, 14 resulted in a birth of a normal baby and 1 baby had abnormalities, which were unrelated to the cytogenetic finding. Negative outcomes were found in mosaic variants of chromosomal aneuploidies which are in a pure form connected with known syndromes (trisomy 21, monosomy X and so on).

P05.55
Fetal RHD genotyping in maternal plasma: 2 years of experience
E. Guinchard, S. Monnier, C. Martinet, E. Monier; EFS Rhône-Alpes site de Lyon-GHIL, Bron, France.

Fetal RHD genotyping in maternal plasma aims to establish a pregnancy at very high risk for RHD disease. The technique of maternal RHD genotyping has been used for many years as a screening test as well as an additional test to confirm fetal RHD status prior to delivery. Yet, the sensitivity of this test is still debated. In this study, we describe the experience of our center with maternal plasma RHD genotyping over 2 years. The setting, methods used, and results are presented. The sensitivity of this test, as compared with other testings, is discussed.

Fetal RHD genotyping in maternal plasma is carried out for almost 2 years in the laboratory. Aims: The analysis performed from 10 weeks of pregnancy involves three of the 10 exons of this gene: exons 4, 5 and 10 by real-time PCR. Two genes controls are used: SRY and CCR5 gene. The criteria for technical and biological validation have been defined. Any negative or abnormal results (absence of amplification of the three exons or amplification of one or two of the three exons) must be controlled on a new sample taken 15 days later.
The reporting of results is standardized with well-defined biological comments. The report is accompanied by a tracking sheet of pregnancy. The feedback at birth in the laboratory by the motherhood, (indicating RH1 phenotype at birth and sex of the child) can be difficult and allows tracking of newborns, and is an quality indicator; the target being the absence of false negatives.

Results: Since 2010, 64 analyses were performed: 38 results were positive, 14 negative and 12 undetermined usually corresponding to a maternal RHD gene variant. In several cases, variant RHD genes were found in the newborn.

Conclusion: the experience of almost two years shows that this technique guided by procedures and very precise and rigorous criteria of validation is reliable. Situations of maternal variants are the most difficult situations that should lead to careful interpretation of the results.

The laboratory is also part of a quality initiative, by participating and developing an inter-laboratory quality control.

P05.57 Evaluation of Prenatal BoBs® for the detection of mosaicism in prenatal diagnosis

Y.K. Kwok1, V.K.Y. Cheng1, C. Wong1, H.K. Wong1, K.O. Leung1, A.C.S. Chan1, D. Dallaire2, T. Yao1,2, M. Scharr1, K.W. Choy1,3

1Department of Obstetrics and Gynecology, Hong Kong, Hong Kong, 2PerkinElmer

Waltham, MA, United States, 3CUHI-BGI Innovation Institute of Trans-amics, Hong Kong, Hong Kong, 4CUHI-Shenzhen Research Institute, Hong Kong, Hong Kong.

Objective: To evaluate the effectiveness of a new prenatal diagnostic platform – prenatal bacterial artificial chromosomes-on-Beads® (Prenatal BoBs®) in detecting mosaicism and comparing its performance with quantitative fluorescence polymerase chain reaction (QF-PCR).

Methods: A validation study of Prenatal BoBs® was firstly performed using artificially constructing mosaic samples involving various aneuploidies and microdeletion conditions. Furthermore, we compared the accuracy between Prenatal BoBs® and QF-PCR in 16 archived real clinical mosaic cases according to the conventional karyotype results.

Results: In the validation study, Prenatal BoBs® allowed the detection of mosaicism at a level of 20 to 40%. Among 16 real clinical mosaic cases, 4 (25%) cases could be identified by both Prenatal BoBs® and QF-PCR but 8 (50.3%) cases were missed by both tests. Three cases (18.8%) were detected by Prenatal BoBs® but missed by QF-PCR, while QF-PCR detected 1 case which was missed by Prenatal BoBs® due to the mosaic region did not having probe covered. The overall sensitivity of Prenatal BoBs® in detecting mosaicism is 43.8% (7/16) which is slightly higher than 31.3% (5/16) of QF-PCR.

Conclusion: Prenatal BoBs® has a sensitivity of 44% in the detection of real clinical mosaic cases. The threshold mosaic level to be detectable by Prenatal BoBs® is 20% according to the validation study. This assay is likely superior in detecting mosaic.

P05.58 Clinical use of array-CGH in foetuses with ultrasound anomalies and normal karyotype

L. Gwanmesia1, S. Gimelli1, K. Aliferis1, P. Extermann1, E. Santoni1, S. Dahan1, S. Sloot-Bena2, S. Fokszen3

1Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland, 2Department of Gynaecology and Obstetrics, University Hospitals of Geneva, Geneva, Switzerland, 3Echofemme, Centre for Prenatal Diagnosis and Echography, Geneva, Switzerland

Objective: To get insight into the frequency and nature of the so-called “unexpected findings” when using SNP array in prenatal diagnosis. This is important for setting-up a good pre-test counselling.

Methods: We performed HumanCytosNP-12 array (Illumina) analysis of unselected amniotic fluid cells and UC-villi in 344 cases of fetal anomalies after exclusion of the common aneuploidies and trisomy. For correct interpretation, simultaneous analysis of both parents was performed in most cases. According to our policy, only clinically relevant copy number variants (CNVs) were reported to the clinical geneticist who counselled the parents. Results: On a total of 344 arrays, 36 (10.5 %) CNVs were found that were interpreted as clinically relevant based on current knowledge. 24 (7 %) were most probably causative explaining the ultrasound abnormalities and 12 (3.5 %) were so-called “unexpected findings” that are most likely not associated with the fetal anomalies. In the latter cases the involved CNVs were risk factors for mental disability, autism spectrum disorder, schizophrenia etc. CNVs involving genes like DMD or BRCA2 were not found so far.

Conclusions: These findings stress the importance of a pre-test counseling with special attention for this type of risk factors, taking into account that risk factors are based upon postnatal studies and that the prenatal manifestation of such factors is not yet studied. In our opinion, the pregnant woman should get the opportunity to decide whether she wants to be informed about these CNVs, which may potentially complicate decision-making on continuation or termination of the pregnancy.
In 2010, the Russian Government has appointed Tomsk region as the partici-
pant in the Pilot Project for prenatal diagnostics of child malformation on
the basis of integrated (ultrasonic and biochemical) screening in the first
trimester of pregnancy. The sonographic marker of chromosomal anom-
alies (CA) in this Program was the measure of nuchal translucency by 3D
ultrasonic apparatus accompanied by the maternal serum markers of free
beta-hCG and PAPP-A. On the basis of these parameters we calculate the
cumulative risk of CA and form the group of expectant mothers with high
risk for birth of a child with defects. These women are recommended to pass
the invasive diagnostics.

During the first year of realization of this Project in Tomsk Region we ex-
amined 9.575 expectant mothers (93.5% of women registered in first
trimester or 73.4% of all pregnant women).

As a result of prenatal screening, 124 women were selected to high-risk
group of CA (1.4% of all examined). We carried out 119 invasive manipula-
tions for karyotyping of fetal cells. In 34 cases (28.6%) CA was diagnosed by
cytogenetic methods, including FISH. Down syndrome was the most com-
mon among the detected fetal CA (17 cases). Edwards syndrome was detec-
ted in 5 cases; Patau syndrome was found in 3 cases; Klinefelter syndrome
was observed in 4 cases; Turner syndrome was detected in 2 cases. Other
chromosomal anomalies were detected in 2 fetuses.

Thus the “Prenatal Diagnostics” program allows effectively diagnosing the
fetal malformations and preventing the birth of children with CA.

P05.62

XXY by QF-P CR - is it always Klinefelter? R. Raynova, I. Bradnova, R. Vazharova, V. Dimitrova, T. Tzankova, A. Savov;
National Genetic Laboratory, University Hospital of Obstetrics and Gynecology, Sofia, Bulgaria, 2Department of Fetal Medicine, University Hospital of Obstetrics and Gynecology, Sofia, Bulgaria, 3Maternal Risk Department, University Hospital of Obstetrics and Gynecology, Sofia, Bulgaria.

Quantitative Fluorescent PCR analysis (QF-P CR) is now widely used for pre-
natal detection of the most common autosomal aneuploidies - trisomy 21, trisomy 18, trisomy 13 and some of the sex chromosomes aneuploidies. It provides rapid and accurate results. Aneuploidies involving sex chromoso-
mes detected by QF-P CR could reflect different types of underlying chromo-
somal rearrangements including mosaics and structural abnormalities.

We report two prenatal cases of XX disomy in male fetuses (XYR positive) de-
tected by QF-P CR on uncultivated amniocytes. Both patients were referred
for amniocentesis because of positive maternal serum screening.

DNA was extracted from uncultivated amniocytes, amplified with commer-
cial QF-P CR kit Aneufast (Molgentix SL, Barcelona, Spain) and analyzed on
ABI 3110 XL. Karyotyping was performed on cultured amniocytes using
standard protocol.

QF-P CR showed results consistent with sex chromosones aneuploidy. SRY was present. Pseudoautosomal markers AMEL, X22, DXYS218 were in di-
allelic trisomic pattern in case 1. Markers AMEL, DXYS218, DXYS267 were in
di allelic trisomic pattern in case 2. Markers on chromosome X were in
hemizygous pattern in both cases. Cytogenetic analysis revealed 45, X/X, 46,
XY [-75%] / 25% karyotype in case 1 and 45, X, in case 2.

The wide range of clinical manifestations of 45, X/X, 46, XY mosaics is a genetic
counseling challenge during pregnancy.

Pathological QF-P CR results involving the sex chromosomes require addi-
tional cytogenetic analysis in order to clarify the underlying chromosomal
rearrangement.

P05.63

RFC-1 gene encodes the reduced folate carrier 1 protein which plays role in
the folic acid adsorption by transporting 5-methylentetrahydrofolate to
cells. Polymorphisms in folate metabolic genes have been associated with
the development of Down syndrome. We determined the RFC-1 A90G poly-
morphism in Down syndrome.

Materials and methods: DNA was isolated from amniotic fluid of 92 Down
syndrome and 76 healthy cases by silica adsorption method (High Pure
PCR Template Preparation Kit, Roche, Germany). PCR was performed with
LightCycler DNA Master Hybridization Probes (Roche). Following melting curve analysis alleles were
assigned and statistical analysis was performed to compare the allele and
genotype frequencies.

Results: The melting point of the PCR product was 55°C for the G, and 65°C
for the A allele. We observed significant difference in the frequency of the G
allele in Down syndrome group (69.1% vs. 30.9%), higher what we expect
having three alleles from chromosome 21. Accordingly it was similar with the
genotypes. We found 31.8% GGC, 40.6% AGG, 17.6% AAG and 9.8% AAA
genotypes in Down group and 28.4% GG, 51.4% GA and 20.2% AA in control
group.

Discussion: Polymorphism in the folate metabolism enzymes could
increase the risk of chromosomal segregation and the risk of development
Down syndrome. We detected high frequency of Galleles in Down syndrome
cases.

P05.64

Lack of association between plasminogen activator inhibitor-1 4G/5G polymorphism and retinopathy of premature in premature neonates I. Akalim1, D. Armangil1, Y. Azlan2, B. Saygin4, H. Erdül3, M. Yurdakök2, 1Trabzon Women’s and Children’s Hospital, Genetic Diseases Diagnosis Center, Trabzon, Turkey, 2Istanbul Medeniyet University, Medical Genetics, Istanbul, Turkey, 3Trabzon Women’s and Children’s Hospital, Neonatologist Unit, Trabzon, Turkey, 4Karahdeniz Technical University, Faculty of Medicine, Neonatologist Unit, Trabzon, Turkey, 5Karahdeniz Technical University, Faculty of Medicine, Ophthalmology Unit, Trabzon, Turkey, 6Hacettepe University Faculty of Medicine, Neonatologist Unit, Ankara, Turkey.

INTRODUCTION: Retinopathy of prematurity (ROP) is a proliferative vas-
cular disorder in premature neonates. Due to differences in individual
responsiveness to the treatment, various genetic factors have been investigated in the etiology of ROP. We investigated the gene polymorphism of plasminogen activator inhibitor (PAI-1) 4G/5 as a risk factor of ROP development.

METHODS: 73 neonates with ROP and 101 controls were enrolled to study. The mean gestational ages were 29±0.8 weeks and 30±1.4 weeks, respecti-
vely. The mean birth weight was 1322±431 g and 1444±313 g, respec-
tively. Genotyping was analyzed using real time polymerase chain reaction
methods.

RESULTS: We found no significant differences in allele frequency of the PAI-1 genes between control group and neonates with ROP (p=0.540 and p=0.527,
respectively). The proportion of 4G/4G, 4G/5G and 5G/5G genotypes did
not differ statistically between the ROP and control groups (p>0.05). Having
PAI-1 4G/4G genotype polymorphism seems to develop the risk of ROP (OR =0.702; 95% CI: 0.300-1.639) less than PAI-1 4G/5G polymorphisms (OR =1.064; 95% CI: 0.460-2.410). 4G/5G genotype frequency was decreasing as the stages of ROP were increasing though there was no statistically
significant difference between proportion of genotypes and ROP stages.

CONCLUSION: This study showed that PAI-1 4G/5G genotype which is
known as a risk factor for angiogenesis is not a predisposing factor for ROP
development. Our study is the first report to investigate the association of
PAI-1 gene polymorphisms on retinal angiogenesis and given clues of
decreased risk for ROP development within the 4G homozygous neonates.

P05.65

The reliability of maternal serum triple screening for the prenatal
diagnosis of fetal chromosomal abnormalities in Turkish women A. Pazarbasi1, O. Demirhan1, M. Kasap2, D. Alptekin1, U. Luzay1, B. Yilmaz1, A. I. Guzel1, S. Labey1, E. Tunc1, L. Ispak1, T. Turgun1, N. Kasap1,
1Faculty of Medicine, Department of Medical Biology and Genetics, Adana, Turkey, 2Faculty of Medicine, Department of Medical Biology and Genetics, Bize, Turkey, 3Faculty of Medicine, Department of Obstetrics and Gynecology, Adana, Turkey.

The purpose of this study was to evaluate the reliability of maternal serum
triple marker screening of alpha-fetoprotein, human chorionic gonadotro-
pin, and unconjugated estriol for the prenatal diagnosis of fetal chromo-
somal abnormalities in Turkish pregnant women. Medical records were
used to analyze indications of amniocentesis and quantitative fluorescence-
polymerase chain reaction. A total of 1725 pregnancies with chromosomal
abnormality risk according to triple test screening were accepted for fetal
chromosome analysis and quantitative fluorescence-polymerase chain reac-
tion. Rates of pregnancy of the subjects ranged between 13 and 22 weeks of
the abnormalities were structural aberrations. Abnormalities detected were
inversion of chromosome 9 in 20 cases, trisomy 21 in 14 cases, 46,XX/47,XX,
+21 in 1 case, trisomy 16 in 2 cases, trisomy 13 in 1 case, 47,XXY in 1 case,
45,X in 1 case, structural abnormalities in 12 cases, and mosaic or tetraplo-
didy in 6 cases. Second trimester triple test is an effective screening tool for detecting fetal Down syndrome in Turkish women.
The relationship between haplotype & IVSII-745 mutation in β-thalassemia

β-thalassemia is one of the commonest genetic disorders characterized by either absence or reduced β-globin gene chains synthesis. One of the mutations causing β-thalassemia especially in south and north of Iran is IVSII-745. These are numerous polymorphic base substitutions within the β-globin-gene cluster, that are in linkage disequilibrium with β-globin-gene mutations. The aim of this study was to analyze the relationship between β-globin cluster haplotype and IVSII-745 mutation.

Materials and Methods:
After obtaining informed consent, DNA was extracted from 5 ml of peripheral blood of β-thalassemia carriers referred from primary health care centers (PHC). ARMS-PCR was performed for detecting the common mutations. Haplotype analysis was done by using PCR-BRILP in three different sites. Polymorphisms included: GγHindIII, 3ψβHincII, AvaII/β. Polymorphisms were done by digesting PCR products by appropriate restriction enzyme.

Results and Discussion:
In this study, 35 β-thalassemia carriers and their parents with IVSII-745 mutation were studied. Total of 35 cases with IVSII-745 (C>G), 30% had the pattern type I and type V (- - +). In the remaining cases that have informative pattern (70%) had haplotype VII (- - -). Rest of the cases didn’t have informative pattern.

Our study showed that based on haplotype analysis, it became apparent that non-random association of polymorphic restriction sites in the β-gene cluster occurs within the mutations in β-globin gene like IVSII-745.

Screening for prenatal diagnosis of chromosomal abnormalities

C. M. Maresan1, İ. R. O. Zeinali2, B. M. Maresan3, Ğ. Gug1,
1Department of Medicine and Pathology, Pasteur Institute of Iran & Pasteur Institute of Iran & Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
2Department of Medical Genetics, Usti nad Labem, Czech Republic
3Department of Pathology, Usti nad Labem, Czech Republic

Introduction:
Invasive procedures for prenatal diagnosis can be performed on different reasons: at demand of the patient, usually advanced maternal age; determined by the results of biochemical test; combined screening, which includes specialized ultrasonography (visualization of fetal anomalies or soft markers).

Objectives: The aim is to establish the qualitative analysis from the indications of invasive testing for prenatal diagnosis (detection rate of chromosomal abnormalities and the false positive rate - FPR).

Material and method: During Ian.2010-dec.2011 we examined a number of 947 pregnant patients. We performed a number of 86 invasive procedures in order to determine fetal karyotype: 15 - advanced maternal age; 20 - biochemical risk + maternal age; 51 - ultrasound criteria + maternal age ± biochemistry.

The calculated risk was estimated by introduction of data in the software Astra. The cut-off level for the 1st trimester screening was set at 1:150 and for the 2nd trimester at 1:250.

Results: Prenatal diagnosis revealed 10 chromosomal abnormalities (T21-4, T18-3, T13-2 and 1 case of triploidy). All these cases belong to the group with ultrasound exam. For the same rate of detection, the FPR is 8% for all invasive procedures. If we exclude the invasive diagnosis on demand, the FPR is 6.44% and if we analyze only the cases (51 pregnancies) with ultrasound screening - the FPR is 4.3%.

Conclusion: We observe that if we analyze pregnancies including ultrasound screening, the FPR drops almost to the half value (from 8% to 4.3%).

Trisomy 18

We present chromosomal, fetal ultrasound and pathological findings in two cases of triploidy diagnosed in utero. The parental origin of the additional haploid chromosome set was determined based on a range of highly polymorphic microsatellite markers. In the first case, the fetal karyotype was 69,XXX and in the second case of triploidy (69,XXX). The parental origin of the triploidy was found to be maternal and both triploids were screen positive for trisomy 18. It has been published that digenic triploidy predominates in fetuses, and dianzy accounts for about 50-60% of early triploid spontaneous abortions.
P06. Cancer genetics

P06.001 Frequency of the DPYD *2A allele in the Czech population
M. Koudová1, M. Bittová2, V. Noldhein3, Z. Seifertova4, M. Bittová5, M. Hlavacová5, L. Pavlilichková5, M. Vlacháková5, M. Hashemi6, M. Hlaváčová7, R. Vlčková8,1; M. Wielscher9, W. Pulverer10, A. Weinhäusel11; V. Nordheim1, Z. Spíchal1; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic, 1Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic, 2Department of Paediatric Oncology, University affiliated Hospital, Masaryk university, Brno, Czech Republic.

DPYD *2A allele was demonstrated in a heterozygous state in 3/422 (0.7%), in the homozygous state was not found. Czech frequency of DPYD *2A allele 0.36% is 2.5 times lower than the reported frequency 0.91% in the European population. The results of both methods were completely identical. New cheaper method for detection DPYD *2A was introduced and validated. Low frequency of DPYD *2A allele in the Czech population assume the presence of other mutations in the DPYD gene and in other genes affecting the metabolism of 5-FU. Expression on experimental basis.

P06.002 Concordant change of the 5-hydroxymethylcytosine status and mRNA expression at the LZTS1 loci in breast cancer
W. Lou, M. Wielischar, W. Pulverer, A. Weinheusel; Austrian Institute of Technology, Vienna, Austria.

Analysis of 5-methylcytosine (5-mC) patterns in DNA for the identification of epigenetic dysregulation in cancer is well established whereas elucidation of the role of 5-hydroxymethylcytosine has yet to be unravelled. TET-proteins convert 5-mC to 5-hmC, usually found in CpG context, to 5-hmc, which is assumed to be involved in gene expression regulation and might prove to be intriguing for cancer diagnostics. DNA samples from breast cancer tissue (n=6) and blood samples from healthy patients (n=6) were digested with MboI and shotgun-sequenced to identify 5-hmC. As control reaction each sample was treated with MspI without prior glycosylation. Thus, the selective glycosylation of 5-hmc to glucosyl-5-hydroxymethylcytosine (glu-5hmC) enabled us to distinguish between 5-hmc and methylated or unmodified cytosine. After digestion, the samples were analysed for 5-hmC in 325 loci by a targeted microarray. Through this approach the detection of one potential gene loci with a significant difference (P<0.05) was achieved. The marker LZTS1was validated with qPCR on breast cancer samples (n=32) and normal tissue (n=6) showing a higher level of 5-hmC in normal breast tissue. As next step the mRNA expression of LZTS1 was monitored in breast cancer cell lines, which enabled us to detect a significant decrease of mRNA expression of the tumor suppressor gene LZTS1 in cancerous tissue. Our detection of 5-hmC DNA changes might contribute to understand possible functions of 5-hmC as an epigenetic regulator, because to our best knowledge we are the first that show a direct connection between 5-hmc alterations and a changed mRNA-expression on experimental basis.

P06.003 Analysis of FLT3 mutations in infant acute leukemia
F. Zaker1, M. Hashemi2, M. Sheikh3; 1Tehran Medical University, Tehran, Islamic Republic of Iran, 2Isfahan Azad University; 3Tehran medical branch, Tehran, Islamic Republic of Iran.

FLT3-gene mutations cause leukemia to proliferate uncontrollably and leads to a poor prognosis. The aim of this study is to explore appropriate at diagnostic molecular tests and to screen mutations that occur in patients with acute leukemia. 91 infant Acute Myeloid Leukemia and Acute Lymphoid Leukemia patients were analyzed for FLT3 and/or mutation in FLT3. FLT3-mutations cause acute leukemia and FLT3 mutati-on (Internal Tandem Duplication) that codes juxaamamin region in FLT3 receptor and also the point mutation that is coded by exon 17 in FLT3 receptor kinase region. FLT3 mutatation in FLT3 receptor was analyzed by PCR in 1,12xons and 11triers, using designing primers. For analysis of point mutatation of exon 17 in FLT3 receptor gene, the genomic DNA of patient was amplified using the PCR. Resulted PCR products were further analyzed by ECOR V enzyme and RFLP. In cases of positive RFLP, the Sequencing Method was applied. FLT3 mutation was observed in 7 cases of 91 studied acute leukemia patients. Under investigation the sequence of PCR products in the mutation samples showed that different mutations of s are seen in JRM region. Also, 2 of 91 patients, studied had point mutatation of in which their (D835) distributions in were not identical in FAB subtypes. Studying history of 91 patients, it was cleared that there was not significant relation between chromosome variations and induction of mutation and it can be decided about the treatment by molecular diagnosis of this mutations independent of FAB classification and before the treatment get started.

P06.004 B-cell activating factor: variability of selected exonic regions and association with acute lymphoblastic leukemia in paediatric patients
M. Koudová1, M. Bittová2, V. Noldhein3, Z. Seifertova4, M. Bittová5, M. Hlaváčová5, L. Pavlilichková5, M. Hlaváčková5, M. Hashemi6, M. Koudová7, J. Tomandl8, P. Jarajd9, P. Bienert10, J. Krenova1, J. Sterb11, A. Vasku12; 1Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic, 2Department of Biotechnology, Faculty of Medicine, Masaryk University, Brno, Czech Republic, 3Department of Paediatric Oncology, University affiliated Hospital, Masaryk university, Brno, Czech Republic.

Introduction: There is emerging evidence that B-lineage neoplasms have aberrant expression of B-cell activating factor (BAFF, TNFSF13B) that enables the B cells to escape apoptosis. The aim of our study was to investigate circulating levels of BAFF in paediatric malignancies related to B-cell growth, i.e. B-cell acute lymphoblastic leukaemia (B-ALL) and B-lineage lymphomas.

Materials and methods: This cross-sectional study included the total of 18 children with B-lineage neoplasms (11 children with B-cell lymphoma, mean age at onset ± SD: 11.4 ± 4.8 y) and 7 children with B-cell precursor ALL, mean age at onset ± SD: 6.1 ± 6.1 y) whose serum levels of BAFF before the start of the treatment were examined using the ELISA-based methodology. Exons 1, 4 and 5 of BAFF gene were investigated using the direct sequencing in all patients.

Results: We observed significant differences in circulating levels of BAFF between the B-ALL patients and B-cell lymphoma patients (Bp-ALL: 776.4 ± 6329 pg/ml; B-lineage lymphoma: 2675 ± 1544 pg/ml; p = 0.0268), the circulating levels of BAFF being substantially higher in B-ALL cases than in B-cell lymphoma cases. However, no genetic variability was observed in any of examined exonic regions of BAFF gene.

Discussion: This is the first study to report elevated BAFF levels in acute lymphoblastic leukaemia in children. Although highly limited in number of cases, our study provides a potential basis for further evaluation of BAFF as a diagnostic and/or prognostic marker in B-ALL.

P06.005 SNP rs4132601 as a possible risk allele of acute lymphoblastic leukaemia development in children
M. Kremlí1,2, L. Pičhase1, B. Lace2, Z. Kovalová3, G. Medne3, E. Cebrabu3, M. Gratupau1, A. Kremlí2; 1Riga Stradins University, Riga, Latvia, 2Children’s Clinical University Hospital, Riga, Latvia, 3Latvian Biomedical Research and Study Centre, Riga, Latvia.

Background. Acute lymphoblastic leukaemia (ALL) is the most common cancer among children, with an annual incidence rate of approximately 3.9 per 100 000 children. Recent case control genome wide association studies confirmed single nucleotide polymorphism (SNP) rs13463201T>G of IKZF1 gene, which is located on chromosome 7, to increase significantly risk of developing childhood ALL. There are no available data about rs4132601 G allele is a risk allele from familial studies evaluating allelic transmission distortion.

Aim. To confirm role of IKZF1 gene rs4132601G allele in relationship to childhood ALL development.

Material and methods. Eighteen pre-B ALL patient’ case-parent trios were recruited at Children’s Clinical University Hospital. The presence of polymorphism was analyzed using PCR with subsequent restriction enzyme MboI digestion and visualized in polyacrylamide gel. Transmission distortion test was performed as implemented in PLINK 1.07.

Results: SNP rs4132601 G allele frequency in patients was 0.472. Four out of
P06.006 Detection of DNMT3A Mutation in Iranian patients with acute myeloid leukemia

L. Kokabee1, A. Ahmadzadeh1, M. Kokabee2, M. Karimipoor3

1Pasteur Institute of Iran, Tehran, Islamic Republic of Iran, 2Shariati Hospital, Tehran, Islamic Republic of Iran.

Acute myeloid leukemia (AML) is a disease with marked heterogeneity in both response to therapy and survival. The advent of molecular diagnostics has heralded an explosion in new prognostic factors, including mutations in DNMT3A gene that encodes DNA methyltransferase.

In this study, mutation in exon 20 of DNMT3A gene of 25 untreated cytogenetic normal AML patients (The mean age of patients was 39 year) were analyzed. For this purpose, genomic DNA was extracted from peripheral blood (referred to Shariati hospital, Tehran, Iran) by standard methods. PCR amplification and DNA Sequencing was performed for exon 20 of the DNMT3A gene.

DNA sequencing at two patients showed 2 different missense mutations in exon 20 of DNMT3A gene. These missense mutations were predicted to affect amino acid R882 (Polyphen 2). A patient had the R882H (CGC to CAC) variant and another one had R882P (CGC to GGC). These two patients had a normal cytogenetic profile and their white-cell counts were significantly higher than other patients.

In any case, DNMT3A mutations are associated with poor overall survival, suggesting that they have an important common effect on the potential of AML cells to cause lethal disease. Recent study showed that older AML patients with R882-DNMT3A mutation have shorter DFS. While in younger patients (<60 years) non R882-DNMT3A mutation have suggested that they have an important common effect on the potential of AML cells to cause lethal disease. Recent study showed that older AML patients with R882-DNMT3A mutation have shorter DFS.

P06.007 The simultaneous usage of BAC based high throughput FISH analysis and the Real-Time PCR technology at the diagnosis of the adult myeloid leukemia cases

D. Yovuz, N. Uzelmez, D. Sunnetci, N. Cice, H. Savli

Medical Genetics Department, Medicine Faculty of Kocaeli University, Kocaeli, Turkey.

Introduction: Leukemia occurs as a result of limitless and uncontrollable production of the blood cells. Among Myeloid Leukemias, CML and AML take the place. In our study, Real-Time PCR and BAC Based High Throughput FISH Analysis of these leukemias are utilized simultaneously at the diagnosis of the adult myeloid leukemia cases and it is aimed to determine the aberrations that occur in the genome level.

Materials and Methods: Without a gender consideration, peripheral blood samples taken from 47 AML or CML diagnosed individuals between ages 18-80 are examined with the Real-Time PCR method in the RNA level and with the BAC Based High Throughput FISH Analysis method in the DNA level and scanned to see where most of the genetic damages take place.

Results: As a result of the Real-Time PCR studies; translocation in 10 patients (21.3%) and as a result of the FISH Analysis; aberrations with several sizes in various of the genome in 13 patients (27.7%) were encountered. In 27 patients (54.4%) no evidence of genetic damages were seen with either method. The most frequent aberration is the trisomy 8 and loss of Y chromosome which was stated in 3 (6.4%) AML cases.

Conclusion: The simultaneous usage of these two methods for the diagnosis of the leukemia cases provides a new approach to hematology in terms of supporting the diagnosis and determine the prognosis.
with decreased risk for CRC. In this study, APC polymorphism rs2019720 may contribute to CRC susceptibility in Romanian patients. Thus, this potential link must be evaluated between in much powerful studies. This work was supported by Grant CNCSIS TD 224/2008.

P06.011
A novel pathogenic germline mutation in the adenomatous polyposis coli gene in a Tunisian family with FAP
I. M. Abdennacer1, R. A. Dammak1, A. Amouri1, L. Ayadi1, S. Elhouz2, R. Gargouri3
1Centre de biotechnologie de Sfax, Sfax, Tunisia, 2Hopital Hedi Chaker, Sfax, Tunisia, 3Hopital Habib Bourguiba, Sfax, Tunisia.

Familial adenomatous polyposis (FAP) is an autosomal dominant disorder which typically presents with colorectal cancer in early adult life, secondary to extensive adenomatous polyps of the colon. In addition to the colonic manifestations, the syndrome presents several extracolonic features including, congenital hypertrophy of the retinal pigment, osteoma and desmoid tumors. In this study, we aimed to investigate the clinical and genetic features in a Tunisian family with FAP. Sequence of the APC gene (Adenomatous Polyposis Coli) revealed a novel mutation (c.2016-2017 del TA) in exon 15, present in all affected individuals in an heterozygous state. The frameshift mutation generates a premature stop codon at amino acid 677 of the APC protein (p. H672Qfs X5). The unaffected family members did not harbor this mutation, however, a first degree relative of the patient aged 32-year old was phenotypically normal but carries the c.2016-2017 del TA mutation. This discrepancy can be explained by the effect of modifier gene which can affect the expressivity of the disease. Moreover an other first degree relative who is the patient’s daughter, aged 8-year old carries the mutation in an heterozygous state and should benefit of aocolonoscopic follow-up knowing the phenotypic variability in her family.

P06.012
Aurora Kinase A (AURKA) and Never in Mitosis Gene A-Related Kinase 6 (NEK6) Up-regulated Gene Using cDNA Microarray and Real-time Reverse Transcription-PCR in Erosive Esophagitis and Esophageal Adenocarcinoma.
E. Kasap1, S. Örenay1, M. Korkmaz2, E. Sarsaç-Özküç2, R. Önal2, E. Kahraman3, Ö. Öztemiz1, H. Yuceyar1
1Çelal Bayar University, Medical Faculty, Department of Gastroenterology, Manisa, Turkey, 2Çelal Bayar University, Medical Faculty, Department of Medical Genetics, Manisa, Turkey, 3Çelal Bayar University, Medical Faculty, Department of Medical Biology, Manisa, Turkey, 4Ataturk Research and Training Hospital, Department of Gastroenterology, Izmir, Turkey, 5Ege University, Medical Faculty, Department of Gastroenterology, Izmir, Turkey.

Background and Aim: Gastroesophageal Reflux disease is a risk factor for esophageal adenocarcinoma but the studies that investigate the relationship between erosive esophagitis and esophageal adenocarcinoma usually focus on symptom-related evidence or on polymorphism but there are not any epigenetic gene expression studies on this topic. In this study we aimed to evaluate the relationship of erosive esophagitis and esophageal adenocarcinomas if there is a genetic tendency for EAC.

Methods: The Human Epigenetic Chromatin Modification Enzymes RT2 Profiler™ PCR Array was used to detect the expression of 84 key genes encoding enzymes. It was used in 60 patients prospectively (20 patients with control group, 20 patients with erosive esophagitis and 20 patients with esophageal adenocarcinoma).

Results: AURKA, AURKB, NEK6 were expressed at significantly higher levels in the esophageal adenocarcinoma than the control group. MB2, were expressed significantly lower in esophageal adenocarcinoma than the control group. AURKA, AURC, HDAC9, NEK6, were expressed at significantly higher levels in erosive esophagitis than control group. There was no upregulated gene difference between erosive esophagitis and esophageal adenocarcinoma. MB2 was significantly downregulated in esophageal adenocarcinoma than erosive esophagitis. The NEK6 and AURKA were significantly upregulated genes in esophageal adenocarcinomas and erosive esophagitis than control groups.

Conclusion: This is the first and pioneering study about the genetic tendency of erosive esophagitis and esophageal adenocarcinoma. AURKA and NEK6 are two promising genetic markers for erosive esophagitis and esophageal adenocarcinoma.

P06.013
ASCL1 activation as a consequence of a t(12:14)(q23.2:q32) in B-cell chronic lymphocytic leukemia
T. Mulli1, H. Bösmüller1, R. Marschner2, W. Kranewitter1, M. Erdel3, S. Deutschschaffer1, M. Ramm1, H. Bumpold1, G. Webersinke1
1Laboratory for Molecular Biology and Tumorcytogenetics, Department of Internal Medicine, Hospital Barmherzige Schwester, Linz, Austria, 2Department of Pathology, Hospital Barmherzige Schwester, Linz, Austria, 3Department of Internal Medicine I, Hospital Barmherzige Schwester, Linz, Austria.

B-cell chronic lymphocytic leukemia (B-CLL) is frequently accompanied by characteristic cytogenetic abnormalities. Nevertheless, the molecular mechanisms underlying the disease remain largely unknown. We investigated a translocation between chromosomes 12 and 14 in a patient with B-CLL. FISH confirmed the involvement of the immunoglobulin heavy chain (IGH) locus on chromosome 14 in the translocation. The breakpoint region on derivative chromosome 12 was amplified using long distance inverse PCR and sequenced. Chromosome 12 was disrupted in the region between the C12orf42 and ASCL1 (Achaete-scute complex homolog 1) genes. The breakpoint on chromosome 14 was located in the switch region upstream of the IGH Cα sequence. As a consequence of the rearrangement the ASCL1 gene was brought into proximity of the enhancer downstream of the IGH joining region and was highly expressed in the bone marrow of the patient in comparison to normal bone marrow and that of other B-CLL patients.

ASCL1 codes for a basic helix-loop-helix transcription factor involved in neural development. The gene is overexpressed in neuroendocrine cancers like small cell lung cancer and medullary thyroid cancer. ASCL1 plays a role in cell proliferation and differentiation and interacts directly or through its targets with members of the NOTCH, the WNT and the SHH pathways. Though ASCL1 activation in B-CLL seems to be a rare event, deregulation of some of its downstream targets or interaction partners, due to different molecular mechanisms, could play a role in the genesis of B-CLL.

P06.014
Gene expression profiling of B-CLL in Ukrainian patients exposed to low doses of ionizing radiation in post-Chernobyl period
H. Sotni1, D. Suntner1, N. Cine1, D. Glazmar1, M. Zavelovic1, L. Skljarenk1, V. Ndjoglapay, S. Koval1
1Medical Genetics Department, Medicine Faculty of Kocaeli University, KOCAELI, Turkey, 2KE Kavetsky Institute of Experimental Pathology Oncology and Radiobiology, Kyiv, Ukraine.

Introduction: After Chernobyl accident, B-cell Chronic Lymphocytic Leukemia (B-CLL) became a predominant form of hematopoietic malignancies in clean-up workers. We have analyzed gene expression patterns in B-CLL patients exposed to low doses of ionizing radiation in post-Chernobyl period with the aims to identify genes associated with disease progression in order to shed light on the biology of progression.

Materials and Methods: The samples of the peripheral blood and bone marrow of 44 Ukrainian B-CLL patients were analyzed morphologically and immunocytochemically according to new WHO classification. Total RNA was isolated, gene expression levels were determined by microarray method comparing with 17 healthy donors.

Results: We investigated interactions using the Ingenuity Pathway Analysis (IPA) software and found 119 network eligible up-regulated genes and 3398 Functions/Pathways eligible up-regulated genes, 1225 network eligible down-regulated genes and 2657 Functions/Pathways eligible down-regulated genes. Gene networks identified around MYC, HNF1A, and HNF4A, small cell lung cancer and medullary thyroid cancer.

Conclusion: Our study represents one of the rare genomic studies concerning relationship between ionizing radiation and B-CLL. The network work was conspicuous in terms of being determined also in our previous studies about the gene expression on prostate cancer and acute myeloid leukemia.

P06.015
Frequencies of BCR-ABL1 fusion transcripts among Iranian patients with leukemia
M. Hamid1, M. Akbari2
1Molecular Medicine Division, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran, 2Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.

In this study, we report the frequencies of BCR-ABL fusion transcript variants studied in leukemia patients from Iran. The leukemia patients inclu-
Background and Objective: Bladder cancer (BC) is multifactorial and genetic changes may be a crucial etiologic factor. Interleukin-18 and Interleukin-12 plays an important role as immunomodulatory factors in cancer pathogenesis that augment IFN-γ secretion. To test this hypothesis, we investigated association of IL-18 gene promoter polymorphisms at -137G/C, -607A/G and IL12-16974A/C with the risk of BC in a North Indian cohort.

Material and Methods: Genetic polymorphisms were analyzed in 200 BC patients and 200 age, ethnicity and sex-matched controls, using Restriction Fragment Length Polymorphism and Amplification refractory mutation specific-polymerase chain reaction. The concentrations of IL-18 in serum were determined by ELISA.

Results: Significant association was observed with IL18(-137)G/C heterozygous genotype having 1.96 folds risk of BC as well as C allele carrier and variant allele having 2 fold and 1.6 fold risk for BC respectively. IL18(-607) C/A, CA genotype also showed a high risk (OR=1.59) for BC. While IL12(-16974)A/C heterozygote genotype and C allele carrier showed reduced risk for BC. Hetero genotype of IL18(-137)G/C was associated with risk of recurrence (HR= 2.35) in BC patients receiving BCG treatment showing least survival. Serum IL-18 levels were significantly higher in BC patients than in the healthy subjects (p=0.025).

Conclusion: Our results suggest functional IL-18 polymorphism contributes to the bladder cancer susceptibility. A relation between IL-18 gene polymorphism and serum content with cancer progression has been registered in present study. Further confirmation in large population based studies is needed.
A total of 1275 unrelated families have been tested for BRCA mutations in the IBGM. Samples and written informed consent of BC cases and relatives were collected at the Genetic Counselling Units of East-CyL. DNA was scrutinized for BRCA mutations by HA-CAE and subsequently sequence analysis of the remaining coding exons. MLPA was performed in high-risk patients with familial history of BC without point mutations. Moreover, other genes as PALB2 or RAD51C were tested in families with specific cancer features.

Seventy-four different deleterious DNA changes in BRCA genes have been identified in our laboratory in 186 unrelated families (69 BRCA1+ and 117 BRCA2+ families). Spanish founder mutations were predominately: 5324del6 (52.5%), 5272-1G->A in BRCA1 and 3036_3039delACAA, 5374_5377delTATCT and 9254_9255delATCAT in BRCA2. Remarkably, 187_188delIG- BRCA1 mutation was absent in our region. Five different large rearrangements in seven ovarian unrelated patients have been detected during MLPA analysis. No pathological mutations were identified in either RAD51C or PALB2.

Our target population shows a particular BRCA1 and BRCA2 mutation spectra where Spanish founder mutations are leading. Although mutations in other susceptibility BC genes do not yield results so far, comprehensive studies with larger number of samples would be performed.

Identification of mutations in patients with bone marrow failure syndromes associated with the development and progression of MDS and acute leukemia

D. Steinemann1, M. Stanulla1, J. Skokowa1, K. Welte1, B. Schlegelberger2,
1Institute of Cell and Molecular Pathology, Hannover, Germany, Department of General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany; 2Institute of Molecular Haematopoiesis, Hannover, Germany.

Most bone marrow failure syndromes (bms) are associated with a marked propensity to transform into myelodysplastic syndrome (MDS) or acute leukemia, with a cumulative rate of transformation that may exceed 20% (e.g., in the case of severe congenital neutropenia). The genetic (and epigenetic) changes that contribute to malignant transformation in bms patients are largely unknown.

To elucidate the underlying molecular mechanisms of cancer susceptibility and progression in secondary MDS or acute leukemia in bms patients we conducted a comprehensive genome-wide characterization of genetic aberrations in the malignant cells at high-resolution level. We used high density DNA microarray (Agilent 40K/180 k) and direct sequencing of putative cancer genes to analyze a series of 30 patients at different time points during the progression into MDS and AML (50 samples in total). Large genomic alterations, namely monosomy 7/-7q, +21q or +3q were associated with leukemic progression. Beside common copy number variants like UGT2B, GSTT1, HEATR4, no microdeletions or microduplications were detected in the primary or secondary diseases. However, we found recurrent somatic missense and frameshift mutations in the transcription factor RUNX1/AML1 in 10% of the patients. Notably, RUNX1/AML1 mutations have recently been described in Fanconi anemia during leukemic progression. RUNX1/AML1 may have a more general role in the malignant transformation of patients with bone marrow failure syndromes like congenital neutropenia.

Detection by HRM and COLD-PCR-HRM BRAF mutational status in paraffin blocks of melanoma patients

E. Esteban Cardeñosa1, M. Durán Dominguez1, M. Infante Sanz1, G. Martínez García1, C. R. Müller1, M. Stanulla2, J. Skokowa2, K. Welte2, B. Schlegelberger3
1Instituto Biología y Genética Molecular IBGM-CSIC-UVA, Valladolid, Spain, 2Institute of Human Genetics, Würzburg, Germany.

Over 50% of melanoma tumors have BRAF oncogene mutation. In 2011 more than 1275 unrelated families were tested for BRCA mutations in the IBGM. Samples and written informed consent of BC cases and relatives were collected at the Genetic Counselling Units of East-CyL. DNA was scrutinized for BRCA mutations by HA-CAE and subsequently sequence analysis of the remaining coding exons. MLPA was performed in high-risk patients with familial history of BC without point mutations. Moreover, other genes as PALB2 or RAD51C were tested in families with specific cancer features.

Seventy-four different deleterious DNA changes in BRCA genes have been identified in our laboratory in 186 unrelated families (69 BRCA1+ and 117 BRCA2+ families). Spanish founder mutations were predominately: 5324del6 (52.5%), 5272-1G->A in BRCA1 and 3036_3039delACAA, 5374_5377delTATCT and 9254_9255delATCAT in BRCA2. Remarkably, 187_188delIG- BRCA1 mutation was absent in our region. Five different large rearrangements in seven ovarian unrelated patients have been detected during MLPA analysis. No pathological mutations were identified in either RAD51C or PALB2.

Our target population shows a particular BRCA1 and BRCA2 mutation spectra where Spanish founder mutations are leading. Although mutations in other susceptibility BC genes do not yield results so far, comprehensive studies with larger number of samples would be performed.

Comprehensive BRCA1 and BRCA2 mutational profile in Lithuania

R. Janaviciute1, V. Rudaitis2, J. Skokowsa3, K. Welte3, B. Schlegelberger1
1Vilnius university hospital Santariskiu clinics, Hematology, oncology and transfusion medicine center, Vilnius, Lithuania, Vilnius University, Santariskiu Clinics Centre of Women Health and Disease, Vilnius, Lithuania, 2Vilnius university hospital Santariskiu clinics, Hematology, oncology and transfusion medicine center, Vilnius, Lithuania.

The germline mutations in BRCA1/2 genes are the most significant and well characterized genetic risk factors for breast and/or ovarian cancer. Detection of mutations in these genes is an effective method of cancer prevention and early detection. Different ethnic and geografical regions may have different BRCA1 and BRCA2 mutation spectrum and prevalence due to founder effect. The population of Lithuania has over several centuries undergone limited mixing with surrounding populations and is mostly of indigenous Baltic origin, which is different from Slavs. The aim of our study was to asses full BRCA1/2 mutational profile in Lithuanian population.

We performed comprehensive mutation analysis of BRCA1/2 genes in 567 unrelated breast and/or ovarian cancer patients (with/without family history) and predictive unaffected patients using high resolution melting (HRM) screening followed by direct sequencing and MLPA for large genomic rearrangements (LGRs). RESULTS. Overall, we have identified 23 different mutations (14 in BRCA1 and 9 in BRCA2 genes). Seven frequent pathogenic mutations in BRCA1 gene comprised 51%, 27%, 9%, 3%, 2%, 1.5% and 1.5% respectively of all BRCA1 mutations; a single BRCA2 mutation (c.658delGT) comprised 42% of all mutations in this gene. Four novel BRCA1 and 4 novel BRCA2 mutations; 2 different LGRs were found in BRCA1. The most common c.4035delA (47% of all BRCA1/2 mutations) appears to be true Lithuanian (Baltic) founder mutation. Characterization of BRCA1/2 mutational profile in Lithuania enabled to develop screening protocol using HRM for 7 common BRCA1/2 point mutations, which comprise 89% of all mutations detected in our country.

Analysis of breast cancer predisposition genes by direct sequencing and multiplex ligation-dependent probe amplification technique

J. Keshavarzi
sanaanadj branch, Islamic Azad University, Iran and Genetics Laboratory of Dr. Zeinali, Kowsar Human Genetics, sananadji, Islamic Republic of Iran.

Objective: In hereditary breast and ovarian cancer (HBOC) families, a large percentage of cases are attributable to hereditary factors compatibles with autosomal transmission of a major tumor suppressor gene with incomplete penetrance. Screening for BRCA1 mutations is now standard practice for HBOC cases in world, and permits medical follow-up. Estimates in different countries range from 5 to 15% the BRCA1 related cases of hereditary breast cancer due to copy number changes of one or more exons of this gene. Exon deletions and amplifications will usually not be detected by sequence analysis of the complete BRCA1 gene, therefore MLPA screening is needed.

Materials and methods: Hundred probands were fully screened for small mutations, and cases for which no causative abnormality were found (n=34) were screened by MLPA.

Results: A total of 5 pathogenic rearrangements in the BRCA1/2 gene were found, accounting for 7% of all mutations and the families with the disease-causing mutations were 16 percent of all families to review allocated. In addition, more than 80 percent of rearrangements are related to the BRCA1 gene and more than 20% of the mutations were in the BRCA2 gene.

Conclusion: These data demonstrate that dosage analysis is an essential component of genetic screening for cancer predisposition genes.

BRCA1/2, HBOC

BRCA diagnostics on formalin-fixed, paraffin-embedded (FFPE) tissue

A. Gehrig, C. R. Müller
Department of Human Genetics, Würzburg, Germany.

Introduction: In about 25% cases, hereditary breast and ovarian cancer (HBOC) is caused by a mutation in the BRCA1 or BRCA2 gene. Therefore, analysis of carrier
status in a family should begin with an individual that has been diagnosed with HBOC to maximize the chances of identifying the familial mutation. In many HBOC families, all affected individuals are deceased and the only material available for genetic analysis is archived pathological specimens. Sensitivity and specificity of DNA extracted from FFPE tissue is time-consuming and expensive due to the comparatively small amounts and high degree of DNA fragmentation.

Methods:
Genomic DNA from tumor-free and tumor FFPE tissues from different individuals was isolated using the QiAamp DNA FFPE Tissue Kit (Qiagen) according to the manufacturer’s instructions. All coding regions of BRCA1 and BRCA2 were amplified with the multiplex PCR kit BRCA-MAST v2.1 (Multiplicom). Next generation sequencing was performed using the 454 sequencing kit on a GS Junior (Roche). Data were analysed by NEXTGENE software (Softgenetics).

Results:
In all samples, data analysis showed an even coverage over both genes of at least 15-fold. In the tumor-free sample, no pathogenic mutation was detected. Analysis of the tumor sample revealed a “homozygous” variation in BRCA2 that could be verified as heterozygous germline variation in DNA isolated from the individual’s lymphocytes.

Conclusions:
NGS is a powerful tool for the determination of germline variations in fragmented DNA from FFPE tissue.

P06.027 Meiotic drive at the BRCA loci in Spanish families with breast/ovarian hereditary cancer.
A. Leal1, J. Salozaus2, T. Ramón y Cajal1, L. González1, L. Aliasi1, M. Corne1, A. Iturbe1, M. Baiget1.
1Genetics Department, CIBERER U705. Hospital Sant Pau, Barcelona, Spain, 2Oncology Department. Hospital Sant Pau, Barcelona, Spain.

Objective: To analyse the sex and BRCA segregation ratios in families with breast and/or ovarian cancer in which pathogenic mutations were identified.

Methods: From the breast and/or ovarian cancer families referred to our hospital, we selected couples that were proven carriers of a BRCA mutation. We compared the sex and BRCA allele transmission ratios from 305 descendants assuming an equal (1:1) distribution.

Results: We found a 2.2 fold excess of female births (101 females vs 45 males) in our pedigrees. We observed that the mutated BRCA1 allele segregated more often than the wild type allele (ratio 3:1) in the female offspring and that the number of carriers segregated more often than the wild type allele (ratio 3:1). The finding of a high proportion of female carriers may have important implications for the genetic counselling of these families. Premature events, meiotic drive, survival of gametes or preferential fertilisation are possible explanations for the observed TRD.

Conclusions: The results observed in the female offspring of BRCA1/2 carriers suggest a clear tendency to transmit the mutated allele (ratio 3:1). The finding of a high proportion of female carriers may have important implications for the genetic counselling of these families. Premature events, meiotic drive, survival of gametes or preferential fertilisation are possible explanations for the observed TRD.

P06.028 Genomic capture and massively parallel sequencing identifies accurately inherited mutations in several genes in BRCA1 & 2 negative families with strong breast/ovarian cancer history
F. Fostira1, T. Walsh2, A. Stavropoulou1, M. Tsiatoulou1, S. Casadei3, S. Gentili1, G. Fountoulakis1, I. Konstantopoulos1, M. King4, D. Vannonnau5, 1NSC Research Institute, Athens, Greece, 2University of Washington, Seattle, WA, United States, 3Aristotle University of Thessaloniki, Thessaloniki, Greece, 4University, Thessaloniki, Greece, 5University of Salerno, Salerno, Italy.

Inherited germline mutations in known and yet to be discovered genes predispose for breast and/or ovarian cancer. Mutations within BRCA1 and BRCA2 are the most common, but within the last years more than twenty different genes have been linked to breast and/or ovarian cancer susceptibility. Using BRCA2 to capture and sequence 21 known breast cancer genes in one test, we screened genomic DNA from 42 Greek patients with breast cancer diagnosed before the age of 40 and with a family history of breast or ovarian cancer. Patients had been previously screened for BRCA1 and BRCA2 by Sanger sequencing. Truncating mutations or missenses previously established as damaging were identified in 8 patients, in BRCA1, BRCA2, CHEK2, PALB2, and MSH2. All mutations were different. All were confirmed by Sanger sequencing with diagnostic primers from patients’ genomic DNA. Of the 8 mutations, 3 were germline deletions detected by read depth from BRCA2 data. In addition to the 8 patients with confirmed damaging mutations, 5 other patients harbored mutations at splice sites, in ATM, BRCA2, and MSH2. These splice site mutations have been confirmed in genomic DNA. The effects on transcripts are being evaluated. We conclude that among Greek patients with familial breast cancer, the mutational spectrum is highly heterogeneous with respect to both loci and alleles. These patients are well served by an approach that detects all classes of mutations in all known breast cancer genes.

P06.029 BRCA1 mutation screening in brazilian hereditary breast cancer and ovary syndrome using High Resolution Melting
M. Cary1, V. E. Ferraz2, M. R. Luizani1, C. A. Ferreira1, A. A. Marques1, W. A. Silva Jr1, 1Medical School of Ribeirão Preto, University of São Paulo, Brazil, Ribeirão Preto, Brazil, 2National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.

Objective: To establish a new technique that can detect the presence of BRCA1 gene mutations associated with Hereditary Breast/Ovary Cancer Syndrome (HBOC). The twenty two coding exons of BRCA1 were analyzed using High Resolution Melting method, followed by DNA sequencing. MLP technique was also used to detect gross deletions. We investigated 41 patients from the Cancer Genetic Counseling Service of the HC-FMRP-USP that fulfilled the criteria for genetic testing according to NCCN Clinical Practice Guidelines in Oncology v1.2010. A total of 21 mutations were identified, two of which are pathogenic: deletion of exons 17-18 and deletion of exon 19. Both of them are located in the BRCT domain of BRCA1 gene, impairing the binding of essential phosphoproteins critical for the activation of DNA repair complex. Because four misense mutations (Pro871-Leu, Glu1038Gly, Lys1183Arg, Ser1613Gly) occurred simultaneously in half of patients, we analyzed the presence of the possible haplotypes also in 82 healthy controls and verified that the haplotype Leu-Glu-Arg-Gly, composition of all the mutated residues, showed significant difference (p < 0.05) between the groups suggesting a possible association with increased risk for HBOC. This study suggests that haplotypes consisting of non-synonymous mutations can confer increased risk for HBOC due to the cumulative effect of these mutations on the BRCA1 protein structure. Financial Support: Capes, FUND-HER, INCITE-CNp.

P06.030 Germline BRCA1 and BRCA2 mutations in Croatian families with breast/ovarian cancer predisposition: Identification of three novel mutations
V. Muscan1, M. Leočić Cvek1, I. Sušac2, M. Saboli3, P. Doreti4, D. Car5, D. Eljug6, S. Levana7, 1Rudjer Boskovic Institute, Zagreb, Croatia, 2Rudjer Medikol Diagnostics ltd, Zagreb, Croatia, 3Eljuga Polyclinic, Zagreb, Croatia, 4Clinic of Gynecology and Obstetrics, University Hospital Center, Zagreb, Croatia.

Breast cancer is the most common cancer in women after non-melanoma skin cancer, and it is the leading cause of cancer deaths in Croatia. Breast cancer is in the fifth place, both in incidence and mortality. About 5-10% of all breast and/or ovarian cancer cases are hereditary, and germline mutations in BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancers. The contribution of BRCA1 and BRCA2 to the risk of hereditary breast and ovarian cancer in Croatia is unknown. The purpose of this study was to estimate the incidence and spectrum of pathogenic mutations in BRCA1/2 genes in high risk women in Croatia. BRCA1/2 genes from 167 candidates (145 families) were scanned for mutations using High-resolution melting analysis (HRMA), direct sequencing and Quantitative parallel PCR of short fluorescent fragments (QMPSF). We identified 14 pathogenic point mutations in 17 candidates, 9 in BRCA1 and 5 in BRCA2. Of those, 11 have been previously described and three were novel (c.5353C>T in BRCA1, c.4139_4140delT and c.8175G>A in BRCA2). No large deletions or duplications involving BRCA1 and BRCA2 genes were identified. Two common BRCA1 sequence variants: c.2077G>A and c.4956G>A, were found more frequently in mutation carriers compared to healthy controls. In both BRCA1 and BRCA2 genes, three novel mutations were identified, two of which are pathogenic: c.3864_3866delTAA. Combination of QMPSF and HRMA methods provides high detection rate and complete coverage of BRCA1/2 genes.
P06.031
Identification of BRCA1/2 mutations in an unselected breast cancer population and referral to the Clinical Genetic Center
1Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, Netherlands;
2Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands;
3Surgery, Leiden University Medical Center, Leiden, Netherlands;
4Family Cancer Clinics, Netherlands Cancer Institute, Amsterdam, Netherlands.

BRCA1/2-screening guidelines are aimed to select women who have a high prior probability to be a mutation carrier. We screened BRCA1/2 mutations in research setting and evaluated Dutch diagnostic BRCA1/2-screening criteria in a consecutive, hospital-based series of breast cancer patients <50 years.

We collected clinicopathological data of 543 invasive breast cancer patients diagnosed <50 years in ten hospitals between 1970 and 2003. Germline DNA isolated from FFPE tissue was tested for the most prevalent pathogenic BRCA1/2 mutations. For 1539 cases from 5 hospitals complete family history and hormone receptor status (ER, PR, HER2) data were available. For patients from one hospital (NKI-AVL; n=1518) we identified those referred to the CGC for diagnostic BRCA1/2-screening.

Results shown are preliminary, final results will be available at ESHG 2012. We identified 4.9% BRCA1/2 carriers in this unselected breast cancer cohort. Following current Dutch screening criteria, 60% of these carriers could have been identified (sensitivity 58.7%; specificity 78%). Selection of not only those diagnosed with a triple-negative tumor at age <40 years, but also those with a triple-negative tumor diagnosed at age 40-50 years increased sensitivity to 73.5% (specificity 71.4%). Of 83 BRCA1/2 mutant carriers from the NKI-AVL, 46% had been referred to the CGC (data linkage ongoing); of those not referred, the 8 carriers diagnosed after 1994 (discovery of the BRCA genes) were less likely to meet the criteria for referral.

A more optimal sensitivity and specificity for BRCA1/2-screening of breast cancer patients may be achieved based on age and tumor criteria.

P06.032
Validation of three BRCA1/2 mutation-carrier probability models Myriad, BRCAPRO and BOADICEA in a population-based series of 183 German families
1Institute of Human Genetics, University Medical Center, Georg August University, Göttingen, Germany;
2Department of Genetic Epidemiology, University Medical Center, Georg August University, Göttingen, Germany;
3Department of Gynecology and Obstetrics, University Medical Center, Georg August University Göttingen, Göttingen, Germany.

Many studies have evaluated the performance of risk assessment models for BRCA1/2 mutation carriers in different populations, but to our knowledge very few studies have been conducted in the German population so far. In the recent study, we validated the performance of three risk calculation models by names BRCAPRO, Myriad and BOADICEA in 183 German families who had undergone molecular testing in BRCA1 and BRCA2 with an indication based on clinical criteria regarding their family history of cancer. The sensitivity and specificity at the conventional threshold of 10% as well as for a threshold of 20% were evaluated. The ability to discriminate between carriers and non-carriers was judged by the area under the receiver operating characteristic curve. We further focused on the performance characteristic of these models in patients carrying large genomic rearrangements as a subtype of mutations which is currently gaining increasing importance. BRCAPRO and BOADICEA performed almost equally well in our patient population, but we found a lack of agreement to Myriad.

The results obtained from this study were consistent with previously published results from other population and racial/ethnic groups. We suggest using model specific decision thresholds instead of the recommended universal value of 10%. We further suggest integrating the CarGene5 software package, which includes BRCAPRO and Myriad, in the genetic counselling of German families with suspected inherited breast and ovarian cancer because of the good performance of BRCA1/2 and the substantial ease of use of this software.

P06.033
MASTR assays on the Ion PGM Sequencer, streamlining the diagnostic workflow
D. Goossens1, H. P. J. Buermans2, A. Buffone3, J. den Dunnen1, R. H. Vossen1, G. Giannini4, J. Del Fante
1Multiplicom N.V., Nijl, Belgium; 2LGTC, Leiden University Medical Center, Leiden, Netherlands; 3Department of Molecular Medicine, Sapienza University, Rome, Italy; 4LGTC, Leiden University Medical Center and Center for Human and Clinical Genetics, Leiden, Netherlands.

Multiplicom’s MASTR assays allow multiplexed PCR amplification of numerous target sequences and therefore substantially reduce processing cost and front-end workload in combination with massive parallel sequencing (MPS) platforms. This is demonstrated by the fast uptake of the BRCA MA-STR assay in European clinical diagnostic laboratories resulting from the facts that (i) only 5 robust PCR reactions are required to amplify all coding exons of BRCA1/2 and (ii) multiple DNA samples can be processed simultaneously. Additionally, processing cost is reduced by a factor 2-5, compared to Sanger based sequencing resulting from the combination of highly specific amplification (> 96% on target specificity) and a narrow spread factor (i.e. average number of all reads divided by the read number of the lower fraction) of 2.5.

To increase the accessibility of MPS in clinical diagnostics, we worked out and performed a protocol to sequence the BRCA MASTR assay amplicons on an Ion PGM Sequencer. Hereto, amplicons from each of 14 DNA samples were enzymatically sheared followed by ligation of individual PGM adapters. After mixing the adapter lighted samples, an OneTouch based 100 bp library was performed. The resulting ePCR library was sequenced using the 100 bp sequencing kit in combination with a single “Ion316 chip”. The obtained sequencing data showed excellent characteristics and in depth analysis was performed for coverage uniformity on the one hand and base calling accuracy on the other. We will present detailed conclusions related to the performance characteristics and points for future improvements.

P06.034
Study of several hormone receptor gene polymorphisms in breast cancer patients
A. Belengeanu, D. Stoaicarescu, M. Stanin, N. Andreea, A. Anghel
University of Medicine and Pharmacy, Timisoara, Romania.

Androgen receptor gene polymorphisms and PROGINS have been related to a lower risk of breast cancer. The aim of the present study was identifying polymorphisms in the structure of the genes that code for progesterone and androgen receptors, variations that with or without those of estrogen receptors, could be correlated with breast cancer. 60 tumor samples from breast cancer cases were analyzed in order to find out several polymorphisms in the structure of the genes coding for progesterone and androgen receptors and compared to results obtained from the blood analysis of healthy subjects. The number of CAG repeats in the androgen receptor gene ranged from 8 to 27 repeats. The majority of cases had a range between 17 and 24, the size of the PCR products being around 230 bp, 15 alleles (12.5%) had less than 16 CAG repeats and 9 alleles (7.5%) had 25 or 27 CAG repeats. Considering the lower number of CAG tandem repeats, all cases with 11/9 repeats were in stage III and from the 2 cases with 11/9 repeats, 1 was in stage II and the other one in stage IV. The size of the PCR products of PROGINS receptor gene was 175 bp for the majority of the cases, only 6 (5%) longer alleles with 481 bp were detected. One of the detected cases was in stage IV of malignancy, the others were in stage III and all had ductal carcinoma. The obtained data are important for developing early detection and treatment strategies.

P06.035
Bcl-2 gene expression level in tumor and non tumor breast tissues
I. Rostami-Zadeh1, E. Sakhini2, S. Hosseini3, M. Sakhini1
1Department of Medical Genetic, Tabriz science medical university, Tabriz, Islamic Republic of Iran; 2Department of Medical Genetic, Faculty of Medicine, Tabriz, Islamic Republic of Iran; 3Research assistant, Genetics & Genomics Department, IAB, USA, Florida, FL, United States, “Faculty of Medicine, University of Liverpool, United Kingdom, Liverpool, United Kingdom.

Breast cancer is the most common non-skin cancer and the second most frequent cause of death due to cancer among women. There has been much interest in the development and use of molecular-based research aimed at identifying biologic markers for the diagnosis of the disease, whilst the treatment of breast cancer has progressively improved. This development is underpinned by the knowledge of the genetic molecular alterations in the patient tissues. Several gene responsible for breast cancer have been identified by using DNA microarray study in breast cancer, with the Bcl-2 gene indicated as a likely candidate. In this study, we studied bcl-2 gene expression level in parallel tumor and non tumor breast tissues. Forty samples including 19 tumor, 18 non tumor (marginal) and 3 benign breast tissues which were all pathologically diagnosed, were subjected to RNA extraction and polyA RT-PCR. To evaluate the expression level of the gene, the results were compared to the expression level in control breast tissues. By comparing tumor with non tumor tissues we found bcl-2 over-expression in all of the timorous tissues. Our data suggests that dysregulated bcl-2 gene expression is potentially involved in the pathogenesis of breast cancer. In conclusion, using gene expression analysis may significantly improve our
ability for screening cancer patients and will prove a powerful tool in diagnosis, prognostic and cooperative group trials in the bcI-2based therapy project.

P06.036
Search for novel hereditary breast cancer (BC) genes suggests a causative role of heterozygous BLM mutation
E. N. Suspitina1, A. P. Sokolendro2, A. G. Iyeleva1, N. V. Mityushkina1, S. N. Abysheva1, D. E. Matzho1, E. N. Imyanitov1
1N. N. Petrov Institute of Oncology, St. Petersburg, Russian Federation; 2State Pediatric Medical Academy, St. Petersburg, Russian Federation.

Sequence analysis of candidate genes involved in the maintenance of genome integrity (CHEK1, PAR1, PAR2, BRIP1, BLM, DDB, RNF8, FANC, BAR1, RAD51C) in 95 hereditary BRCA1/BRCA2 (NB51/PA1B2/TP53 mutations and negative for BRCA1 and/or BRCA2) patients with clearly inactivating genetic event. Both cases were heterozygous for c.1642 C>T (Q548X) mutation in the Bloom Syndrome gene, BLM. The subsequent extended study has confirmed frequent occurrence and BC-predisposing role of the above allele (17/1498 (1.1%) BC patients vs. 2/1093 (0.2%) healthy females, p = 0.004). As expected for hereditary BC gene, the BLM heterozygotes tended to be overrepresented in patients with family history of the disease, younger age at onset, or BC bilaterality. Unlike BRCA1-related hereditary tumors, BLM-associated BC were frequently hormone receptor positive (13/18, 72%). While virtually all BC arising in BRCA1/2 carriers contain somatic deletion of the remaining wild-type allele, none of BLM-driven cancers demonstrated loss of heterozygosity at BLM loci. 5 patients carrying BLM mutation were treated by neoadjuvant therapy and therefore were available for further evaluation of tumor chemosensitivity: 3 showed nearly complete pathological response, and 2 experienced partial clinical response. Elevated frequency of BLM Q548X mutations in Russian (Slavic) subjects allows to expect noticeable occurrence of Bloom Syndrome in Russia and neighboring countries; absence of appropriate clinical records in major Russian genetic centers suggests that at least some of these patients remain undiagnosed and/or have relatively mild presentation of the disease.

P06.037
Whole genome expression, canonical pathway and gene network analysis in breast cancer
D. Sunnet1, K. Canturk1, N. Cice1, E. Erinci1, T. Simsek2, H. Savli1
1Medical Genetics Department, Medicine Faculty of Kocaeli University, KOCAEII, Turkey; 2Department of General Surgery, Medicine Faculty of Kocaeli University, KOCAIL, Turkey.

Introduction: Breast cancer is the most common cancer in women and constitutes 23% of all female cancers. Despite advances in treatment options, such as surgery and chemotherapy, breast cancer still remains being the most deadly second malignancy in women. Therefore, requirement of new prognostic markers is increasing. For this purpose, we studied gene expression profiles of breast cancer. Material and Methods: RNA samples were obtained from healthy and cancerous tissues taken from twenty patients diagnosed as breast cancer. These RNA samples were hybridized with microarray chips (Agilent Human 4 X 44K Oligo Microarrays). Gene expression, canonical pathway and network analysis were performed using GeneSpring GX 11.0 software. Results: In our study, we found 585 downregulated and 413 upregulated genes. The canonical pathways significantly regulated were process of the immune system, T cell differentiation, T cell activation, lymphocyte activation, leukocyte activation, lymphocyte differentiation, immune system development, cell activation, hematopoietic or lymphoid organ development, hematopoiesis, signal transduction, immune response, immune signal transmission, the signal process, part of the plasma membrane, T cell receptor complex.

Conclusion: In this study, FOXM1, IFNG and MM9 pathways have been identified among the data sets. These candidate pathways are important for the development of new biomarker panels to use for breast cancer prognosis in clinical practice.

P06.038
Contribution of truncating PALB2 mutations to breast and ovarian cancer
N. Bogdanova1, D. Prokofjeva2, T. Därk3
1Gynaecology Research Unit, Hannover Medical School, Hannover, Germany; 2Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany; 3Institute of Biochemistry and Genetics Ufa Science Center, Ufa, Russian Federation.

Familial breast and ovarian cancer is associated with mutations in BRCA1 and BRCA2 but these genes explain only a minority of cases. Germ-line mutations in PALB2, encoding the partner and localizer of BRCA2, have also been identified as breast cancer susceptibility alleles, and the geographical spread and risks associated with PALB2 mutations are subject of intense investigation. We have screened the whole coding region of PALB2 using high-resolution melting analysis and direct sequencing of genomic DNA samples to investigate the prevalence of PALB2 mutations in a series of 158 German patients with bilateral breast cancer and in a second series of 253 unselected patients with epithelial ovarian cancer from Bashkortostan. 17 sequence alterations were identified. Truncating PALB2 mutations were identified in 2/158 (1.3%) bilateral breast cancer patients and in 1/253 (0.4%) ovarian cancer patients. One nonsense mutation, p.E545X was new, whereas the other two mutations, c.509_S101delGA and c.172_175delTTGT had been previously described. The c.172_175delTTGT deletion, found in one Russian ovarian cancer/ melanoma patient, was subsequently screened in 365 breast cancer cases from Bashkortostan, and two further carriers were detected among patients of Russian descent (0.5%). Our results indicate that PALB2 germ-line mutations account for a small but non-negligible fraction of breast cancer, though they make a minor contribution to ovarian cancer. The observation that two of the three identified truncating mutations have been described in different studies, may provide a rationale for mutation-specific screening approaches in extended series of Eastern and Central European cancer patients.

P06.040
Associations Between HER2/neu, TOP2A, Chromosome 17 Copy Numbers and RASSF1A, APC Gene Promoter Hypermethylation of Patients with Breast Cancer
A. Narwal, G. Cilingir, M. Isdihar, S. Artan, B. Durak Aras, E. Ciftci; Eskişehir Osmangazi University, Eskişehir, Turkey.

Associations Between HER2/neu, TOP2A, Chromosome 17 Copy Numbers and RASSF1A, APC Gene Promoter Hypermethylation of Patients with Breast Cancer
Background: Breast cancer is an important public health problem worldwide. The HER2/neu protooncogene is amplified and overexpressed in approximately 25-30% of invasive breast carcinomas. DNA topoisomerase 2-alpha enzyme controls and alters the topologic states of DNA during transcription. RASSF1A and APC gene are putative tumor-suppressor genes that are frequently inactivated epigenetically in breast cancer.

Method: In this study we analysed retrospective HER2, TOP2A gene and CEP17 copy number alterations by fluorescence in situ hybridization (FISH) in primary tumor core biopsies from 60 high-risk primary breast cancer patients (tumors ≥2 cm and/or lymphatic metastases and/or distant metastases and/or ≥40 years). The methylation levels of the RASSF1A, APC gene promoters were also assessed Methylation Sensitive High Resolution Melting Analysis (MS-HRM).

Results: In our study, HER2/neu amplifications were identified in 25% and TOP2A amplifications in 53.4% and deletions in 13.3% of patients. HER2/neu amplification is found to be associated with high grade, ER negativity and PR negativity. Polysomy17 was present in 23.3% of patients. RASSF1A and APC methylation frequencies were 96.6% and 43.3%. HER2/neu gene amplification was found to be high RASSF1A promoter methylation levels.

Conclusions: Our study is important as being the first study that analyzes association between HER2/neu, TOP2A gene copy numbers and RASSF1A, APC gene promoter methylation status in Turkish population.

Key words: Breast cancer, HER2/neu gene, TOP2A gene, FISH, RASSF1A gene, APC gene, Methylation, MS-HRM Analysis

P06.041
Necessity of HPV genome screening in women due to its role in breast cancer
K. Haratian1, A. Mohseni Meybodi2
1Department of Pathology, Alborz University of Medical Sciences, Tehran, Islamic Republic of Iran; 2Department of Genetics, Reproductive Biomedicine Research Center, Rayan Institute for Reproduction Biomedicine, ACECR, Tehran, Islamic Republic of Iran.

It seems, there is an increment document that high-risk human papilloma virus (HPV) is involved in tumors in over just cervical cancer. For instances, it is already almost accepted that some HPV's have a major role in a significant proportion of head and neck tumors. It also has long been hypothesized that some tumorigenic viruses, such as HPV, may have etiological or even helping role in some human breast cancers. A number of reports have indicated HPV DNA in breast cancer tissue specimens and some normal or pre-cancerous breast tissues. Many of them rely on standard polymerase chain reaction (PCR), which is criticized for its tendency for contamination. We examined
the presence, genotype, viral load, and physical status of HPV in a number of Iranian patients with breast carcinoma utilizing Real-time PCR setting (with sequencing) and immunohistochemistry based on HER2/neu overexpression. In this presentation, we attempt to summaries our achievements in using mentioned technologies to explore how HPV's may help to cause or progress malignancies especially in those that are affected by some other tumorigenic factors. Finally, the exigency of women screening for HPV and its potential importance in developing breast cancer, will be discussed.

P06.042 Multiple single-nucleotide primer extension assay for detection of low-penetration breast cancer susceptibility polymorphisms
1Macedonian Academy of Sciences and Arts, Skopje, The Former Yugoslav Republic of Macedonia, 2Institute of Radiotoxicity and Oncology, Faculty of Medicine, University "Ss Cyril and Methodius"; Skopje, The Former Yugoslav Republic of Macedonia, 3Clinic for Thoracic and Vascular Surgery, Faculty of Medicine, University "St. Cyril and Methodius", Skopje, The Former Yugoslav Republic of Macedonia.

Breast cancer is one of the most common cancers among women in developed countries. Approximately 10% of sufferers have a genetic predisposition and 25% of patients with familial breast cancer carry mutations in BRCA1 or BRCA2 high-penetration genes. Recently, genome-wide association studies have identified several SNPs as low-penetration breast cancer susceptibility polymorphisms. The aim of this study was to develop an easy, rapid and cost-effective method for genotyping of low-penetration breast cancer susceptibility polymorphisms within six genes and gene-free genomic regions. We have designed a multiple single-nucleotide primer extension assay to genotype rs2981582 (FGFR2), rs3817919 (LSP1), rs1893132 (MAP3K1), rs3803662 (TNRC9/LOC643714, rs1328615 (Bq) and rs1045485 (CASPR) in a single reaction. Using this method, we analyzed 92 breast cancer patients, of which 26 with familial breast cancer and 66 controls from the general population. Our initial results indicate that nanoparticles are effective anti-cancer agents and justify study of these agents in vitro cytotoxicity of cisplatin nanoparticles compared with the free drug.

Discussion: In the present study, we have shown that the strongly increased in vitro cytotoxicity of cisplatin nanoparticles compared with the free drug in MCF-7 cell line. In summary, our results indicate that cisplatin nanoparticles are effective anti-cancer agents and justify study of these agents in vivo.

P06.044 Association of polymorphisms in low-penetration genes with breast cancer risk in Bulgarian cohort of familial cases and controls
1Medical Medicine Center, Sofia, Bulgaria, 2Department of Medical Chemistry and Biochemistry, Medical University, Sofia, Bulgaria, 3Clinic of General and Clinical Pathology University Hospital "Aleksandrovska", Medical University, Sofia, Bulgaria, 4Medical Oncology Clinic National Oncology Hospital, Sofia, Bulgaria.

Background: Although the germ-line mutations in BRCA1/2 and other breast cancer susceptible genes account for up to 10% of the familial cases, the majority of patients with this diagnosis do not harbour mutations in the main disease associated loci. This observation has led to the proposal that the susceptibility to breast cancer is determined by a large number of loci, each with a small effect on the breast cancer risk.

Materials and methods: We have performed a case-control study of eight SNPs, previously associated with breast cancer in extensive GWASs. The studied group consisted of 191 Bulgarian patients with family history of breast cancer and 151 healthy controls. The genotyping was performed by TaqMan technology and the results analysed using Plink and VassarStat Statistical Calculator.

Results and discussion: Three of the studied polymorphisms: rs2981579 and rs2981582 in FGFR2 gene and rs3757318 in CASPR, demonstrated significant association with breast cancer risk. The genotype A/A of both rs2981579 (OR=1.668; p=0.007) and rs2981582 (OR=1.782; p=0.005) appeared to increase the risk of breast cancer. The homozgyosity for the G allele in rs3757318 (OR=1.678; p=0.03) was also associated with increased risk, while the genotype A/G appeared to have protective effect (OR=0.472; p=0.003). The other studied SNPs did not show any statistically significant association with breast cancer in the investigated sample.

Conclusions: Our results demonstrated significant association of rs2981579 and rs2981582 in FGFR2, and rs3757318 in CASPR with increased breast cancer risk which is in concordance with previous GWASs.

P06.045 Oestrogen Receptor-α Gene Polymorphism (T392C) in Iranian Women with Breast Cancer
S. Abbasi.
Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.

Background: Receptor-mediated oestrogen activation plays a part in the development and progression of breast cancer. Evidence suggests that alterations in oestrogen signalling pathways, including oestrogen receptor-α (ESR1) occur during breast cancer development.

Methods: The ESR1 gene was analysed in 150 Iranian patients who were newly diagnosed with invasive breast tumours and 147 healthy individuals.

Results: The frequency of allele C/C in codon 10 rs2077647 (T/C, S392S) of exon 1 was significantly higher in patients with breast cancer (45.7%) than in the controls (39.8%; p=0.148). We found that allele C/C in codon 10 was significantly more common in patients with breast cancer who had a family history of breast cancer (78.9%) than in those without such a history (40.8%; p=0.001). The allele 1 in codon 10 showed an association with the occurrence of lymph node metastasis (58.7% and 43.3% with and without lymph node metastases, respectively). Therefore, this SNP marker further increased predictive accuracy in the Iranian population.

Interpretation: Our data suggest that ESR1 polymorphisms correlated with various aspects of breast cancer in Iranian women, as determined during pre-surgical assessment, might represent a surrogate marker for predicting breast cancer.

P06.046 Prognostic significance of the urokinase-type plasminogen activator (uPA) and its inhibitors (PAI-1 and PAI-2) mRNA expression in Iranian breast cancer
1Pastour Institute of Iran, Tehran, Islamic Republic of Iran, 2Iranian Center for Breast Cancer (ICBC), Tehran, Islamic Republic of Iran.

One of the most thoroughly studied systems in relation to prognostic relevance in breast cancer is the plasminogen activation system. The system comprises of the urokinase Plasminogen Activator (uPA) and its inhibitors, the Plasminogen Activator Inhibitor-1 (PAI-1) and Plasminogen Activator Calculator.
Inhibitor-2 (PAI-2). In this study, we are investigating the prognostic value of the expression level of uPA and PAI-1 and PAI-2 in 30 sporadic breast cancer patients. The mRNA expression level of uPA, PAI-1 and PAI-2 was analyzed in tumor tissues and its adjacent normal tissues from 30 patients by quantitative PCR. Gene fragments were amplified in a ABI 7300 real-time PCR system using gene-specific primers and Taq Man probe. The results were normalized to TFRF and ACTB mRNA. The data of real-time RT-PCR will be compared with clinical course of the disease (three years follow up).

Quantitative real-time RT-PCR is a highly sensitive, reproducible, and fast method for measuring gene expression of uPA, PAI-1 and PAI-2 in breast cancer. Some studies have shown the relationship between high expression of uPA system and aggressive course of breast cancer. In addition in vitro studies of high expression of uPA have been shown the modulation of angiogenesis.

P06.047

Real-Time Analysis of the expression of isoforms angiogenic/antiangiogenic and pro-angiogenic in breast cancer.

R. CASTRO 1,2, P. M. Brissel-Chicote 1, V. R. Regiani 1,2, D. S. Neto 1,2, V. R. Regiani 1, N. A. B. Junior 1,2, J. L. E. Francisco 1,2, E. C. Pavarino 1, D. A. C. Vazzani 2,2, E. M. Galoli-Bertolotto 2,2; 1Faculty of Medicine of Sao Jose do Rio Preto, SÃO JOSÉ DO RIO PRETO, Brazil, 2Pathology Service, Hospital de Base, São José do rio preto, Brazil, 3Department of Gynecology and Obstetrics, Hospital de Base, São José do rio preto, Brazil, 4Center for Studies and Research of Tumors, São José do rio preto, Brazil.

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females. About half breast cancer cases and 60% of the deaths are estimated to occur in economically developing countries. Angiogenesis plays a critical role in local growth of solid tumors and subsequently in the process of distant spread. Numerous studies have demonstrated the importance of angiogenesis in cancer. Nevertheless, 3 alternative splice site selection in exon 8 of VEGF gene results in a sister family of isoforms, VEGF-A isoforms, which are anti-angiogenic and downregulated in tumor tissues. We quantitatively analyzed the expression of pro-angiogenic and anti-angiogenic VEGF isoforms in breast carcinoma and adjacent normal tissue samples. For that purpose, total RNA from 16 tumor samples and their respective margins were obtained and synthesized cDNA from. We designed and synthesized primers and specific probes for each isoform, which were used for the analyses of expression by real time PCR. So far, were observed different expression between the anti- and pro-angiogenic isoforms in the tumor samples compared to normal tissue. These results evidence that the selection of different splicing sites may actually interfere in tumor angiogenesis and consequent tumor progression and metastasis. A bigger sample size might help in more advanced studies and collaborate to better development of researches on tumor angiogenesis involving VEGF gene. Studies approaching control of VEGF splicing in order to promote the selection of the distal splicing site (anti-angiogenic) instead of proximal site (pro-angiogenic) might promote an efficient therapy for breast cancer.

P06.048

A novel missense mutation in IDH2 gene of a glioma patient.

G. Stancheva 1,2, T. Goranova 2, M. Kamenova 3, M. Laleva 3, M. Kamenova 4, A. Mitkova 1,2, N. Velinov 3, R. Kaneva 1,2, G. Poptodorov 2, V. Mitoz 2, N. Gabrovsky 2; 1Faculty of Medicine of SJP, SÃO JOSÉ DO RIO PRETO, Brazil, 2Institute of Pathology, Medical University Graz, Graz, Austria, 3Department of General Surgery, Medical University Graz, Graz, Austria, 4Div. of Pathology, Division of General Surgery, Medical University Graz, Graz, Austria.

IDH2 gene encodes mitochondrial NADP-dependent isocitrate dehydrogenase - an enzyme that catalyzes the oxidative decarboxilation of isocitrate to α-ketoglutarate. Mutations in IDH2 and its cytosolic isoform - IDH1, were found in brain tumours and acute myeloid leukaemia (AML). While the data about survival benefit of AML patients with mutations are controversial, the effect of the newly found aberration on protein structure and function should be studied further.

P06.049

Investigation of the telomerase expression level in colon cancer patients and its relation with multi drug resistance.

s. shabani, F. mahjoubi; national institute of genetic engineering and biotechnology, Tehran, Islamic Republic of Iran.

One of the most common causes of mortality in the world is cancer. In spite of recent advances in the treatments of cancer, the clinical outcome is far away from expectation yet. Drug resistant remains a major obstacle to the effective cure of almost all cancers. We aimed to investigate the possible association between telomerase expression level and multidrug resistance in colon cancer patients.

In this regards tumor and adjacent normal tissues of 80 colon cancer patients were assessed for the expression level of telomerase by Real Time RT-PCR. Here we are presenting our data regarding to the correlation between telomerase level and failure to chemotherapy in this group of Iranian colon cancer patients. To our best knowledge, this is the first data derived from an in vivo study. Our data will be compared with other published reports which had the focus on only in vitro (celllines) system.

P06.050

Impact of cancer-testis antigens crosstalk with self-renewal cell signaling pathways in esophageal squamous cell carcinoma.

M. R. Abbaszadegan 1, M. M. Forghaniard 2; 1Human Genetics Division, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences (MUMS), Mashhad, Islamic Republic of Iran.

Abrerrant expression of cancer-testis antigens (CTAs) is reported in variety of tumor cell types, but their functions and related pathways in tumorigenesis are poorly understood. Several CTAs are expressed in human cancers as well as human mesenchymal stem cells. CTAs play a role at earlier stages of embryonic development, stem cell self-renewal and tumorigenicity. Role of CTAs was examined in tumorigenesis of esophageal squamous cell carcinoma (ESCC) with respect to cell signaling pathways. Gene expression analysis of MAGE-A4, LAGE1 and NEUOS1, EGFR, TWIST1, P500 and MAML1 were performed using comparative real-time RT-PCR in 44 ESCC patients. Over expression of all genes was detected in 90.2%, 39%, 41.5%, 43.9%, 41.5%, 36.6% and 43.9% of samples, respectively. There are significant correlations among gene transcripts expression as it was shown in the table below. MAGE-A4, TWIST1 and MAML-1 expression were significantly correlated with lymph node metastasis, MAGE-A4 was significantly correlated with tumor staging and TWIST1 expression was significantly correlated with tumor invasion (p<0.05). Hierarchical gene clustering data revealed that TWIST1 is related to CTA genes. Correlated overexpression of CTAs and key factors of cell signaling pathways imply a strong cross talk between them through tumorigenesis in ESCC. Interactions of CTAs with Twist1 could trigger epithelial-to-mesenchymal transition and favor metastasis of tumor cells. This provides a support for role of CTAs in the self-renewal and differentiation of tumor cells.

<table>
<thead>
<tr>
<th>Gene expression correlations between CTAs and Self-Renewal Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAGE1</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>LAGE1</td>
</tr>
<tr>
<td>MAGEA4</td>
</tr>
<tr>
<td>NEUOS1</td>
</tr>
<tr>
<td>EGFR</td>
</tr>
<tr>
<td>MAML1</td>
</tr>
<tr>
<td>P500</td>
</tr>
<tr>
<td>TWIST1</td>
</tr>
</tbody>
</table>

P06.051

SDHB germline mutation in a patient with Carney-Stratakis syndrome.

M. Thalhammer 1, E. Hoetzl 2, B. Liegl-Atzwanger 3, M. Auer 4, M. R. Schroder 5, J. B. Griffl 6; 1Division of General Surgery, Medical University Graz, Graz, Austria, 2Institute of Human Genetics, Medical University Graz, Graz, Austria, 3Institute of Pathology, Medical University Graz, Graz, Austria.

Carney-Stratakis syndrome is a recently described, very rare familial syndrome characterized by gastrointestinal stromal tumors (GIST) and paragangliomas. The majority of cases are caused by germline mutations of...
the succinate dehydrogenase (SDH) subunit genes SDHB, SDHC and SDHD. Tumor predisposition is inherited in an autosomal dominant manner with incomplete penetrance.

Here, we present a 47-year old patient with a gastrointestinal stromal tumor (GIST) diagnosed at the age of 17 years. Because of severe anemia, total gastrectomy was performed at the age of 45 years, exhaustive clinical screening revealed a non-functioning, abdominal, extra-adrenal paraganglioma. As a consequence, the patient was referred to our genetic service and molecular genetic diagnosis was initiated. Family history did not reveal the presence of any paragangliomas, gastric stromal sarcomas or further tumor entities. Molecular genetic analysis by direct DNA sequencing showed a putative splice mutation c.287-2A>G in the SDH3 gene. This mutation has been reported previously in patients with inherited paraganglioma but never in the context of Carney-Stratakis syndrome. The damaging effect of the mutation in mRNA splicing could be confirmed on the basis of cDNA analysis. By array-CGH we identified the most frequently reported genetic alteration in paraganglioma, i.e. loss of chromosome 1q. In addition, we observed a loss of chromosome 11.

As a consequence, especially in young patients with GIST and/or paragangliomas molecular diagnostics should be offered to identify germline mutations in SDH genes. This is of high relevance as mutated tumours in most cases do not respond to treatment with tyrosine kinase inhibitors.

P06.055
Importance of SULT1E1 in the cervical carcinogenesis
C. Backes, K. Grubert, A. Schneider, L. Jansen, I. B. Runnebaum, M. Dürrst; Rönnik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Jena, Jena, Germany.

Background:
As a result of high-risk human papillomavirus type is a prerequisite for the development of cervical cancer (CxCa). However, additional genetic alterations, including the activation of telomerase activity, are required. Our previous studies (microcell-mediated chromosome transfer, microarray-analysis, loss of heterozygosity analysis) revealed a role of the chromosomal region 4q31 in the regulation of telomerase.

Objective:
The aim of the present study was to validate the differential expression of one of our candidate genes, SULT1E1, located within 4q31 in biopsy material. Furthermore the ability of SULT1E1 to suppress telomerase activity and to induce senescence in different functional assays is investigated.

Methods:
Gene expression of SULT1E1 and hTERT was validated by real-time PCR in normal cervical tissues, high-grade lesions (CIN2/3) and CxCa. SULT1E1 was expressed stably in various cell lines in order to analyze its effects on telomerase activity, telomere length and senescence using telomerase PCR ELISA kit, telomere length kit and β-galactosidase staining, respectively.

Results and Conclusions:
The mRNA expression level of SULT1E1 was significantly (p<0.05) lower in CxCa as compared to CIN2/3 or normal tissue. Only low levels of SULT1E1 were detected in the cervical carcinoma cell lines SiHa, ME180 and SW756. Reconstitution of SULT1E1 via lentiviral-mediated gene transfer in these cell lines resulted in a slightly decreased telomerase activity in SiHa and ME180 cells. Telomere length assays and senescence tests are still ongoing. Our first results thus far suggest that SULT1E1 may be a putative telomerase suppressor gene and loss of its function may contribute to the transformation process.

P06.056
A new combined approach to the diagnosis of childhood Acute Lymphoblastic Leukemia patients: Real Time PCR and BAC based high throughput FISH analysis
Z. İkay, N. Cine, D. Sunnetci, N. Uzulmez, D. Yavuz, H. Savlı; Medical Genetics Department, Medicine Faculty of Kocaeli University, KOCAELİ, Turkey.

Introduction: Acute lymphoblastic leukemia (ALL) is a disease characterized by the accumulation and leukemic transformation of immature lymphoid cells in the blood and bone marrow. Aim of this study was to determine genomic level aberrations for the diagnosis of childhood ALL patients using quantitative real time PCR (Q-RT-PCR) and high throughput BAC based molecular FISH analysis simultaneously.

Materials and Methods: In this study, Q-RT-PCR was performed on RNA samples and high throughput BAC based molecular FISH analysis was performed on DNA samples obtained from peripheral blood and bone marrow of 29 pre-diagnosed ALL patients between the ages of 0-18 regardless of gender.

Results: As a result of high throughput BAC based molecular FISH analysis, aberrations with various sizes were detected in various regions of the genome.
Chromosomal abnormalities, characterized by local invasiveness and variable tendency for recurrence. As a result, patients with CML are prone to develop secondary malignancies. Among these, lymphomas are the most common. The incidence of lymphoid malignancies in patients with CML is reported to be 3-10% at 5 years, rising to 15-20% by 10 years. The development of lymphoid neoplasms in CML patients is associated with specific genetic alterations, such as the presence of BCR-ABL1 fusion gene in addition to other chromosomal abnormalities. These findings highlight the importance of monitoring for lymphoid neoplasms in the management of CML patients.
Role of VHL gene mutations and loss of heterozygosity in renal cell carcinoma development in patients from Bashkortostan Republic of Russia

I. Gilyazova1, L. Kulyueva1, R. Khusainova1,2, A. Zagudullin1, A. Khaliullin1, E. Klintsenticova1, A. Shagafina1, V. Pavlov1, E. Khushatinaeva1,2
1Institute of Biochemistry and Genetics, Ufa Science Centre, RAS, Ufa, Russian Federation,
2Baishak State Medical University, Ufa, Russian Federation, Baishak State University, Ufa, Russian Federation.

From Hippel-Lindau (VHL) tumour suppressor gene activation is associated with clear renal cell carcinoma (ccRCC) development. The aim of the study was to provide the analysis of VHL inactivation in ccRCC tumours and to evaluate relationships between VHL inactivation and tumour histopathological characteristics. VHL genetic inactivation was examined amongst 72 distinct ccRCC cases from Bashkortostan Republic using SSCP-analysis followed by Sanger sequencing of VHL gene. Besides, loss of heterozygosity (LOH) studies were performed using microsatellite markers (VHL - D3S1038 and D3S1317, RASSF1 - D3S966 and D3S1558, FHIT - D3S1234 and D3S1309) of region 3p12-26 on paired normal-tumor tissues. Analysis of microsatellite instability (MSI) of VHL gene revealed deletions in 32.5% of ccRCC, RASSF1 - 30.4%, FHIT - 22.6%, VHL and RASSF1 gene deletions frequency was almost equal in groups of stages I, II and III. FHIT gene deletions frequency was higher in patients with stages I and II (P=0.008). VHL mutations were revealed in 20 tumor tissues. Not a single normal tissue had VHL mutations. The majority of mutations were deletions reported previously and touching HIF binding b-domain. We have also detected VHL deletions in the 1st and 2nd exons haven't been described previously: c.185_190del (p.Val65Ser65del), c.216_228del (p.Gln73_Phe76del), c.402_407del (p.Leu135_Phe136del). It is known that exon 2-encodes residues are involved in two functions: substrate protein recognition and transcription-dependent nuclear/cytoplasmic trafficking. We also found 6 undescribed deletions in the third VHL exon; their roles are to be determined. It is supposed that different domain mutations inactivate VHL function differently that may reflect clinical outcome.
P06.066
Pharmacogenetic Markers Associated with Adverse Events in Colorectal Cancer patients treated with 5-FU prodrugs
K. Toome1, A. Macho2, J. Jää2, J. Pals1, M. Hofner3
1Aster Biotech, Tartu, Estonia, 2Tartu University Hospital, Tartu, Estonia.

Intravenous fluorouracil (5-FU) has been used for the treatment of colorectal cancer over 40 years. Lately, oral 5-FU prodrugs have been additionally developed. However, only a fraction of the administered capecitabine reaches its target cells and is transformed into active metabolites which cause permanent inhibition of the enzyme thymidylate synthase (TYMS) and further DNA synthesis. Polymorphisms in TYMS and MTHFR genes presumably affect the clinical response of 5-FU.

Retrospective pharmacogenetic study was performed to investigate germ-line polymorphisms of the two genes involved in fluorouracil pathway and their potential association with toxicities in patients treated with capecitabine. The germline DNA of 36 patients treated with capecitabine was genotyped for two variants (677C>T; 1298A>C) of TYMS gene and one variant in TYMS (28-bp tandem-repeat) gene. The 28-bp tandem-repeat was genotyped by PCR amplification to discriminate between 2R and 3R alleles, PCR fragments were separated by electrophoresis on 2.5% agarose gels. MTHFR polymorphisms were genotyped using APEX based microarray. Adverse events were more frequent in patients heterozygous for TYMS 2R/3R. Patients carrying the 1298C/C genotype had a low risk of developing side effects compared to patients with the A/C or A/A genotype when treated with capecitabine. Similarly, diploype (CA-CA) showed a negative effect on the incidence of adverse events. In contrast, MTHFR haploype (677C-1298C) showed a protective effect.

In conclusion, in colorectal cancer patients, the incidence of side-effects induced by capecitabine might be genetically predicted. However, these preliminary findings must be confirmed in larger and prospective clinical studies.

P06.067
Genetic Screening of Colorectal Cancer Patients to Detect Hereditary Colorectal Cancer Syndromes in Estonian Population
M. Kask1, K. Toome2, J. Jaat3, J. Sopelgmann4, V. Ajanasev5, P. Rait6, T. Eer7, K. Rain8, K. Vaid9, H. Roome10
1The University of Tartu, Tartu, Estonia, 2Aster Biotech, Tartu, Estonia, 3Tartu University Hospital, Tartu, Estonia.

About 700 new colorectal cancer cases are diagnosed in Estonia annually, which places the incidence of colorectal cancer to the third place of all cancer cases.

Aim of the study was to detect hereditary syndromes in patients diagnosed with colorectal cancer to improve screening strategy in Estonia and provide genetic testing and counseling to family members of the patients.

The study involved a systematic analysis of 100 patients diagnosed with colorectal cancer. The method included detection of mutation, immunohistochemistry and mutation analysis of MLH1, MSH2, MSH6, PMS2, APC and MUTYH genes. MSI and BRAF analyses were performed on tumors from all the patients. Based on revised Bethesda guidelines and the results of MSI and BRAF analyses, samples were chosen for IHC analysis and DNA sequencing of MLH1, MSH2, MSH6 and PMS2. Patients subjected to the sequencing of APC and MUTYH genes were chosen based on family history and histologically described polyposis. The analysis of family history and previous diseases revealed six patients with an indication for hereditary breast and ovarian cancer testing.

MI-H and BRAF mutation were observed in 30 and 28 out of all cases, respectively. Several polymorphisms in MLH1 (13); MSH2 (11); MSH6 (10) and PMS2 (15) genes, and a few previously not described variants of unknown significance were found. Deletious germline mutation was found in APC gene. One polymorphism was found in BRCA1, BRCA2, RAD51 and in CHECK2 gene using Hereditary Breast and Ovarian Cancer Assay. Significance of these findings will be further evaluated.

P06.068
Association between 18q LOH and metastatic potential of colorectal cancer
M. Hiljadnikova Bajrovic1, T. Josipovic2, M. Panovic3, A. Dimovski4
1Faculty of Pharmacy, University SS Cyril and Methodius, Skopje, The Former Yugoslav Republic of Macedonia, 2University Clinic for Digestive Surgery, Medical Faculty, Ss. Cyril and Methodius University, Skopje, The Former Yugoslav Republic of Macedonia, 3Clinical Hospital Sistina, Skopje, The Former Yugoslav Republic of Macedonia.

Background: Identification of genetic markers to complement clinicopathological evaluation in cancer diagnosis and selection of appropriate treatment is a major challenge for molecular oncology today. Loss of heterozygosity (LOH) at several chromosomal regions harboring tumor suppressor genes or oncogenes, is one of the most promising molecular markers with prognostic significance for colorectal cancer (CRC).

Objectives: To evaluate the involvement of 18q LOH in colorectal carcinogenesis and its value as a prognostic molecular marker.

Materials and Methods: A total of 314 randomly selected patients undergoing colon and/or rectum resection for pathohistologically confirmed CRC were included in the study. LOH analysis was performed using fluorescence multiplex PCR with 4 microsatellite markers: D18S96, D18S55, D18S55, and D18S55, and subsequent capillary gel electrophoresis on ABIPrism310. Patients with 18q LOH at 18q detected by fluorescence PCR were selected in 57% of tumor samples. Most efficient molecular marker is D18S96, conferring LOH status to 65% of cancers with this type of chromosomal instability. Cancers with 18q LOH are prone to development of distant metastases (OR=6.5, 95%CI=1.183-34.942, p=0.02), which is considered a pathological criterion for poor outcome. LOH at this chromosomal region is also associated with tumor size, though without statistical significance (p=0.25).

Conclusion: Our results identifying association between 18q LOH and development of metastases indirectly support the hypothesis that 18q LOH is a molecular marker of poor outcome in CRC. Further studies investigating the 5-year survival in our patients will be performed to confirm these findings and provide additional details for the observed association.

P06.069
Study of expression of cancer/testis Antigens PAGE4, SPANX, and SCP-1 as putative biomarkers to predict liver metastasis in colorectal cancer (CRC) in Iranian CRC patients
M. Molania1, A. Rezaei2, F. Mahjoubi3, S. Khatami3, B. Mahjoubi4
1National Institute of Genetic Engineering and Biotechnology, Medical Biotechnology Division, Tehran, Islamic Republic of Iran, 2Molecular Genetics Department, School of Science, Oumman University, Alzah, Islamic Republic of Iran, 3Surgery Department, Rasoul Hospital, Tehran, Islamic Republic of Iran.

Cancer testis antigens (CTAs) are a large family of tumor-associated antigens that mainly express in testis and placenta and in some human cancers with different histological origin. CTAs are considered promising target molecules for early diagnosis, prognostic and immunotherapy.

In this study we aimed to employ conventional RT-PCR and Quantitative real-time RT-PCR to examined whether or not PAGE4, SPANX, SCP-1 antigens are express in colorectal tumors. In this regards, 70 tumor samples and adjacent normal tissues of patients with colorectal cancer were evaluated. In this presentation we will discuss our data in regards to use of these CTAs as putative prognostic marker for liver metastasis in CRC patients.

P06.070
Identification and confirmation of DNA methylation markers for colorectal cancer testing
M. Hofner1, W. Pulverer1, M. Sonningbauer2, C. Noehammer2, T. Buchleitner-Hofmann2, G. Egger2, A. Wehn1
1AI-T, Austrian Institute of Technology GmbH, Vienna, Austria, 2Medical University Vienna, Vienna, Austria.

Early diagnosis of colorectal cancer (CRC) is of high importance because prognosis for patients with CRC depend on stage at time of diagnosis. Thus there is great need to identify novel biomarkers for diagnostic improvements of CRC. Patients at risk for CRC are identified by screening programs using the FOBT (focal occult blood test) which provides 61-96% sensitivity and 91-98% specificity. However recall rate due to many false positives are leading to unnecessary colonoscopy and anxiety. This causes also a high workload for confirmatory initial diagnosis by colonoscopy. There remains a need for a minimally invasive, cost-effective procedure that could be used alongside FOBT screening and eventually prior colonoscopy to improve screening sensitivity. To improve CRC initial diagnosis we have elucidated a panel of candidate DNA methylation biomarkers from tissue DNA testing (tumors: n=18; normal tissue: n=18) using a targeted DNA methylation microarray. The top 24 candidates were then subjected to qPCR based confirmation of microarray data. DNA from blood (n=8) was also included in qPCR analyses; based on these data the minimal set of markers for perfect classification could be reduced to a single gene enabling 100% correct classification (AUC=1). Further designed qMSP for bisulfite based confirmation of findings by qMSP 96-100% of all different samples were classified correctly. Thus we have elucidated candidate markers which should be validated on different sample cohorts and might be good targets for minimal invasive CRC testing using cell free DNA from serum. Collaborations for validation of markers are envisioned.
Most recent genome-wide studies on the CpG island methylation in colorectal cancer (CRC) have led to the discovery of at least three distinct methylation clusters. However, there remains an uncertainty whether the CRC clusters identified in these studies represent comparable phenotypes. We performed comprehensive genome-scale DNA methylation profiling by Illumina Infinium HumanMethylation27 of 21 DNA pools that represent 84 CRC samples divided according to their high-, intermediate-, and low-methylation epigenotypes (HME, IME, and LME, respectively) and 70 normal-adjacent colonic tissues. We have also examined the relationship between three epigenotypes and chromosomal gains and deletions (assessed by Comparative Genomic Hybridization) in a group of 100 CRC samples. HME subgroup showed features associated with CpG island methylator phenotype - high (CIMP-high) including methylation of specific CpG sites (CpGs) as well as significantly lower mean number of chromosomal imbalances when compared to other epigenotypes. IME subgroup displayed lowest number of methylated CpGs (717 versus 2399 and 2679 in HME and LME, respectively) and highest mean number of chromosomal imbalances when compared to HME (p = 0.001) and LME (p = 0.004). A comparison between the methylation profiles of three epigenotypes revealed more similarities between the IME and LME (1669 methylated CpGs overlapped) than HME and IME (673 methylated CpGs overlapped).

Our results provide evidence that IME and LME CRCs show opposite features to those that have been previously attributed to CIMP-low and CIMP-0 CRCs. These discrepancies should be considered when interpreting the data from a particular epigenotyping method.

P06.072
Tumor-specific age-dependent DNA methylation of RUNX3, CDKN2A and CACNA1G genes in colorectal cancer
E. Hernández-Illescas1, A. Castillejo1, A. Martínez-Cantoí, M. I. Castillejo1, E. Irler1, V. M. Barbero1, R. Lázaro1, E. Ochoa1, J. L. Soto1;
1Hospital Universitario Elche, Elche, Spain; 2Hospital La Plana Castellón, Villarreal, Spain; 3Hospital Provincial Castellón, Castellón, Spain.

Promoter methylation of tumor suppressor genes has a crucial role in tumorigenesis. It is widely known that epigenetic alterations that accumulate during aging might be involved in aging-related pathologies. However, little is known about the cross-talk between aging and cancer in terms of DNA methylation. We aimed to explore the association between the methylation status of marker genes in normal and tumor tissues with age in colorectal cancer (CRC) patients. A cohort of 197 unselected CRC patients was studied (median age=71; range 30-94 years). Tumor (n=197) and normal (n=20) colon tissues were analyzed for the panel of eight markers used to assess the CpG island Methylator Phenotype (CIMP): RUNX3, CACNA1G, IGF2, MLH1, NEUROG1, CRABP1, SOS1, and CDKN2A. This study was approached by Methylation Sensitive MLPA. Microsatellite instability (MSI) and BRAF V600E mutation were also analyzed. We found 22.84% (45/197) of tumors with CIMP+ (cut-off: five positive markers): 5.08% (10/197) with BRAF mutation and 9.46% (19/197) with MSI. None of the 20 matched normal tissues analyzed from patients with CIMP+ tumors showed significant methylation (10 patients older and 10 younger than the median age). CIMP+ tumors were associated to older patients (OR=2.23; p=0.022); proximal location (p=0.002); BRAF mutation (p=0.001) and MSI (p=0.001). Tumor methylation age-dependent was given by RUNX3 (OR=35.3; p=0.001), CDKN2A (OR=2.26; p=0.007) and CACNA1G (OR=2.46; p=0.018).

Our results suggest that methylation at RUNX3, CDKN2A and CACNA1G genes is tumor specific and age dependent in CRC patients. The epigenetic landscape of CRC might be different depending on patient age.

P06.073
A DNA methylation survey of 117 tumor samples and corresponding normal controls revealed more than 640 genes aberrantly methylated in colorectal cancer
J. Kolarova1, J. Gutwirth1, O. von Kempen1, C. Schafmayer1, M. Kalthoff1, J. Hampe1, R. Siebert1, O. Ammerpohl1;
1Institute of Human Genetics, Christian-Albrechts-University Kiel, Kiel, Germany; 2Institute of Internal Medicine I, Christian-Albrechts-University Kiel, Kiel, Germany; 3Department of General and Thoracic Surgery, Christian-Albrechts-University Kiel, Kiel, Germany; 4Institute for Experimental Oncology, Christian-Albrechts-University Kiel, Kiel, Germany.

Colorectal carcinoma (CRC) is still a leading cause for cancer related death in the western world [1]. At molecular level colorectal carcinoma is characterized by both, genetic aberrations and extensive alterations in the gene expression pattern. Epigenetic mechanisms and particularly DNA methylation are well known to contribute to the stability of the genome and to the establishment of tissue-specific gene expression patterns [2]. Consequently, alterations in the methyleome are a typical hallmark of cancer, contributing the malignant phenotype, e.g. in CRC [3].

In the presented study we included genomic DNA isolated from 117 CRC tissue samples and the corresponding control tissue from the same patients. Detailed clinical, histological as well as molecular data (e.g. age at diagnosis, treatment regimen, MSI status) were available from all patients. Within the BMBF funded NGFN-Network „Integrated genomic investigation of colorectal carcinoma“ we used Illumina’s HumanMethylation450k BeadChip to identify genes aberrantly methylated in CRC as compared to normal colon tissue. This array is designed to assay the methylation status of 485,577 CpG loci in parallel. By this approach we have identified more than 1,380 CpG loci corresponding to more than 640 genes aberrantly methylated in CRC. Furthermore, hierarchical cluster analysis based on these loci separated the samples into two different CRC subtypes and the controls. The putative use for diagnostic, prognostic or therapeutic purposes is currently under investigation.

samples besides colorectal cancer tumor tissue.

Materials and Methods: The promoter methylation status of TSG in tumor tissue and peripheral blood samples in 89 colorectal cancer patients (32F/57M) were evaluated by sodium bisulfite conversion and DNA amplification with methylation specific multiplex PCR technique. Also, KRAS in codons 12 and 13 were analyzed for possible genotypic mutations.

Results: TSG was inactivated in 6 samples in 32 females and 11 of 57 males in peripheral blood (p=0.05). Testing of tumor tissue revealed a positivity of TSG inactivation in 17 females and 29 males (p=0.05). KRAS mutation was present in 7 females and 22 males in blood samples (p=0.05) and 20 vs 3 females and males, respectively, in biopsy specimen. Overall KRAS mutation inactivation was 8/32 vs 27.5% for females and males (p=0.02). Total alterations were 82% vs 41.5% for tissue and blood, respectively (p<0.001). Total mutant KRAS ratio in tissue was 63%.

Conclusion: Genes exhibit tumor suppressor activities in tissue and peripheral blood samples. The treatment choice depending on these results should be further evaluated. Screening KRAS and inactivated TSG from tumoral and blood samples may give clinical clues. Mutation or inactivation over 80% and significant gender difference need to be verified by large series.

P06.076

Interlaboratory comparison of the K-ras mutation testing techniques

F.A. Popov2,1, I. V. Karpo2,1, V. A. Shmamin2, S. P. Kovalenko1, L. N. Lyachenko1, A. V. Polyakov2
2Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia; 1Department of Medical Genetics, Russian Federation.

Abstract: Our study compared four most frequently used methods for K-ras testing: ACRS, SSCP, allele-specific RT PCR and Sanger sequencing in clinical practice. Samples from 62 colorectal cancer patients (frozen tissues after manual dissection) were tested in different laboratories.

The results, received with ACRS, SSCP and allele-specific RT PCR have coincided for 59 carcinomas (95.2%). To investigate the apparent discrepant results between these methods for three samples we used commercial Thermus thermophilus KRAS KR (DS Labs, Manchester, England). Specificity and sensitivity of allele-specific RT PCR were 100% (34/34) and 96.4% (27/28) respectively and with the use of ACRS or SSCP 94.1% (32/34) and 100% (28/28) respectively. False positive findings were absent with allele-specific RT PCR, but were discovered in two cases with ACRS or SSCP analysis (5.9%). The single falsely negative result was received with allele-specific RT PCR (3.6%). Sensitivity of direct sequencing was significantly lower than with the use of ACRS or SSCP or allele-specific RT PCR: 78.6% (22/28).

Allele-specific RT PCR, ACRS and SSCP showed high and similar diagnostic sensitivity and specificity (from 94 to 100%) for the studied series of samples. These techniques are able to detect somatic K-ras mutations in DNA samples when the mutant DNA represents at least 5% of total DNA.

P06.077

miR-21 expression in tumor tissue progressively increases during the development of colorectal cancer

N. Materska1, A. Eftimov2, E. Jajkowska1, N. Janhucok1, M. Panowski1, A. J. Dimoski1
1Center for Biomolecular Pharmaceutical Analyses, Faculty of Pharmacy, Skopje, The Former Yugoslav Republic of Macedonia, 2University of Saint-André, Saint-Antoine, Paris, France.

Abstract: A comparison of miR-21 expression levels in colorectal tumors and normal tissues is presented. miR-21 was detected and down-regulation of miR-21 expression was found in MSI tumors. Frequencies of instability ranged from 2.5% to 100%. Following a maximum likelihood statistical method, miR-21 mediate MSI in cell lines. Any impact of MSI might have on the reliable processing of human cell lines is not known. An analysis of miR-21 expression in MSI cell lines. Any impact of MSI might have on the reliable processing of human cell lines is not known. An analysis of miR-21 expression in MSI cell lines.
improve our mutation detection rate, an important step towards personalized medicine.

P06.080

Exome sequencing reveals genetic predisposition in pediatric colorectal cancer.

M. C. J. Jongmans1, L. Yuniati, E. N. van Leuven1, H. K. Schackert1, G. Fitzor2, J. L. E. M. Vissers3, H. Venselaar4, E. T. P. Verwiel5, E. J. Kamping1, A. Geurts van Kessel1, P. M. Hoogerbrugge1, M. W. M. te Loo1, M. J. L. Lütgenburg6, R. P. Kuiper1, N. Hoogerbrugge1, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, Technische Universität Dresden, Dresden, Germany.

Childhood colorectal cancer (CCRC) is a rare condition, mainly characterized by non-polyps, microsatellite-stable tumors with a higher frequency of signet ring cell histology than in adults, suggesting a different biology. In many patients the genetic cause remains unknown.

We performed whole exome sequencing on germline DNA of four children with CRC, diagnosed between age 13 and 15. Per patient, we validated an average of 45 candidate pathogenic variants by Sanger sequencing, and tested parental DNA to reveal the modes of inheritance.

In one child a paternal BRAF mutation and a maternal change in PARP1 were identified. The co-occurrence of these two mutations appears rare, since both proteins are involved in DNA repair. The second patient, a child of distantly related parents, carried a homozygous SEC31B variant. In yeast, Sec31p is involved in cell cycle progression and therefore might play a role in cancer development. De novo mutations were identified in two patients, affecting highly conserved protein-coding positions in CCDC13, a gene with unknown function and in the RAS pathway gene SOS2, respectively. In the latter patient, in vitro expression of this mutant in HEK293 cells revealed an increase of RAS activity, suggesting a gain-of-function effect.

Our data indicate that exome sequencing is a powerful tool for unraveling genetic predisposition in CCRC, which turns out to be a heterogeneous condition with different models of inheritance. Elucidating the genetic cause of CCRC will facilitate decisions on surveillance of patients and relatives and might reveal new treatment targets.

P06.082

TGFBR1 Intralocus Epistatic Interaction as a Risk Factor for Colorectal Cancer

A. Martínez-Cantó1, A. Castillejo1, T. Mata-Balaguer1, M. I. Castillejo1, E. Hernández-Ilían1, E. Irie1, V. M. Barberá1, C. M. Egoavil1, S. G. Alenda1, E. Ochoa1, R. Lázaro1, S. Pajardé1, J. Lacsec1, R. Galpérin1, J. L. Soto1.

1Molecular Oncology Group, Elche University Hospital, Elche, Spain, 2Research Unit, Alicante University Hospital, Alicante, Spain, 3Pathology Department, Elche University Hospital, Elche, Spain, 4Molecular Biopathology Unit, Castellón Provincial Hospital, Castellón, Spain, 5Pathology Department, La Plana Hospital Villarreal, Spain, 6Surgery Department, Elche University Hospital, Elche, Spain.

In colorectal cancer (CRC), an inherited susceptibility risk affects about 35% of patients, whereas high-penetration germline mutations account for <6% of cases. A considerable proportion of sporadic tumors could be explained by the coinheritance of multiple common low-penetration variants.

We assessed the susceptibility to CRC conferred by 14 polymorphisms and the allele-specific expression (ASE) of TGFBR1 in a case-control designed study (504 controls and 521 patients with sporadic CRC). Polymorphisms were genotyped by multiplex pyrosequencing using the iPLEX Gold (MassARRAY-SEQUENOM) technology. Descriptive analyses of the polymorphisms and association studies were performed with the SNPutator package. No relevant associations were detected between individual polymorphisms or haplotypes and the risk of CRC. The TGFBR1*9A/6A polymorphism was used for the ASE analysis by fragment analysis using cDNA from normal tissue. The relative level of allelic expression was extrapolated from a standard curve. ASE was found in 25.4% of patients and 16.4% of controls. No significant differences between the ASE values of patients and controls were identified. Interestingly, a combined analysis of the polymorphisms and ASE for the association with CRC occurrence revealed that ASE-positive individuals carrying one of the most common haplotypes (H2: 20.7%) showed remarkable susceptibility to CRC (RR: 5.25; 95% CI: 2.54–7.250; p < 0.001) with a synergy factor of 3.7. In our study, 54.1% of sporadic CRC cases were attributable to the coinheritance of the H2 haplotype and TGFBR1 ASE. These results support the hypothesis that the allelic architecture of cancer genes, rather than individual polymorphisms, more accurately defines the CRC risk.

P06.083

Constitutional mismatch repair-deficiency syndrome and high-grade brain tumors in siblings with biallelic MSH6 mutations

D. Hencikova1, D. Sjövold1, L. Kovacs1, P. Babat1, 6Pediatric Department of Children University Hospital, Comenius University, Bratislava, Slovakia, 1Department of Pediatric Oncology, Faculty of Medicine, Comenius University – Medical School and University Children’s Hospital, Bratislava, Slovakia, 4Department of Pathology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.

Constitutional mismatch repair-deficiency syndrome (CMMR-D) is a rare autosomal recessive disease, first reported in 1999. It is characterized by hematological malignancies, brain tumors and tumors of the large intestine with an early formation. Skin maculae with diffuse margins and irregular pigmentation are similar to café au lait present in neurofibromatosis 1, and they may occur together with hypopigmented areas. Development of this syndrome is caused by biallelic mutations in genes that are associated with Lynch syndrome (hereditary non-polyposis colorectal cancer - HNPPC), MLH1, MSH2, MSH6 and PMS2 genes belong to the mismatch repair system and play a basic role in the genome integrity. In the heterozygous state, the mutation of one of these genes causes HNPPC. Biallelic mutations of the aforementioned genes are characterized by occurrence of the first malignancies (brain tumors, leukemias) at the age of 2 and occurrence of other types of tumors with increasing age. Wimmer and Krotz summarized data from 52 reports covering 92 CMMR-D patients and performed genotype-phenotype correlation output from the last 12 years. We present a case with CMMR-D caused by novel homozygous MSH6 mutations leading to gliomatosis cerebri and TALL in an 11-year-old female and globlastoma multiforme in her 10-year-old brother, both with rapid progression of the diseases. A literature review on brain tumors in CMMR-D families shows that they are treatment-resistant and lead to early death. Identification of patients with CMMR-D is critical, and specific cancer screening programs with early surgery are recommended.

P06.084

Lack of association between ERCC2 K751Q polymorphism and thyroid cancer risk

J. Hoppe-Gołąbiewska1, S. Hryhorowicz2, M. Kaczmarek-Rybik2, L. Jakubowska-Buterk1, K. Ziemińska1, J. Sowiński1, R. Stamler1.

1Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland, 2The Nanobiosomedical Center, Poznań, Poland, 3Department of Gastroenterology, Human Nutrition and Internal Diseases, University School of Medical Sciences, Poznań, Poland, 4Department of Endocrinology and Internal Diseases, University School of Medical Sciences, Poznań, Poland, 5Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland.

Thyroid carcinomas belong to tumors with well prognosis, slow progress and low benignity but with tendency to recurrences and regional or remote metastasis. Papillary and follicular thyroid cancer are the most frequent in endocrine system with unidentified genetic background.

In this focus searching for molecular markers of disease course, good or poor prognosis and response on medical treatment is fundamental. It is expected that SNP polymorphisms research in genes demonstrating association with worldwide thyroid gland tumors development and allow to better diagnosing. The published data on the association ERCC2 K751Q polymorphism with cancer remained controversial.

We analyzed polymorphism K751Q in ERCC2 gene (c.2251A>C, rs13181) in group of 451 Polish patients with differentiated thyroid cancer and 560 individuals from Polish population. Sequence variants were determined by pyrosequencing. Description, disease associations and association studies were performed with the SNPutator package. No relevant associations were detected between individual polymorphisms or haplotypes and the risk of thyroid cancer. The SNP polymorphism K751Q was used for the ASE analysis by fragment analysis using cDNA from normal tissue. The relative level of allelic expression was extrapolated from a standard curve. ASE was found in 25.4% of patients and 16.4% of controls. No significant differences between the ASE values of patients and controls were identified. Interestingly, a combined analysis of individual polymorphisms and ASE for the association with thyroid cancer occurrence revealed that ASE-positive individuals carrying one of the most common haplotypes (H2: 20.7%) showed remarkable susceptibility to thyroid cancer (RR: 5.25; 95% CI: 2.54–7.250; p < 0.001) with a synergy factor of 3.7. In our study, 54.1% of sporadic CRC cases were attributable to the coinheritance of the H2 haplotype and TGFBR1 ASE. These results support the hypothesis that the allelic architecture of cancer genes, rather than individual polymorphisms, more accurately defines the CRC risk.
P06.085

Spontaneous and dioxidine-induced DNA damage in cultured human multipotent mesenchymal stromal cells and peripheral blood lymphocytes

A. Chaushava, K. Nikitina, E. Voronina, S. Smirnikhina, A. Zhanataev;
Federal State Budgetary Institution “Research Centre for Medical Genetics” of the Russian Academy of, Moscow, Russian Federation.

Numerous studies have shown the possibility of genetic transformation of multipotent mesenchymal stromal cells (MSC). The DNA damage can lead to chromosomal abnormalities and gene mutations associated with risk of malignation. To determine the genetic stability and sensitivity of MSCs to the ROS-mediated DNA-damage, we have studied spontaneous and dioxidine-induced DNA damage in cultured human MSCs from adipose tissue and compared it with cultured peripheral blood lymphocytes. Dioxidine is a mutagen with prooxidative type of genotoxic action. The peripheral blood lymphocytes from 5 healthy donors and MSCs from adipose tissue of 8 healthy donors were exposed during 24 h to dioxidine in concentrations 0.01 mg/ml and 0.1 mg/ml. The levels of DNA damage have determined as % tail DNA in alkaline comet assay.
The mean value of spontaneous DNA damage in cultured lymphocytes was higher than that in cultured MSCs (7.7 ± 0.5% vs. 4.8 ± 0.5 %DNA in tail, p<0.05). The mean values of dioxidine-induced DNA damage in concentration of 0.01 mg/ml were 10.9 ± 0.7% in tail in the lymphocytes and 13.1 ± 0.7% in tail in MSCs. After the exposure to dioxidine in concentration of 0.1 mg/ml, 17.1 ± 1.9 %DNA in tail in the lymphocytes and 16.7 ± 2.0% in tail in MSCs were observed. So, although end-point values of genotoxic effect of dioxidine was similar for both type of cells (p>0.05), MSCs showed greater sensitivity, particularly when agent in lower concentration was used.

In conclusion, spontaneous level of DNA damage in the MSCs was lower compared with lymphocytes, but MSCs indicated higher response to ROS-mediated DNA-damage.

P06.086

Dioxidine influence on whole-genome methylation status in peripheral blood lymphocytes in vitro

S. A. Smirnikhina, E. S. Voronina, L. D. Katosova, V. I. Platounova, A. V. Lavrov;
‘Federal State Budgetary Institution “Research Centre for Medical Genetics” of the Russian Academy of, Moscow, Russian Federation, ’Federal State Budgetary Institution “Research Centre for Medical Genetics” of the Russian Academy of, Moscow, Russian Federation.

Introduction. Chemical mutagens can lead to genes mutations and chromosomal aberrations as well as to epigenetic changes. Toxins and other external agents can cause nonspecific (whole-genome DNA hypomethylation and histone deacetylation) and specific (hypo- and hypermethylation of several genes) modifications of genome. DNA hypomethylation in peripheral blood lymphocytes increases from spontaneous level of 2.25 ± 0.17 % to 8.06 ± 0.37 % and 17.0 ± 0.86 % after dioxidine exposure in concentrations of 0.01 and 0.1 mg/ml respectively. The aim of this study was to estimate dioxidine influence on whole-genome methylation status in human peripheral blood lymphocytes.

Materials and Methods. Samples of peripheral blood were obtained from 14 healthy donors. DNA methylation was analyzed using methyl-sensitive Comet assay with additional step of restriction by HpaII andMspI enzymes. DNA methylation in lymphocytes was estimated before cultivation, after 24-hours cultivation without dioxidine and with dioxidine addition in final concentrations of 0.01 and 0.1 mg/ml after 24-hours cultivation of whole blood. DNA methylation level was defined as the ratio of mean of DNA value in comet’s tails after HpaII restriction to that after MspI restriction. Results. DNA methylation levels in lymphocytes before and after cultivation didn’t differ (45.28 % and 44.80 % respectively p>0.4). Lymphocytes after the cultivation with low dioxidine concentration have shown the increased DNA methylation level up to 46.14 % (p<0.001).

Conclusion. Nonspecific hypomethylation caused by dioxidine exposure can result in genome instability and diseases including cancer.
Acknowledgement: This paper is partly supported by the Sectorial operational program me human resources development (SOP HRD), financed from the European social fund and by the Romanian Government under the contract number POSDRU/ 60782.

P06.090
DNMT3B C46359T and SHMT1 C1420T polymorphisms in carcinogenesis of head and neck

Introduction: Folate is an essential nutrient for the synthesis, repair, and methylation of DNA. Polymorphisms in genes involved in folate metabolism may alter these processes and, consequently, modulate the cancer development.

Objectives: Investigate DNMT3B C46359T (rs2424913) and SHMT1 C1420T (rs1979277) polymorphisms related to folate pathway in head and neck cancer risk and the association between these polymorphisms with gender, risk factors and clinical histopathological parameters.

Methods: A case-control study was conducted in 725 individuals in a Brazilian population (237 patients with head and neck cancer and 488 control individuals without cancer history). The Real-Time PCR technique was performed for genotyping the polymorphisms. Chi-square test and multiple logistic regression test were used in the statistical analysis.

Results: No significant difference in genotypes distribution was observed between groups in both polymorphisms evaluated. Male gender and tobacco consumption were associated with increased risk for head and neck cancer (P=0.05). There were no significant associations between the polymorphisms and risk of disease, however, the tobacco and alcohol habits analyzed together showed association with SHMT1 C1420T polymorphism (P=0.05). For clinical histopathological parameters, SHMT1 C1420T polymorphism was less frequent in patients that had larynx as primary site (P=0.05). Conclusion: The male gender and tobacco habit may be predictors of the head and neck cancer and the polymorphisms investigated have no association with head and neck cancer risk. However, further studies involving genes related to folate metabolism may contribute to the understanding of this cancer type development.

Financial support: Fapesp, CNPq, Capes
Support: FAMERP/FUNFARME/HB.

P06.091
Developmental pluripotency associated-2 (DP Paz2) gene may be a metastatic marker for colorectal cancer
‘Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Islamic Republic of Iran;’Endoscopic and Minimally Invasive Research Center, Quem Hospital, Mashhad, Islamic Republic of Iran, ‘Division of Human Genetics, Immunology Research Center, Avecesena Research Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.

Colorectal cancer (CRC) is the third most frequent malignancy in the world. Cancer cells have countless behaviors of pluripotent embryonic and germ line cells, such as unlimited proliferation and the capacity of self-renewal as well as migration. Active embryonic genes in tumor cells may be associated with invasiveness and indefinite growth of such cells. Developmental pluripotency associated-2 (DPPA2) is implicated in regulatory pathways maintaining the pluripotency of embryonic stem cells. DPPA2 expression in human germ line and early stage embryo is also being extended to a significant subset of malignant tumors. However, its expression in CRC remains to be clarified. In this study, the expression level of DPPA2 in 38 CRC samples was compared with related normal tissues by real-time PCR assay. Expression analysis represented the overexpression of DPPA2 in 31.5% of tumor specimens. In the advanced stages (III IV) of tumor development, the overexpression of DPPA2 was significantly correlated with the lymph node metastasis of tumor cells (P<0.05). These results not only emphasize on the overexpression of DPPA2 was significantly correlated with the lymph node metastasis of tumor cells. In summary, having revealed the clinical relevance of DPPA2 expression in CRC, we extrapolate the potential of this gene as a promising marker to evaluate the risk of lymph node metastasis and a possible therapeutic target to prevent functional metastasis.

P06.092
Expression of Selected Drug Resistance Genes in Breast and Colon Cancer Patients
J. M. A. Minghetti, E. Weismanova, J. Palaj, K. Raunov, L. Lebockza, S. Spanik; St. Elizabeth Cancer Institute, Bratislava, Slovakia.

The ABC transporters have been studied extensively for over two decades. Their structure and function is well described as well as their involvement in the resistance of cancers to therapy. Despite being one of the best studied protein families with important effect on the cancer therapy, the ABC transporters are not routinely diagnosed in clinical practice. This has many reasons, one of them being lack of relevant clinical data or their inconclusiveness. The main aim of this study was to collect more information about the relevance of the relationship between the drug-resistance genes and therapy response. We have analyzed expression of selected ABC transporter genes in the tissues of breast and colon cancer patients. Analysis was performed in over 200 patient samples, with diagnoses ranging from benign lesions to invasive cancers. Our real-time PCR-based analysis revealed frequent overexpression of certain ABC genes in all types of cancers. Most frequently overexpressed genes included ABCA1, ABCB2, ABCC5 and ABCG1. The expression status of ABC genes was subsequently correlated to the clinical data of the patient. The effects of the ABC genes expression on the therapy outcome will be discussed.

P06.093
Comprehensive genomic study in ductal breast cancer
I. Dimova1, R. Panor2, G. Anton2, D. Tencheva2; 1Medical University - Sofia, Sofia, Bulgaria, 2Tokuda Hospital Sofia, Sofia, Bulgaria.

Despite of the large number of molecular studies in breast cancer, the data are still insufficient for understanding its molecular pathogenesis. In this study we have performed whole genome analysis by DNA microarrays for determining the type, incidence and fine mapping of unbalanced genomic aberrations in ten ductal breast cancers. Trisomies of whole chromosomes or chromosome arms with the highest frequency were observed for chromosomes 20 (80%) and 17 (40%), the most common monosomies were discovered for chromosomes 8 and 15 (60%), followed by 4, 18 and 21 (50%). Significant micro-aberrations were determined by selection of aberrant clones with more than 40% frequency and detection of alterations of high amplitude in more than 30% of tumors. Doing this, we detected significant aberrations for known tumor-driving genes such as MUC1 in 1q21, LASP1 (in 17q11-q21.3) and HER-2 (17q21.1), ZNF217 and AURKA (STK6) in 20q13.2-q13.3. In addition, we suggest as new potential oncogenes TNS1 (2q35), SH3BP3 (3p25), HSBP1 (7q11), and ZNF503 (1q22). The genes, located in the most significant deleted small overlapping regions, were: EPS15 (1p32), ARL15 (5q11), CD2AP (6p21), IKKKB (8p11), K111 (11q23), ATM (11q22), CYP2B1 (12q13), EPTD1 (15q26), and CHAF1B (21q22). Our results showed at a high resolution the unbalanced genomic aberrations for whole genome along all chromosomal regions and complement with additional data the genomic characteristics of ductal breast cancer.

P06.094
Absence of epidermal growth factor receptor gene mutations in patients with first diagnosis of prostate cancer
B. Zagradisnik, Z. Kajzrov, T. Hajdinjak, G. Hlebic, D. Bratus, N. Kokalj Vokac; University Medical Centre Maribor, Maribor, Slovenia.

BACKGROUND: Mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are known for a variety of human cancers. In prostate cancer they represent a rare event although the increased tyrosine phosphorylation is an important feature of advanced prostate cancer. In this study we investigated the presence of most common somatic mutations in the EGFR gene in patients with first diagnosis of prostate cancer. The aim was to evaluate the utility of EGFR mutation analysis for early identification of prostate cancers with aggressive growth potential.

Methods: In first voided urine was collected from patients after digital rectal examination. The L858R mutation was detected with PCR followed by MscI digestion and agarose electrophoresis. RESULTS: Study sample included 65 patients. All had confirmed diagnosis of prostate cancer with positive biopsy and samples were collected before planned surgery. Gleason score 6 was determined for all cases. No frame shift mutations in exon 19 of the EGFR gene were detected and the L858R mutation was also absent.

CONCLUSIONS: Our results show that EGFR mutations did not occur in these
patients suggesting these mutations may be very rare events in early phase of prostate cancer. Consequently the analysis of EGFR mutations appears not to be informative for evaluation of growth potential of prostate cancer and for disease prognosis.

P06.095 Prolonged HPV infection can produce chronic inflammation and link to ESCC in Iran
1,2NIGER, Tehran, Islamic Republic of Iran, 3Endocrinology and Metabolism Research Institute, Tehran, Islamic Republic of Iran, 4Cancer Institute, Tehran, Islamic Republic of Iran.

Prolonged inflammation, or chronic inflammation, can lead to cancer. This process can be occurred in present of prolonged infections or irritants. Now, it is clear that tumor microenvironment is accompanied by inflammatory cells which their production including cytokines can promote tumor progression.

In previous study, we showed that chronic inflammation is involved in developing of esophageal cancer, esophageal squamous cell carcinoma (ESCC), in Iran. The incidence of ESCC is high in northern Iran. Environmental exposure to polycyclic aromatic hydrocarbons (PAHs) has been suggested to promote ESCC development. They are easily distributed throughout the human body and produce PAH-DNA adducts which are risk factors for ESCC. Also, it is shown that human papillomavirus (HPV) genome integrate into the host cell chromosome and lead to malignant cell transformation. This infection can be contributed to carcinogenesis by inactivating the p53 protein in oral cancers through p53 gene mutation.

We analyzed the HPV infections in ESCC tissues. The samples (tumor and control tissues) were collected from Tehran and the HPV infections were determined by in situ hybridization analysis. Our data showed that the presence of type of 16 or 18 HPV in esophageal cancerous tissues. Based on above results, it can be concluded that prolonged HPV infection accompanied by presence of PAHs may produce chronic inflammation and link to ESCC in Iran.

P06.096 Mutation screening in Adenomatous Polyposis Coli (APC) gene in patients clinically diagnosed as Familial Adenomatous Polyposis (FAP)
O. C. Vincenzi1, G. A. Molletta2, C. A. Ferreira1,3, W. A. Silva Jr1,2.
1University of São Paulo, Ribeirão Preto, Brazil, 2National Institute of Science and Technology in Stem Cell and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil, 3National Institute of Science and Technology in Stem Cell and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil, Ribeirão Preto, Brazil.

Colorectal cancer is an important malignant neoplasm. Its development involves storage of mutations in oncogenes and in tumoral suppressor genes, as well as epigenetic changes. One of these abnormal genes is the Adenomatous Polyposis Coli (APC), a tumor suppressor that presents mutations which may be associated to colorectal adenomas that develop into adenocarcinomas. Defects in this gene cause Familial Adenomatous Polyposis (FAP), an autosomal dominant pre-malignant disease that usually progress to malignancy. Its main characteristic is the large development of pre-cancerous colonic polyps in the intestines, which invariably evolve for the instatement of cancer. The goals of this project are the screening for mutations in the APC gene (GenBank M7 4088) using High Resolution Melting technique and DNA sequencing, and the search for deletions using MLPA. The research includes 16 patients with clinical suspicion of FAP which were attended at the University Hospital and have signed for the consented forms. Of the 15 exons, 14 were screened so far and a nonsense mutation was found (Arg302Stop), producing an inactive protein of reduced size. This mutation was transmitted from mother to both children. We also found a deletion detected by MLPA in another family; the proband showed deletions of the entire exon 1 of the APC gene, besides a deletion of the exon 1 of the MUTYH gene. All exons of APC and MUTYH will be screened and genetic counseling will be offered to the families carrying mutations. Financial support: FAPESP (2011/11456-0), INCCT.

P06.097 Does FIP1L1-PDGFRA fusion play role in pathogenesis of nasal polyposis?
G. Yalçıner1, K. Bozdemir1, M. Y. Kutlay2, A. S. Bilgen1, A. Tükün3, A. Kutluhan2.
1Ankara Atatürk Training and Research Hospital, EN'T Clinic, Ankara, Turkey, 2Ankara Atatürk Training and Research Hospital, EN'T Clinic, Ankara, Turkey, 3Ankara University, Faculty of Medicine, Ankara, Turkey.

Top of Form

Background: Nasal polyposis (NP) is a common chronic inflammatory disease of the nasal mucosa. Although NP occurs 4% of population, the exact mechanisms leading its development are still unknown. On histopathological examination, tissue eosinophilia is a hallmark of NP. Recent studies examining eosinophil biology have focused on delineating the molecular basis of FIP1L1-PDGFRA fusion gene. Considering the eosinophils are the most important cells in NP and the role of FIP1L1-PDGFRA fusion gene in the pathobiology of hyper eosinophilic syndrome, it was aimed to investigate FIP1L1-PDGFRA fusion gene at the NP.

Methods: We enrolled the 16 patients to this translational study approved by the institutional ethics committee of Ankara Ataturk Hospital. All individuals provided informed consent. The nasal polyposis tissue and normal nasal mucosa biopsy materials were obtained from 20 patients who had undergone a NP operation in the Hospital ENT Clinic. Fluorescent in-situ hybridization (FISH) was performed using LSI 4q12 Tri-Color Rearrangement probe (Vysis, 05N52-020) on touch-samples slides prepared from fresh biopsies. The control specimens were all normal.

Conclusions: Further prospective longitudinal studies are required to establish whether FIP1L1-PDGFRA fusion and the other eosinophilia-related biomarkers play role in the pathogenesis of NP.

P06.098 Longitudinal study of t(14;18) positive Follicular Lymphomas identifies different patterns of genetic and epigenetic evolution
A. Haake1, M. Kreuz2, H. Trautmann1, L. Theil1, M. Szczepanowski2, K. Koch1, D. Herrmann1, R. Küppers1, R. Scholthojsh1, W. Klapper1, C. Arnold1, D. Hasenclever1, M. Löﬄer2, C. Piet1, R. Siebert2.
1Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian Albrecht University Kiel, Kiel, Germany, 2Institute of Medical Informatics, Statistics and Epidemiology (IMSE), University Leipzig, Leipzig, Germany, 3Medical Clinic II, Clinic and Polyclinic, University of Schleswig-Holstein Campus Kiel, Kiel, Germany, 4Institute of Pathology, University Hospital Schleswig-Holstein Campus Kiel/Christian Albrecht University Kiel, Kiel, Germany, 5Institute of Cell Biology (Cancer Research), University Duisburg-Essen, Essen, Germany, 6Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.

Follicular Lymphomas (FLs) are germinal center-derived B-cell lymphomas which in the vast majority of cases carry a t(14;18)(q32;q21). This translocation juxtaposes the enhancers of the immunoglobulin heavy chain (IGH) locus at 14q32 to the BCL2 gene at 18q11.2. Although crucial in the initiation of the malignant process, the t(14;18) translocation alone is not sufficient to drive lymphomagenesis. As a prerequisite to model the pathogenesis of FL from initiation to disease progression we here investigated the clonal evolution in t(14;18) positive FLs. To this end, we performed morphologic, immunohistochemical, interphase cytogenetic, mutational and epigenetic studies in pairs of initial and relapsed FL tumor biopsies within the framework of the BMBF-funded Haematolys Systems Biology Network. We studied genomic copy number changes using SNP 6.0-Chips, chromosomal translocations with fluorescent in situ hybridization (FISH), mutations of immunoglobulin (IG) and non-IG genes via cloning and sequencing and additionally next generation sequencing as well as DNA-methylation by 27K BeadArrays. In integrated analysis of the first 16 tumor pairs obtained after an interval of between 12 and 101 months provide evidence for different modes of lymphoma progression. In particular, phylogenetic trees derived from mutational and cytogenetic studies意外, differ in different ways of branching which correlated with patterns of differential DNA methylation. Our findings suggest that genetic and epigenetic changes might interact in the pathogenesis and evolution of t(14;18)-positive FLs.

P06.099 Abnormal methylation of tumor-related genes in gastric carcinomas and their adjacent nontumor areas.
N. Chekunova1, I. Bykov1, T. Kchorobrich2, M. Nemtsova1, L.M. Schenck6
1First Moscow State Medical University, Moscow, Russian Federation.

Gastric cancer (GC) is the second leading cause of cancer death and the fourth most common malignant tumor in the world. GC develops through the accumulation of genetic and epigenetic alterations. Epigenetic silencing of tumor-related genes, due to hypermethylation of the CpG sites in the promoter regions, has emerged as one of the main genetic alterations in cancer development.
We examined 106 frozen gastric carcinoma tissues and their adjacent non-tumor areas for CpG-island hypermethylation in 5 tumor-related genes (CDH1, RASSF1A, MLH1, N33, DAPK) by methyl-sensitive PCR. Samples for detecting hypermethylation in the nontumor tissues were located no farther than 4 cm from tumors. Hypermethylation of E-cadherin, N33 and DAPK (61%, 66% and 48%) was detected more frequently than that of RASSF1A and hMLH1 (25% and 20%) in carcinoma tissues. Genes CDH1, N33, DAPK were methylated both in tumor tissues and in the adjacent nontumor areas. Hypermethylation of RASSF1A, MLH1 were detected in gastric carcinomas only.

The current study shows that hypermethylation of multiple tumor-related genes is detected frequently in gastric carcinoma as well as in adjacent normal tissues. Our findings suggest that a mechanism leading to CpG-island methylation is likely to be involved in the early gastric carcinogenesis process, by establishing field carcinization in gastric mucosa.

P06.100
CpG-island hypermethylation in 5 tumor-related genes (CDH1, RASSF1A, MLH1, N33, DAPK) as diagnostic and prognostic biomarkers for gastric cancer.

A. Dlouhá, I. Byvaličová, T. Schorerová, M. Nemčowa; 1M. Sechenov First Moscow State Medical University, Moscow, Russian Federation.

Promoter hypermethylation of tumor suppression genes is a central mechanism for epigenetic inactivation and silencing of these genes in cancer cells. Analyses of the promoter hypermethylation patterns in different genes have identified specific alterations that may serve as useful diagnostic and prognostic biomarkers. We investigated the clinical and prognostic importance of CpG-island hypermethylation in 5 tumor-related genes (CDH1, RASSF1A, MLH1, N33, DAPK) for gastric cancer patients. We examined abnormal methylation and methylation index (MI) in 106 gastric cancer patients. Methylation index (MI) was defined as the ratio between the numbers of methylated genes to total number of examined genes in each sample. Statistical significance was evaluated using the Mann Whitney U-test.

There was a significant difference in the frequency of hypermethylation of these genes among different clinical groups of patients. Abnormal methylation of CDH1 was detected frequently in gastric cancer and metastasis to lymph nodes (p < 0.05). Abnormal methylation of CDH1 is specifically associated with diffuse-type GC (p < 0.05). Abnormal methylation of DAPK gene, in contrast, is a marker of favorable prognosis, being more frequently methylated in non-metastatic gastric carcinomas (p < 0.05). There was no significant difference between groups of patients with IM ≥ 0.5 and IM < 0.5.

The use of molecular genetic markers, such as promoter hypermethylation of tumor suppression genes, may be an additional factor of the diagnosis and prognosis for gastric cancer.

P06.101
Genomic rearrangements in Slovak BRCA1/2 families: rare deletion of BRCA1 gene represents a potential founder mutation

M. Koncenvy, V. Vranovček, R. Zavadová, Z. Bartovcová
1Department of Clinical Genetics, St. Elisabeth Cancer Institute, Bratislava, Slovakia, 2Laboratory of Molecular Cytogenetics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.

Germline mutations in BRCA1 and BRCA2 genes account for a major proportion of hereditary breast and ovarian cancer cases. Most of these mutations consist of point mutations: deletions, insertions, nonsense or missense mutations, and splice variants, however an increasing number of large genomic rearrangements have been identified. In Slovak HBOC families large genomic rearrangements are responsible for approximately 10% of BRCA1/2 positive families.

Genomic BRCA1, BRCA2 and CHEK2 rearrangements were analysed by MLPA (Multiplex Ligation-Dependent Probe Amplification) and in some cases by PheXamp (DNA Quantitative Multiplex Amplification System by Prestagen). The complete deletion of BRCA1 gene was closer characterized by special BRCA1 region MLPA kit and oligonucleotide array based comparative genomic hybridization (aCGH).

Large genomic rearrangements were identified altogether in 5 families, while no LGR was indentified in BRCA2 gene, one deletion of exons 9 and 10 was identified in CHEK2 gene and two different deletions were detected in BRCA1 gene. Deletion of exons 21 and 22 of BRCA1 was previously described in Czech HBOC population and was detected in one family. Complete deletion of BRCA1 gene was previously reported in two Spanish and one German HBOC family and was identified in 3 Slovak families. This deletion was further characterized; however exact breakpoints have not been detected yet.

We report the spectrum and frequency of detected genomic rearrangements of BRCA1, BRCA2 and CHEK2 gene and also the potential founder origin of rare complete BRCA1 deletion in Slovak HBOC families.

Array-CGH supported by grant IGA MZ NT110894/2010

P06.102
Mutation analysis of cKit and PDGFRα genes in GIST patients from Slovakia

G. Minová1,2, Z. Laszbove1, T. Smer1, T. Burianová1, P. Szepe2, V. Buzalkova3, D. Porubský1, J. Suforia2, L. Plank1
1Comenius University in Bratislava Faculty of Medicine, Bratislava, Slovakia, 2Genoton, Ltd., Bratislava, Slovakia, 3Comenius University in Bratislava Jessenius Faculty of Medicine, Martin, Slovakia;

Gastrointestinal stromal tumors (GIST) represent most common mesenchymal neoplasms. In 1998 activating mutations in gene coding c-kit tyrosine kinase (KIT) were identified to be present in most of GIST patients. Later on mutations in other tyrosine kinase - PDGFRα (PDGFRα) were identified as causative in GISTs. Mutation analysis of KIT and PDGFRα could be used in GIST therapy decision and in clinical prognosis of GISTs, therefore KIT and PDGFRα mutation analysis is currently a predictively important step in diagnostic protocol with its both prognostic and predictive consequences.

In our study KIT and PDGFRα mutation status was analyzed during differential diagnosis protocol applied to GIST biopsy material in Slovakia. We have performed mutation analysis of most commonly mutated exons in KIT (9, 11, 13, 17) and PDGFRα (12, 14, 16) genes in patients and combined the results for further most important interpretation.

Totally 278 GIST suspect patients have been screened for mutations in analyzed exons of KIT and PDGFRα. According to information from other publications as well as in silico analysis with PolyPhen-2 predictor 233 patients have been identified with GIST causal mutation. Of those most prevalent mutations were deletions present in KIT exon 11 with proportion of 41.26%. The most frequent single mutation was KIT exon 9 p. 503-504_dup2 with proportion 9.44%. Genotype-phenotype correlation analysis reveal the statistically significant association between intestinal localization of tumors and presence of KIT exon 9 p. 503-504_dup2 mutation (p<0.001) and gastric localization of tumors and presence of PDGFRα exon 18 p. D842V mutation (p=0.021).

P06.103
Expression analysis of KIT gene splice variants Kit+ and KitA+ in gastrointestinal stromal tumors.

A. V. Gaponova1, T. Kereka1, L. Zavalishina1, Y. Andreeva1, G. Frank1,2
1Herzen Moscow Oncological Research Institute, Moscow, Russian Federation, 2Russian State Medical University, Moscow, Russian Federation.

Gastrointestinal stromal tumors are the most common mesenchymal tumors of the gastrointestinal tract. 5% of GISTs are caused by oncogenic mutations in PDGFRα gene, 60-89% by mutations in KIT gene. Exon 10 KIT pre-mRNA contains splice site. Alternative splicing results in the presence of two mRNAs KIT isoforms: Kit+ and KitA+, containing an in-frame GNNK deletion.

We investigated mutational status of KIT and PDGFRα genes and Kit+/KitA+ mRNA isoforms expression from 25 GIST patients. Analysis of mutations in KIT exons 9, 11 and PDGFRα exon 18 was conducted by PCR following by sequencing. cDNA from normal testicle tissue was used as control. Isoform expression analysis was performed by RT-PCR.

We observed mutations in 21/25 (84%) tumors (KIT exon 9 - 8%, KIT exon 11 - 52%, PDGFRα exon 18 - 20%). Kit+ expression is dominate over KitA+ expression in 21 samples, 2 samples demonstrate equal expression of both isoforms, only Kit+ expression was detected in 2 samples. It’s interesting that equal expression of both isoforms or only Kit+ expression are detected in specimens with KIT exon 9 and PDGFRα exon 18 mutations only. It is known that these mutations are connected with unfavourable prognosis and low response to Gleevec. No correlation was observed between expression level of isoforms and intensity of IHC staining of c-kit.

Our data suggests the possible correlation between the isoforms expression and the mutational status of GISTs. Further investigation may be helpful for the isoform role in GIST development and tumor response to target therapy.
Cisplatin induces apoptosis in U87MG and A172 glioblastoma cell lines via up regulation of bax gene and down regulation of bcl-2 gene

M. S. Tayhan1, A. Abkerekhiadeh2, R. Mahdian3, A. Rezaei4, Ebrahimzadeh Vesal2
1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran, 2Pilot Biotechnology department, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran, 3Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran, 4Virology department, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran, 5Department of Biology, Zanghan Branch, Azad University of Zanjan, Islamic Republic of Iran.

Cancer cell apoptosis can be induced by Cis-diaminedichloroplatinum II (cisplatin), an efficient anticancer agent. bcl-2 and bax are members of the bcl-2 family that play key roles in the regulation of apoptosis. The ratio between bax and bcl-2 often determines whether a cell will live or die. In this study, U87MG and A172 cells were treated with various concentrations of cisplatin for different times (24, 48 and 72 h). Then, cell viability was assessed using MTT assay and IC50 was determined. The two glioma cell lines were treated with IC50 dose of cisplatin at 48 h for different times (24, 48 and 72 h). DNA was extracted and cDNA was synthesized. Quantification of bcl-2 and bax genes expression compared to β-actin gene was analyzed using real-time PCR. cDNA expression of bcl-2 and bax was increased with increased cisplatin concentration. The cisplatin is a useful and effective agent for the treatment of glioblastoma multiforme.

Molecular alterations of EGFR and PTEN genes in primary glioblastoma: associations with prognostic factors

J. Rodriguez-Heinzerling1, I. Rodriguez-Garcia2, R. Garcia-Valiente1, J. Gonzalez-Velore1, A. Santos-Briz1, J. Gomez-Moreta1, J. Garcia5, R. Gonzalez-Sarmiento5
1Medical Molecular Unit, Department of University of Salamanca, Salamanca, Spain, 2Department of Oncology, University Hospital of Salamanca, Salamanca, Spain, 3IBUSG Center for Research (USAL-CIG), Salamanca, Spain, 4Department of Anatomopathology, University Hospital of Salamanca, Salamanca, Spain, 5Department of Neurosurgery, University Hospital of Salamanca, Salamanca, Spain.

EGFR is frequently amplified, overexpressed or mutated in glioblastoma, the most common and devastating malignant brain tumor. Commonly lost in these tumors is also PTEN, an inhibitor of the PI3K signaling pathway activated by EGFR.

In this study, we aimed to characterize the molecular alterations of EGFR and PTEN in 60 patients diagnosed with primary glioblastoma. We analyzed mutational status of PTEN and EGFR tyrosine kinase domain; we evaluated EGFR amplification and PTEN deletion by FISH and we determined EGFRvIII mutational status in these tumors is also PTEN, an inhibitor of the PI3K signaling pathway activated by EGFR.

In these tumors is also PTEN, an inhibitor of the PI3K signaling pathway activated by EGFR.

Finally, we investigated the prognostic impact of these alterations in patients with glioblastoma multiforme. We are currently analyzing the expression data which will also be presented. Taken together, multifocal GBM provide an excellent model for investigating tumor progression and might help distinguishing between driver and passenger alterations in GBM.

High Frequency of Mutations in the PIK3CA Gene Helical and Kinase Coding Regions in a Group of Iranian Patients with High Grade Glioblastomas: Five Novel Mutations

P. Derakhshandeh-Peykar1, I. Alivi2, A. Hosseinejada2, R. Routensstraus2, R. Ebrahimbazadeh Vase1, A. Doriani2
1Medizinisch Genetischen Zentrum (MGZ), Munich, Germany, 2Tehran University of Medical Sciences (TUMS), Tehran, Islamic Republic of Iran.

Glioblastoma multiforme (GBM) is the most common and malignant type of brain tumor in adults with an average survival time of less than 12 months and targeted therapies are not yet available. Therefore, we investigated different foci in multifocal GBM by an integrative approach in order to identify markers of tumor initiation and progression as well as potential therapeutic targets. We combined high resolution array CGH and expression arrays on frozen tumor tissue from 11 tumors for karyotyping (SKY) on corresponding primary cell cultures. Moreover, PTEN Sanger sequencing was performed. Array CGH-analysis detected multiple aberrations in the tumors investigated. Additionally, SKY-analysis revealed multiple translocations including complex rearrangements. We found that different tumor foci derived from the same patients shared the majority of aberrations detected, indicating that these aberrations had probably emerged early in tumorigenesis. Interestingly however, some of the aberrations differed between the tumor foci from the same patient and thus must have occurred later in tumor development. These observations support the hypothesis that different tumor foci in multifocal GBM are of monoclonal origin and then develop independently of each other by clonal evolution. In accordance with this hypothesis, some of the tumor foci from the same patient shared the same PTEN mutation whereas others displayed different PTEN mutations. We are currently analyzing the expression data which will also be presented. Taken together, multifocal GBM provide an excellent model for investigating tumor progression and might help distinguishing between driver and passenger alterations in GBM.
P06.109

Genetic Analysis of Long-Term Survivors with High-Grade Gliomas

F. Luque, C. Martín, J. Francisco, C. Albuquerque, S. Esteves, A. Azedo, D. Salgado, L. Costa, T. Pimentel, J. Lopez-Branquier, M. Moure-Nunes, C. Farias, M. Santos, J. Lobato Antunes, J. Pimentel, P. Castanho, M. Mafra; 1Ufipm-Portuguese Cancer Institute, Lisbon, Portugal, 2Clinical Cancer Research - Portuguese Cancer Institute, Lisbon, Portugal, 3Neurology Department - Portuguese Cancer Institute, Lisbon, Portugal, 4Neurosurgery Department - Hospital de Santa Maria, Lisbon, Portugal, 5Neuropathology Department - Hospital de Santa Maria, Lisbon, Portugal, 6Neurosurgery Department - Hospital de Sjós, Lisbon, Portugal, 7Neuropathology Department - Hospital de Sjós, Lisbon, Portugal.

Background: High-grade gliomas have poor prognosis. Only 3-5% survive more than five years being referred as long-term survivors. Factors determining this outcome are largely unknown.

Aim: Identify specific genetic parameters that might be associated to long-term survival.

Methods: Evaluation of genomic imbalances by chromosomal CGH and of MGMT and MMR genes methylation levels (% by MLPA analysis in 3 groups of patients. Group 1: 13 long-term survivors; Group 2: 17 patients with an overall survival (OS)≤5 years and MGMT≥25%; Group 3: 29 patients with OS<5years and MGMT<25%. Statistical analysis was performed using Mann-Whitney and Fisher’s Exact tests with p-value adjustment for multiple tests (Bonferroni).

Results: Multiple chromosomal imbalances were observed in all groups being gains at 7p/q regions the most frequent alteration. None of the long-term survivors had 7p12 (EGFR) amplifications and loss of 10q23 (PTEN) region was statistically more frequent in Group 1 vs. 88.7% and 86.2% in groups 2 and 3. MS-MLPA analysis revealed that MGMT and 4 of the MMR genes were significantly more methylated in the long-term survivors than in the others. Accordingly for groups 1, 2 and 3 mean methylation levels were respectively for MGMT (70.6%; 54.1%; 8.6%); MSH2 (6.8%; 0.8%; 0.8%); MSH6 (25.3%; 22.4%; 4.7%); PMS2 (24.7%; 5.5%; 2.2%) and MLH3 (56.5%; 11.2%; 3.1%).

Conclusions: Our data underlies that long-term survival is associated to an absence of 7p12 (EGFR) amplification, infrequent 10q23 (PTEN) loss and higher levels of MGMT; MSH2, MSH6, PMS2 and MLH3 methylation.

P06.110

Association of different ovarian tumor types in a patient with Gorlin Syndrome

G. Pastorino, D. Santini, L. Pascual, V. Scaglione, M.专业人士 F.; 1Institute of Cell and Molecular Pathology, Hannover, Germany, 2Institute of Pathology, Hannover, Germany, 3Department of Gastroenterology, Hepatology and Endocrinology, Hannover, Germany, 4Institute of Pathology, Hannover, Germany.

Background & Aims: Histone deacetylation represents an important epigenetic modification in cancer development and is responsible for chromatin remodelling. In this study, we aimed to identify microRNAs affected by histone deacetylation and to understand functional consequences. METhODS: HCC cell lines and immortalized liver cell lines were treated with the histone deacetylase inhibitors TSA. Differentially expressed microRNAs and miRNAs were identified using miRNA and miRNA expression profiling. Findings were validated by sRNA mediated silencing of DACI-3, transfection of mir-449 into a HCC cell line, Western blotting and by luciferase reporter assays. RESULTS: Here we show that DACI-3 is consistently up-regulated in primary HCC. miRNA profiling identified hsa-mir-449 to be significantly up-regulated after HDAC inhibition. c-MET encoding the receptor tyrosine kinase for hepatocyte growth factor (HGF) is a putative target gene of mir-449. Indeed, HDAC inhibition and mir-449 transfection resulted in reduced expression of c-MET. Increased apoptosis and decreased proliferation after histone deacetylation and mir-449 upregulation confirmed the mir-449 tumor suppressive role. Mir-449 was found to bind directly to c-MET. Im-
portantly, primary human HCC showed reduced expression of mir-449 and increased expression of c-MET. CONCLUSIONS: This work opens up new avenues for targeted therapies of HCC, either via treatment with histone deacetylase inhibitors or, possibly by direct transfer of specific miRNA-449.

P06.114 Detection of EGFR expression levels in tissues of head and neck cancer patients and cell lines
A. Koleh, M. B. K. K., E. K. T., W. Aceri, B. Koeler, K. A. Tzarouki; 1University of Selcuk, Selcuklu Medical Faculty, Department of Medical Genetics, Konya, Turkey; 2University of Selcuk, Selcuklu Medical Faculty, Department of Otalaryngology, Konya, Turkey.

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and includes epithelial malignancies of the oral cavity, pharynx, larynx and salivary glands. Epidermal growth factor receptor (EGFR) is involved in tumor development and is highly expressed in head and neck squamous cell carcinomas. EGFR is a 170-kDa transmembrane glycoprotein with an extracellular ligand-binding and a cytoplasmic domain with intrinsic tyrosine kinase activity. EGFR overexpression has been observed in both premalignant lesions and malignant head and neck tumors. Even though there are several studies which are analysing the expression of EGFR in malignant tumors, we lack understanding about their expression and activation in adjacent normal tissue from head and neck cancer patients. Therefore, we have investigated the differential expression of EGFR a) in tumor tissue b) in adjacent normal tissue c) blood tissue in head and neck cancer patients and d) SCC-MT1 and USC-HN2 cell lines by using RT-PCR. At tumor and adjacent normal tissues, the amount of EGFR mRNA wasn’t different than each other. Also, there weren’t any EGFR mRNA levels in blood tissues. This findings are shown that expressions of the other variations of EGFR also be effective on head and neck cancers.

P06.115 Polymorphism of GSTT1, GSM1 and GSTP1 genes investigated in patients with head and neck squamous cell carcinoma
A. Russo, P. R. Francelini, A. M. P. Alleman, A. S. L. Galbiatti, L. S. Raposo, G. D. Ferreira, E. C. Pavareno, E. M. Goloni-Bertollo; São José do Rio Preto Medical School, São José do Rio Preto, Brazil.

Variations of activation and detoxification of chemical compounds in the xenobiotics metabolism are involved in head and neck tumorigenesis, even as polymorphisms in genes of the glutathione S-transferase superfamily, which act in phase II of this metabolic pathway. Aim: To investigate the A313G and C341T GSTP1 polymorphisms, GSTT1 and GSM1 null genotype in patients with head and neck cancer and compare with subjects with no history of cancer to evaluate the association between these polymorphisms and the risk factors (smoking and drinking) and the histopathologic characteristics of the tumor. Methods: We included 775 individuals, 261 patients and 514 controls. Molecular analysis was performed by PCR-RFLP. For statistical analysis we used the chi-square and multiple logistic regression. Results: The significant results with p<0.05 showed that age ≥48 years, smoking and drinking and the presence of A313G GSTP1 polymorphism were predictors for the development of cancer of the head and neck. In individuals with the GSTM1 null genotype and age ≥48 years; the A313G GSTP1 null genotype and primary anatomical sites pharynx and larynx are associated with increased chances for developing this disease.

P06.116 Deep Sequencing of Hepatitis B Virus in Hepatocellular Carcinoma Patients

Chronic infection by Hepatitis B Virus (HBV) is one of the most aetiologically associated risk factor for the development of hepatocellular carcinoma (HCC). HCC is the 4th leading cause of cancer death globally. Here, we employ novel enrichment and pooling strategy coupled with the next generation state-of-the-art FLX deep sequencing to comprehensively characterize HBV in 48 HCC patients. Our data suggest preferential integration of HBV into genic regions and many are predicted to alter gene regulation. Notably, integration of HBV into tumor tissues is less random than integration into the adjacent non-tumorous tissues. In tumor tissues, there is preferential integration of HBV into selected chromosomes. Within the HBV genome, the preferred region involved in integration is at the 3' end of the HBX gene and the 5' of the precore/core protein. The 3' end of the HBX is often deleted upon integration. The most common type of chimeric transcript observed is the HBe-human transcripts which can be expressed. This study represents a comprehensive characterization of HBV in HCC patients at the genetic level which may facilitate our understanding of the potential role of HBV in HCC development.

P06.117 Functional analysis of 30 putative BRCA1 splicing mutations in German families with hereditary breast and ovarian cancer
J. Hauke1, A. A. Becker2, S. Engert1, J. Köhler3, N. Arnold1, E. Hahnem1, A. Meindl3, R. K. Schmidtke1, B. Wappenschmidt1; 1Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany, 2Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany, 3Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany, 4Department of Gynaecology and Obstetrics, Klinikum rechts der Isar at the Technical University, Munich, Germany, 5Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität Kiel, Kiel, Germany.

Since 1997, more than 4500 families fulfilling the criteria for hereditary breast and/or ovarian cancer were screened for BRCA1 and BRCA2 mutations at the German consortium of hereditary breast and ovarian cancer (GH-HBOC) centres Cologne, Munich and Kiel. More than 1200 different BRCA1 mutations have been described as disease-causing. Variants disrupting invariants and exons are generally considered as clinically significant. However, numerous intronic and exonic variants outside invariant splice sites with uncertain affect on BRCA1 pre-mRNA processing have been detected. We characterized 30 distinct BRCA1 variants, which have not been sufficiently described before on transcript level, by quantitative PCR and sequencing using mRNA extracted from blood lymphocytes. 13 variants disrupt invariant splice sites, resulting in exon skipping and/or activation of cryptic splice sites. Experimental analysis of more distant intronic or exonic variants is mandatory and can be supported by in silico analyses. Ten intronic mutations were tested using the Human Splicing Finder prediction algorithm and analyzed for aberrant splicing. Four mutations causing splice defects while the remaining ones were neutral, which was in line with in silico predictions. Interestingly, we identified 5 out of 7 exonic variants analyzed affecting BRCA1 pre-mRNA processing (silent: c.710C>T, nonsense: c.4797A>G, c.4797A>G, c.5153G>C, c.5527C>G). Those variants were located close (≤3bp) to the respective intron/exon borders, highlighting the importance of splice analysis even in silent mutations. In conclusion, our results contribute to the recent knowledge of deleterious BRCA1 splicing mutations. The clinical consequence of mutations with only minor effects on alternative splicing remains to be explored.

P06.118 Mutation screening of RAD51D in non-BRCA breast/ovarian cancer families from Spain.
L. Mass4, R. Moreno1, N. Gadea4, N. Baschi, S. Bonache1, T. Calde2, P. Pérez-Segura1, G. Gutiérrez-Espinosa1
1Hospital Vall d’Hebron, Barcelona, Spain, 2Vall d’Hebron Institute of Oncology (VHI), Barcelona, Spain, 3Laboratorio de Oncología Molecular, Hospital Clínico San Carlos. Instituto de Investigación Sanitaria del Hospital San Carlos (IDISSC), Madrid, Spain, 4Medical Oncology Department, University Hospital Vall d’Hebron, Barcelona, Spain, 5Vall d’Hebron Institute of Research (VHIR), Barcelona, Spain, 6Servicio de Oncología Médica, Hospital Clínico San Carlos. Instituto de Investigación Sanitaria del Hospital San Carlos (IDISSC), Madrid, Spain.

Introduction: Mutations in the BRCA1 and BRCA2 genes are involved in approximately 25% of hereditary breast/ovarian cancer families and predisposition to the syndrome may be attributed to mutations in genes of moderate risk. Recently, germ line mutations in RAD51D were identified in families with breast and ovarian cancer cases. Objectives: We aimed to determine the prevalence of germ line RAD51D mutations in Spanish breast/ovarian cancer families previously found to be negative for BRCA1/BRCA2 mutations.

Methods: We performed mutational analysis in 289 index patients: 144 from breast cancer families and 123 from families with breast and ovarian cancer cases. Mutation detection was performed with high resolution melting curve analysis (HRM) or Sanger sequencing, and MLPA for large rearrangements.

www.eshg.org
P06.119

HIWI as a prognostic marker for early stages of colorectal cancer

M. Moghbehi1, M. M. Forghanifard1, R. Raeisossadati1, M. R. Abbasszadegan1.

1Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Islamic Republic of Iran.

Dysregulation of self-renewal pathways is likely a requirement for cancer development. HIWI proteins and their interaction with priRNAs have indicated their key function in stem cell development. Although HIWI overexpression has been observed in several cancers, the relationship between HIWI and colorectal cancer (CRC) is unclear. In this study, we assessed the HIWI mRNA expression in 38 CRC patients (20Male/18Female, Mean age 56) by comparative real-time PCR. Overexpression of HIWI mRNA transcripts observed in 35% (13/38) of patients. There was not any significant correlation between mRNA expression and patients’ survival tumor size and location. However, it was observed that the stage of tumor has a significant correlation with HIWI expression, in which the hiwi overexpression prohibits the tumor extension toward the higher stages (P<0.034). Furthermore, significant correlations were observed between overexpression of either HIWI and self-renewal marker SALL4 (p=0.002) or HIWI and cancer testis antigen DPPA2 (p=0.019). Few target molecules have been identified that enable the progression of colorectal cancer with a high sensitivity and specificity, especially in the early clinical stages of cancer. This report emphasizes the importance of HIWI as a proper candidate for use in the prognosis of colorectal cancer in the early stages, and represents a complex network between HIWI and other self-renewal markers such as Dppa2 and Sall4 in colorectal cancer.

P06.120

Alterations of the human β defensin-1 gene in Acute Myeloid Leukemia: association with FLT3 gene

R. Kim1, N. Yu1.

1Laboratory medicine, Seoul, Korea, Republic of.

INTRODUCTION: Defensins are a family of antimicrobial peptides produced by WBCs and epithelial cells that functions in the host innate defense. Both HBD1 and HBD2 have been shown to induce the migration of immature dendritic cells (DC) and memory T cells. Fms-like tyrosine kinase-3 (FLT3) provides an important stimulus for resident DC production in vivo and indicating its importance in DC generation. We then analyzed the frequency distribution of promoter polymorphisms and determined the effect of these base changes on transcriptional activity of the HBD1 promoter and the prevalence of FLT3 mutation in patients with various AML.

METHODS: Genomic DNA was isolated from BM slide or BM aspiration with various 47 AML patients and 43 controls using QIAamp DNA kit (Qiagen, Hilden, Germany). The PCR products of hBD-1 gene were then digested by the restriction enzymes NlaIV, Hpal, and ScrF1, respectively.

RESULTS: AML patients had significantly different mutation frequency of at position -44 and -20 in the 5’-UTR (p=0.000, p=0.05, respectively). The probability of FLT3 mutation was 9% for patients with AML with the mutation of FLT3/ITD and the wild type of FLT3/ITD.

CONCLUSIONS: These data suggest that HBD-1 is a potential tumor suppressor gene for AML. Promotor point mutations may responsible for AML-specific loss of HBD-1 expression.

P06.121

Human Papilloma Virus infection and KRAS mutations in lung squamous cell carcinoma patients from Iran

L. Emrahli Gohar1, A. Sadatnia2, A. Ghaemi1, M. K. Najibi-Kashfi1, R. Ghaemimohamadmadi1, A. Fakhrjou3, R. Ahangari3, A. Ebrahimi4, H. Kim5.

1Department of Genetic, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Islamic Republic of Iran.

Lung cancer is the leading cause of cancer death for both women and men. Non-small cell lung cancer (NSCLC) represents more than 80% of lung cancers and is sub grouped in squamous cell carcinoma (SCC), adenocarcinomas (ADC) and large cell carcinoma (LCC). SCC accounts for about 30% of all cases of patients with NSCLC. Mutations in ras oncogenes appear to play a significant role in the development of NSCLC. The role of HPV infection in the development of carcinomas was also demonstrated. The aim of this study was to determine the association between HPV infection and K-ras mutations in patients with SCC. DNA was isolated from Fifty patients with histologically confirmed SCC. HPV typing was done by Nested-PCR and direct sequencing. High risk HPV was detected in 9 (18%) patients. HPV-18 was the most frequent type in the cases. To investigate gene- virus interactions, DNA from the 9 HPV positive and 9 HPV negative patients, as controls, were subjected to mutation analysis in exons 2 and 3 of the K-ras gene using direct sequencing. Among the two K-ras exons tested, no mutation was found in two groups. Our overall findings demonstrate that the HPV infection has a significant impact on NSCLC. However, due to the small number of patients, our finding could not demonstrate a positive association between HPV infection and K-ras mutation in patients with lung SCC. Our results are preliminary and larger cohorts are needed for better understanding the contribution of genetic alternations and HPV infection in lung SCC.

P06.122

Comparison of Methylation-Specific qPCR (MS-qPCR) and pyrosequencing for the analysis of p16/INK4a in lymph node samples

L. De Chiaro1, V. Leiro-Fernández1, M. Botana-Rial2, C. Represas-Represas1, A. Fernández-Villar1, D. Valverde1.

1Universidad de Vigo. Departamento de Bioquimica, Genética e Immunología, Vigo, Spain. 2Complejo Hospitalario Universitario de Vigo. Servicio de Neumología, Vigo, Spain.

Introduction: Promoter hypermethylation of tumor suppressor gene p16/INK-4a has been found in a wide variety of neoplasia, suggesting in some cases as utility as diagnostic or prognostic tool. The aim of this study was to compare two methods (MS-qPCR and pyrosequencing) for the quantitative methylation analysis of this gene.

Methods: 62 patients with confirmed diagnosis of non-small cell lung cancer were included (56.9% with ganglionar metastasis). DNA from lymph nodes were extracted and sodium bisulfite modification, required for both techniques, was accomplished. The same portion of CpG island containing 11 CpG sites was independently analyzed using both techniques. For the MS-qPCR, pre-amplification with universal primers followed by TaqMan-based qPCR with methylation-specific primers and probe was used. The relative methylation percent was estimated based on a standard curve build with variable proportions of fully-methylated/unmethylated control and using MGY01 to normalize the DNA input. On the other hand, templates for pyrosequencing were obtained amplifying bisulfite-treated DNA with biotinylated primers. Methylation percent was calculated by averaging across all CpG sites interrogated.

Results: Differences in the methylation percent were found between the two techniques, resulting in different cut-offs for MS-qPCR and pyrosequencing (2.25 and 9.95 methylation percent, respectively). According to MS-qPCR p16/INK4a promoter was considered hypermethylated in 33.33% of the cases with metastasis, and in 24.24% for pyrosequencing.

Conclusion: Pyrosequencing and MS-qPCR show good linearity for known methylation percent. In this cohort positive predictive value was 100% for MS-qPCR and pyrosequencing.

P06.123

Inflammatory Response Evaluation in EGFR Mutation Negative Lung Adenocarcinomas

M. C. Stoica1, A. C. M. Grigore2, F. L. Cionca, G. Cardos2, "Victor Babes" National Institute of Pathology, Bucharest, Romania.

Activation of the epidermal growth factor receptor (EGFR) constitutes a major molecular pathway involved in the carcinogenesis of nonsmall cell lung carcinomas. In EGFR mutation negative cases, K-ras activation represents an alternative molecular pathway responsible for primary resistance to tyrosine kinase inhibitors. We investigated a number of 34 randomly selected cases of advanced lung adenocarcinomas from patients with a long history of
of active smoking. The DNA samples extracted from formalin fixed, paraffin embedded tumoral material were initially tested for EGFR mutations by PCR and sequencing of exons 18, 19 and 21. Since the studied cases showed no mutations on any of the EGFR exons, they were subsequently tested for K-ras mutations in codons 12 and 13 using the PCR-RFLP method. K-ras codon 12 mutation was identified in 12 lung adenocarcinomas (35.29%). Considering the worse prognosis in K-ras positive cases, we further assessed the tumoral associated inflammatory response compared to EGFR-negative, K-ras negative patients. The inflammatory infiltrate was significantly increased in K-ras negative tumors, opposed to K-ras positive cases where inflammatory cells showed reduced counts. Our findings indicate a medium negative correlation (r = 0.25) between K-ras mutational status and the inflammatory response in EGFR-negative advanced lung adenocarcinomas, which was statistically relevant (p = 0.001). These findings indicate a possible impact of K-ras mutation on tumoral biology in diminishing the level of inflammation elicited by the tumor, favouring cancer progression and lowering prognosis.

P06.124

Identification of candidate genes involved in maintaining Intestinal Cajal Cells and Intestinal Cajal-like Cells in mutant mice G. Cardés, A.M. Nicolau, M. Cossarizza,1, V. Victor Babes National Institute of Pathology, Bucharest, Romania, 1SC Agilrom Scientific SRL, Bucharest, Romania.

Intestinal Cajal Cells (ICC) are involved in gastro-digestive tract motility and neurotransmission, but also in gastro-intestinal tumors (GIST) pathogenesis. Other extra-digestive organs (gallbladder, heart, uterus, etc) have been shown to contain Intestinal Cajal-like Cells (ICLC), whose function is yet unknown. Both cell types express the Kit protein, a tyrosine-kinase receptor with essential role in maintaining these phenotypes. Our study was focused on comparative investigation of gene expression in normal and mutant mice by DNA microarray, in order to contribute in understanding the physiology of ICC and ICLC.

Total RNA was extracted by RNeasy Mini Kit (Qiagen) from heart and gall bladder of control and Kit mutant mice (WBB6F1/J-Ki-Wt/Kit-w/-/- strain) and analyzed by Bioanalyzer (Agilent Technologies). DNA microarrays from Whole Mouse Genome Microarray Kit (Agilent Technologies) hybridized and scanned by Agilent DNA Microarray Scanner were analyzed by Feature Extraction5.1.1. and GeneSpring GX10 Software (Agilent Technologies).

In the myocardium, three genes demonstrated differential expression by ≥ 2 fold (p < 0.05) in mutant versus control mice and may be involved in maintaining ICC and ICLC phenotypes: the Timp4 and Dnaja1 genes down-regulated and the Serpinb2 gene up-regulated.

Of the 22 genes different expressed in the gallbladder, only one was found down-regulated in mutant mice (the PYCARD gene, involved in apoptosis); some of the 21 over-expressed genes are involved in different metabolic processes: signal transduction, cell adhesion, protein synthesis (NOSS1P, ITGB3, Ctsj genes), etc.

Some of these genes may become candidate biomarkers for studying ICC, ICLC and associated pathology in humans. Financial support: PN 09.3.02.09 Project.

P06.125

1,2Center of Investigative Research, Salamanca, Spain, 1Department of Medical Oncology, Hospital Universitario de Salamanca, Salamanca, Spain

A somatic mutation in the JH2 autoinhibitory domain of the Janus kinase 2 (JAK2) tyrosine kinase have been implicated in polycythemia vera (PV), essential thrombocytosis (ET) and idiopathic myelofibrosis. The results were further confirmed by CAST PCR.

P06.126

Combined point mutations in exon 12 and 13 of KRAS oncogene in prostate carcinomas with high Gleason score F. Gillán,1 S. Atik,2 Y. Gátheker,1 D. Rúička,1 Č. Alán,1 A. Ullugaf,3 A. Cakab,4 O. Ozdemir5
1Department of Medical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia, 2Department of Urology, Faculty of Medicine, Comenius University, Bratislava, Slovakia, 3Department of Urology, Faculty of Medicine, Comenius University, Bratislava, Slovakia, 4Department of Medical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia, 5Department of Medical Genetics, Faculty of Medicine, University of Salamanca, Salamanca, Spain.

The G to T transversions in codon 12 and C to T transitions in codon 13 of KRAS proto-oncogene are predominant point mutations that occur in about 20% of different cancers in human. It was aimed to investigate the prevalence and predictive significance of KRAS mutations in patients with prostate carcinomas. In a total of 30 fresh tumoural tissue specimens we investigated in patients with prostate carcinomas of different scores (GS). All tumoral specimen were histopathologically diagnosed and genotyped for codon 12, 13 KRAS point mutations by reverse hybridisation and direct sequencing methods. KRAS mutations were found in 12 (40%) samples with 29 samples deriving from adenocarcinomas and 1 sample was small cell prostate carcinoma. In 1 (3.44%) sample codon 12 was found to be mutated and in 2 (6.8%) samples codon 13 and in 9 (31%) samples combined codon 12 and 13 were found to be mutated particularly in higher grade of tumoural tissues. Current preliminary results indicate that combined point mutations in codons 12 and 13 KRAS gene play crucial role in prostate carcinomas with high GS.

P06.128

Study of HER-1 497K polymorphism in EGFR gene in patients with laryngeal cancer J. Fernández Mateos1, E. Sánchez Tapia1, J. Gómez González1, E. del Barco Morillo3, J. Cruz Hermández1, R. González Sarmiento3
1Centro de Investigación del Cáncer, Salamanca, Spain, 2Servicio de Otorrinolaringología, Hospital Clínico de Salamanca, Salamanca, Spain, 3Servicio de Otorrinolaringología, Hospital Clínico de Salamanca, Salamanca, Spain, 4Universidad de Salamanca, Salamanca, Spain

Introduction and aim
Head and neck squamous-cell carcinoma is the sixth most frequent neoplasia worldwide and the most malignant tumour in the superior aero-di-
gestive tract. The highest rates in the whole world of laryngeal cancer are encountered in Spain, especially in men, although the number of women is rapidly increasing. 95% of laryngeal cancer is developed in men between 45 and 70 years old, with a maximum of incidence in the sixth decade. It has been suggested that in some cases it is overexpressed in the epidermoid carcinoma of the larynx, and the HER-2 497K polymorphism has been associated with a higher risk of mortality in these tumours.

In this study we have analysed the possible association between this polymorphism and the developing of laryngeal cancer.

Methods

Genomic DNA was extracted from peripheral blood leukocytes by standard techniques. We selected 65 patients from Salamanca (Spain) with cancer of the larynx and 365 healthy subjects as controls. Clinical characteristics have also been studied. The HER-1 497K polymorphism in the EGFR gene was realised by DHPLC (Denaturing High Performance Liquid Chromatography).

Statistical analysis was performed comparing the different distribution of the polymorphism in the EGFR gene in subgroups of patients and controls. Results and conclusion

No statistical differences have been shown in the distribution of the HER-1 497K polymorphism comparing cases and controls (p>0.05).

Our results do not support the hypothesis that the HER-1 497K polymorphism is associated with increased susceptibility to suffer laryngeal cancer. Supported by FIS PI 10/00219 and PI 11/00519

P06.129

In vitro sensitivity profile of Laryngeal cell carcinoma

A. L. S. Galbiatti1, H. C. Cañas1, J. A. Padovan Junior1,2, E. C. Pavarino1,2, M. Goluani-Bertolli1,2

1Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, Brazil, 2FAMERP, São José do Rio Preto - SP, Brazil.

Introduction: The research of chemosensitivity is important to screen new therapeutic agents, identify patterns of chemosensitivity for different tumor types and to identify chemotherapy regimens to patients because antineoplastics present different toxicities and side effects in different patients and tumors may exhibit resistance to chemotherapeutic. Objectives: To evaluate the sensitivity of Hep-2 cells line (Laryngeal carcinoma) to MTX chemotherapeutic in vitro in three different concentrations. Methods: Cells were plated in six-well culture plates at a density of 1 x 10⁵/well and incubated with three different concentrations 0.25 μM, 25 μM, and 75 μM of the Metrotexate for 24 hours at 37 °C. Cell Apoptosis was evaluated by double staining with fluorescein isothiocyanate (FITC) label Bcl-2 (100: sc-509) by Flow Cytometry Technique. Statistical analysis was performed by Chi square test (X2) to compare the cell viability. Correlation coefficient of Pearson (R2) between the different distributions of the chemotherapy (R² = 0.9276). Conclusions: According to the dose was increasing, the cells became more sensitive and lower resistant to the Metrotexate chemotherapeutic. The expression of RLIP76 in several types of leukemia cell lines by using quantitative PCR.

Our results suggest that the expression of RLIP76 may exhibit a differential pattern in several types of leukemia cells.

P06.130

The Expression of RLIP76 in Leukemia Cell Lines

A. Toylu1, O. Atikoaier0, A. Infonaga 'Timuraga0h0

1Abdend University School of Medicine Department of Medical Genetics, Antalya, Turkey, 2Abdend University School of Medicine Department of Haematology, Antalya, Turkey.

RLIP76 is a membrane-located protein mediating the transport of multiple molecules, including both glutathione-conjugated or lipid-oxidized metabolites and drugs. Besides this transport function, RLIP76 acts as an anti-apoptotic protein, interacting with Ras/Ral and EGF-R signaling. Studies have shown that there is an increased expression of RLIP76 in several types of cancer cells and that it plays a prominent role in drug resistance. The expression of RLIP76 in leukemia cells has also been reported, but the cell type and differentiation-related alterations are not yet known.

The aim of this study was to investigate RLIP76 expression in leukemia cells. The analysis of RLIP76 expression was performed at the mRNA level on several cell lines by using quantitative PCR. Our results suggest that the expression of RLIP76 may exhibit a differential pattern in several types of leukemia cells.
Prevalent inconsistencies in the association of the high-risk Human Papilloma Virus (HPV) infection with lung cancer were found amongst recent studies. We evaluated the frequency of HPV positivity in NSCLC in an open case control study. 50 recently diagnosed patients with squamous cell carcinoma of the lung were selected for HPV DNA extraction from paraffin-embedded blocks. HPV DNA was detected in one patient from each of the case group and the controls. In conclusion, HPV infection has a significant impact on NSCLC. Despite HPV-16 having a stronger impact, HPV-18 is more likely to cause malignant degeneration in such cancers amongst some communities. It is vital to introduce and conduct immunization schedules in health care systems to protect communities to some extent.

P06.134 Human papillomavirus DNA and abnormal p53 Tumor Suppressor Gene in lung carcinoma
H. Safarj1, E. Sakhinia1,2,3, A. Fakhraj1, R. Gharamohammadi1,2,4, A. Ebrahimi1, K. Negahd3
1Human Genetics Department, Medicine School, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; 2Tabriz Molecular Diagnostic Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; 3Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; 4Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.

A powerful relationship has been established between high-risk human papillomaviruses (HPV) and lung cancer. Inactivation of P53 is the most common genetic abnormality in lung cancer. We evaluate the frequency of HPV types and TP53 mutations in squamous cell carcinoma (SCC) of lung, among patients from the north-west of Iran. 50 Paraffin embedded blocks of lung SCC were selected for detection of HPV DNA by Nested PCR with the MY09/11 and GP5+/6+ primer sets. Then DNA sequenced for HPV typing. Equal numbers of positive and negative samples for the HPV DNA were examined for the presence of mutations in exons 5-7 of the TP53 gene by PCR and direct sequencing. 9 (18%) out of 50 samples presented the HPV DNA: eight were HPV-18 and one was HPV-6. TP53 mutations were found in 5 samples (27.7%). Of these, 4 cases showed mutations in exon 5 and one case contained a mutation in exon 7. One of HPV positive samples had a mutation in exon 5. Three of the HPV positive cases demonstrated a mutation in exon 5 and one in exon 7. The frequent mutation in exon 5 was the G to A transition (c.409C>G), and the T to A transition (c.770T>A) in exon 7. Both the inner primers. DNA was then sequenced for the determination of high-risk HPV types. Saliva samples of 94 control cancer-free subjects were collected for DNA analysis. High risk HPV was detected in 9 (18%) patients and 6 (5.3%) control subjects, which was proven to be statistically significant. HPV-18 was the most frequent type both in the cases and controls. HPV-6 DNA was detected in one patient from each of the case group and the controls. In conclusion, HPV infection has a significant impact on NSCLC. Despite HPV-16 having a stronger impact, HPV-18 is more likely to cause malignant degeneration in such cancers amongst some communities. It is vital to introduce and conduct immunization schedules in health care systems to protect communities to some extent.

P06.135 Cervical cancer as a part of Lynch Syndrome? K. Rønlund1, A. Skytte1, D. G. Crüger1, I. Bernstein2, M. Waldstrøm3,2,4
1Department of Clinical Genetics, Vejle Hospital, Vejle, Denmark; 2The Danish HNPCC Register, Department of Surgical Gastroenterology, Vidyovre Hospital, Vidyovre, Denmark; 3Department of Pathology, Vejle Hospital, Denmark; 4Department of Pathology, Vejle Hospital, Vejle, Denmark.

Background: Pedigrees from Lynch families often include cases of cervical cancer. Cervical cancer is however not defined as an extra colonic cancer in Lynch syndrome. Therefore we set out to investigate if cervical cancer could be a part of Lynch syndrome.

Materials and method: We used data from the Danish HNPCC register on women from Lynch families with in situ carcinoma in cervical tissue (CIN III) or cervical cancers. We obtained tissue samples from 20 out of 29 patients. We conducted immunohistochemical staining for MMR genes (MLH1, PMS2, MSH2 and MSH6). We used a HPV (human papillomavirus) genotyping analysis to identify infections.

Results: Among the cervical cancers 5 were adenocarcinoma and 2 were squamous cell carcinoma. There were full correlation between the mutation in the family and the loss of either MLH1 or MSH2 expression. Loss of expression of MMR genes was found in 5 of 7 (71%) cases of cervical cancer. Cervical cancer was found only in one of the 29 patients where no sample of tissue was available of HPV were detected in squamous cell carcinoma in situ. Conclusions: The results indicate a relation between the MMR mutation found in families and loss of MMR genes in cervical tumors. Our data also suggest that women with Lynch syndrome are at higher risk of developing adenocarcinomas than the background population. Loss of MMR gene expression seems to be a late event in the carcinogenesis of cervical cancer. Further research is needed to determine the precise relationship between Lynch syndrome and cervical cancer.
MCIR gene variants and Malignant Melanoma susceptibility in the Canary Islands population

1Research Unit, Hospital Universitario N/S de Candelería, Santa Cruz de Tenerife, Spain; 2Dermatology Department, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain, 3Anatomy Pathology, Hospital Universitario N/S de Candelería, Santa Cruz de Tenerife, Spain, 4Dermatology Department, Hospital Universitario N/S de Candelería, Santa Cruz de Tenerife, Spain.

Several MCIR variants are associated with increased risk of malignant melanoma (MM) in a variety of populations. The high diversity within the MCIR gene observed in populations living in higher latitudes is explained by either relaxation of selective pressure or by selection for lighter pigmentation in countries with reduced ultraviolet radiation. We aim to examine the influence of the MCIR variants (red-hair colour, RHC: D84E, R151C, R160W and Non-RHC: V60L, R163Q, T314T) on the MM risk in Caucasians and then re-strict the analysis to a well defined population (Canary Islands), adjusting for the main phenotypic pigmentation features.

Methods: 938 Caucasian individuals were genotyped for MCIR variants by SNaPshot® and direct sequencing. 447 were MM patients (350 with three generation of Canarian ancestors) and 491 were healthy control subjects (96 Canarians) from general population. The analysis was adjusted for age, sex, hair colour, eye colour, skin phototype and ancestry.

Results: Carriers of the R151C and R163Q variants were at an increased risk of melanoma (OR = 2.79 (1.59-4.90) and OR = 5.45 (2.44-12.18), respectively) in the overall cohort. We observed similar results in the Canarian sample for carriers of the R151C variant but the R163Q variant showed even a higher risk for MM (OR = 7.15; 2.38-21.52). The risk of carrying RHC variants was 3.12 (1.92-5.05) in the Caucasian population and 2.27 (1.31-3.91) in the Canarian individuals.

Conclusion: R151C and R163Q variants confer an increased risk of MM in the analysed population. Our results highlight the importance of the sample population selection in this kind of studies.

Identification of a new frameshift mutation in the MEN1 gene

M. Hedaya1, M. Hedayati2;
1RIES, Tehran, Islamic Republic of Iran.

Multiple endocrine neoplasia type 1 (MEN1) is an uncommon autosomal dominant cancer syndrome. The classical form of MEN1 is characterized by tumors of the parathyroid, pituitary, and pancreas. MEN1 is a tumor suppressor gene whose germline mutations have been reported in MEN1 syndrome. Although hyperparathyroidism in MEN1 syndrome is the most common manifestation, parathyroid carcinoma is rare. This study aimed to identify mutations in an Iranian pedigree with MEN1. In this report, we presented a male patient who was diagnosed at 44-year-old with a primary hyperparathyroidism (PIBH), parathyroid tumor, recurrent renal stones, maxilla giant cell granuloma, thymic tumor, diabetes mellitus, and develop a Cushings syndrome secondary to hyperfunction from neuroendocrine tumor. Genetic analysis revealed a novel germline frame shift mutation in exon 10 of the MEN1 gene, c.1642-1648dup. This heterozygote mutation is a duplication of seven nucleotides (GGTCCAG) which results in a premature termination codon at 558 (p.Val558fs). Three generation of his family members were also evaluated for MEN1 gene, and the same mutation was determined in one of his sons. Menin truncated protein due to the premature stop codon in MEN1 gene seems to prevent interaction with various cellular proteins, inhibiting tumor suppress activity of menin protein and increasing the potential for tumorigenesis. Finding the same mutation in a younger member of this patient’s family allows for prophylactic thymectomy and hopefully the avoidance of the malignant course seen in this patient. We suggest that in patients with ACTH-producing thymic NETS, the possibility of MEN1 should be considered.
P06.142 Evaluation of methylation pattern in promoter region of E-cadherin in Iranian Patients with Squamous Cell Carcinoma of Esophagus (SCCE)

S. Mohammad Ganji1, E. Samei, F. Rustag-Jasiri1, A. Salahshoaham-Lofj2, F. Feriedooni, S. Iran3
1Department of Microbiology, Faculty of sciences, Azad Islamic University, Ghom unit, Ghom, Islamic Republic of Iran, 2Department of Genetics., Science and Research branch, Islamic Azad University, Tehran, Islamic Republic of Iran, 3Department of tissue engineering and cell culture, National Institute for Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran, 4Department of tissue engineering and cell culture, National Institute for Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran, 5Department of Pathology, Cancer Institute, Imam Khomeini Hospitals Complex, Tehran University, Tehran, Islamic Republic of Iran, 6-Department of Genetics, Science and Research branch, Islamic Azad University, Tehran, Islamic Republic of Iran.

It has proven that E-cadherin to be widely down-regulated and tightly associated with tumor invasion and metastasis in multiple human cancer types. Recent researches have shown that aberrant methylation around gene promoter region attributes to E-cadherin silencing. However, the detailed information about this epigenetic inactivation in squamous cell carcinoma of esophagus (SCCE) is rare. For this reason, we studied for methylation at the E-cadherin gene promoters on 44 fresh tumor tissues and 19 non-tumor adjacent normal tissues, obtained from 44 patients affected by squamous cell carcinoma of esophagus in Iran. Up to now, we have done DNA extraction with phenol-chloroform method on tissue samples and the bisulfate treatment on DNAs for carrying up methylation-specific polymerase chain reaction assay (MS-PCR). MS-PCR has done with two set of specific primers for methylated and unmethylated status of E-cadherin gene promoter. Moreover, we have examined the expression of this gene by RT-PCR with two set of specific primers for methylated and unmethylated status of E-cadherin gene promoter. To make this study, we trie to synthesis the cDNA on RNAs Extracted from above tissues. Though, we have finished these experiments on most of samples, the results showed the 40% Methylation at the E-cadherin gene promoter in the tumor samples, while none of the non-tumor tissues exhibited the aberrant methylation. Also, RT-PCR experiments confirmed the expression of E-cadherin in all of non-tumor samples and unmethylated tissues. These data suggest that epigenetic silencing via aberrant methylation of the E-cadherin promoter is a common cause of inactivation of this gene in SCCE.

P06.143 Hypermethylation of TWIST1 and NID2 in tumor tissues and voided urine in urinary bladder cancer patients

Z. Vegin, S. Gunes, R. Buyakalpeelli; Ondokuz Mayis University, Samsun, Turkey.

Purpose: We aimed to investigate the methylation patterns of TWIST1 and NID2 genes in bladder cancer and assess the use of these epigenetic changes in urine for sensitive/specific detection of bladder cancer.

Method: The methylation status of 2 genes (TWIST1 and NID2) was analyzed by methylation-specific PCR (MSP) in 56 cases of urinary bladder cancer. DNA was extracted from the tumor and adjacent normal tissues, obtained from 44 patients affected by squamous cell carcinoma of esophagus in Iran. Up to now, we have done DNA extraction with phenol-chloroform method on tissue samples and the bisulfate treatment on DNAs for carrying up methylation-specific polymerase chain reaction assay (MS-PCR). MS-PCR has done with two set of specific primers for methylated and unmethylated status of E-cadherin gene promoter. Moreover, we have examined the expression of this gene by RT-PCR with two set of specific primers for methylated and unmethylated status of E-cadherin gene promoter. To make this study, we trie to synthesis the cDNA on RNAs Extracted from above tissues. Though, we have finished these experiments on most of samples, the results showed the 40% Methylation at the E-cadherin gene promoter in the tumor samples, while none of the non-tumor tissues exhibited the aberrant methylation. Also, RT-PCR experiments confirmed the expression of E-cadherin in all of non-tumor samples and unmethylated tissues. These data suggest that epigenetic silencing via aberrant methylation of the E-cadherin promoter is a common cause of inactivation of this gene in SCCE.

P06.144 MGMT promoter hypermethylation is a frequent event in glioma patients but has no prognostic value

S. Pierini, T. Garonova, G. Starcheva1, M. Lalova, M. Kamenova, A. Mitkova2, N. Velinov1, R. Kaneko1, G. Poptodorova1, V. Mitov1, N. Gabrovsky2
1Medical University of Sofia, Bulgaria, 2Academician N.N.总医院, 3Academician N.N.总医院, 4N.N.总医院, 5Academician N.N.总医院, 6N.N.总医院, 7N.N.总医院

Background: Methylation of MGMT promoter plays an important role in the sensitivity to alkylating drugs. Methylation of the promoter leads to both inactivation of the gene and increase of the tumor’s sensitivity to alkylating drugs. Methylation of the MGMT gene promoter is currently considered to be the main marker of the tumor’s sensitivity to the alkylating agent temozolomide. Deletion of 10q26.3 locus containing the MGMT gene can be an alternative mechanism of its inactivation.

Objective: To investigate the methylation pattern of MGMT and O-6-methylguanine-DNA methyltransferase (MGMT) in the tumor cells and voided urine of Iranian patients with gliomas.

Methods: A panel of microsatellite markers to detect LOH in the tumor cells was designed. This panel includes four intragenic and five flanking microsatellite polymorphisms, which have been developed and characterized. Frequency of LOH evaluated by this assay in gliomas equals 51% (18/35). In all cases the deletion size exceeded that of the MGMT gene. Thus, the deletion of the MGMT gene happens more frequently than the methylation of the gene’s promoter. Substantial frequency of the MGMT gene’s deletions calls for more detailed research as a potential marker of the gliomas sensitivity to alkylating drugs.

P06.145 Deletions of the MGMT gene region on chromosome 10q26.3 in gliomas

E. Alekseeva1, O. Babenko1, V. Zemlyakova1, E. Kuznetsova1, A. Smolkin1, E. Poznarevna1, D. Zaitseva1, V. Starichenko1
1Research Centre for Medical Genetics, Moscow, Russian Federation, 1IM. Sechenov First Moscow State Medical University, Moscow, Russian Federation, 1Academician N.N. Burdenko Main Military Clinical Hospital, Moscow, Russian Federation, 2N.N. Blochkin Russian Research Center for Oncology, Moscow, Russian Federation.

Objective: To investigate the methylation pattern of MGMT and O-6-methylguanine-DNA methyltransferase (MGMT) in the tumor cells and voided urine of Iranian patients with gliomas.

Methods: A panel of microsatellite markers to detect LOH in the tumor cells was designed. This panel includes four intragenic and five flanking microsatellite polymorphisms, which have been developed and characterized. Frequency of LOH evaluated by this assay in gliomas equals 51% (18/35). In all cases the deletion size exceeded that of the MGMT gene. Thus, the deletion of the MGMT gene happens more frequently than the methylation of the gene’s promoter. Substantial frequency of the MGMT gene’s deletions calls for more detailed research as a potential marker of the gliomas sensitivity to alkylating drugs.

P06.146 miRNA expression in two colon cancer cell lines treated with a histone deacetylase inhibitor

C. Jimenez Criudo, A. Pasaul Rodriguez, R. Gonzalez Sarmiento; Centro de Investigacion del Cancer, Salamanca, Spain.

Introduction: The presence of HDAC is necessary for the normal regulation of gene expression. Multiple studies have already revealed that inhibition of these proteins may lead to deregulation of gene expression and increase in cell proliferation. We have analyzed the effect of a histone deacetylase inhibitor (HDACi) in colon cancer cells, measuring miRNA expression in cell cultures after treatment.

Experimental design: We performed an array expression analysis of miRNA. Previously, we quantified the amount of miRNA using a commercial Small RNA kit (Agilent Technologies) allowing miRNA quantified in total RNA. Results: array expression analysis using bioinformatic programmes showed that after treatment with the histone deacetylase inhibitor, the miRNA were grouped in 7 different expression clusters. These clusters group the miRNA with a similar expression throughout the treatment.

Conclusion: Analysis of expression of these clusters will allow to check important pathways are modified for cell viability after treatment with these inhibitors.

Supported by FIS PI 10/00219
P06.148 Matrix Metalloproteinase-9 as Prognostic Marker of Cancer
D. Schweiger, J. Didziapetrenie;
Institute of Oncology, Vilnius University, Vilnius, Lithuania.
MMPs are being studied in a variety of tumor systems to ascertain their role in tumor progression. MMPs contribute in multiple ways to all stages of malignant progression, including tumor invasion, metastases and angiogenesis. The aim of this study was to investigate MMP-9 gene expression and to identify MMP-9 (-1562 C/T) gene promoter variations in breast, non-small cell lung cancer (NSCLC) patients’ blood and tumor samples, and in prostate cancer patients blood. Materials and methods: A total of 188 patients with histopathologically diagnosed breast, NSCLC or prostate cancer tumors were enrolled to the study. MMP-9 gene expression was assessed by reverse transcription-PCR method. The MMP-9 (-1562 C/T) polymorphism variants were determined by the polymerase chain reaction-based restriction fragment length polymorphism method. Results: MMP-9 expression in breast cancer patients’ blood correlated with disease stage (p=0.041) and tumor differentiation grade (p=0.057). Also a significant association (p=0.018) between clinical stage and MMP-9 polymorphism was found. MMP-9 expression and all polymorphism variants (CC, CT, TT) were detected in all NSCLC patients’ samples, but without statistical correlations. For prostate cancer patients with identified CC or CT MMP-9 polymorphism variant survival time was longer compared with those patients with TT variant (p<0.001). There were no statistical correlations with Gleason score or PSA. Conclusion: MMP-9 expression and identification of polymorphisms variants could serve as prognostic marker for breast and prostate cancer. Additional studies with larger population are warranted for NSCLC.

P06.149 Expression of MRPI and LRP in breast cancer patients: Correlation with response to chemotherapy treatment
M. Taheri1, F. Mahjoubi1, R. Oromianipour2;
1Department of Clinical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Islamic Republic of Iran, 2Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Islamic Republic of Iran, 3Institute of Cancer, Imam Khomeini Hospital, Tehran, Islamic Republic of Iran.
Background: Drug resistance is still a great obstacle to the success treatment of breast cancer. In this study we attempted to investigate the possible correlation between MRPI and LRP and clinical response in women with breast cancer.
Materials and Methods: Tumor and adjacent normal tissues from 54 breast cancer patients were assessed for the expression level of MRPI and LRP by Real Time RT-PCR.
Results: A statistically significant increase in MRPI and LRP expression level was observed when tumor tissues were compared with normal breast tissues. Furthermore, MRPI and LRP expression levels were significantly different in patients responding to chemotherapy compared to nonresponding patients.
Conclusion: Our results suggest that MRPI and LRP in human breast cancer cells may affect the clinical response to treatment and determination of MRPI and LRP (either alone or in combination) may be valuable for the prediction of the chemotherapy outcome in breast cancer patients which remains to be cleared.

P06.150 The Frequency of mtDNA Alterations of G13397A, 12308G and G10398A in Involvement of Metastasis on IRANIAN Breast Cancer Patients
M. Ghafrarpour1,2, F. Fereshedi1, N. Moazami1, M. Houchmand3,4;
1Medical genetics department, National Institute of Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran, 2Iranian Research Organization for Science and Technology(IROST), Tehran, Islamic Republic of Iran, 3Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Islamic Republic of Iran, 4Institute of Oncology, Vilnius University, Vilnius, Lithuania.
Background and aim: The role of mtDNA alteration is recognized as being in carcinogenesis. mtDNA alteration G13397A and alteration of 12308 in tRNA Leu gene have been reported in involvement in metastasis but to date there was not shown on clinical breast cancer samples as a prognosis factors. Therefore in this study we addressed the question if the mtDNA alterations of G13397A, 12308G&G10398A can play a role in promoting of tumor and leading to metastasis.
Patients and tissue specimens: 69 paired Fresh tumor and adjacent normal samples were obtained from patients with BC (31069 metastasis and 38 of 69 non metastasis) who underwent surgery for mamma mastroctomy between October 2007 and Nov 2009. No patients had received any preoperative chemotherapy and or radiotherapy. Follow-up was continued until Jan 2012.We searched for mtDNA alterations of G13397A, 12308G and G10398A were analyzed by means of PCR sequencing. Results and conclusion: The G13397A mutation was not seen for all patients including metastasis and non-metastasis. It has not been found any role for G13397A mutation in involvement in metastasis on IRANIAN breast cancer patients. The frequency of 12308 G alteration was 28% (8 of 31) for metastasis patients. The rate of mtDNA alteration G10398A was 50% (17 of 34) for BC patients including 9 of 15 (60.3%) for metastasis subjects and 8 of 19 (42.1%) for non-metastasis subjects.

P06.151 MTFR gene G677T polymorphism is associated with the increased risk of cervical cancer in Russians
N. A. Nigmatullina, A. A. Arkhipova, B. G. Begiev, I. L. Ahmetov;
Institute of Cancer, Imam Khomeini Hospital, Tehran, Islamic Republic of Iran, 2Department of Family Medicine, Faculty of Medicine, Kazan State Medical University, Kazan, Russian Federation.
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate, which is involved in the methylation of homocysteine to methionine. A common variant of this enzyme, resulting from a 677C>T (Ala=Val) substitution in the gene, has been shown to have reduced activity and is associated with hyperhomocysteinemia. Altered homocysteine levels, a functional marker of folic inadequacy, might contribute to the carcinogenic process. There is a growing body of epidemiological evidence suggesting that the MTFR M677T allele and reduced dietary folate may increase the risk of cervical cancer. The aim of the study was to examine the association of the MTFR genotype with the odds ratio (OR) for cervical cancer among women. MTFR gene variants were determined in 127 women with cervical cancer and 175 healthy controls (all Caucasians and citizens of Russia). The MTFR M677T allele frequency was significantly higher in women with the cervical cancer compared to controls (36.2 vs 22.0%; P = 0.0002). Those women with TT genotype were at six times the risk for cervical cancer[OR, 5.948; 95% CI, 2.406-14.704] compared with women with the homozygous MTFR CC genotype. In conclusion, the MTFR M677T allele and TT genotype are associated with the increased risk of cervical cancer in Russian women.

P06.152 What about the relatives who have MTFR G677T polymorphism?
A. Udady, F. Sifan, A. Udady, C. Silan, S. Atik, E. M. Sahin1, O. Gedemin2;
1Department of Family Medicine, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey, 2Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey.
Methylenetetrahydrofolate reductase (MTHFR) which affects both DNA synthesis/repair and methylation, plays a crucial role in regulating folate metabolism. MTHFR G677T polymorphism has a role about cardiovascular disease, stroke, early pregnancy loss and in published datas show that MTHFR G677T polymorphism can be responsible some of malignacies such as lung and breast cancer.
We examined if the patients whose MTFR G677T polymorphism had been studied have any malignancy stories in their family. We called 18 female and 7 male who have homozygote mutant genotype, 31 female and 25 male who have heterozygote genotype and 32 female and 24 male homozgygote wild genotype for MTFR G677T polymorphism.
In homozygote mutant group(n:25); there are 14 relatives have malignancy stories, 7 relatives had lung cancer and 3 relatives have breast cancer. 56%, OR 3,8, p<0.007 (Compared to wild group)
In heterozygote group(n:56); there are 17 relatives have malignancy stories, 3 relatives had lung cancer, 3 relatives had meningioma, 2 relatives had prostate cancer and 2 relatives had leukemia. 30%, OR 1,308 p: 0,625 (Compared to wild group)
In wild group(n:56); there are 14 relatives have malignancy stories, 5 relatives had lung cancer and 5 relatives had breast cancer 25 %.
Published data on the association between the MTHFR G677T gene polymorphism and malignancy stories in their family who have METHFR gene polymorphisms are inconclusive. We need further studies lead us understanding of the role of the MTHFR polymorphism and the mechanism of cancer development.
P06.154

Lynch Syndrome or not? MUTHY associated polyposis in patients with MSI-H tumors and immunohistochemical loss of MMR proteins

M. Locher1, M. Morak1,2, H. Heidenreich1, G. Keller1, A. Lanner2, E. Holinski-Feder3,4, MDZ – Medizinisches Gesamtklinikum, Munich, Germany, 2Medizinische Klinik - Campus Innenstadt, Klinikum der LMU München, Munich, Germany, 3Institute of Pathology, Technical University of Munich, Munich, Germany.

Lynch syndrome is caused by germline mutations in DNA mismatch repair (MMR) genes predisposing for early-onset colorectal cancer/associated tumors with microsatellite instability, negative immunohistochemical staining and dominant inheritance, but in ~10-15% without germline mutation detection.

The recessively inherited MUTHY associated polyposis (MAP) shows a variable phenotype which can overlap with Lynch syndrome. We analyzed the two common MUTHY mutations p.Tyr197Cys and p.Gly396Asp in 83 MMR-gene mutation-negative patients with MSI-H tumours showing loss of MMR protein staining.

We detected the pathogenic MUTHY mutation p.Tyr197Cys homozygously in one patient with clinical presentation of two adenocarcinomas and rectal adenomas (56 years), urinary bladder carcinoma, sebaceous gland carcinoma (revealing loss of MSH2 and MSH6 proteins and MSI-H) (66 years) and positive family history. Tumor sequencing of the sebaceous gland carcinoma showed two somatic pathogenic transversion mutations in MSH2, other tumors had transversions in KRA.

In three patients with MLH1-deficient tumors a heterozygous, monoallelic mutation in MUTHY was identified, but no second mutation or deletion in MUTHY, OGG1 and MTH1.

The incidence of 1.2% for biallelic MUTHY mutations in unsolved patients shows that two somatic mutations in MMR genes due to a base excision repair deficiency is rare, but can mimick Lynch Syndrome.

P06.155

Promoter hypermethylation of tumor suppressor genes in serum as potential biomarker for the early diagnosis of nasopharyngeal carcinoma

F. Tian, S. P. Yip, W. C. Wu; The Hong Kong Polytechnic University, Kowloon, Hong Kong.

Nasopharyngeal carcinoma (NPC) is a common head and neck cancer in Southern China. Studies have shown that promoter hypermethylation of tumor suppressor genes may serve as a promising epigenetic biomarker for early diagnosis of NPC, which is of great significance in improving patient’s survival rate. Resulting from DNA leakage due to tumor necrosis or apoptosis, cell-free circulating DNA in blood has been proven sharing a similar hypermethylation status as the primary tumor. Therefore, cancer-derived DNA in serum may be used for promoter hypermethylation status screening of tumor suppressor genes.

In this study, cell-free circulating DNA is extracted from 40 NPC patients before treatment and age- and sex-matched healthy subjects. Promoter hypermethylation status of five tumor suppressor genes (RASSF1A, CDKN2A, DLEC1, DAPK and UCHL1) was assessed by methylation-specific polymerase chain reaction assay (MSP) after sodium bisulfite conversion. Differences of methylation status of five tumor suppressor genes and clinicopathological parameters (staging, age) between NPC patients and healthy subject would be compared.

To date, promoter hypermethylation status of four genes has been analyzed in 19 NPC samples. RASSF1A, CDKN2A, DLEC1 and DAPK were found to be methylated in 53.3%, 0%, 5.3% and 5.3% patients, respectively. Hypermethylation of at least one gene was observed in 15% of the patients.

Preliminary data suggest that the sensitivity of promoter hypermethylation detection of these four genes in serum samples was low. A more definite conclusion has yet to be testified by future study.

P06.156

Differential DNA damage response in breast cancer cells with genetic deficiencies in BRCA1 or BRCA2

B. Schröder-Heurich, N. Bogdanov1,2, B. Wieland3, T. Dörk2; 1Gynaecology Research Unit, Hannover Medical School, Hannover, Germany, 2Clinics or Radiation Oncology, Hannover Medical School, Hannover, Germany.

Genetic predisposition towards breast cancer includes BRCA1 and BRCA2 mutations but also mutations in genes encoding the MRE11-RAD50-NBN (MRN) complex which plays a major role in radiation-induced DNA damage response (DDR). Double-strand breaks initiate localization of DDR proteins such as gammaH2AX, 53BP1 and MDC1 forming nuclear foci which provide a platform for subsequent assembly of signalling proteins and disappear after successful double-strand break repair. Here we comparatively analysed the DNA damage response in two different breast cancer epithelial cell lines from patients with germ-line mutations in BRCA1 or BRCA2, respectively.

We performed immunocytochemical assays to monitor the cellular response after irradiation with different doses (1.5 Gy, 6 Gy) and after different time-points (0.5 hrs, 24 hrs, 48 hrs). There was a dramatically reduced level of gammaH2AX and MDC1 foci formation in BRCA-deficient breast cancer cells at 30 min after irradiation in comparison to wild-type, while 53BP1 foci were two-fold reduced but clearly detected.

BRCA1-deficient breast cancer cells, in comparison with wild-type and BRCA2-deficient cells, showed a heightened response to irradiation with an up to two-fold increase of gammaH2AX, 53BP1 and MDC1 foci formation 0.5 hrs after treatment (1.5 Gy, 6 Gy). In addition, these cells showed a prominent delay in repair kinetics after irradiation.

In summary, the present results indicate a defective DNA damage response in two breast cancer cell lines with genetic mutations in double-strand break repair pathway genes. However, these deficiencies manifest at differential stages and time-points, suggesting that breast cancer can be functionally dissected according to the underlying germ-line mutations.

P06.157

Analysis of the nucleotide sequence diversity within the SUZ12 gene and its pseudogene SUZ12P to investigate the signature of nonallelic homologous gene conversion

T. Mjoßoter1, J. Vogt1, K. Bengesser1, D. N. Cooper2, H. Kehrer-Sawatzki3; 1Institute of Human Genetics, Ulm, Germany, 2Institute of Medical Genetics, Cardiff, United Kingdom.

Nonallelic homologous recombination (NAHR) and nonallelic homologous gene conversion (NAHGC) are alternative processes depending upon whether the respective recombination intermediates are resolved with or without crossover. Since NAHR events give rise to genomic rearrangements, it is likely that recombination intermediates are more frequently resolved by the non-crossover pathways associated with NAHGC. Low-copy repeats exhibiting meiotic NAHR activity have been shown to be involved in frequent NAHGC-mediated sequence exchange. In addition, the LCs located within the NF1 gene region (termed NF1-REPs), which mediate meiotic NAHR causing type-1 NF1 microdeletions, manifest an increased SNP frequency suggestive of frequent NAHGC. In this study, we have investigated whether NAHGC might also operate between the SUZ12 gene and its pseudogene (SUZ12P), duplicated sequences that flank the NF1-REPs and undergo mitotic NAHR giving rise to type-2 NF1 microdeletions. To this end, we determined the pattern of variation (SNP density and occurrence of shared SNPs between SUZ12 and SUZ12P) within the NAHR breakpoint cluster regions observed in patients with type-2 NF1 microdeletions. We did not however identify a significant increase in SNP frequency within the analysed NAHR breakpoint clusters of 20 healthy individuals of European descent above the genomic average SNP frequency of 1 SNP/kb. Furthermore, no evidence was noted of greater homology between SUZ12 and SUZ12P within the NAHR breakpoint clusters that would have been indicative of concerted evolution. We conclude that, in contrast to the flanking NF1-REPs, the SUZ12 gene and its pseudogene SUZ12P are not involved in frequent sequence transfer by NAHGC.

P06.158

Investigation of the gene conversion patterns associated with mitotic NAHR in the neurofibromatosis type-1 (NF1) gene region causing NF1 microdeletions

K. Bengesser1, J. Vogt1, T. Mjoßoter1, K. Clae5, K. Wimmer4, L. Meissner1, V. Mautner5, L. Klotz1, H. Kehrer-Sawatzki3; 1Institute of Human Genetics, University of Ulm, Ulm, Germany, 2Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium, 3Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria, 4MedGenics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States, 5Department of Neurology, University Hospital Hamburg Eppendorf, Hamburg, Germany, 6Department of Maxillofacial Surgery, University Medical Centre, Hamburg-Eppendorf, Germany, 7Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.

Nonallelic homologous recombination (NAHR) is an important mutational mechanism underlying polymorphic and pathogenic copy number variation in the human genome. It is generally assumed that NAHR is mechanistically similar to allelic homologous recombination (AHR) between homologous chromosomes during meiosis. AHR-associated crossovers are processed by Holliday junction intermediates. Where interacting homologous DNA sequences exhibit nucleotide differences, mismatches in the recombining heteroduplex DNAs are to be expected. Recombination-associated mismatch repair is typically biased, with the broken DNA-strand being used as a mismatch repair template. This results in regions of marker loss in the bro-
Mechanisms underlying non-recurrent microdeletions causing neurofibromatosis type-1 (NF1)
J. Vogt, K. Bengesser, K. Claes, K. Wimmer, L. Messiaen, L. Klöwe, H. Kreher-Sawatzki

1Institute of Human Genetics, University of Ulm, Ulm, Germany, Center for Medical Genetics, Ghent University Hospital, Gent, Belgium, 2Division of Human Genetics, Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States, 3Department of Neurology, University Hospital Hamburg Eppendorf, Hamburg, Germany, 4Maxillofacial Surgery, University Medical Center, Hamburg-Eppendorf, Germany.

NF1 microdeletions encompassing the NF1 gene region at 17q11.2 are present in 5-10% of patients with NF1. In particular recurrent NF1 microdeletions have been investigated in detail. However, the mechanism underlying non-recurrent (atypical) NF1 microdeletions is not well delineated. NF1 microdeletions with non-recurrent breakpoints are heterogeneous in terms of their size, breakpoint position and number of deleted genes. Further, non-homologous sequence homology is not observed in the respective breakpoint regions. In this study, we have analysed 12 atypical NF1 deletions using high resolution custom made array CGH. We could assign the breakpoints to regions of 1.2-6 kb. In six of these 12 atypical NF1 deletions, we identified the breakpoints at basepair level. Four of these six deletions were mediated by non-homologous end joining (NHEJ) as concluded by the absence of or only minor (1-2bp) homology at the breakpoints. Two of these six NF1 deletions exhibited microhomologies of 24 and 33 bp at the breakpoint sites indicative of microhomology-mediated end joining (MMEJ) as underlying mechanism. We conclude that NHEJ or MMEJ are the prevailing mechanisms underlying non-recurrent NF1 deletions that lack any complexity at the deletion breakpoint sites. However, three of the 12 NF1 deletions investigated by us represent complex rearrangements most likely caused by replication-associated or template-switching events. Our study indicates for the first time, that also non-recurrent NF1 microdeletions are mediated by a variety of mutagenic processes including mechanisms of double strand repair such as NHEJ and replication based mechanisms such as Fork stalling and template switches (FoSTeS).

New technology of 3-way MLPA

B. Sánchez Vega, A. J. Gonzalez, E. Sánchez Menéndez, M. Vargas, J. L. de Jerez de la Frontera, Cádiz, Spain

We investigated the sequence characteristics of the breakpoint regions of 29 NF1 microdeletions initially considered to be type-2 deletions according to results obtained with the MLPA-kit P122-C1. We determined that 23 of the 29 deletions were indeed classical type-2 microdeletions, with breakpoints located in the SUZ12 gene and its pseudogene SUZ12P. However, 6 deletions turned out to be atypical exhibiting only one of both breakpoints within the SUZ12 sequences. Taken together with 16 previously identified type-2 deletions in which the breakpoints had been localized, the analysis of a total of 39 type-2 NF1 deletions revealed a significant clustering of breakpoints within the SUZ12 sequences.

P06.161

BCRA1 and BCRA2 diagnosis by next-generation sequencing: A highly efficient methodology

1Sistemas Genómicos, Paterna, Spain, 2Hospital U. Virgen Arrixaca, Murcia, Spain, 3Hospital U. Virgen Macarena, Sevilla, Spain, 4GEMOLAB, Madrid, Spain, 5Hospital U. Marqués de Valdecilla, Santander, Spain, 6Hospital Reina Sofia Córdoba, Spain, 7Hospital de Jerez de la Frontera, Cádiz, Spain, 8Jaén, Spain, 9C3Genetics/CircusGen, Madrid, Spain.

Purpose: BCRA1 and BCRA2 are the most important breast cancer susceptibility genes. The conventional BCRA1 and BCRA2 mutation screening, performed by heteroduplex analysis and/or Sanger sequencing, is time consuming and has relatively high costs due to the absence of hot spots and to the high number of exons per gene. Usually, several months are necessary to complete the diagnosis. To overcome these limitations and to reduce the time needed for the diagnosis, we designed a next generation sequencing protocol enabling simultaneous detection of variants in the two genes.

Methods: We used a multiplex Amplification (MASTR by Multiplicom) and the 454 GS Junior DNA sequencing instrument (Roche Diagnostics), which is based on pyro sequencing. Bioinformatic analysis was performed by two complementary approaches: Our pipeline (which comprises mapping and comparing reads against the reference sequence, aligning reads, classifying and identifying of SNPs and mutations), and by the Amplon Variant Analyzer (AVA) software from Roche. We successfully validated this technology with a set of 6 cases carrying known mutations previously detected by Sanger Sequencing, and a reference HapMap sample (NA12144).

Results: The application of this technology in 51 cases with suspected hereditary breast cancer allowed the identification of 11 pathogenic mutations (3 missense, 1 novel nonsense, 6 frameshift and 1 splice variant), 6 unclassified variants and a high number of polymorphisms.

Conclusions: The application of this technology in routine diagnostic of hereditary breast and ovarian cancer.
groups. The research was funded by Polish Ministry of Science and Higher Education, project number N401 331936.

P06.163 Effect of the PARP-inhibitor PJ34 on NIS expression and epigenetic modifications in human thyroid tumour cells

E. Lavranore1, N. Passoß1, C. Puppin1, G. Damante1;1'Dipartimento di Scienze Mediche e Biologiche, Universita di Udine, Udine, Italy, 2Istituto di Genetica, Azienda Ospedaliero-Universitaria di Udine, Udine, Italy.

Sodium iodide symporter (NIS) expression is crucial for the management of thyroid pathologies, cancer in particular. Unfortunately NIS expression is often ten reduced in thyroid cancer; in many cases also his functionality is damaged. Since PARP-1 is supposed to be part of a multimeric repressor involved in cancer NIS derepression, in this study various human thyroid tumour cell lines (TPC1, BCPAP, FRO, WRO) were treated with the PARP-inhibitor PJ34, and the effects on the expression of NIS and several thyroid-specific transcription factors, together with the activity of NIS promoter were evaluated. PJ34 treatment didn't affect thyroid-specific transcription factors expression, whereas we observed a strong increase in NIS mRNA levels in all the cell lines. Accordingly, in transfection experiments performed in TPC1 cells, treatment with PJ34 increased NIS promoter activity. It is well known that the translational histone modifications are involved in the control of gene transcription. Thus, we have also investigated the epigenetic status of NIS promoter after PJ34 treatment in TPC1 cell line. In addition to an increase of activatory histone modifications (H3K9K14ac, H3K4me3) surprisingly we observed also an increase of H3K27me3, a classical repressive mark. We concluded that PJ34 action, that implies mechanisms acting on epigenetic marks, is specific on NIS expression, suggesting it as a potential strategy to induce radionuclide sensitivity in human thyroid tumours.

P06.164 Whole genome microarray analysis in non-small cell lung cancer

Lung cancer is a serious health problem, since it is the leading cause for death world wide. Molecular-cytogenetic studies could provide reliable data about genetic alterations which could be related to disease pathogenesis and used for better prognosis and treatment strategies. We have performed whole genome oligonucleotide microarrays-based comparative genomic hybridization in ten samples of non-small cell lung cancer. Trisomies were discovered for chromosomes 1, 13, 18 and 20. Affected by genetic gain were chromosome arms 5p, 7p, 11q, 20q and Xq, and by genetic losses - 1p, 5q, 10q and 15q. Microstructural (<5 Mbp) genomic aberrations were revealed in regions 7p (containing EGFR) and 12p (containing KRAS) were affected by genetic losses and in 3p26 and 4q34 for losses. Based on high amplitude of alterations we discovered for chromosomes 1, 13, 18 and 20.

P06.165 Molecular genetic testing in patients with Non-Small Cell Lung Carcinoma

D. Konvalina1, J. Smorová1,2, B. Kabová1, I. Urbanovská1, M. Jalaľková1, J. Žmolíková1, J. Žmolíková1, I. Čebřáková1, M. Švůra1, J. Dvořáčková1;1'CBG laboratory Inc., Ostrava, Czech Republic, 2Faculty of Medicine, University of Ostrava, Ostrava Czech Republic.

Introduction: Non-Small Cell Lung Carcinoma (NSCLC) is one of the most serious cancers. For targeted biological treatment, sensitive and specific identification of genetic changes is necessary. Identification of genetic changes (mutations) within EGFR, KRAS and ALK oncogenes, associated with NSCLC, allows choosing the patients, which benefit from biological therapy.

Material and Methods: DNA is isolated from biopsy and cytology specimens with verified histological diagnosis. Mutation detection is performed by real-time PCR fragment analysis, primer extension analysis and mutant- enriched PCR. WT-EGFR patients [e.g. with no mutation detected] are tested for ALK gene rearrangement, causing the EML4-ALK fusion gene formation. Analyses are performed on histological slides using the FISH method.

Results: Since 10/2010 till 12/2011, 199 DNA samples were analyzed. Out of these, 12 patients (6%) were found to be positive for activating mutations within EGFR gene. Since 07/2011 till 12/2011, 54 patients were analyzed for ALK gene rearrangement. This change has been proven in 2 cases.

Discussion: Activating mutations of the EGFR gene correlate with therapeutic response to tyrosin kinase inhibitors. Frequency of mutations within the EGFR gene is 5–20%. ALK gene rearrangement can predict the therapeutic response for ALK inhibitors. These rearrangements are found approximately in 5% of NSCLC patients. Our results correlate with abovementioned findings. Occurrence of certain mutations, e.g. T790M, as well as KRAS gene mutations and ALK gene rearrangements predicts resistance to TKIs therapy.

Conclusions: Determination of tumor mutational status can provide powerful tool for setting up strategy and therapeutic protocols in NSCLC patients.

P06.166 Extending the spectrum of PTPN11 germline mutations associated with juvenile myelomonocytic leukemia in children with Noonan syndrome

Introduction Noonan syndrome (NS) is a genetic disorder caused by a germline mutation in the PTPN11 gene in about 40% of cases. These patients are predisposed to develop a myeloproliferative-myelodysplastic syndrome (MPD), the juvenile myelo-monocytic leukemia (JMLM). To date, few data concerning its incidence and prognosis are available. Methods 562 patients carrying a germline mutation of PTPN11 have been studied. JMLM was diagnosed in 21 of them (NS-JMLM). In 11 other patients, hematologic anomalies suggestive of a MPD have been noted. Cytologic, genetic and clinical features of these 2 groups of patients have been compared with 24 patients presenting a PTPN11-associated sporadic JMLM. Results Hematologic anomalies are found in 32/562 (5.7%) of NS patients and encompass a broad phenotypic spectrum ranging from transient MPD to JMLM. Hematologic presentation of NS-JMLM and MPD-JMLM is not different from sporadic JMLM but the overall survival is considerably altered in NS-JMLM patients and boys. The mutation D61H of PTPN11, never reported in NS, is found in 2 patients with a particularly severe neonatal course. More generally, the spectrum of PTPN11 mutations is narrower in NS-JMLM and NS-JMLM patients than in the whole cohort of NS patients, with an increased incidence of mutations of the 61, 139 and 506 codons. We were not able to identify additional recurrent genetic alteration with the SNP array analysis of 12 NS-JMLM patients. Conclusion Some PTPN11 mutations are associated with an increased risk of JMLM. Additional cooperating factors may explain the genotype-phenotype correlation in the other cases.

P06.167 Platform comparison of expression data and identification of novel mutations in CIC in oligodendrogliomas

S. Schauer1, K. Szarfanksi1, J. A. Campos Valenzuela1, A. Rump1, K. Hackmann1, D. Krex2, E. M. Gerlach1, G. Schackert4, L. Kaderali3, M. Platzer2, E. Schrock1, B. Klink1; 1Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, 2Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany, 3Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus – Technische Universität Dresden, Dresden, Germany, 4Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

We analyzed 17 oligodendroglial tumors by high resolution array CGH (Agilent). Additionally, Sanger sequencing of candidate genes was performed (RNA-Seq) using a 2x100nt paired-end approach on the Illumina-HiSeq2000-platform, miRNA array, 8x60k expression array and Exon array analyses (Agilent). Also, Sanger sequencing of candidate genes (IDH1, IDH2, CIC, P53BP1) was carried out.

www.eshg.org
Array CGH revealed structural changes including the previously described 1p/19q-codeletion in 11/17 tumors (69%). We identified seven novel mutations in the CIC gene on 19q (altogether 9/17), including one exon-spanning deletion. In the latter, RNA-Seq revealed a notably decreased gene expression. The IDH1 R132H and IDH1 mutation was the most frequent alteration found in 14/17 tumors (82%). Sequencing of FUBP1 on 19p uncovered mutations in three cases. This let us observe a strong association between the presence of CIC and IDH1 mutation and the 1p/19q-codeletion, since all tumors showing mutations in CIC also contained the IDH1 mutation as well as the 1p/19q-codeletion except for one case (CIC and IDH1 mutation only). These results emphasize the role of CIC for the development of oligodendrogliomas. RNA-Seq data will help to identify aberrant mRNAs and new fusion-genes. In the long run, these studies aim to contribute to the understanding of the complex tumorigenesis of oligodendrogliomas and the finding of molecular targets for directed therapy.

P06.168
Genotype-phenotype correlation in optic nerve gliomas in Slovak NF1 patients

A. Rýbarová1, M. Momeťová2, A. Zahorová1, A. Havrata1, L. Kovárov1, L. Kadárov1, D. Benclová1,
12nd Department of Pediatrics, Comenius University, Medical School and University Children’s Hospital, Bratislava, Slovakia, 2Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia, 3Laboratory of Genetics, Institute of Molecular Physiology and Genetics, Bratislava, Slovakia.

Introduction: Neurofibromatosis type 1 (NF1; OMIM 162200) is in 15% of cases complicated by optic nerve gliomas (ONG). Genotype-phenotype correlations in patients with NF1 and ONG help to determine the risk group for developing a severe form of NF1.

Materials and methods: We evaluated 51 Slovak patients with NF1 and divided them into two groups: 1) with ONG (21 patients), 2) without ONG (30 patients). All of them underwent a clinical examination and molecular diagnostics of NF1 gene using protocol based on RNA.

Results: In the group with ONG patients, there was a significantly higher incidence of freckling (95%), brain hamartomas (71%) and neurofibromas (70%), compared to group without ONG. A half of mutations in the ONG group were located in the first 5’ tertile (first 16 exons) of the NF1 gene. There were 15 novel mutations identified.

Discussion: Our results confirm the clustering of mutations in the 5’ tertile of NF1 gene in patients with optic nerve glioma and suggest the incidence of a more severe form of NF1. This may contribute to prognosis prediction.

P06.169
The contribution of MLPA and aCGH to establish the genetic profile of Oral cancer

I. M. Carreira1, I. P. Ribeiro1, F. Marques2, J. P. Baptista1, J. Ferror2, J. B. Melo1;
1Cyto genetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; 2Department of Dentistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.

Oral squamous cell carcinoma (OSCC) is one of the most common malignant lesions of head and neck. Besides technologic advances, the genetic mechanisms involved in the pathogenesis and progression of this disease are still not clear; thus the improvement in the diagnosis and treatment is limited, which means scarce benefit to the patients. The main goal of this study was to characterize the genetic profile of the OSCC by Multiplex Ligatton-dependent Probe Amplification (MLPA). We also applied array-CGH, not only to corroborate the MLPA results but also to identify putative key regions associated to OSCC. To achieve these purposes, biopsy of tumour and biopsy from resection margin of the same patient, were acquired from 23 patients with diagnosis of OSCC. Tissue from healthy donors was used as control. The array-CGH from tumor biopsies was performed using a 4x180K oligonucleotide microarray. With the MLPA we detected frequently losses in chromosomes regions of 3p, 4q, 5q, 8p, 9p, 11q and gains in chromosomes regions of 3q, 6p, 8q, 11q, 16p, 16q, 19q and 20q. The analysis of the tissue from resection margin identified alterations spread over several chromosomes, namely in 6p, 9p, 16p, 16q, 19p, and 19q. With array-CGH we detected imbalances in all chromosomes. In conclusion, this kind of studies improves the understanding of these devastating tumors through identification of key chromosomal regions involved in tumor biology, which may be very useful to the follow-up of these patients and also allows the development of novel therapeutic targets.

P06.170
Vitamin D receptor gene polymorphism as prognostic indicator for oral cancer

K. Zelek1, G. Supić2, M. Stamenkovic Budak1, Z. Magic2; 1Faculty of Biology, University of Belgrade, Belgrade, Serbia, 2Institute for Medical Research, Military Medical Academy, Belgrade, Serbia.

It has been reported that genetic polymorphisms in the vitamin D receptor gene (VDR) could influence the risk of oral cancer. Among numerous identified polymorphisms in the VDR gene, FokI (rs2228570) is considered as functional polymorphism and results in synthesis of 427 amino acids long protein, while mutated form results in synthesis of protein shorter for three amino acids. It could be assumed that this functional polymorphism has influence on survival and may be used as oral cancer prognostic indicator. The goal of this study was to investigate the association of VDR FokI polymorphism with oral cancer survival. The study was performed in 110 patients with diagnosed oral cancer. Genotypes were determined by the PCR-RFLP method. Our data were statistically analyzed using the SPSS software. The VDR FokI polymorphism was associated with a decreased overall survival (p=0.042, log-rank test). Patients with wild type Fgene had significantly worse survival (p=0.012, log-rank test) compared to the heterozygous and mutated variants together. Stratified analysis by the lymph node involvement and tumor stage revealed that wild type F gene was associated with the poor survival in groups with and without lymph node involvement (p=0.02) and in stage III tumors (p=0.026). Multivariate Cox’s regression analysis revealed that VDR FokI could be considered as independent prognostic factor (HR=0.600, 95% confidence interval=0.377-0.954, p=0.031).

Our data suggest that VDR FokI polymorphism is associated with survival and could be considered as independent prognostic indicator for oral cancer.

P06.171
Ovarian carcinoma - profiling of the gene expression and candidates for targeted therapy

D. N. Nikolova1, W. Doganov1, R. Dimitrov2, K. Angelov2, S. Low1, J. Dimova1, D. Toncheva1, Y. Nakamura4; 1Medical University Sofia, Sofia, Bulgaria, 2University Hospital of Obstetrics and Gynecology, Sofia, Bulgaria, 3National Hospital of Oncology, Sofia, Bulgaria, 4Human Cancer Center, Institute of Medical Science, Tokyo University, Tokyo, Japan.

Ovarian cancer is the second most common gynecologic malignancy and the fifth leading cause of cancer deaths in women. The genome-wide microarray consisting of approximately 38,500 transcripts enabled us to obtain comprehensive gene expression profiles related to phenotypic and biological information in cancer cells. We have identified multiple targets that may be applicable for development of novel anti-cancer drugs and/or diagnostic biomarkers. Through gene expression profile analysis of 22 epithelial ovarian cancers coupled with purification of cancer cell population by laser microbeam microdissection (LMM) on a microarray, we identified a number of transcripts that were over-expressed in ovarian cancers. Altogether, we identified 273 transcripts that were commonly up-regulated and 387 transcripts that were down-regulated in ovarian carcinomas. Among these 273 transcripts identified, only 87 (31.9%) transcripts were reported as up-regulated genes in previous microarray studies, in which bulk-cancer tissues and normal ovarian tissues were used for the analysis. We further propose a number of genes probable to be good candidates for a target therapy of ovarian cancer. Among them we focus on CHMP4C (chromatin-modifying protein 4C) that was over-expressed very commonly in ovarian carcinoma, but were not expressed in the normal human tissues examined. Our data should be helpful for a better understanding of the tumorigenesis of ovarian cancer and should contribute to the development of diagnostic tumor markers and molecular-targeting therapy for patients with ovarian cancer.

P06.172
Clinical trials for p53 marker validation

B. Wolf1, S. Kappel2; 1Medical University of Vienna, Department of Surgery, Research Laboratories, Vienna, Austria, 2Medical University of Vienna, Department of Surgery, Vienna, Austria.

The moderate efficacy of cancer therapy is still the major challenge in surgical oncology. The use of genetic markers has been suggested to improve treatment efficacy. However, a clear algorithm for the clinical evaluation of a potential marker is currently lacking. Based on the well-established phase l-III clinical trials we present an algorithm, which we propose for reliable clinical evaluation of genetic markers like p53.
Phase I marker studies aim to demonstrate the robustness, specificity and prevalence of the new marker and the formulation of a marker hypothesis. Phase II marker studies focus on the marker test; concerning reproducibility, sensitivity and specificity of the test, and the result interpretation. Phase I and phase II marker studies may be performed retrospectively using adequately collected samples. Phase III marker trials aim to confirm the clinical relevance of the marker providing a high level of evidence (level I). The latter trials have to be prospective, randomised, controlled investigations taking the qualified trial design into particular consideration. The clinical utility of a marker depends on its ability to guide three therapeutic decisions: “Who to treat”, “How to treat” and “Hew much to treat”. These questions have to be answered by different marker types -prognostic, predictive and pharmacodynamic- implicating that the projected phase III trial endpoints have to be different. As a marker, p53 has passed phase I and II. Currently phase III trials evaluating p53 are missing probably because it is not clear whether p53 should be evaluated as prognostic or predictive marker.

P06.173
Phase II clinical trial for optimising radiotherapy for rectal cancer using genetic markers

F. Biramijamal1, B. Wolf1, C. Brostjan1, I. Kührer2, B. Teleky2, R. Schmid3, M. Mittlböck4, C. Kalinka-Coenstin1, F. Wohr2, D. Kandiero2

1Medical University of Vienna, Department of Surgery/ Surgical Research, Vienna, Austria, 2Medical University of Vienna, Department of Surgery, Vienna, Austria, 3Medical University of Vienna, Department of Radiotherapy, Vienna, Austria, 4Medical University of Vienna, Center for Medical Statistics, Informatics and Intelligent Systems, Vienna, Austria, 5Medical University of Vienna, Department of Radiology, Vienna, Austria, 6Medical University of Vienna, Department of Clinical Pathology, Vienna, Austria.

In rectal cancer preoperative radiation plus surgery has proven superiority to surgery alone and is widely accepted as standard therapy. However, a significant reduction in local recurrence has been achieved by a questionable risk/benefit ratio.

Radiotherapy is suggested to depend on sufficient tumour oxygenation and to act via induction of apoptosis. TP53 gene mutations represent a crucial defect in the apoptosis pathway, are involved in regulation of tumour vascularisation and are present in 60% of rectal cancers.

The study aims to correlate pathological tumour-response to radiation therapy with three parameters: the genetic status of the marker TP53, differences in perfusion MRI results eight weeks after radiation treatment and differences in the concentration of circulating angiogenesis factors in blood.

Eligible patients in our study receive standard preoperative short-term radiation for 5 days followed by surgery after a delay of 8 weeks. The sample size calculation is based on an estimated 40% difference in response rates comparing patients with TP53 normal and mutant tumours. The required patient number to reach the study endpoint is 60.

The TP53 status is analysed in tumour tissue from diagnostic biopsies. Tumour stage is assessed at time of diagnosis and immediately before surgery. MRI staging will be compared to pathohistological staging. Concentrations of circulating angiogenesis factors are assessed at several time points.

The trial prepares the way for interventional trials and offers potential restriction of preoperative radiation for rectal cancer to those patients who will benefit, saving patients from negative side effects.

P06.174
Novel p53 gene mutations at codons 65 and 100 among Iranian esophageal cancer patients: it may modify MDM2-p53 interaction

F. Biramijamal1, M. Salitani2, G. Irnawan3

1NIGER, Tehran, Islamic Republic of Iran, 2Azad University, Karaj, Islamic Republic of Iran, 3Cancer Institute, Tehran, Islamic Republic of Iran.

The incidence pattern of esophageal cancer is different among Iranian population and up to 171/100000 in Northern Iran. In previous study, we showed that p53 gene mutations occurred in esophageal squamous cell carcinoma (ESCC) from Iran frequently. The p53 protein has an important role in tumourogenesis in various types of cancer. This protein is a transcription factor and it can induce apoptosis to prevent the development of cancer or tumor growth. Also, several studies were described the p53 genetic polymorphism in exon 4, at codon 72, and susceptibility to several types of cancer and diseases. We studied association of the p53 genes at codon 72 with esophageal cancer risk in Iran.

To investigate the p53 Pro72Arg genotype among healthy controls and ESCC patients, we collected samples from blood and tumor tissues. The p53 genotypes were determined by direct DNA sequencing and PCR-RFLP analysis. During this study, we found novel p53 gene mutations at codon 65 (AGA→AAA) and codon 100 (CAG→CAA) among patients. Additionally, we assessed protein expression of p53 and MDM2 in esophageal tumor tissues by immunohistochemistry method. We found that abnormal accumulation of the p53 protein was not associated with MDM2 protein expression. The p53 and MDM2 proteins are related to cancer. The p53 protein prevents tumor growth, but, MDM2 promotes proliferation of tumor cells. It is described that MDM2 protein can bind to prolin-rich region in p53 protein (residues 61-94). So, p53 point mutation at codon 65 may modify MDM2-p53 interaction.

P06.175
Whole genome expression, canonical pathway and gene network analysis in the cases of papillary thyroid cancer

N. Cine1, I. Torkar1, N. Canturk1, Y. Gurbuz2, D. Sunnetci3, H. Sani1, C. Aytan1

1Medical Genetics Department, Medicine Faculty of Kocaeli University, Kocaeli, Turkey, 2Department of Internal Medicine, Medicine Faculty of Kocaeli University, Kocaeli, Turkey, 3Department of General Surgery, Medicine Faculty of Kocaeli University, Kocaeli, Turkey.

Introduction: Papillary carcinoma is the most frequent thyroid cancer and constitutes 75-80% of thyroid cancers. Finding of scientific markers for papillary thyroid cancer and its variants can make easier to confirm the results taken from Fine Needle Aspiration cytology. The objective of this study consists in elucidating the role of genetic factors in the mechanisms of the development of papillary thyroid cancer and to screen patterns of whole genome expression in papillary thyroid cancer.

Materials and Methods: RNA samples were obtained from healthy and cancerous tissues taken from cancer detected nodule from eight patients diagnosed as papillary thyroid cancer. These RNA samples were hybridized with microarray chops (Agilent Human 4X 44K Oligo Microarrays). Gene expression, canonical pathway and network analysis were performed using GeneSpring GX 11.0 software.

61 downregulated and 124 upregulated genes were detected in our study. The canonical pathways significantly regulated were extracellular region, collagen, multicellular organismal process, cell adhesion, biological adhesion and multicellular organismal development.

Conclusion: Upregulation of HMGA2 gene which was reported before as a novel molecular marker in development of thyroid carcinoma is noteworthy in our study. This gene is upregulated in malignant forms of thyroid cancers has been reported. It’s suggested that HMGA2 might be used as a molecular marker for classification of thyroid tumors in terms of being malignant or benign forms.

P06.176
Characterisation of PMS2 rearrangements in Lynch syndrome patients uncovers the first deleterious PMS2-PMS2CL hybrid allele

A. Wernsted1, E. Valort1, F. Armel1, R. Togn1, S. Girland1, M. Baudis1, K. Heinmann1, L. Messner1, N. Stelzl1, J. Zschoche1, G. Marrot2, K. Wimmer2

1Division of Human Genetics, Medical University Innsbruck, Austria, Innsbruck, Austria, 2Institute of Molecular Cancer Research, University of Zurich, Switzerland, Zurich, Switzerland, 3Department of Gastroneterology, Ospedale S. Chiara, Azienda Provinciale per I Servizi Sanitari, Trento, Italy, Trento, Italy, Department of Pathology, Ospedale S. Chiara, Azienda Provinciale per I Servizi Sanitari, Trento, Italy, Trento, Italy, 4Institute of Molecular Life Sciences, University of Zurich, Switzerland, Zurich, Switzerland, 5Research Group Human Genetics, Department of Biomedicine, University of Basel, Switzerland, Basel, Switzerland, 6Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, USA, Birmingham, AL, United States.

Heterozygous PMS2 germline mutations are associated with Lynch syndrome. Up to one third of PMS2 mutations are genomic deletions. Their detection is complicated by a pseudogene (PMS2CL), which -owing to extensive interparalog sequence exchange-closely resembles PMS2 downstream to exon 12. A recently-re-designed multiplex ligation-dependent probe amplification (MLPA) assay identifies PMS2 copy number alterations with improved reliability when used with appropriate reference DNAs. We used this assay to study 13 patients with PMS2-defective colorectal tumors. They presented deleterious alterations: (i) An Alu-mediated deletion strengthening the view that the high frequency of PMS2 deletions is related to a high density of Alu elements within the genomic sequence of the gene. (ii) A 125-kb deletion encompassing at least two further genes with tumor suppressing functions in a young colorectal cancer patient. This raises the possibility that PMS2 mutations of this type may confer a higher penetrance of tumor susceptibility. (iii) The first deleterious hybrid PMS2 allele produced by recombination with crossover between PMS2 and PMS2CL, with the breakpoint in intron 10 (the most 5' breakpoint of its kind reported thus far). We discuss mechanisms that might generate this allele in different chromosomal confi-
Abstracts - European Human Genetics Conference 2012

P06.177

Mutation of the PPP2R1A gene as part of the sporadic endometrial serous carcinoma genetic profile

K. Vassilioni1, C. Cerati-Borrelli1, M. Nuñez-Lozano1, M. Sancho-de-Salas2, R. Lozano-Mejorado4, A. García-Iglesias1, J.J. Cruz-Hernández4,2, R. González-Sarmiento4,1

1 Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain, 2IBSI, Salamanca, Spain, 3Anatomo-Pathology Service, University Hospital of Salamanca, Spain, 4 Oncology Service, University Hospital of Salamanca, Salamanca, Spain, 5 Gynecology Service, University Hospital of Salamanca, Salamanca, Spain, 6Institute of Cellular and Molecular Biology of Cancer (USAL-CSIC), Salamanca, Spain.

Introduction and Aim: Endometrial serous carcinoma (ESC) is the most aggressive subtype of endometrial carcinoma. Some of its mainly mutated genes are p53, p16, E-Cadherin, accompanied sometimes by mutations in additional gene mutations.

Our aim was to study the PPP2R1A gene in order to determine the frequency of mutations in the sporadic ESC in Spanish patients.

Patients and Methods: A set of 12 patients with sporadic endometrial carcinoma with serous component was studied through analysis of the tumoral DNA by PCR, CSGE, cloning and automatic sequencing of the full coding region and the exon-intron boundaries.

Results: The results are annexed in the table. We found 4 previously reported PPP2R1A pathogenic mutations (33.3%), two of the patients carry additional gene mutations.

Conclusions: The study indicates that PPP2R1A gene mutations play an important role in the carcinogenesis of sporadic ESC in Spanish patients and as such should be included in its molecular profile.

Supported by FSI PI 10/000219

Table: Pathogenic (*) and unknown significance mutations found in the studied genes. (H) Homozygous

<table>
<thead>
<tr>
<th>PPP2R1A</th>
<th>PTEN</th>
<th>P16</th>
<th>TP53</th>
<th>CDH1</th>
<th>PIK3CA</th>
<th>BRAF</th>
<th>KRAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pat. 1</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>c.G181A; p.R273H (H)*</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
</tr>
<tr>
<td>Pat. 2</td>
<td>wt</td>
<td>c.G181A; p.R273H (H)*</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td></td>
</tr>
<tr>
<td>Pat. 3</td>
<td>wt</td>
<td>c.G181A; p.R273H (H)*</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td></td>
</tr>
<tr>
<td>Pat. 4</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td></td>
</tr>
<tr>
<td>Pat. 5</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td></td>
</tr>
<tr>
<td>Pat. 6</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pat. 7</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pat. 8</td>
<td>wt</td>
<td>wt</td>
<td>wt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pat. 9</td>
<td>wt</td>
<td>wt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pat. 10</td>
<td>wt</td>
<td>wt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pat. 11</td>
<td>wt</td>
<td>wt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pat. 12</td>
<td>wt</td>
<td>wt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P06.178

First steps towards an individualized immunotherapy for primary liver cancers.

C. Schroeder1, M. Sturm1, S. Junker1, M. Löffler1, M. Günder2, S. Stevanovic2, T. Schmidt2, M. Walzer2, M. Sancho-de-Salas2, M. Königsrainer1, P. Burfeind1, W. Engel1

1 Department of Medical Genetics, Tuebingen, Germany, 2 Department of Immunology, Tuebingen, Germany, 3 Department of General Visceral and Transplant Surgery, Tuebingen, Germany, 4 Department of Pathology, Tuebingen, Germany.

Primary liver cancer is within the top ten most common cancers worldwide. Over 500'000 patients are diagnosed with hepatocellular carcinoma each year. The prevalence in Europe and the USA has been rising constantly over the last decades. Yet, therapeutic options are limited. The BMBF supported project IndividualIVER aims at establishing an individualized immunotherapy for primary liver cancers.

This approach is based on the detection of somatic mutations in tumor tissue. Hence, we sequenced a pair of tumor tissue and blood sample in one patient suitable for vaccination. Both samples were conditioned and sequenced using a targeted whole-exome resequencing approach. The on-target ratio was 0.79 / 0.77 (tumor / blood), overall coverage at a depth of 10x was 91.6% / 90.44 %. With stringent filter criteria, we were able to detect a total of 23 somatic sequence changes suitable for vaccination. The laboratory turnaround time is estimated to be 6-7 weeks. Validation was carried out using a second bioinformatic analysis method and a deep-sequencing approach with customized targets (ao. depth: 72x). We were able to confirm 12 somatic variants. All sequence changes were further prioritized by an HLA-allele-specific SYFPEITHI-score. Taken together a total of 3 sequence changes were rated suitable for HLA and mutation specific vaccination. Using this approach, we are able to detect somatic sequence changes within tumor tissue that might lead to successful individualized immunotherapy within a reasonable time frame. The next steps will be design and administration of an individualized multi-peptide anti-cancer vaccine.

P06.179

S-adenosylmethionine alters the transcription profile in prostate cancer cells

T. Schmidt, P. Burfeind, W. Engel

Department of Human Genetics, Göttingen, Germany.

Epigenetic alterations are critical steps in cancerogenesis. DNA hypomethylation in cancer cells is probably as frequent as DNA hypermethylation and might activate oncogene transcription. Recent studies point to a role for S-adenosylmethionine (SAMe), a major methyl donor in biological transmethylation events, as a demethylation inhibitor. In prostate cancer cells, treatment with SAMe leads to increased methylation levels of promoters from several genes like the unmethylase p15INK4a inhibitor and thus causes the downregulation of the respective genes. To gain a more general overview concerning the effects of SAMe treatment on cancer cells, we performed a transcriptome-wide shotgun sequencing on prostate cancer cells treated with SAMe. We found altered transcription levels of 160 genes, 90 of which were downregulated. Most of these genes are associated with biological processes critical in cancerogenesis e.g. epithelial-mesenchymal-transition, invasion, migration and proliferation of cells. The expression levels of some genes (e.g. KLFB, BDNF, STAT1) were confirmed by real-time PCR and methylation specific PCR was carried out. Treatment of prostate cancer cells with SAMe was found to result in an increased global methylation status of the DNA suggesting that reversing DNA hypomethylation might be one major mechanism of SAMe action. Next, we performed functional studies with SAMe-treated cancer cells as well as human fibroblasts and discovered a reduced potential for proliferation, migration and invasion of cancer cells but not of fibroblasts. Taken together, we provide a more comprehensive overview of effects caused by SAMe and present novel target genes for therapeutic options in prostate cancer.

P06.180

Can mycoplasma-mediated oncogenesis be responsible for formation of prostate cancer?

S. Erturhan1, H. Oztas1, S. Pehlivan1, O. Bayraktart2, I. Seckiner, T. Sever1, M. Karakoc1

1 University of Gaziantep, Faculty of Medicine, Department of Urology, GAZIANTEP, Turkey, 2 University of Gaziantep, Faculty of Medicine, Department of Medical Biology and Genetics, GAZIANTEP, Turkey, 3 University of Gaziantep, Faculty of Medicine, Department of Pathology, GAZIANTEP, Turkey.

Aim: The origin of chronic inflammation preceding the development of prostate cancer (PCa) remains unknown and chronic inflammation associated with infections has been defined as an important cancer-promoting condition. In our study, we investigate the relationship between mycoplasma sp. infection and PCa.

Method: Benign prostate hyperplasia and tumor tissue samples from 31 patients with PCa and healthy control groups (benign prostate hyperplasia) were studied. Molecular DNA analyses was done after nested-PCR performed in two steps with seven primers (four outer and three inner) that can recognize at least 15 different Mycoplasma using two different PCR methods.

Results: Mycoplasma sp. DNA was detected in benign prostate hyperplasia, pathologic tumor tissue samples and in one control sample (4%) (4.5 fold sample in one patient respectively. No mycoplasma DNA was detected in tissues of 31 healthy controls. We found 15 different Mycoplasma species (and their diagnostic implications) and describe an allele-specific PCR assay that facilitates its detection. Our data indicate that, for gDNA-based PMS2 mutation analysis, the re-designed PMS2 MLPA assay is a valid first-line option that can identify roughly a quarter of all PMS2 mutations.

www.eshg.org
Significantly high existence of Mycoplasma sp. In conclusion, our data suggest that mycoplasma infections could be play a role in the etiology (mycoplasma-mediated multistage carcinogenesis) of prostate cancer. Further experimental and clinical studies are needed for development of a tool for early diagnosis and treatment of prostate cancer.

P06.184

TMPRSS2/ERG fusion gene expression in tumor epithelium and tumor-associated stromal cells in prostate cancer.

T. V. Kekeeva,
J. Zavalishina,
Y. Andreeva,
G. Frank,
D. Zaletenski

1 Moscow Herzen Oncological Research Institute, Moscow, Russian Federation, 2Sechenov Medical Academy, Moscow, Russian Federation.

Due to intensive investigations for the last ten years it has become increasingly clear that tumor microenvironment plays a critical role in prostate carcinogenesis. Tumor microenvironment undergoes significant modification such as protein expression alterations and various genetic changes of stromal cells. Accumulation of multiplicity genetic alterations is typical not only for cancer epithelial cells but tumor-associated fibroblasts and endothelial cells as well. Further more these stromal cell alterations are not tumor epithelium specific.

We investigated TMPRSS2/ERG fusion gene expression in prostate cancer and tumor microenvironment. Tumor epithelia and tumor-associated stroma 34 prostatectomy specimens from patients with pT1-T4 stage prostate cancer were isolated using laser capture microdissection. mRNA expression of TMPRSS2 and TMPRSS2/ERG significant in prostate carcinogenesis were investigated using RT-PCR following by sequencing.

We found TMPRSS2/ERG expression only in 65% (22/34) tumor epithelium samples and neither of adjacent tumor stroma. Also we detected TMPRSS2 expression in all tumor epithelium samples and 5/34 stroma specimens. The possible explanation of TMPRSS2 expression in the microenvironment is the presence of single tumor cells, which we observed by cytokeratin IHC staining. Nevertheless the fusion gene expression is not characteristic for the tumor-associated stroma.

The finding of frequent genetic alterations in tumor-associated stroma suggests a more important role for stromal fibroblasts in prostate carcinogenesis than was previously appreciated. Some molecular alterations are common for prostate cancer and tumor microenvironment but TMPRSS2/ERG fusion gene is the tumor feature only.

P06.185

Genome-wide increase in differential DNA methylations in TMPRSS2/ERG fusion gene negative prostate tumours

S. T. Birner,
F. Fischer,
M. Körck,
M. Fältner,
M. Laibler,
J. C. Brauer,
R. Kanner,
A. Dahl,
C. Groiss,
M. Isau,
M. Bührer,
R. Wunderlich,
R. Claus,
C. Flass,
M. Graefert,
S. Simon,
F. Demichelis,
M. A. Rabin,
S. G. Sauter,
S. Schlömm,
H. Sälmann,
H. Lehrach,
M. R. Schweiger

1Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany, 2Department of Biology, Chemistry and Pharmacy, Free University, Berlin, Germany, 3Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany, 4Berlin, Germany, 5Cancer Genome Research, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases, Heidelberg, Germany, 6Biotechnology Center, Technical University Dresden, Dresden, Germany, 7Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY, United States, 8Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany, 9Clinical Center, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 10Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Prostate cancer is the second most common cancer among men worldwide. Despite intensive scientific efforts basic molecular reasons mostly remained unclear. Lately, it became evident that alterations in the DNA methylation pattern can be one of the leading causes for tumour formation. Therefore, we initiated the first high throughput sequencing study investigating genome-wide DNA methylation patterns in a large cohort of 104 human prostate tissues including normal controls using MeDIP-Seq. Comparative analyses identified more than 147,000 cancer-associated epigenetic alterations, affecting more than 75% of homeobox genes and 50% of the known cancer associated genes in their promoter region.
We could show that the increased expression of EZH2, originating in about 50% of prostate tumours in an ERG involving fusogenic (TMPRRSS2:ERG), might explain the remarkable differences in DNA methylation between tu- mour and normal tissues. The methylation patterns, however, are strikingly more dissimilar in TMPRSS2:ERG fusogenic negative samples to normal prostate tissues than those in fusogenic positive tissues. We identified a mechanism of hypermethylation of miRNA-26a as an alternative pathway of ERG independent EZH2 activation which in turn can explain the observed increase in differential methylation in fusogenic negative tumours.

P06.186 Interaction of the RAD51 paralogs in the mammalian 2/3 hybrid system
D. Endt, A. Niklaus, D. Schindler;
Department of Human Genetics, Wuerzburg, Germany.

The five RAD51 paralogs, RAD51B, RAD51C, RAD51D, XRC2 and XRC3, play an important role in homologous recombination, a process crucial for the error-free removal of DNA double-strand lesions. These proteins share 20-30% homology and interact with each other and the RAD51 recombinase, an ortholog of E. coli RecA. Previous investigations in the yeast two-hybrid system, co-immunoprecipitations from human cell extracts and co-expression in the baculovirus system have shown that the paralogs form two complexes, RAD51C/XRC3 and RAD51B/RAD51C/XRC3/XRC2. RAD51B has been reported to stabilize the interaction of RAD51D and XRC2. Here we aimed at extending these findings in a human cellular environment. For that purpose we used the mammalian two- and three-hybrid system (M2/3H). We cloned full-length cDNA of each of the five RAD51 paralogs into the pM and pVP16 vectors. In M3H studies, the additional expression vector pCAGGS-Flag was used. Firefly luciferase (pGHL-3) served as reporter gene for the assay. As control for transfection efficiency we overtransfected renilla luciferase (pRL-null). As internal standard and positive control we employed the reported interaction of FANCA and FANCNG. In M2H studies the previously reported interactions were confirmed, except that of RAD51C and RAD51D. This weak interaction required the presence of RAD51B for activation or stabilization, whereas XRC2 did not boost it. Likewise, some of the other interactions were be influenced by a third paralog in M3H studies. Additional RAD51 protein seemed not to effect interactions of RAD51C/RAD51D and RAD51D/XRC2 but those of RAD51C/XRC3 and RAD51C/RAD51B. Bidirectional testing showed slight differences in interaction strength.

P06.187 Detection of micro-metastases of renal cell carcinoma by CA9 marker using Real-time PCR
B. Bajerlan1, M. Hashemi1, H. Ghaffari1;
1Islamic Azad University,Science and Research Branch, Tehran, Islamic Republic of Iran, 2Islamic Azad University,Tehran Medical Branch, Tehran, Islamic Republic of Iran, 3Oncology and Stem Cell Research Center of Shiraz University Hospital, Shiraz University of Medical Sciences, Tehran, Islamic Republic of Iran.

The global prognosis of renal cell carcinoma (RCC) remains poor, about 40% of patients will develop metastasis after nephrectomy. There is a strong need to identify the early metastasis with conventional and molecular risk factor. The analysis of molecular markers provides a new tool for prediction of prognosis for early metastasis. The present study aimed to test if analysis of the CA9 gene in peripheral blood can provide useful information to predict Micro metastasis.

In this experimental study, patients (n=30) with a renal cell carcinoma were evaluated for peripheral blood CA9 expression using randomy. Data of tumor grade were received from pathologists. Total RNA extraction and cDNA synthesis was performed and CA9 gene expression level were compared between patients and normal group (n=16) by Real-time PCR. Six of patients show high CA9 expression (3 in grade I, 2 in grade II and 1 in grade III) but no significant difference was found between CA9 expression level and tumor grade. After one year follow up 4 patients were found to have a metastasis, but no significant difference was found between CA9 expression level and metastatic patients. (p>0.05)

CA9 is a tumor-specific marker for RCC with a high degree of expression in the conventional renal cell carcinoma. On the basis of the results of this study, the detection of CA9 gene expression in the peripheral blood of patients with RCC may prediction factor for increasing risk of micro metastasis.

P06.188 Identification of new diagnostic markers for renal cell carcinoma
S. Schmidt1, S. Erdt2, S. Burghoff3, S. Leitz3, K. Hoffmann3, B. Selig4;
1Institute for Human Genetics, Martin-Luther University Halle-Wittenberg, Halle/Saale, Germany, 2Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle/Saale, Germany.

The renal cell carcinoma (RCC) is one of the most frequent malignant tumours and is often associated with the loss of function of the von-Hippel-Lindau gene (VHL). The ubiquitin ligase VHL triggers the degradation of the hypoxia-inducible factor (HIFs) under normoxic conditions. HIF is the major transcription factor reacting to hypoxia. As in the majority of cases this tumour is resistant to chemotherapy. Therefore, the aim of the study was to identify possible new diagnostic and therapeutic target genes, like VHL, in the HIF pathway in 24 RCC cell lines derived from patient tumour tissue. The cell lines were characterized with respect to mutations in VHL, the expression profile of HIF associated genes (HAF, FIH, VEGF, MET, MITF, EGFR, TGFR) at RNA and protein level, proliferation, anchorage independ- ent growth and activation of signalling pathways. The cell lines show a high variability concerning generation time in general and with respect to serum reduction and anchorage independent growing. The identified expression profile of HIF associated genes reveals possible target candidates for diagnostics. VHL sequencing identified both known and unknown mutations. In 12 out of 24 tumour VHL mutations were found in exon 1. 11 of 18 analysed cell lines had no VHL mutations in exon 2 and 3. First results gained by linking immune blots and expression profiling suggest a correlation of VHL protein expression with HIF target gene vascular endothelial growth factor (VEGF) expression. New possible targets associated with HIF for example FHI were identified to diagnose RCC and could be therapeutically relevant.

P06.189 Vitamin D receptor polymorphisms and renal cancer risk in Bashkortostan Republic of Russia
I. Katuyeva1, I. Gilyazova1, R. Khasanov1, A. Zagidullin1, A. Khaliullin1, E. Klimentova1, A. Shagidina1, V. Pavlov2, E. Khusnutdinov3;
1Institute of Biochemistry and Genetics, Ufa Science Centre, RAS, Ufa, Russia, Federation, 2Bashkir State Medical University, Ufa, Russian Federation, 3Bashkir State University, Ufa, Russian Federation.

Renal cell carcinoma (RCC) is the most common neoplasm affecting the adult kidney. One of the most important events in RCCs metabolism of vitamin D, which exerts its activity through binding to the nuclear vitamin D receptor (VDR). The aim of investigation was to analyze risk of RCC in patients from Bash- kortostan Republic depending on VDR polymorphisms. A case-control association study included 176 RCC patients and 165 controls, matched for age, sex and residence. The used PCR-RFLP genotyping of VDR gene polymorphisms at three tree locations rs731236 (Tag), rs7975232 (Apal), rs1544410 (BsmI), rs2268257 (Rkl). Statistically significant differences were observed in the Tagl genotype t/1 between RCC patients and controls (p=0.024, OR=2.93 (95%CI 1.13-7.87)). Analysis of other gene polymorphisms didn't show significant differences between patients and controls (p>0.05) in general cohort and taking into consideration sex, pathologial stage and histological grade of RCC.

The polymorphisms BsmI, Apal, Tagl of VDR gene demonstrated strong linkage disequilibrium (D'>30%). The Fold didn't was in linkage disequilibrium with any of the other examined VDR polymorphisms (D'>30%). haplotype analysis showed that haplotype Tab (p=0.003), TAB (p=0.0125), TaB (p<0.0393), TaB (p=1.9606e-3) were significantly prevalent in RCC patients. The most patients with lower stage of RCC had haplotype Tab (p=0.002), whereas patients with higher stage had haplotype Tab (p=0.02). We revealed haplotype Tab (p=0.002) of VDR gene to be a risk factor for RCC development in males.

The analysis of genetic variation in VDR gene may provide insight into the role of vitamin D in RCC development.

P06.190 Amplicon-Based Ultra-Deep Next-Generation Sequencing and its application to characterize mutated transcripts of RB1 gene in peripheral blood cells of children patients with germlinal Retinoblastoma
I. Valášková1, J. Kadlecová1,2, S. Dudová1, M. Vatašková2, J. Žrůstová2, T. Kepák3, R. Gailloud1,2;
1University Hospital Brno, Medical Genetics Dept., Brno, Czech Republic, 2Masaryk University, Faculty of Medicine, Brno, Czech Republic, 3University Hospital Brno, Clinic of Pediatric Oncology, Brno, Czech Republic.

Introduction: RB1 (gene controlling cell division) mutations constitute a disease-defining molecular aberration in Retinoblastoma, the most common
primary ocular malignancy (retina cancer) of childhood. In germlinal retinoblastoma (40% of all retinoblastomas) a germline RB1 cancer predisposing mutation is present in all of the body’s cells. Therefore molecular diagnostics of germlinal retinoblastoma is performed by PCR assays targeting the RB1 gene. Two different classes of DNA, obtained from peripheral blood. Mutational analysis of RB1 transcripts obtained from peripheral blood using current sequencing standard - Sanger capillary sequencing (which sensitivity is about 15%) is complicated by the nonsense-mediated mRNA decay (NMD), an mRNA surveillance pathway that ensures the rapid degradation of mRNAs containing premature translation termination codons. The Next-Generation Sequencing (NGS) - technology Roche 454 is based on pyrosequencing. It means that each sequenced fragment is clonally copied. This allows increasing of sensitivity under 1%

Method: In amplicon covering transcript of RB1 gene we applied the 454 Titanium chemistry assay [454 Life Sciences] to perform ultra-deep sequencing of specific cDNA PCR products using the GS Junior System sequencer from Roche’s 454 Life Sciences. In median, 5 446 reads per amplicon were generated, thereby allowing a highly sensitive assessment of mutational burden in RB1 transcripts of retinoblastoma patients. To assess sequencing error rates, we included a control amplicon from the normal transcript.

Conclusion: We here demonstrate that amplicon-based ultra-deep NGS is a suitable method to accurately detect and quantify the variety of transcript error rates, we included a control amplicon from the normal transcript. We here demonstrate that amplicon-based ultra-deep NGS is a suitable method to accurately detect and quantify the variety of transcript error rates, we included a control amplicon from the normal transcript.
P06.196 Splicing functional assays of a single minigene with eight exons of the BRCA2 gene
A. Acero, B. Díez-Gómez, Á. Custodio, C. Hernández-Moro, M. Infante, C. Miner, M. Durán, E. A. Pelacón
Institute of Biologia and Genética Molecular (CISC-U), Valladolid, Spain.
Splicing disruptions is one key pathogenic mechanism in inherited diseases. We are currently investigating the contribution of aberrant splicing of BRCA1/2 genes to hereditary breast/ovarian cancer. A powerful approach to study the splicing outcomes of DNA variants is a splicing reporter minigene especially designed to detect mutations in the 3′ untranslated region (UTR) of the DNA that is not available. We constructed a single minigene of 8 BRCA2 exons (19 to 26) in a pSP63-derived plasmid in 5 cloning steps, which is, as far as we know, the largest BRCA2 minigene ever reported. The genomic fragment from exons 19 to 26 is more than 27 kb in length that was reduced to a final insert of 4.7 kb with internal deletions of introns 20, 21, 24 and 25. This construction was transfected in HELa cells and we observed a main RNA isoform of the expected size of 1.5 kb that contained the vector constitutive exons and BRCA2 exons 19 to 26. Several splicing variants of each exon were generated in the wild type minigene by PCR mutagenesis and assayed to demonstrate the usefulness and reliability of this large construction. Splicing reporter minigenes are straightforward and robust tools to distinguish between pathogenic mutations and innocuous variants. The use of minigenes with several exons facilitates the analysis of putative splicing variants in a single minigene and emulates the physiological genomic context where the splicing reactions take place. Acknowledgments: Grants CSII04A10-2 and BIO39/VA27/10 (Junta de Castilla y León) and Grant PI10/2910 (Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Spain).

P06.197 Application of High Resolution Melting Technique for detection of Germ Line Single Nucleotide Polymorphisms in STK11 Gene among Patients with Various Gastrointestinal Cancers
S. Bassemi1, A. Nazemi1, M. Hashemi2, 1Islamic Azad University, Tonekabon Branch, Tonekabon, Islamic Republic of Iran, 2Islamic Azad University, Tehran Medical Branch, Tehran, Islamic Republic of Iran.
High Resolution Melting is a method that analyzes genetic variations such as Single Nucleotide Polymorphisms in PCR amplicons. Since HRM characterizes nucleic acid samples based on their disassociation (melting) behavior, the nucleotide sequence of amplicon is an important factors affecting the melting curve. The STK11 gene encodes a member of the serine/threonine kinase and regulates cell polarity and function as a tumor suppressor gene. The germ-line mutations in this gene are associated with Peutz-Jeghers syndrome. The patients with this syndrome are prone to some types of neoplasms. Genomic DNA was extracted from the whole blood samples of 56 patients with various gastrointestinal cancers. The nucleotide changes in the entire STK11 gene were analyzed by real-time PCR and high-resolution melting technique. The nucleotide screening by HRM technique showed two types of SNPs in introns 6 and 7 of STK11 gene in 10 patients. Four patients had C/T substitution [Cluster id:dsSNP/rs9282860] with homozygous genotype in intron 6, and six patients showed a C/G substitution [Cluster id:dsSNP/rs2075607] with heterozygous genotype in intron 7. The direct sequencing of the fragments confirmed that the results obtained by HRM were 100% reliable. In this study we found no SNP in exons of STK11 gene. However, two SNPs were found in the introns of this gene. Our results show that the primary screening of the STK11 gene by the HRM technique is easily applicable to detect the unknown germ line and somatic mutations in patients with neoplasia at a relatively low cost.

P06.198 Recurrent and novel SS18-SSX fusion transcripts in synovial sarcoma: description of three new cases
J. Pryjma1, R. Sciutti, B. Bakkeid, J. A. Siedlecki, V. Vanspauwen, I. Samson, M. Debiec-Rychter1
1Department of Molecular Biology, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland, 2Postgraduate School of Molecular Medicine, Warsaw, Poland, 3Postdoctoral School of Biomedical Sciences, K.U. Leuven, Leuven, Belgium, 4Department of Pathology, K.U. Leuven and University Hospitals, Leuven, Belgium, 5Department of Soft Tissue/Bone Sarcoma and Melanoma, The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland, 6Department of Orthopedic Surgery, K.U. Leuven and University Hospitals, Leuven, Belgium.
Synovial sarcoma (SS) is an aggressive type of tumor, comprising approximately 10% of soft tissue sarcomas. Over 90% of SS cases are characterized by the t(X;18)(p11.2;q11.2) translocation, which results mainly in the formation of oncogenic SS18-SSX1 or SS18-SSX2 fusions. In a typical SS18-SSX5 fusion transcript, exon 10 of SS18 is fused to exon 6 of SSX1/2. However, several variant fusion transcripts have been already described. In the present study, we examined the fusion transcript type in a series of 40 primary untransplanted SS tumor specimens using reverse transcription polymerase chain reaction (RT-PCR). We detected SS18-SSX1 transcript in 22 (55%) patients and SS18-SSX2 transcript in 17 (42.5%) patients, while in one patient none of SS18-SSX1/2 fusion transcripts were identified. Among the cases under study, two tumors carried novel SS18-SSX1 and SS18-SSX2 variant localizations that were allegedly created by an alternative splicing and in additional case an unusual translocation variant previously described by other group was found. Our data suggest that alternative splicing may play an important role in novel fusion transcript formation and additionally we show that it may be a recurrent event in SS. Furthermore, we describe the first case of a complex rearrangement possibly linking SS to REP52 gene.

P06.199 Genomic and epigenetic characterization of T-cell prolymphocytic leukemia (T-PLL)
A. K. Bergmann1, O. Ammerpohl1, D. Jiříč1, D. Ringshausen2, M. Seifert1, A. Teske1, U. Dürksen1, R. Küppers3, R. Siebert1
1University Hospital Schleswig-Holstein, Institute of Human Genetics, Kiel, Germany, 2Department of General Pediatrics, Kiel, Germany, 3University Hospital Essen, Department of Hematology, University of Duisburg-Essen, Essen, Germany, 4Technical University Munich, Department of Hematology and Medical Oncology, Munich, Germany, 5Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany, Complete Genomics Inc., Mountain View, CA, United States.
T-PLL is an aggressive postthymic T-cell malignancy with distinctive clinical, morphologic, cytogenetic and molecular features (Dürig et al., Leukemia, 2007). We have initiated a comprehensive genetic and epigenetic profiling of T-PLL. First, we investigated the presence of the hallmark changes inv(14) (q11q32)/t(14;14)(q11;q32) and t(X;14)(q28;q11) by interphase FISH using probes for the TCRAD locus in 14q11 and its both partners involved in the named changes, i.e. TCLI in 14q32 and MTCPI in Xq28. In 43 cases with features of T-PLL acquired over the last 25 years we identified TCRAD breaks in 93%, TCLI breaks in 74% and MTCPI breaks in 14%. TCLI and MTCPI breaks were mutually exclusive. Two cases contained a TCRAD break with a partner other than TCLI and MTCPT1 and 3 cases did not show breaks in any of these three loci. To determine the pattern of secondary genetic changes on a base pair level we have performed custom full genome sequencing of flow-sorted T-PLL cells and corresponding non-T-cells of the same patients using Complete Genomics® technology. Initial analyses of the first three patients suggest the genomic landscape of T-PLL to be highly complex with a mean number of 150 protein-changing somatic single nucleotide mutations and 110 insertions and deletions. Validation of these findings and extension into the full cohort is ongoing and supplemented by DNA-methylation profiling using Illumina 450K Methylation BeadArrays. We are confident that the combined genomic and epigenomic profiling of T-PLL will identify potentially druggable pathways in this still poor-prognosis disease.
*supported by a grant from Complete Genomics

P06.200 Genetic replication study of susceptibility loci for testicular germ cell cancer in the Croatian population
D. Lesel1, M. Gamulin1, T. Kuhar2, M. R. Tolar3, M. Gregc1, Z. Kastelan1, P. Nürnberg1, C. Kubisch1
1Institute of Human Genetics, University of Ulm, Ulm, Germany, 2Clinical Hospital Centre Zagreb, Zagreb, Croatia, 3Cologne Center for Genomics, University of Cologne, Cologne, Germany.
Testicular germ cell tumour (TGCT) is the most common cancer in young men showing a pronounced degree of heritability. Recent genome-wide association studies in British and US samples have identified six susceptibility loci of genome-wide significance. The goal of our study was to perform a genetic replication analysis of these loci in an independent European population. We therefore analyzed six single nucleotide polymorphisms (rs2900333 [ATF7IP], rs101330 [BARI], rs755383 [DMRT1], rs995030 [KRT18], rs4624820 [SPRY4] and rs4635969 [TERT/CLPTM1L]), each representing one of the published susceptibility loci, in a Croatian case-control sample consisting of 331 tumor-free male controls (> 50 years of age) and 325 cases. Indeed, five of these SNPs were found to be associated in the Croatian population: rs995030 (OR 1.50, p=0.00041), rs755383 (OR 1.53, p=0.00023), rs210138 (OR 1.68, p=0.00031), rs4624820 (OR 1.50, p=0.00041) and rs4635969 (OR 1.35, p=0.01739), a finding which is still significant after conservative correction for multiple testing. Similar to previous studies, the association was comparable for different histological subtypes. Moreover, we evaluated if any SNP was associated with aggres-
siveness of TGCT measured by different staging categories. Interestingly, while rs2900333 near ATP7F1 just showed borderline association with all-TGCC [OR 1.26, p=0.062], it showed significant association with the more aggressive forms of the tumour [OR 1.55, p=0.0067]. In summary, our data provide further evidence that the previously identified loci are involved in the susceptibility for TGCT and suggest a possible role of ATP7F1 in regulating the progression of TGCT, although it has to be confirmed in independent samples.

P06.201 Comprehensive mutation screening of miRNA loci in testicular germ cell tumours

S. de Boer1, A. Notini2, R. Hersmus1, Y. van der Zwan1, L. Lootjongen3, S. White3;
1Monash Institute for Medical Research, Melbourne, Australia, 2Erasmus Medical Center, Rotterdam, Netherlands, 3Agilent Technologies, Melbourne, Australia.

MicroRNAs (miRNAs) are endogenous small non-protein coding RNAs which regulate basic cellular processes. There is considerable evidence that expression of miRNA genes is deregulated in human cancer, and specific over- or underexpression has been shown to correlate with particular cancer types.

Testicular germ cell tumours (TGCTs) are the most common malignancy affecting males between the ages of 15 and 45 years, and are associated with significant morbidity including infertility. These cancers are most commonly formed from undifferentiated fetal germ cells contained within the testis. There are several methods for identifying variants in DNA. High-resolution melting curve (HRM) analysis and multiplex ligation-dependent probe amplification (MLPA) are two sensitive, cost effective and high throughput techniques for rapidly screening a large number of DNA samples. To identify poising mutations we performed HRM analysis on eight miRNA loci implicated in either testis cancer and/or pluripotency. To identify deletions and duplications we developed an MLPA mix containing probes that recognize 50 miRNA sequences that have been identified as being deleted or duplicated in tumours.

We have carried out a pilot study using these two approaches on 48 TGCT samples. To date we have identified a number of potential variants that we are currently confirming with independent techniques. Given the success of this initial screen we plan to study an additional 100 DNA samples. Our samples. To date we have identified a number of potential variants that we are currently validating, and we are planning to screen a larger cohort of TGCT samples for specific genes. This study will improve our understanding of the genetics underlying TGCT initiation and progression. In order to obtain a better understanding of this condition we have performed whole exome analysis on DNA from two TGCT samples, plus matched non-tumour material. Exome capture was carried out with the SureSelect Human All Exon kit from Agilent, which targets 44 Mb of exonic regions, and sequencing was performed on an Illumina HiSeq 2000 instrument. Data analysis identified several potentially de novo variants that we are currently validating, and we are planning to screen a larger cohort of TGCT samples for specific genes. This study will improve our understanding of the genetics underlying TGCT, with implications for diagnosis and therapy.

P06.204 Analysis of frequency of CHK2 gene sequence variants: R145W and I157T in Polish patients with differentiated thyroid cancer and Polish population

M. Kaczmarek-Ryś1, S. Hryhorowicz2, J. Hoppe-Gołębiewska3, B. Sobaki4, K. Ziemniacki1, J. Sawicki5, R. Smolski6;
1Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland, 2The Nanobiocenter Medical, Adam Mickiewicz University, Poznań, Poland, 3Department of Biochemistry and Biotechnology, University of Agriculture, Poznań, Poland, 4Department of Endocrinology and Internal Diseases, University School of Medical Sciences, Poznań, Poland, 5Department of Endocrinology and Internal Diseases, University School of Medical Sciences, Poznań, Poland, 6Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland.

Differentiated thyroid cancer (DTC) originate from thyroid follicular cells and belong to group of slowly progressing benign tumors with good prognosis. Very serious problems are recurrences and regional or remote metastasis. Numerous cases of osteolytic, cerebral and pulmonary metastasis were observed. Progression from well differentiated thyroid cancer to malignant anaplastic carcinoma is possible. Very important seems to be searching for molecular markers of disease course, good or poor prognosis and response on medical treatment. SNP polymorphisms research in genes associated with neoplastic diseases will be helpful in understanding of molecular mechanisms of thyroid gland tumors development and allow to better diagnosing. Mutations in CHK2 gene are thought to predispose to sarcomas, breast cancer, and brain tumors. Protein product of this gene is a cell cycle checkpoint regulator and tumor suppressor and is a member of the CDS1 subfamily of serine/threonine protein kinases.

We examined two sequence variants in CHK2 gene in group of 516 Polish patients with differentiated thyroid cancer and 500 individuals from population group. I157T and R145W variants were analyzed by pyrosequencing. There were differences in allele and genotype frequencies in analysis of I157T variation. Allele C was present with frequency 0.05 and allele T - 0.95 in patient with thyroid cancer; compared with 0.03 and 0.97 in control individuals respectively. The differences in allele frequencies were statistically significant (p=0.0072). We didn't observed any variability in R145 position. Data on gender were divided into two groups: male and female. Significant association was observed in female patients with differentiated thyroid cancer. In male patients with differentiated thyroid cancer, compared with 0.03 and 0.097 in control individuals respectively. The differences in allele frequencies were statistically significant (p=0.0072). We didn't observed any variability in R145 position.

P06.205 Evaluation of CYP2C9, CYP2C19 and CYP2D6 gene polymorphisms in thyroid cancer

A. Uludag1, S. Ozdemir1, S. Cihan2, A. Uludag1, S. Atik1, F. Silan1, O. Ozdemir1;
1Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey, 2Department of Nuclear Medicine, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey.

Thyroid cancer incidence has increased worldwide during the previous...
years. Incidence of thyroid cancer is 335/99 in European Union countries. It is 1.4% of all cancers. Mortality of thyroid cancer is 0.3%.

CYP2C9, CYP2C19 and CYP2D6 genes have been reported to be coding the enzymes responsible for the metabolism of many drugs, including warfarin and imatinib, and may influence narrow therapeutic indices. Realising the importance of inter-individual differences in the genetic profile in determining the outcome of a drug therapy, this study was conducted to explore the types and frequencies of CYP2C9, CYP2C19 and CYP2D6 alleles in healthy controls and thyroid cancer patients.

Total genomic DNA was isolated from peripheral blood samples with EDTA and spin column method. A total of 103 subjects including 49 healthy control and 54 thyroid cancer patients were genotyped for the three CYP genes. CYP2C19 allele *1, *2, *3, CYP2C19 allele *1, *2, *3 and CYP2D6 allele *1, *2, *3, *4, *5 have been studied by real time PCR method for both two groups.

In thyroid cancer group allele frequency of CYP2C9 *2 was 4.62%, *3 was 19.44%, CYP2C19 *2 and *3 allele frequencies were 17.59% and 0% respectively. Those ratios were 9.18%, 61.2%, 11.22% and 5.10% respectively. According to our study, genes have roles in drug metabolism like CYP genes may act an important role in cancer ethiopathogenesis and further studies including larger control and patient groups are needed.

P06.208

The possible role of the xenobiotic transporter P-glycoprotein polymorphism that encoded by the MDR1 3435 C>T gene in the susceptibility of differentiated thyroid cancer

S. Ozdemir1, A. Uludag1, F. Silany1, S. Atik1, A. Turut2, O. Ozdemir1,2

1Department of Nuclear Medicine, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey, 2Department of Medical Genetics, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey

P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene is an efflux transporter and plays an important role in pharmacokinetics. The current preliminary study was designed to determine association between germ-line polymorphism in MDR1 gene with differentiated thyroid carcinoma (DTC). In the current case-control study of 60 thyroid nodules (TC); 45 papillary TC (PTC), 9 follicular TC (FTC) and 6 differentiated TC (DTC) of well-differentiated TC of uncertain malignant potential were examined. Genomic DNA was extracted from peripheral blood with EDTA, target gene was genotyped by multiplex Real-time PCR and PCR-based reverse-hybridization StripAssay method. Carriers of the variant allele of MDR1 exon 26 polymorphism were at 2.8-fold higher risk of DTC than the control group (odds ratio [OR]: 0.3805, 95% confidence interval [CI]: 0.1597-0.9065). There was no association between DTC and MDR1 3435T polymorphism in the presented results.

P06.209

Comparison of genetic changes in schistosome-related transitional and squamous bladder cancers using fluorescence in situ hybridization

M. S. Aly1, A. A. Mahmoud2

1Faculty of Science, Beni Suef University, Cairo, Egypt, 2Faculty of Science, Jazan University, Jazan, Saudi Arabia.

In western countries, more than 90% of primary bladder carcinomas are transitional cell carcinoma (TCC), whereas squamous cell carcinoma (SCC) comprises less than 10%. Carcinoma of the urinary bladder is the most common malignancy in many tropical and subtropical countries due to endemic infection by *Schistosoma hematooum*. Compared with non-schistosombladder cancer, schistosome-related bladder cancer has different clinical and pathological features.

In this study, dual-color FISH cytogenetic analysis was performed using two oncogenes (HER-2/neo and MCV) and a tumor suppressor gene (p53) in correlation to chromosomes 8 and 17 centromeres in a group of patients presenting with schistosomal associated squamous and transitional cell carcinoma.

To the best of our knowledge, this is the first report to compare genetic alterations in both transitional and squamous subgroups of schistosomal bladder cancers in Egyptian patients using the FISH technique.

P06.210

TSPY and TSPX gene copy number assessment in patients with gonadal tumours, prostatic cell lines and control groups

M. Kovaliova, R. Vokálova, R. Vtel, K. Kvaronyi, J. Bohmova, H. Fillpova, J. Santavy; Faculty of Medicine Palacky University Olomouc, Olomouc, Czech Republic

Background: TSPY gene is localized on Y chromosome and have a homologue TSPX on X chromosome. TSPY is specific expressed in testes. TSPY is normally expressed in ovaries and testes. Over expression of TSPY was discovered in tumour tissues. Product of TSPY accelerates a pass through G2/M phase via cyclin D2 and positively affects the cell proliferation.

P06.206

The possible role of the xenobiotic transporter P-glycoprotein polymorphism that encoded by the MDR1 3435 C>T gene in the susceptibility of differentiated thyroid cancer

S. Ozdemir1, A. Uludag1, F. Silany1, S. Atik1, A. Turut2, O. Ozdemir1,2

1Department of Nuclear Medicine, Faculty of Medicine, Canakkale, Turkey, 2Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey

P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene is an efflux transporter and plays an important role in pharmacokinetics. The current preliminary study was designed to determine association between germ-line polymorphism in MDR1 gene with differentiated thyroid carcinoma (DTC). In the current case-control study of 60 thyroid nodules (TC); 45 papillary TC (PTC), 9 follicular TC (FTC) and 6 differentiated TC (DTC) of well-differentiated TC of uncertain malignant potential were examined. Genomic DNA was extracted from peripheral blood with EDTA, target gene was genotyped by multiplex Real-time PCR and PCR-based reverse-hybridization StripAssay method. Carriers of the variant allele of MDR1 exon 26 polymorphism were at 2.8-fold higher risk of DTC than the control group (odds ratio [OR]: 0.3805, 95% confidence interval [CI]: 0.1597-0.9065). There was no association between DTC and MDR1 3435T polymorphism in the presented results.

P06.209

Comparison of genetic changes in schistosome-related transitional and squamous bladder cancers using fluorescence in situ hybridization

M. S. Aly1, A. A. Mahmoud2

1Faculty of Science, Beni Suef University, Cairo, Egypt, 2Faculty of Science, Jazan University, Jazan, Saudi Arabia.

In western countries, more than 90% of primary bladder carcinomas are transitional cell carcinoma (TCC), whereas squamous cell carcinoma (SCC) comprises less than 10%. Carcinoma of the urinary bladder is the most common malignancy in many tropical and subtropical countries due to endemic infection by *Schistosoma hematooum*. Compared with non-schistosombladder cancer, schistosome-related bladder cancer has different clinical and pathological features.

In this study, dual-color FISH cytogenetic analysis was performed using two oncogenes (HER-2/neo and MCV) and a tumor suppressor gene (p53) in correlation to chromosomes 8 and 17 centromeres in a group of patients presenting with schistosomal associated squamous and transitional cell carcinoma.

To the best of our knowledge, this is the first report to compare genetic alterations in both transitional and squamous subgroups of schistosomal bladder cancers in Egyptian patients using the FISH technique.

P06.210

TSPY and TSPX gene copy number assessment in patients with gonadal tumours, prostatic cell lines and control groups

M. Kovaliova, R. Vokálova, R. Vtel, K. Kvaronyi, J. Bohmova, H. Fillpova, J. Santavy; Faculty of Medicine Palacky University Olomouc, Olomouc, Czech Republic

Background: TSPY gene is localized on Y chromosome and have a homologue TSPX on X chromosome. TSPY is specific expressed in testes. TSPY is normally expressed in ovaries and testes. Over expression of TSPY was discovered in tumour tissues. Product of TSPY accelerates a pass through G2/M phase via cyclin D2 and positively affects the cell proliferation.

M. Kovaliova, R. Vokálova, R. Vtel, K. Kvaronyi, J. Bohmova, H. Fillpova, J. Santavy; Faculty of Medicine Palacky University Olomouc, Olomouc, Czech Republic

Background: TSPY gene is localized on Y chromosome and have a homologue TSPX on X chromosome. TSPY is specific expressed in testes. TSPY is normally expressed in ovaries and testes. Over expression of TSPY was discovered in tumour tissues. Product of TSPY accelerates a pass through G2/M phase via cyclin D2 and positively affects the cell proliferation.
expression of TSPX or SET leads to cell retaining in G2/M.

Aim: Quantification of TSPX/X gene copy number and study of potential changes in the TSPY/X copies and their mutual ratios.

Method: There were assessed 10 women and 8 men patients with gonadal tumors, 20 patients with IPG, 25, RWP-L, LNM, 80 woman and 80 m controls in the study. The study was supported by IGA UPOL LF_2011_004.

Relative copy number of TSPY/X genes was quantified by capillary electrophoresis in comparison to one-copy genes AMELV/X.

Results: We observed more TSPY gene copies in patients with seminomas compared to TSPX gene than in control group. Number of TSPY gene copies in men was more elevated than in patients with seminomas. More variability in TSPY gene copies was indicated in women with ovary carcinoma compared to controls. The women control group has more TSPY gene copies than patients with tumors in average. In prostatic cell lines DU-145, LAPC-4 and LnCaP was significantly increased amount of TSPY copies compare to control group.

Conclusion: Obtained data could contribute to understanding of TSPX/X gene role in tumor-genesis process in gametogenic tissues.

P06.211

Evidences of the association between UCP2 gene expression with Obesity, Family history of cancer and Metabolism

K. Mirzaei1, A. Hossein-nezhad1, H. Ansari2, S. Emamgholipour2, S. Keshavarz2,
1Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran, Tehran, Islamic Republic of Iran, 2Department of Nutrition and Biochemistry, school of Public Health and institute of research, Tehran University of Medical Sciences, Tehran, Iran, Tehran, Islamic Republic of Iran.

Increased risk of cancer is one of the consequences of obesity. UCP2 has been implicated in free radical scavenging relevant to pathological processes, including obesity and has a unique role in energy balance and their responses to inflammatory stimuli. UCP2 expression was changed in human cancer and may correlate with the degree of oxidative stress. The aim of study was to investigate their potential correlation with family history of cancer. We analyzed our data to appropriately reclassify family history of cancer.

A total of 220 obese subjects were included in study. The PBMCs were separated, total cellular RNA was extracted and the cDNA was synthesized. Real-time PCR using specific primer pairs was performed. We analyzed our findings according to categorized group: group with a family history of cancer and Individuals without a family history of any cancer.

Of the 220 participants, 20 (9.09 %) had a family history of cancer and 200 (90.91 %) hadn’t family history of any cancer. The mean of age and BMI were 36.99±9.02years and 34.99±4.13kg/m² respectively. We found significantly lower UCP2 gene expression in group with a family history of cancer. The estimated family history of cancer relative risk attributable to UCP2 gene expression was 1.46%. We found significantly lower relative UCP2 gene expression in vitro in samples of PBMCs derived from all participants in a cellular model and to monitor anti-metastatic treatment.

It seems that the relative expression of involved genes in energy balance may have important role in cancer risk in obese subjects.

P06.212

Detection of GNAQ and GNA11 mutations in plasma of metastasized uveal melanoma patients by deep amplicon sequencing

M. Zeschning1, C. H. D. Metz1, N. Bornfeldt1, D. R. Lohmann1, 2Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany.

Elevated levels of DNA are frequently found in the cell free plasma of cancer patients. Activating mutations in GNAQ and GNA11 are highly specific for uveal melanoma. To establish a reliable assay which might allow for early detection and monitoring of metastatic disease we determined the proportion of GNAQ or GNA11 mutant reads in DNA from cell free plasma of uveal melanoma patients by ultra-deep sequencing. We isolated cell-free DNA from 23 blood samples from patients with metastasized uveal melanoma. GNAQ and GNA11 regions of interest were amplified on 6 ng DNA. To detect even low proportion of mutant sequence reads ultra deep sequencing of amplicons was performed (Roche GS Junior).Levels of DNA ranged from 20 to 1550 ng per ml of plasma. On average about 2600 sequence reads were obtained for each amplicon (range: 281 to 6191).

We detected either GNAQ Q209 or GNA11 Q209 mutations in the plasma from 9 out of 23 patients. The proportion of mutant reads ranged from 2 to 38 %, however, the background noise (0.5% at any given nucleotide position) limited the sensitivity of detection.

We found no correlation between amount of cell-free DNA in plasma and the proportion of mutant reads. This suggests that at least in some patients elevated DNA levels in the plasma do not originate from tumor cells. Ultra-deep amplicon sequencing can be used to detect low proportion of tumor DNA in plasma. This biomarker might thus be helpful to measure tumour burden and to monitor anti-metastatic treatment.

P06.213

Valproic acid achieves its anticancer activity by re-expression of cyclin D2

D. Wirt1, P. Barfeind1, S. von Hardenberg1, L. Opitz2, G. Salinas-Riester3, S. Schweyer1, P. Thiel1, S. Kauffli2, 1Institute of Human Genetics, Göttingen, Germany, 2Department of Developmental Biochemistry, Göttingen, Germany, 3Department of Pathology, Göttingen, Germany.

Histone deacetylase inhibitors (HDACi) are widely known as remedies against epilepsy. But in the last years, HDACi research in the field of cancer expanded. In this study we demonstrated that the treatment of primary murine prostate cancer (PCa) cells derived from the well-established TRAMP (transgenic adenocarcinoma of mouse prostate) model with the HDACi valproic acid (VPA) has an anti-proliferative, anti-migrative and anti-invasive effect on the cells.

To our knowledge this is the first study that identified that treatment of PCa cells with VPA leads to the re-expression of cyclin D2, which is known to be frequently inactive in patients with PCa. Additionally, we could demonstrate that VPA specifically induces re-expression of cyclin D2 in human colorectal and mammary gland adenocarcinoma cell lines, whereas VPA treatment has no effect in NIH/3T3 fibroblasts. Moreover, the intensity of re-expression is dependent on the inhibition of proliferation, because for NIH/3T3 cells no inhibition of proliferation after VPA treatment was observed.

The re-expression of cyclin D2 can also be achieved by other HDACi. The conclusion that cyclin D2 re-expression observed in cancer cells after the treatment with VPA is activated by an increase in histone acetylation was shown by chromatin immunoprecipitation studies for the promoter region of the cyclin D2 gene. However, the re-expression seems not to be due to changes in the methylation status of the cyclin D2 promoter region. In summary, our results propose VPA as an anticancer therapeutic option in tumors with epigenetically repressed cyclin D2 expression.

P06.214

Complete variant of uncertain significance rates in BRCA1/2 and Lynch Syndrome testing (MLH1, MSH2, MSH6, PMS2)

Laboratories that provide full gene sequencing frequently detect Genetic Variants of Uncertain Significance (VUSs). VUSs present a challenge to the clinician in how to appropriately guide the medical care of their patient in the context of an inconclusive test result. While the majority of VUSs are eventually discovered to be non-disease causing, some are pathogenic. Myriad Genetic Laboratories, Inc. has pursued protocols to collect sufficient data to appropriately reclassify VUSs. Statistical techniques that can lead to VUS reclassification have been developed on a large BRCA1/2 dataset. While the basis of these statistical techniques has been published, they have been further refined such that they are now applicable to not only BRCA1/2, but also Lynch Syndrome genes as well as APC. We report the current VUS rate in BRCA1/2 as 3.0%, MLH1+MSH2+MSH6 as 7.3% and PMS2 as 4.4%. The continual drop in VUS rate through time reflects the success of these VUS reclassification techniques and Variant Classification Programs. In recent years the application of these techniques has also led to significant drops in VUS rates in non-European ethnic groups, with the most prominent change being in BRCA1/2. Characterizing VUSs gives the clinician the required information to appropriately manage their patient.

P06.215

Investigation of the VDR gene polymorphisms and expression association with Family history of cancer in obesity

A. Hossein-nezhad1, K. Mirzaei1, H. Ansari1, S. Emamgholipour2, s. Keshavarz2, A. Thelen4, S. Kaulfuß1; 1Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany, 4Department of Urology, Göttingen, Germany.

Population-based study demonstrated that VDR gene variation, especially VDR FokI +3071 C>A and VDR BsmI +792T>C polymorphisms, might contribute to the development of cancers. The estimated family history of cancer relative risk attributable to UCP2 gene expression was 1.46%. We found significantly lower relative UCP2 gene expression in vitro in samples of PBMCs derived from all participants in a cellular model and to investigate their potential correlation with family history of cancer. We analyzed
VDR FokI polymorphism (rs10735810) and its correlation with VDR gene expressions in obese subjects with and without a family history of cancer separately. A total of 190 obese subjects were included in study. FOKI was genotyped and VDR gene expressions were separated by FokI-hyqaque technique. Total cellular RNA was extracted and Real-Time PCR performed. We analyzed our findings according to categorized group: group with a family history of cancer and Individuals without a family history of any cancer. The mean of age and BMI were 35.3±8.31years and 33.3±2.3kg/m² respectively. The frequency of ff genotype was significantly higher in subjects with family history of cancer. We found significantly lower relative VDR gene expression in group with a family history of cancer (p<0.05). However VDR expressions were low in ff genotype in group without a family history of cancer, but its expression was low in every three genotypes in group with a family history of cancer. It seems that the having ff genotype and lower expression of VDR could be associated with risk of cancer.

P06.216

Overexpression of VEGF isoforms generated by alternative splicing in head and neck cancer

P. M. Biselli-Chicote, G. H. Marucci1, E. Castro1, B. R. Canhã1, J. Maniglia1, D. S. Neto1, E. H. Tajara1, E. C. Pavarino1

Departments of Otorhinolaringology and Head and Neck Surgery, Sao Jose do Rio Preto Medical School - FAMERP, Sao Jose do Rio Preto, Brazil

VEGF isoforms generated by alternative splicing in samples of head and neck squamous cells carcinoma and adjacent normal tissues, and to determine the effect of regulatory proteins (SRp55, SRp40, AS/F2 and SRPK1) in the control of VEGF gene splicing. The overexpression of both VEGF isoforms was observed in head and neck squamous cells carcinoma related to normal tissue samples. Possible correlation between VEGF xx and VEGF xx expression was observed in head and neck tumors. SF/SF2 presented higher expression in tumors when compared to normal tissues. Pharynx tumors presented overexpression of VEGF xx. VEGF xx was underexpressed in oral cavity tumors. Overexpression of both VEGF isoforms was observed in aggressive tumors. There was a positive correlation among AS/F2, SRp55 and SRp40 proteins and both VEGF isoforms, and among SRPK1 protein and AS/F2, SRp55 and SRp40 in tumor tissues. The results suggest that both VEGF isoforms play a role in angiogenesis promotion in head and neck tumors. VEGF isoforms present differential expression related to the anatomic sites of tumor and tumor aggressiveness. AS/F2, SRp55 and SRp40 proteins are involved in the regulation of the VEGF gene splicing mechanism. Here, we present two Vhl knockin mouse models with endogenous tumour formation. The effect of Vhl type IIB (V2B) and type IIC (V2C) germline mutations was analyzed over several generations. Additionally, Vhl knockin mutations were also combined with hemizygous inactivation of Pten, and the resulting tumor spectrum, incidence and tumour progression was investigated in over 300 mice of the distinct genotypes at the ages of 3 to 12 months. Pten knockout mice developed various tumours at 9 to 12 months independent of the Vhl genotype. Furthermore, V2B mice displayed a clear Vhl genotype dependent effect on the development of renal cysts. Additionally, we observed a significantly increase in incidence and tumour mass of PCCs in V2B and V2C compound hemizygous mice.

P06.218

Variance in von Hippel-Lindau disease-Mutation rate throughout life

M. M. Poulsen, E. Budtz-Jorgensen, M. Bisgaard

Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark

Background
Clinical management and counseling of von Hippel-Lindau (vHL) families is complicated by variable phenotypic expression. Natural history of disease progression is not fully understood, and better knowledge of specific factors’ influence would greatly benefit vHL management. We aim to describe the variance in vHL manifestation development throughout life and to assess association to gender and genotype.

Methods
Full medical records were collected from 52 vHL mutation carriers, 26 female and 26 male. Patients were followed from birth, and age-dependent manifestation rates were analyzed using Poisson regression. Relative rates between age groups were compared using robust standard errors which allowed for heterogeneity between patients. Effects on manifestation rates of gender and genotype (truncating mutation versus missense mutation) were determined.

Results
Overall, 381 manifestations were diagnosed in 42 subjects, while 10 were asymptomatic mutation carriers. Maximum manifestation rate was reached in the 30-34 year age-group with 0.880 manifestations per year (95% CI: 0.57-1.36). Compared to the 30–34 year group, the relative rates of especially the younger, but also of older groups were lower. We found a trend of a higher relative manifestation rate among patients with truncating vHL mutations compared to those with missense mutations (p<0.060) and less when comparing men and women (p<0.58).

Conclusions
Rate of manifestation development is associated to age, increasing from birth to the 30ies. Also, truncating vHL mutation carriers seem to have a higher rate of tumor development. Better knowledge of factors influencing phenotypic variability will facilitate surveillance targeting and counseling of affected families.
Expression changes in CIZ rearrangement ALL to that of other ALL subtypes will be presented. Our data suggests that CIZ gene rearrangement may have an incidence of ~3% in pediatric ALL, with an incidence of at least 18% in CD10-negative pre-B ALL. CIZ gene rearrangement may be associated with a more favorable prognosis than MLL gene rearrangement, and CIZ FISH analysis is recommended in patients with CD10-low/negative ALL.

P07.04

Determination Of Genotoxic Effects Of Boric Acid In Cervical Carcinoma Cell Lines

E. Kahraman1, M. Korkmaz1, I. Dalgıloglu Gürkan2,3

1 Celal Bayar University, Manisa, Turkey; 2 Aksaray University, Istanbul, Turkey.

Aim: It has been shown that boron could be anti-carcinogenic effects in limited number of epidemiological and in vitro studies. In this context, particularly its preventive and therapeutic potential for prostate and cervical cancer gaining power by the day. In this study that planned, investigated the cytogenetic effects of boron in cervical carcinoma cell lines.

Methods And Materials: In our study, HTB-32 (from ATCC) and CCL-62 (HeLa contaminant, from ATCC) that cervical carcinoma cell lines were used. On this cell lines were treated 250 μM, 500 μM, 1000 μM doses of Boric acid. For estimate of genotoxicity while chromosome aberrations in shape (CAs) were evaluated in terms of frequency, also Micronucleus (MN) frequency were calculated. Number of MN calculated for each boron doses in 1000 pieces binucleotide cells. For chromosome analysis, numbers of break and gap were evaluated for each dose in 50 pieces metaphase. The data that obtained, compared with the control group by applying the chi-square in SPSS 16.0 program.

Results And Discussion: In conclusion, statistically we didn’t find significant genotoxic effects of boric acid when compared with control group in human cervical carcinoma cell lines (p>0.05). Our data suggested that boracic acid no effects that increase or decrease on incidence of MN and CAs in human cervical carcinoma cell lines.

P07.05

A functional assay for the identification of DNA double strand break (DNA-DSB) repair deficiency in heterozygous carriers of BRCa2 and RAD51C mutations

A. A. Becker1,2, J. Weiner1, M. K. Grasse1, L. Landwehr3, T. Hilger4, R. G. Weber4, W. Wappenschmidt1, A. Meindl1, N. Arnold1, R. K. Schmutzer1,2,3

1 Division of Molecular Gynaeco-Oncology, Department of Gynaecology and Obstetrics, University Hospital Cologne, Cologne, Germany; 2 Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; 3 Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Christian-Albrechts-Universität Kiel, Kiel, Germany; 4 Institute for Medical Diagnostics, Berlin-Steglitz, Germany, Berlin, Germany, 5 Department of Radiation Therapy, University Hospital Cologne, Cologne, Germany, 6 Department of Human Genetics, Hannover Medical School, Hannover, Germany, 7 Department of Gynaecology and Obstetrics, Klinikkum rechts der Isar at the Technical University, Munich, Germany.

Mutations in breast cancer gene 1 and 2 (BRCA1/2) account for 50% of the familial aggregation of breast and ovarian cancer. Numerous allelic variants are of unknown clinical relevance (unclassified variants, UCV). We recently identified RAD51C as a third high penetrance gene. Like BRCA1/2 and RAD51C is also involved in homologous recombination repair (HRR) in response to DNA-DSB. Patient lymphocytes carrying a pathogenic BRCA1/2 variant exhibit an increased level of chromosomal damage after irradiation. We aimed at developing a reliable functional test system which allows the evaluation of HRR deficiency in heterozygous patient lymphocytes. Carriers of pathogenic BRCA2 and RAD51C mutations, pathogenic RAD51C mutations, healthy controls as well as BRCA2 UCV carriers were y-irradiated in 62 phase to introduce DNA-DSB. Repair capacity was subsequently assessed on metaphase chromosome spreads stained by multicolour fluorescence in situ hybridisation. Chromosomal translocations and breaks were counted per mitosis and referred to total chromosomal number. Lymphocytes from carriers of pathogenic BRCA2 and RAD51C mutations revealed a significantly higher mean aberration frequency than from controls (p<0.001, student’s t-test). Patients carrying an UCV in BRCA2 could be allocated to either the pathogenic or the control group. In summary, our assay may enable the identification of HRR deficiency irrespective of the underlying gene defect and may also serve as a biomarker for sensitivity to PARP inhibition.

P07.06

Chromosomal aberration in cervical cancer: FISH or chips?

V. Vrana1, L. Moschov1, I. Stamatov1, I. Filkov1,2, P. Kugli1,2

1 Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; 2 Department of Medical Genetics, University Hospital, Brno, Czech Republic.

Aim: It has been shown that boric acid could be anti-carcinogenic effects in limited number of epidemiological and in vitro studies. In this context, particularly its preventive and therapeutic potential for prostate and cervical cancer gaining power by the day. In this study that planned, investigated the cytogenetic effects of boron in cervical carcinoma cell lines.

Methods And Materials: In our study, HTB-32 (from ATCC) and CCL-62 (HeLa contaminant, from ATCC) that cervical carcinoma cell lines were used. On this cell lines were treated 250 μM, 500 μM, 1000 μM doses of Boric acid. For estimate of genotoxicity while chromosome aberrations in shape (CAs) were evaluated in terms of frequency, also Micronucleus (MN) frequency were calculated. Number of MN calculated for each boron doses in 1000 pieces binucleotide cells. For chromosome analysis, numbers of break and gap were evaluated for each dose in 50 pieces metaphase. The data that obtained, compared with the control group by applying the chi-square in SPSS 16.0 program.

Results And Discussion: In conclusion, statistically we didn’t find significant genotoxic effects of boric acid when compared with control group in human cervical carcinoma cell lines (p>0.05). Our data suggested that boracic acid no effects that increase or decrease on incidence of MN and CAs in human cervical carcinoma cell lines.
lymphocytic leukemia (CLL), occurring in more than 50% of CLL cases. It is found predominantly as an interstitial deletion, less frequently in a form of reciprocal translocation with deletion at 13q14 breakpoint. The parallel presence of two clones with the different forms of 13q14 deletion has been noticed only once so far. By detailed metaphase analysis (G-banding, FISH) on IL2 and DSP30 stimulated CLL cells, we revealed the translocation form of 13q14 deletion in 13 of 135 patients with 13q14 deletion (13/135; 10%). The coexistence of a clone with the deletion at reciprocal translocation break-point and another clone with the interstitial deletion was found in 5 of the translocation cases (5/13; 38%). In one of them a subsequent clonal analysis proved an independent origin of the both coexisting clones, giving the evidence of their purely coincidental presence. We showed the coexistence of clones with the translocation form of 13q14 deletion and clones with the interstitial deletion not to be rare. As a mark of clonal evolution it could signify an increased risk of disease progression. Based on our presented results we assume that 13q14 reciprocal translocation with deletion at the breakpoint could be formed independently from formation of more common interstitial deletion also in other translocation cases.

P07.09
Detection of chromosomal abnormalities in chronic lymphocytic leukemia (CLL): FISH or MLPA?
A. Busch, A. Glaser
Institute of Human Genetics, Jena, Germany.

Chronic lymphoid leukaemia (CLL) is a genetically heterogeneous disease with recurrent chromosomal aberrations of prognostic significance. Current strategies for detecting chronic lymphocytic leukaemia (CLL) include Fluorescence In Situ Hybridisation (FISH) and cytogenetics. Multiplex Ligation-dependent Probe Amplification (MLPA) is a multiplex PCR method detecting abnormal copy numbers in genomic DNA. We studied a cohort of bone marrow samples from suspected leukaemia patients and compared the results of FISH with cytogenetics and MLPA. We used a panel of 7 FISH hybridisation probes known to be of diagnostic relevance in CLL. Concordance between MLPA and FISH was excellent, when the abnormal clone was present more than 50% of the cell population. The use of MLPA allowed the identification of small alterations undetected by FISH, but e.g. translocations remain undetected. MLPA additional with cytogenetics represents a useful technique for the characterization of genomic changes in CLL. It is easy to use, faster and less cost intensive than FISH.

P07.10
Correlation between interphase FISH and real-time quantitative PCR for the therapeutic monitoring of chronic myeloid leukaemia
W. S. Wong, L. L. P. Siu, H. F. Wong, K. F. Wong
Haematology Laboratory, Queen Elizabeth Hospital, Kowloon, Hong Kong.

Background
Both interphase FISH (I-FISH) and real-time quantitative PCR (RQPCR) have been used for the monitoring of patients with chronic myeloid leukaemia (CML) on tyrosine kinase inhibitor (TKI) therapy. We compared the internationally standardized ratio (ISR) from the RQPCR test with I-FISH on patients with standard 9;22 reciprocal translocation and variant 9;22.

Methods and Result
104 samples from 54 patients with CML on TKI were studied during 2008 - 2011. 14 patients have ≥3 serial samples. ISR was derived from ratio of [BCR-ABL1]/ABL1 transcript. I-FISH was performed with dual-fusion BCR-ABL1 probes. ISR and I-FISH results were analyzed according to the cytogenetic response (Table 1). ISR showed wide intra-individual variation for the same tumor load as shown by I-FISH. The time to reach major molecular response (ISR ≤ 0.1%) ranged from 152 - 744 days after complete cytogenetic remission as shown by I-FISH. The falling trend of I-FISH correlated with ISR except in 2 patients, with one of them having a variant 9;22 translocation.

Conclusion
I-FISH is a better indicator of the tumor load especially in patients with variant 9;22 translocation while RQPCR is sensitive to detect BCR-ABL1 fusion. Further study is required to determine the relationship between ISR values and cytogenetic responses as previous studies were mostly based on the latter.

Table 1. Correlation of ISR and I-FISH in classical and variant 9;22 translocation.

<table>
<thead>
<tr>
<th>Case</th>
<th>G-banding karyotype</th>
<th>FISH for 13q14</th>
<th>FISH for chromosome 13</th>
<th>mBAND for chromosome 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46,XY,del(2)(p21),t(11;17)(q13;q25)</td>
<td>deleted</td>
<td>del(13)(q12;q21)</td>
<td>deleted</td>
</tr>
<tr>
<td>2</td>
<td>46,XY,del(2)(p21),t(11;17)(q13;q25)</td>
<td>deleted</td>
<td>del(13)(q12;q21)</td>
<td>deleted</td>
</tr>
<tr>
<td>3</td>
<td>46,XY,del(2)(p21),t(11;17)(q13;q25)</td>
<td>deleted</td>
<td>del(13)(q12;q21)</td>
<td>deleted</td>
</tr>
<tr>
<td>4</td>
<td>46,XY,del(2)(p21),t(11;17)(q13;q25)</td>
<td>deleted</td>
<td>del(13)(q12;q21)</td>
<td>deleted</td>
</tr>
<tr>
<td>5</td>
<td>46,XY,del(2)(p21),t(11;17)(q13;q25)</td>
<td>deleted</td>
<td>del(13)(q12;q21)</td>
<td>deleted</td>
</tr>
<tr>
<td>6</td>
<td>46,XY,del(2)(p21),t(11;17)(q13;q21)</td>
<td>deleted</td>
<td>del(13)(q12;q21)</td>
<td>deleted</td>
</tr>
</tbody>
</table>

P07.08
Independent coexistence of clones with 13q14 deletion at reciprocal translocation breakpoint and 13q14 interstitial deletion in chronic lymphocytic leukaemia
M. Hrubá, P. Dvorkov, L. Weberova, I. Subrt
Institute of Medical Genetics, Faculty of Medicine and University Hospital in Pilsen, Pilsen, Czech Republic.

13q14 deletion is the most frequent chromosomal aberration in chronic
Clonal evolution is a significant event in CLL patients. Convention and molecular cytogenetics were necessary to detect clonal evolution. We believe that CE could be a new prognostic factor and an indicator of clinical progression before treatment. No guidelines exist regarding dosage and duration of treatment with imatinib. We performed a study of cell death by flow cytometry. Results: Our results show that none of the new drugs reduce or increase the amount of tubulin. The viability study showed that Drug A and B not induce apoptosis, however, Paclitaxel and Drug C significantly increased apoptosis. Experimental design: Cell lines were treated with drugs A, B and C, derived from the isocombretastatin and Paclitaxel with a concentration of 50 nm. Clonal evolution (CE) is defined as acquired aberration, typically a new chromosome or new translocation. We believe that CE could be a new prognostic factor and an indicator of clinical course of the disease.
Variant chromosomal translocation in Ewings Sacoma

A pediatric chronic myeloid leukemia case progressing to blast crisis characterized by the deletion of Ikaros.

A. Athanasiadou,1, M. Ozdemir,2, A. Arastou,1, E. Cifci,1, B. Durak Aras,1, O. Cilingir,1, A. L. Gurlek,1, S. Artan2,3; 1Eskisehir Osmangazi University, Medical Faculty, Department of Medical Genetics, Eskisehir, Turkey, 2Eskisehir Osmangazi University, Medical Faculty, Department of Pathology, Eskisehir, Turkey.

Globlastoma is the most common primary brain tumor in adults and the most malignant types of human cancers with median survival time of <1 year detected in a population-based study. Although histopathological diagnosis of GBM is known as a gold standard, the primary and secondary subtypes that have at least two distinct pathways contributing to the tumorigenesis of GBM, are histologically indistinguishable and molecular markers are necessary for prognostication and treatments of the GBM cases. Frequent mutations of the genes involved in G1-S cell cycle transition control have been previously reported in both subtypes of the GBM. This study was planned to determine prognostic values of growth-control molecules including MDM2, CDK4 protooncogenes and RB1 tumor suppressor gene in primary GBMs. Of 40 cases, 26 were male and 14 were females and the mean age was 55.45±/ 2.25. Since no brain tumor history, the GBM subtype of all was primary GBM. The genomic copy aberrations of the genes were determined by the FISH assay in tumors sections of the cases. Of 40 cases, no gene copy number aberrations was seen in four cases whereas the MDM2, CDK4 gene amplifications and RB1 gene deletion were detected in 62.5%, 60.0% and 47.5% of the cases, respectively. The copy number alterations for all analysed genes were seen in seven cases. However, no significant differences between the worse survival and genetic markers was highlighted. Further detailed study related with genetic and epigenetic markers in larger population is necessary for clinical outcome of patients with primary GBM.

Genotoxicity of hepatitis B virus

H. G. Durakbas-Dursun1, A. G. Zaman1, O. Ural1, F. Dundar,1, M. N. Somuncu2,3; 1Department of Medical Biology Meram Medical Faculty, Konya University, Konya, Turkey, 2Department of Medical Genetics, Meram Medical Faculty, Konya University, Konya, Turkey, 3Department of Infectious Diseases Selcuklu Medical Faculty, Selcuk University, Konya, Turkey, 4Department of Microbiology, Selcuklu Medical Faculty, Selcuk University, Konya, Turkey, 5Department of Medical Genetics Meram Medical Faculty, Konya University, Konya, Turkey.

Background: Chronic hepatitis B is one of the major causes of cirrhosis and hepatocellular carcinoma worldwide. An estimated more than 350 million people are chronically infected with hepatitis B virus (HBV), characterized with various clinical states. Although HBV shows mainly pathologic effect on liver, it can also infect peripheral mononuclear cells. Since HBV has the capability of integrating in the human genome and causing chromosomal rearrangements, it might act as a clastogenic factor and exert a direct genotoxic effect on lymphocytes.

Aim: In this study, potential genotoxic effect of HBV was investigated on peripheral lymphocytes in chronic HBV patients. Results: The genotoxic effect of HBV was determined by comet assay in peripheral lymphocytes of chronic HBV patients. A significant increase in the percentage of DNA damage was detected in peripheral lymphocytes of chronic HBV patients compared to normal subjects.
controls by the micronucleus (MN) technique, is used as an index of chromosomal damage. Method: The MN assay was performed on peripheral blood lymphocyte cultures from chronic HBV patients, HBV carriers and controls. The cells with 4–1 nuclei and micronucleated cells were scored. Then frequency of micronuclei and cytokinesis-blocked proliferation index (CBPI) were calculated. The obtained data were compared between HBV patients, HBV carriers and controls. Results: There were no differences among HBV patients, HBV carriers and controls in terms of MN frequency and CBPI. Conclusion: Our findings suggest that HBV does not show genotoxic effect at least as MN formation and CBPI. P07.22

The detection rate of chromosomal abnormalities in mature lymphoreticular neoplasms is increased by adding CpG oligonucleotide (CpG-ODN) 1826 and IL-2 to the culture medium.

H. Devos, A. De Backer, S. Scheers, J. Wauters, G. Mortier, E. Van Assche; Center of Medical Genetics, Edegem, Belgium.

It has been shown that the addition of the CpG-oligodeoxynucleotides (CpG-ODN) 1826 and IL-2 to the culture medium increases the mitotic activity of chronic lymphocytic leukaemia cells and consequently the detection rate of chromosomal abnormalities in this malignant haematological disorder. With this study we aimed to investigate the effect of this addition in the diagnosis of a broader group of mature lymphoid malignancies. From January till December 2010, bone marrow samples for staging of lymphoid malignancies were cultured in either a conventional medium or in a medium with CpG-ODN and IL-2. Between 5 and 20 G-banded metaphases were analysed in each sample. Classification of the chromosomes and definition of a clone were made according to ISCN (2009). In total, 233 samples were included in the study. In 99% of the samples a successful stimulation for metaphase generation was obtained. In 34/233 samples an abnormal karyotype was observed, suggestive for invasion of lymphoid malignant cells into the bone marrow. In 15 of those 34 abnormal samples, the aberration was only found in the cultures with added CpG-ODN and IL-2. However, in one sample the chromosomal abnormality was only observed in cultures with the conventional medium and not in those with CpG-ODN and IL-2. For this patient, the final diagnosis was not a lymphoid neoplasm but acute myeloid leukaemia.

Our findings confirm that stimulation of cultures with CpG-ODN and IL-2 in case of mature lymphoid malignancies results in an increased detection rate of clonal abnormalities.

P07.23

A new type of karyotype evolution?

K. Shirneshan, J. Schanz, C. Ganster, F. Braulke, D. Hauß; Department of Hematology and Oncology, Goettingen, Germany.

Cytogenetic findings play an important role in the diagnosis and assessment of prognostic of myelodysplastic syndromes (MDS) and are emerging as an important factor in treatment allocation and in selection and monitoring response to therapy. Abnormalities involving chromosome 7 are frequent in MDS and suggest an intermediate to poor prognosis. In 2% of MDS patients we observed a coexistence of monosomy 7 and 7q-deletions at the same time by FISH analysis of CD34+ peripheral blood cells. Two patients showed an increase of -7 clone size parallel to a decrease of 7q- clone size during progress. Now we report a case of a 72-year-old man with suspected MDS. Analysis of bone marrow revealed MDS RA. Banding analysis of bone marrow showed three clones with different chromosome 7 abnormalities: del 7q in 22%, ring chromosome 7 in 22% and monosomy 7 in 11% of the metaphases.

We hypothesize that chromosome 7 is subject to karyotype evolution during MDS progression. Due to the existence of the third clone with r(7) we assume that r(7) is a transitional stage of karyotype evolution between 7q- and -7 which is resulting of loss of telomere ends in 7q- cells. FISH analysis confirmed deletion of telomeres in r(7). Follow up analyses of this patient will allow further examination of karyotype evolution involving chromosome 7 abnormalities.

P07.24

The molecular background of the medulloblastoma - identification of the most common chromosomal aberrations in Polish patients

J. Trubicka, A. Tomaszek, M. Perek-Popielik, D. Abramczuk-Piekutowska, E. Ciara, D. Jarzabiewicz, S. Lutzka, M. Policz, M. Borucka-Mankiewicz, P. Kowalski, K. Chrzanowska, M. Krajewski-Walażek; Children’s Memorial Health Institute, Department of Medical Genetics, Warsaw, Poland.

In our study on medulloblastoma’s genetic background we determined the frequency of the most common chromosomal aberrations in Polish patients with MB. We screened a total of 21 patients, using a multiplex ligation-dependent probe amplification analysis (MLPA) and identified 11 carriers (52.3%) of chromosome 7 aberrations (including 8 patients with isochromosome - 38%) and 5 carriers (24.4%) with abnormalities within chromosome 6. All the identified changes were somatic mutations. These findings suggest that the identified common chromosomal aberrations are the consequence of another molecular mechanism involved in the pathogenesis of medulloblastoma. The analysis on the genetic background of MB in the Polish population will be continued.

The study was financed by the National Science Centre, project no. 6917/B/PO1/2011/40.

P07.25

Comprehensive high-resolution genomic profiling and cytogenetics of two pediatric and one adult medulloblastoma

L. Xu1, H. Holland2, P. Ahner1,1, H. Kirsch1,1, R. Koschay1, M. Bauer1, R. Schöber1, J. Mehnert2, W. Krüppel1; 1Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany, 2Department of Neurosurgery, University of Leipzig, Leipzig, Germany.

The study was financed by the National Science Centre, project no. 6917/B/PO1/2011/40.

P07.26

Analysis of chromosomal abnormalities in phenotypically normal plasma cells detected by FISH in monoclonal gammopathy of undetermined significance

A. Mikulasova1,2, P. Kuglik3, J. Smetana4, H. Greslikova5, R. Kapka5, P. Nemec1,2, L. Rihova1,2, M. Klimova1, R. Hujak2,1; 1Department of Hematology and Oncology, University Hospital Brno, Brno, Czech Republic, 2Department of Internal Medicine – Hematooncology, University Hospital Brno, Brno, Czech Republic, 3Laboratory of Experimental Hematology and Cell Immunotherapy, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic, 4Department of Internal Medicine, University Hospital Brno, Brno, Czech Republic, 5Division of Neuropathology, University of Leipzig, Leipzig, Germany.

The study was financed by the National Science Centre, project no. 6917/B/PO1/2011/40.

www.eshg.org

Abstracts - European Human Genetics Conference 2012

P07.24

The molecular background of the medulloblastoma - identification of the most common chromosomal aberrations in Polish patients

J. Trubicka, A. Tomaszek, M. Perek-Popielik, D. Abramczuk-Piekutowska, E. Ciara, D. Jarzabiewicz, S. Lutzka, M. Policz, M. Borucka-Mankiewicz, P. Kowalski, K. Chrzanowska, M. Krajewski-Walażek; Children’s Memorial Health Institute, Department of Medical Genetics, Warsaw, Poland.

In our study on medulloblastoma’s genetic background we determined the frequency of the most common chromosomal aberrations in Polish patients with MB. We screened a total of 21 patients, using a multiplex ligation-dependent probe amplification analysis (MLPA) and identified 11 carriers (52.3%) of chromosome 7 aberrations (including 8 patients with isochromosome - 38%) and 5 carriers (24.4%) with abnormalities within chromosome 6. All the identified changes were somatic mutations. These findings suggest that the identified common chromosomal aberrations are the consequence of another molecular mechanism involved in the pathogenesis of medulloblastoma. The analysis on the genetic background of MB in the Polish population will be continued.

The study was financed by the National Science Centre, project no. 6917/B/PO1/2011/40.

P07.25

Comprehensive high-resolution genomic profiling and cytogenetics of two pediatric and one adult medulloblastoma

L. Xu1, H. Holland2, P. Ahner1,1, H. Kirsch1,1, R. Koschay1, M. Bauer1, R. Schöber1, J. Mehnert2, W. Krüppel1; 1Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany, 2Department of Neurosurgery, University of Leipzig, Leipzig, Germany.

The study was financed by the National Science Centre, project no. 6917/B/PO1/2011/40.

P07.26

Analysis of chromosomal abnormalities in phenotypically normal plasma cells detected by FISH in monoclonal gammopathy of undetermined significance

A. Mikulasova1,2, P. Kuglik3, J. Smetana4, H. Greslikova5, R. Kapka5, P. Nemec1,2, L. Rihova1,2, M. Klimova1, R. Hujak2,1; 1Department of Hematology and Oncology, University Hospital Brno, Brno, Czech Republic, 2Department of Internal Medicine – Hematooncology, University Hospital Brno, Brno, Czech Republic, 3Laboratory of Experimental Hematology and Cell Immunotherapy, Department of Clinical Hematology, University Hospital Brno, Brno, Czech Republic, 4Department of Internal Medicine, University Hospital Brno, Brno, Czech Republic, 5Division of Neuropathology, University of Leipzig, Leipzig, Germany.

The study was financed by the National Science Centre, project no. 6917/B/PO1/2011/40.
P07.07 Combination of FISH and array-CGH technique provide powerful diagnostic tool in multiple myeloma: single centre experience

1Bablik Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Czech Republic, 2Department of Experimental Medicine, Faculty of Science, Masaryk University, Brno, Czech Republic, 3Department of Medical Genetics, University Hospital, Brno, Czech Republic, 4Department of Internal Hematooncology, University Hospital Brno, Czech Republic, Brno, Czech Republic.

Multiple myeloma (MM) is a hematologic disease characterized by malignant proliferation of clonal plasma cells (PCs). Identification of copy number aberrations (CNAs) in genome of PCs plays a key role in MM pathogenesis and is supposed to have important prognostic significance for MM patients. Combined utilization of array-CGH technique and FISH proved to be a powerful tool in MM diagnostic. There are two major genetic entities in MM. Hyperdiploid group (H-MM), which include about 50% of MM patients and have is commonly characterized by gains of odd-numbered chromosomes and lower prevalence of IgH rearrangement. Non-hyperdiploid (NH-MM) cases are connected with frequent incidence of one of several recurrent IgH translocations. Non-hyperdiploid (NH-MM) cases were found in 1p, 1q, 6p, 8p, 13q, 14q, 16q and 22q along with gain of extra copies of odd-numbered chromosomes. Hyperdiploid cases were found in nearly half of the cases (49%) with subgroup of cases with +11 and gain (+1q) and del(13q) translocation 4;14 (p16.2;q32) was found in 10% of cases. In 1q21 gains were chromosome 1 (n=34), 2 (n=31), 3 (n=30) and 5 (n=16). All chromosomes were involved in the translocations, with the exception of chromosome 19, 20, 22 and Y. Half of the translocations were found as a part of complex karyotype (≥3 chromosomal abnormalities). One hundred and seventy-six (83%) translocations were not previously described neither in H-MM nor in NH-MM. Nine new apparently recurrent translocations were found in our series.

CONCLUSION: Balanced translocations were found in 11% of MM patients, half of them being involved in complex karyotypes.

P07.29 The low level clones of BM cells with BCR-ABL fusion gene amplification have unfavorable influence on CML imatinib therapy outcome

S. Mordanov1, A. Zeltzer1, E. Grankina1, O. Ustaeva1, T. Kangurova1, Y. Shatokhin2.
1Rostov State Medical University, Rostov-on-Don, Russian Federation, 2Federal State Budgetary Institution “Research Centre for Medical Genetics” of the Russian Academy of Medical Sciences, Moscow, Russian Federation, “Russian National Research Medical University named after N.I.Pirogov, Moscow, Russian Federation.

Imatinib CML therapy have shown the high effectiveness but primary and secondary resistance is observed in some cases. The aim of this study was to elucidate the influence of low level clones of BM cells with BCR-ABL gene amplification (GA) to the results of CML imatinib treatment. Bone marrow samples from 174 CML patients (pts) were analyzed by cytogenetic and FISH analysis. 200 interphase nuclei were analyzed after hybridization with dual color/dual fusion BCR-ABL gene probe (“Vysis”) in each case. According to the ELN criteria (2009) 51 pts have achieved optimal or suboptimal response, 86 pts have failure and 37 pts have loss of achieved response. FISH did not revealed BCR-ABL GA in pts with optimal and suboptimal responses. Additional copies of BCR-ABL gene (from 1 to 7) were found in 32 (37,2%) pts with primary resistance and in 12 (32,4%) pts with secondary resistance. The probability of complete cytogenetic response (CCyR) achievement in pts with BCR-ABL GA was significantly lower than in pts without it (31,6% vs. 63,8%, p=0,000025). All pts with additional copies of BCR-ABL gene were subdivided in 4 quartiles (Q) in accordance with % of BM cells with BCR-ABL GA. The probability of CCyR achievements in pts of Q1-Q2 (1-6% BM cells with BCR-ABL GA) do not differ from pts of Q3-Q4 (7-72% BM cells with BCR-ABL GA) (p=0,86-0,45).

In conclusion, the pts with low level clones with BCR-ABL GA have the same unfavorable prognosis as well as pts with high level clones.
cells had extra chromosome 8. In 6th passage their amount increased to 34% and in 12th passage it decreased to 16%. In other case the culture of bmMSC of healthy woman had clone with one X chromosome. The amount of such cells in 4th passage was 12% and increased to 91% in 10th passage. The microscopic analysis revealed the presence of genetic abnormal cells clones in early passages and persisted till late stages of cultivation. In one of the cultures of healthy donor’s bmMSC was found the clone with trisomy 8, chromosomal abnormality, which is strongly associated with myeloid malignancies.

P07.31

Mnemonic (MNs) induction and FISH analysis in peripheral lymphocytes of Tunisian pathology and anatomy laboratory workers exposed to Formaldehyde (FA)

S. Bourouzi1, S. Moussa1, A. Brahimi1, H. Bennetbelfy1, N. Bouali1, R. Berquigne1, I. Ben abdallah1, S. Brahimi1, O. Moma11, M. Gribaa1, D. Hmida1, N. Mrizek2, F. Tabka2, H. Elghroud1, A. Saad1; 1Department of Cytogenetic and Reproductive Biology, Farhat Hached University Teaching Hospital, Sousse, Tunisia, 2Department of occupational and environmental medicine, Farhat Hached University Teaching Hospital, Sousse, Tunisia.

Formaldehyde is an important industrial compound but it is also a naturally occurring biological compound present in all cells and body fluids. The International Agency for Research on Cancer (IARC) classified FA as carcinogenic to humans (group 1) based on the studies indicating an increased incidence of nasopharyngeal cancer in populations occupationally exposed to FA. A genotoxic effect of (FA), in particular mucinous induction, has been shown to exist. The aim of our study was to assess the frequency of MMs and to identify the type of chromosomal damage in Tunisian staff from pathologic anatomy laboratory of Farhat Hached hospital (Sousse, Tunisia). Assessment of chromosomal damage was carried out in peripheral lymphocytes of 31 exposed to (FA). We used 31 controls from the administrative department of the same hospital. The clastogenic and aneugenic effect of FA was evaluated using the standard MN assay in combination with the fluorescence in situ hybridization (FISH) technique. The results showed a significant increase of the MN frequency in lymphocytes of exposed workers compared with the control group (25.3% ± 6.28 versus 7.08% ± 4.62). As assessed by FISH, the frequency of centromeric microchromes (C-MM) was higher in exposed subjects than in controls (18.38% ±5.94 versus 5.03%±3.64). Among the (C-MM), the frequency of MN containing one centromere was significantly higher in pathologist/anatomists than in controls (15.35% ± 6.0 versus 3.33% ±2.74). The increase of the frequency of centromeric microchromes observed in exposed group may suggest a slight aneugenic effect of exposure to FA.

P07.32

Evidence for a pre-malignant cell line in a skin biopsy from a patient with Niemann Breakage Syndrome (NBS)

R. Habib1, H. Nestetz1, B. Goryluk-Kozakiewicz1, K. Chranowski1, K. Spering1; 1Institute of Medical and Human Genetics, Berlin, Germany, 'The Children’s Memorial Hospital, Warsaw, Poland.

The chromosomal instability disorder, Niemann-Beckeag syndrome (NBS), is characterized by microcephaly, growth retardation, immunodeficiency, hypersensitivity to X-irradiation, and predisposition to malignant tumors, especially lymphomas. Nibrin, the product of the NBN gene, is part of the MRE11/RAD50 complex, which is involved, among others, in the repair of DNA double strand breaks (DSBs). The majority of NBS patients are of Central and Eastern European origin and carry the common founder mutation in the NBN gene, 657del5. Skin fibroblasts, derived from a 9 year old NBS patient showed a mosaic of normal diploid cells and those with an unbalanced translocation, resulting in partial monosomy for 6q and 13q21→qter, and partial trisomy for 20q11.2→qter, as confirmed by G-banding, CGH and chromosome painting. The relative proportion of these aberrant cells increased during propagation of the cell line. This was due to a faster cell cycle, as shown after BrdU labeling and is paralleled by a shorter telomere length, as demonstrated by T/C-FISH (telomere/centromere-FISH). Moreover, after treatment with 0.5 and 1.0 Gy the aberrant cells showed significantly more chromosomal aberrations than the diploid cells in the same flask. This change observed in the aberrant cell line has a selective growth advantage and thus may represent a first step in malignant transformation.

P07.33

Secondary acute myeloid leukemia after treatment for Neuroblastoma stage III. A Case Report.

M. Moschos1, A. Athanasiadou1, M. Adamaki1, Y. F. Kana1, M. I. Rompolou1, A. Karyotis1, A. Divanou1; 1Hematology-Oncology Unit, First Department of Pediatrics National University of Athens, Aghia Sofia Children’s Hospital, Athens, Greece; 2‘Life Code’, Genetic Centre for Research and Diagnosis, Athens, Greece.

Introduction: Therapeutic advances in the treatment of pediatric neoplasms have improved the prognosis but increased the risk of developing second malignant neoplasms (SMNs). Acute myeloid leukaemia (AML) is the most likely SMN to occur during the first 5 years following treatment.

Purpose: To describe the case of a pediatric patient with Neuroblastoma (NBL) stage III, who developed secondary AML at 4 years following cessation of treatment.

Material-Method: A 2.5-year-old boy was diagnosed with stage III NBL on the adrenal and received chemotherapy. No cytogenetic study to NBL was performed. The mass progressively decreased and 1 year later the follow-up was negative. Eight months after the cessation of treatment, a local relapse of NBL was revealed and treated with partial resection, radiotherapy and chemotherapy. One year later, a second local relapse was revealed and a total resection of the mass achieved complete remission.

Results: Four years following the cessation of treatment (eight years after NBL diagnosis), the patient was admitted with anaemia (Hb 7.3 g/dl) and thrombocytopenia (PLTs 5000/µl). A secondary AML was diagnosed. FISH analysis revealed MLR rearrangement in 60% of the nuclei and cytogenetic analysis showed 46.XY[11:19] (q23:p13.3). The patient received chemotherapy according to AML-BFM-2004 protocol and MLR rearrangement was detected in 29.4% on the 15th day of treatment.

Conclusions: NBL is the most common solid tumors in childhood. However, little is known about the factors that determine the long-term risk of SMN following this type of cancer. The risk of AML was significantly increased after combined radiation and chemotherapy.

P07.34

T/C-FISH studies on telomere length of derivative chromosomes in HeLa cells

J. Dohla1, E. Kormann, B. Fritz1; 1Institute for Humangenetik, Merck, Germany.

Telomeres play an essential role in preserving chromosomal integrity and genomic stability. To achieve a better understanding of telomere length and its possible impact on development of chromosome aberrations, we analyzed the telomere length of the karyotypically well characterized HeLa cell line. HeLa cells have a hypertriploid chromosome number with specific numerical deviations and clonally abnormal chromosomes known as HeLa signature chromosomes. Karyotypic heterogeneity is also present exhibiting ‘shared’ and ‘unique’ karyotypic alterations. To measure the telomere length of individual chromosomes we did sequential analysis of metaphase spreads using telomere/centromere fluorescence in situ hybridization (T/C-FISH) as well as multi colour-FISH (M-FISH) to identify the marker chromosomes unequivocally. In the present study, individual telomere length was highly heterogeneous. Telomere length was associated with both frequency and type of chromosomal aberrations. The telomere length of derivative chromosomes, which were present in almost all metaphases did not differ from the average telomere length. However, derivative chromosomes appearing only in few cells showed great variability in telomere length (0% up to +64%) compared to the average telomere length. Regarding the type of chromosome aberration small marker chromosomes and isochromosomes showed significantly longer telomeres than deletions and complex translocations. Our results imply that recurrent aberrations have passed the point of short telomeres and high instability. Their telomeres may be stabilized and even increase in length possibly depending on the type of aberration.

P08.01

The sulfhydryl inhibitor of metalloproteinasas-2-418 G/C gene polymorphism and abdominal aortic aneurysm

J. Mikołajczyk-Stępień1, A. Korcz1, R. Słomski1, M. Gabriela1, K. Pawłaczyk2, G. Ozakinska1; 1Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland, 2Department of Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland.

Purpose: To determine if the occurrence of AA genotype at position 418 of the G318A MPP2 gene, which codes for a sulfhydryl inhibitor of metalloproteinases, may be a possible risk factor for AA abdominal aortic aneurysm (AAA).

Materials and Methods: A total of 231 patients with AAA and 260 controls were included in this study. The G318A MPP2 gene polymorphism was determined using the polymerase chain reaction (PCR) and the restriction fragment length polymorphism assay. Odds ratios were calculated using the logistic regression model. The genotype distribution of the G318A MPP2 allele was compared using Chi-square analysis.

Results: A significant difference was observed in the frequency of the AA genotype between patients with AAA and controls (p = 0.04). The odds ratio of AA genotype was 2.45 (95% CI: 1.08-5.53) as compared to the GG genotype. No significant difference was observed in the frequency of the GA genotype between patients with AAA and controls (p = 0.53).

Conclusion: The G318A MPP2 gene polymorphism may be a possible risk factor for AA abdominal aortic aneurysm.
Objective and design. Pathogenesis of abdominal aortic aneurysm (AAA) is connected with abnormal extracellular matrix remodeling with the assistance of extracellular matrix metalloproteinases (MMPs). Tissue inhibitors of metalloproteinases (TIMPs) inhibit their activity. Any imbalance in the MMPs/TIMPs ratio may cause various disorders. A decrease of the tissue inhibitor of metalloproteinases-2 (TIMP2) gene expression was detected in AAA patients. Recently, a -418G/C (rs8197090) polymorphism of the TIMP2 gene promoter, influencing the transcription rate of the gene, has been described. The aim of this study was to investigate whether -418 G/C gene polymorphism was associated with AAA in the Polish population.

Methods. TIMP2 gene promoter polymorphism was evaluated by polymerase chain reaction followed by restriction enzyme analysis and pyrosequencing in 128 patients affected with AAA and 180 individuals treated as references. The control group was directly matched to patients according to common risk factors of vascular diseases.

Results. The genotypes distribution was 17 CC, 5 CG, 106 GG in the 128 AAA cases and 12 CC, 0 GG, 168 GG in the 190 control subjects. The frequency of the C allele was significantly higher in the AAA patients than in the control group (P = 0.005, OR = 2.516). The distribution of genotypes also differed significantly between the studied groups (CC+GG vs. GG: P = 0.037, OR = 2.906) or was close to being significantly different (CC vs. GG+GC: P = 0.501, OR = 2.144).

Conclusion. This study supports the hypothesis that TIMP2 and -418G/C polymorphism located in promoter of TIMP2 gene are important in AAA pathophysiology.

P08.02 Analysis of polymorphisms in GABRA2 and AUTS2 genes in patients with alcoholism from Russia

G. Faskhutdinova, A. Aсадалин, E. Кhusnutdinова;
Institute of Biochemistry and Genetics Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russian Federation, Ufa, Russian Federation.

Family, twin and adoption studies have provided evidence of a genetic component (40-60%) in the origins of addictive disorders. One of very few confirmed genetic association findings differentiating alcoholics from controls is that alcoholics from non-alcoholic families have a two-fold increased risk of alcohol dependence. The aim of this study was to assess the influence of common risk factors of vascular diseases.

Methods. TIMP2 gene promoter polymorphism was evaluated by polymerase chain reaction followed by restriction enzyme analysis and pyrosequencing in 128 patients affected with AAA and 180 individuals treated as references. The control group was directly matched to patients according to common risk factors of vascular diseases.

Results. The genotypes distribution was 17 CC, 5 CG, 106 GG in the 128 AAA cases and 12 CC, 0 GG, 168 GG in the 190 control subjects. The frequency of the C allele was significantly higher in the AAA patients than in the control group (P = 0.005, OR = 2.516). The distribution of genotypes also differed significantly between the studied groups (CC+GG vs. GG: P = 0.037, OR = 2.906) or was close to being significantly different (CC vs. GG+GC: P = 0.501, OR = 2.144).

Conclusion. This study supports the hypothesis that TIMP2 and -418G/C polymorphism located in promoter of TIMP2 gene are important in AAA pathophysiology.

P08.03 Fine-mapping of the PICALM locus, CSF biomarker profile analysis and neurofibrillary pathology in a Flanders-Belgian Alzheimer cohort

C. Van Cauwenberghe1, W. C. De Deyn2, J. Verbeek1,2, K. Bettens1,2, A. Sieben1,2,3,4, R. J. Smith2, H. Najmabadi1;
1Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran; 2 Molecular Otolaryngology & Renal Research Laboratories, Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa, IA, United States.

Hereditary hearing impairment is a genetically heterogeneous disorder, which affects about 1 in 1000 newborns. So far, over 90 loci and 40 genes have been mapped for autosomal recessive non-syndromic hearing loss (ARNSHL).

One of the loci located to ARNSHL, DFNB49, is located on the long arm of chromosome 5. The gene responsible for the hearing loss in this locus is MARVELD2, which encodes an essential protein called TRIC.

The PICALM gene polymorphism was associated with increased risk of dilated cardiomyopathy in a Tunisian population but do not influence the cardiac phenotype severity.
First genome-wide association study of classic bladder exstrophy

M. Draaken1, A. S. Quante2, V. F. Northrup1, C. Zellmer1, J. Flow2, M. Terry1
1Institut für Genetische Epidemiologie, Helmholtz Zentrum München, Neuherberg, Germany, 2Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, United States.

Mutations in the gene encoding pyrimidym play major role in auton- branchal disease Familial Mediterranean Fever (FMF). Behçet’s disease is a chronic inflammatory multisystemic disorder of unknown cause. In re- cent prevalence MEFV gene mutations in Behçet’s disease (BD) has been reported significantly higher compared with general population. We were investigated prevalence of five MEFV gene mutations (M694V, M680I, V726A, E148Q and P369S) in BD patients and comparison with controls. DNA samples were collected from 207 BD patients and 200 control subjects with healthy sibling. These samples were investigated prevalence of five MEFV gene mutations (M694V, M680I, V726A, E148Q and P369S) in BD patients and comparison with controls. SPSS 16.0 Software was utilized to estimate OR and Chi-square tests. All investigated mutations were detected higher in BD patients. But only two mutations, M680I and E148Q, were out of significantly higher than controls. Especially E148Q mutation found remarkable higher way in BD patients (14.49% in BD patients vs 4.50% in control; p=0.001; OR; 3.60; 95% CI, 1.65- 7.77). This mutation contains approximately 35% of the observed total muta- tions in BD patients. Additionally, total mutation rate was detected higher in BD patients (p=0.0001; OR; 2.74; 95% CI, 1.75-4.29). On the other hand, compound heterozygotes were found higher in BD patients than controls (2.90% vs 0.50%), but statistically significant not found (p>0.05).

Our study showed that, MEFV gene mutations associated with BD. Especially E148Q and M680I mutations may play a role in BD susceptibility.

P08.07 Breast Cancer Risk Assessment in a High Risk Cohort: Which covariates are associated with differential model performance?

A. S. Quante1, A. S. Whitemore1, J. Flow2, M. Terry1
1Institut für Genetische Epidemiologie, Helmholtz Zentrum München, Neuherberg, Germany, 2Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, United States.

Background: Clinical prediction models estimating lifetime risk of breast cancer vary widely in their estimates. There is a need to communicate to the medical community this variation and reasons for the differences.

Methods: Using a NYC cohort (N=1,857 women) we evaluated the model performance between two prediction models including non-genetic and genetic risk factors (BCRAT and IBIS), by assessing accuracy through the Hosmer-Lemeshow goodness of fit statistic and discrimination by the area-under-the-receiver-operating (AUC) characteristic curve. We assessed differential model performance (accuracy and discrimination) in subgroups defined by broad covariates.

Results: We observed substantial difference between the two models in estimating lifetime-risk: IBIS was better calibrated and showed greater discrimination than BCRAT. Additionally we compared the discrimination and accuracy of the two models for covariate specific subgroups. The observed/ predicted ratio was better for IBIS than for BCRAT for all subgroups except those defined by race. In addition, IBIS was better than BCRAT in identifying women who went on to develop breast cancer except for the subgroup of women with at least one breast biopsy.

Conclusion: There is a need for a single accurate model that performs well for all women. In our cohort, we found that overall prediction was better in IBIS for almost all covariate-specific subgroups of women, including women who were not gene carriers and who had a more limited family history. Thus, enhancing existing models such as IBIS with additional risk factors (number of biopsies and race/ ethnicity) may further improve the performance.

P08.08 Relationship between cytokine gene polymorphisms and graft-versus-host disease after allogeneic stem cell transplantation in an Iranian population

M. R. Nori-Dalali1, M. Jalili1, P. Assadi2, M. Sobhani3, Z. Rabii-Gholi4, M. S. Vakilian5, I., 1Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran, 2Department of Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran. Despite advances in post-transplant immunosuppressive strategies GVHD is a major complication of allogeneic HSCT, leading to serious morbidity and mortality. In this retrospective, case-control investigation, 91 subjects were recruited, including Iranian patients and their HLA matched siblings.
Donor/recipient pairs were genotyped for cytokine polymorphisms including IL-1α -889, IL-1β -511, IL-1β +3962, IL-1α +730 1970, IL-1β -1188, IFN-γ +874(A/T), TGF-β codons 10 and 25, TNF-α -308, TNF-α -238, IL-2 +166, IL-2 -330, IL-4 -1098, IL-4 -590, -33, IL-5 -1131, IL-6 -336, IL-10 -1082, -819, and -592. Cytokine typing was performed by PCR-SSP assay. Negative association was found between aGVHD and donor IL-10 GCC haplotype or donor IL-4Ra A allele in the whole population studied. When we compared within the leukemia subgroup, we observed positive association between recipient IL-1α -889/C allele and negative association between recipient IL-10 CAA haplotype and donor IL-4Ra A allele and development of aGVHD. We also observed positive possible and negative association for different genotypes and aGVHD; however, on multivariate analysis only donor IL-4Ra and donor IL-12 showed significant association. We conclude that several cytokine polymorphisms are positively and negatively associated with aGVHD in Iranian HLA matched siblings, of which IL-4Ra and IL-12 may play important roles.

PO1.14
Identifying genetic determinants of congenital heart defect in Down syndrome
1University of Grece, Greece, 2University of Geneva, Geneva, Switzerland, 3Université Saint-Joseph, Beirut, Lebanon, 4Department of Biological psychology, Netherlands Twin Registry, VU University, Amsterdam, 5Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.

Congenital heart defect (CHD) is a common developmental defect of Down syndrome (DS) occurring in 40% of cases. While carrying three copies of genes or other functional genomic elements on chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to CHD risk. Here we use association studies to identify genetic variations that in concert with trisomy 21 determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD=69, ASD=53, VSD=65) as cases, and 151 DS without CHD as controls. Chromosome 21 specific association study revealed rs2832616 and rs1943950 (both cis-eQTLs for KRTAP7-1 gene) as CHD risk alleles (adjusted p-values < 0.05). Furthermore rs2183595 and rs2183596 (both cis-eQTLs for ADAB111 gene) were identified as risk factors for ASD. Since DS is likely to be a disorder of gene expression, 2-locus interaction was applied for whole genome eQTLs. A pair of interacting eQTL on chr2 and chr11 was identified. Furthermore, a search for chr21 risk CNVs for chr2 was performed using a customized chr21 array of 135K probes across 55 DS-CHD and 55 DS controls. It revealed two CNV regions (FDR=0.04) located in the region previously associated with CHD risk in DS and another CNV region (FDR=0.03) upstream of POUF2 T gene. We showed that the risk of DS is determined by specific SNPs and CNVs variations on chr21 and interaction of non-chr21 genetic variants.

PO1.12
Recommendations for genome-wide search for epistatic loci
T. Vaitisiailikiovich1, C. Herold2, D. Drischel2, A. Lacour3, V. Schüller4, T. Becker2
1Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany, 2German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.

Various strategies to identify interacting SNPs in GWAS studies were evaluated. Series of ‘realistic’ disease models were defined on a 2-SNP genotype table by specification of allele frequencies, penetrance, minimal distance between available and causal SNPs. We compared single-marker analysis with multi-marker analysis, investigated performance of tests for interaction and tests including both marginal and interaction effects, so-called ‘tests allowing for interaction’. We compared case-only with case-control tests for interaction and contrasted the performance of allelic and genotypic models. A subtle problem is that tests including marginal effects may become significant because of the marginal effect of just one SNP from a pair. Since our goal was to detect both SNPs, we embedded tests allowing for interaction in a two-step strategy: analysis of all pairs with a test with marginal effects, followed up by an interaction test on significant pairs remained after multiple testing adjustment. For about 5% of settings the most efficient strategy is single-marker analysis, typically when allele frequencies are high or causal variant tagging is poor. For another 5% of models the most powerful strategy is testing for interaction without inclusion of marginal effects provided that a case-only test is used. Genotypic case-only test is typically more powerful than allelic case-only test. In the remaining majority of scenarios, a hybrid strategy is most suitable: genome-wide interaction analysis with a combined case-only-interaction/marginal-effects test; follow-up analysis of the significant pairs with a test for interaction excluding the strongest marginal effect but allowing for marginal effect of the second potential SNP.

PO1.13
The power of meta-analysis of RNA-seq datasets for eQTL identification
D. V. Zhernakova1, H. Weistra2, R. Jansen3, E. de Gouveia4, D. Boomsma1, B. Penne2, C. Wijmenga1, G. B. van Ommeren1, P. A. C. ‘t Hoorst, L. Franks1
1Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands, 2Department of Psychiatry, Netherlands Study of Depression and Anxiety, VU University Medical Center, Amsterdam, Netherlands, 3Department of Biological psychology, Netherlands Twin Registry, VU University, Amsterdam, 4Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.

Many genetic variants affect gene expression levels, although the exact mechanism through which this works is still mostly unclear. Previously, numerous expression quantitative trait loci (eQTL) mapping studies have been performed using microarray data. Recently, through next generation sequencing gene expression level quantitation has become possible (RNA-seq) and it has shown to be a very powerful approach of quantifying the transcriptome. Various RNA-seq strategies have been proposed, but it is still unclear what the best strategy for eQTL mapping is and how to combine eQTL data that has been generated by different technologies. Here, we used three different types of RNA-seq data: paired-end RNA-seq (56 samples), single-end RNA-seq (64 samples) and deepSAGE data (94 samples). eQTL mapping (FDR = 0.05) on each dataset yielded 1287 unique genes for single-end RNA-seq, 601 unique genes for paired-end RNA-seq and 1388 unique genes for deepSAGE data. We showed that a meta-analysis on different types of data can be performed to increase statistical power, permitting us to identify significant associations to 3504 unique genes. We compared the eQTLs that had been identified using RNA-seq and array based data and observed a concordance of 95% in allelic directions, indicating highly consistent results. Our study indicates that different types of RNA-seq datasets can be well combined and that meta-analysis of RNA-seq is a logical step forward to gain better insight into the genetic regulation of gene expression variation.

PO1.08
Alternative splicing in the Fanconi anemia candidate gene FAAP100
J. Kuehl1, B. Schuker1, W. Wang2, D. Schindler1
1Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany, 2Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.

Fanconi anemia (FA) is a rare autosomal or X-chromosomal recessive disease that can be regarded as a model for genomic instability, premature aging and tumorgenesis. Each of the 15 genes, whose products are members of the FA/BRCA pathway for genomic maintenance, have been identified to be causative for FA. FAAP100 is an additional member of the FA core complex but has not yet been found to be mutated in FA patients. It forms a subcomplex with FANCL and FANCB and protects both components for proteolytic degradation. After siRNA depletion or gene knockout FAAP100-deficient cells show features comparable to other FA cells defective of FANC D2 monoubiquitination. Because FAAP100 is a FA candidate gene, we screened seven FANC D2 monoubiquitination deficient cell lines by Sanger sequencing of all exons and adjacent introns portions. We detected eight common SNPs registered in the dbSNP database and a non-annotated heterozygous synonymous single-base variant in exon 9 which cannot be causative for FA. Additionally, we observed alternative splicing events via sequencing cDNA of the FA cell lines. This event occurs because of the presence of a cryptic splice donor and results in skipping of 414 bp (c.1760_2173del414). In or...
P08.15 Novel method of CNV analysis in FcyR locus and its application to immune-related diseases

A. Zemaitiene1, J. Bunko1, I. Isaev1, G. Trynule1, K. Frauen1, R. Weersma1, S. Runtapadaphiap1, P. Gregersen2, C. Wijmenga1, T. Huiszinga1, R. Toes2.

1Department of Genetics, University medical centre Groningen, Groningen, Netherlands; 2Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands; 3Department of Gastroenterology and Hepatology, University Medical Center Groningen and University of Groningen, Groningen, Netherlands; 4Department of Public Health and Clinical Medicine/Rheumatology, Umea University, Umea, Sweden; 5The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, NY, United States.

Genetic variants near the Fcgamma receptor (FcyR) locus are associated with several immune-related diseases. However, most FcyR genes are located in complex regions of segmental duplications (SD) and they are therefore not well covered by the genotyping platforms. To be able to identify copy-number variants (CNVs) in this locus, we first developed a method to analyse CNVs using principal component analysis of the raw intensity values of single nucleotide polymorphisms (SNPs) genotyped on the Immunochip platform. This platform includes 1,159 SNPs in the SD block of FcyR genes; of these, 1,019 (88%) failed our quality control for SNP analysis but their intensity values are informative for the CNVs estimation. We identified several CNV loci in the FcyR block. Second, we confirmed our results via an independent method - arrayCGH genotyping - and observed a perfect correlation in CNV estimation between both methods. Third, we applied our method to an RA cohort (3,326 cases, 3,397 controls). We found no association between these CNVs with RA (p > 0.05). We are now applying our method to cohorts of celiac disease and inflammatory bowel disease, in total ~ 20,000 subjects. Fourth, by performing functional studies we observed a correlation between the number of FCGRA3 gene copies and FCGR3 (CD16) expression on T-cells.

Conclusion: We have developed a method to accurately estimate CNVs based on SNP intensity data that can be extended to other SD loci in the human genome.

P08.16 Study of allelic variants G-2548A of the gene LEP and G223A gene LEPR in individuals with different levels of the main indicators of lipid profile

L. Kayumova, E. Yakshambitova, R. Kayumova, E. Vorsbiieva, V. Gorbunova; Bashkir State Pedagogical University from after M. Akmulla, Ufa, Russian Federation.

It is known that structural and functional properties of lipoproteins are controlled by genetic factors. In this regard, the current association of polymorphic variants of genes with the level of serum lipids are the subject of study. It is known that the development of cardiovascular disease, including myocardial infarction, is associated with different genotypes of the LEP and leptin receptor gene G223A LEPR. The effect of these genes on obesity and other metabolic diseases is the subject of investigation in complex regions of SD. The aim of our study was to determine the impact of polymorphisms of the LEP and LEPR genes on different levels of lipid profile in healthy individuals.

The material for the study included DNA samples from 434 healthy individuals. Determining the level of the main indicators of lipid profile (total cholesterol, triglycerides, low density lipoprotein, high density lipoprotein, insulin, glucose) for footballers of different levels of performance and BMI were divided into groups according to the position in the field: forwards (n=44), defenders (n=63), midfielders (n=75), goalkeepers (n=17). The novelty of the study is the association analysis of LEP and LEPR polymorphisms in combination with AACE which is the genetic candidate for footballers' performance research by others. Genotyping was performed using the methods of polymerase chain reaction and restriction fragment length polymorphism. The results showed that the ACE genotype distribution was significantly different between the total football players group and the controls ([I1-23.6%]),D4-6.7%,D0-29.6% vs. [I1-24.6%],D0-29.9%,D0-45.5%, P=0.002). We revealed that in defenders (p=0.033) and midfielders (p=0.012) the ACE ID frequency was higher although DD genotype frequency was lower than in controls. According to the analysis of PPARGC1A and PPARA polymorphisms, significant differences were determined between forwards and controls. PPARGC1A: GG-54.6%,GA-29.5%,AA-15.9% vs. GG-49.7%,GA-44.3%,AA-6.0%, P=0.044; PPARA: GG-52.3%,GC-40.9%,CC-6.8% vs. GG-72.4%,GC-24.6%,CC-3.0%, P=0.034. There were no alleles with PPARGC1A AA and PPARA CC genotype among the researched goalkeepers.

In the whole cohort, the odds ratio of [ACE ID=PPARAG GCC] being a footballer was 1.69 (95%CI 1.04-2.74), and of [ACE ID=PPARAG GC] 1.93 (95%CI 1.10-3.37), and of [ACE ID=PPARAG CC] 2.83 (95%CI 1.02-7.91) compared to controls. In conclusion, the above data suggest that ACE allele in combination with PPARGC1A allele or PPARGC1A is associated with football players' ability.
calls for minimal extra time and effort. We demonstrate these capabilities on 1000 Genomes Phase 1 data which have been genotyped on the Illumina HumanOmni2.5S chip as well as sequenced at 4X coverage.

P08.20 eQTL analysis of glucocorticoid regulated gene expression: new insight in the genetics of mood and anxiety disorders

J. Arboit, A. Menke, T. Kielnge, B. Mülle<Myhhus, E. B. Binder;
Max Planck Institute of Psychiatry, Munich, Germany.

Abnormal hypothalamic-pituitary-adrenal axis regulation is a key neurobiological characteristic of depression. Glucocorticoid receptor (GR) function has been shown to be disturbed in depression, hence polymorphisms altering the transcriptional effects of GR-activation might be interesting candidates for this disorder.

The aim of this study was to identify SNPs associated with glucocorticoid (GC)-induced gene expression changes (cis-eQTLs) in peripheral blood. 160 male Caucasians (69 cases, 91 controls) were genotyped using Illumina Human660W-Quad BeadChips. Imputation was performed using IMPUTE-v2 with HapMap III and 1,000 Genomes Project as reference panels. Baseline- and stimulated (1.5 mg dexamethasone) gene expression was analyzed using Illumina Human HT12v3 array. Quality control checks, filtering, batch corrections and linear regression analysis was performed in PLINK and R. Of a total of 4,395 significant cis-eQTLs, 2,364 significant response-eQTLs, namely loci associated with GC-stimulated gene variation expression were identified after multiple testing corrections. Over 44% of response-eSNPs were located >200kb from the probe, indicating long-range regulation of gene expression by GCs. This was accompanied by significant enrichment of GR response elements (GRs) within the response-eQTLs. We also observed differences in the affinity of GRs between the opposite SNP alleles. Further, response-eQTLs were significantly more likely to be associated with unipolar depression susceptibility loci from a recent meta-analysis than baseline eQTLs. Interestingly, the majority of these enriched eSNPs alter the expression of more distant genes.

In conclusion our data suggest that GC-stimulated eQTLs could expand our understanding of the genetic basis of stress-related disorders, in which GR-function plays an important pathophysiological role.

P08.21 Atypical haemolytic uraemic syndrome in a large population with a single CFI (complement factor II) mutation: modified penetrance data including a newly discovered family, based on mutation testing and family history.

F. H. Sansbury1, G. Bromilow1, C. J. Shaw-Smith1,2, C. Bingham1, T. T. Smyth1, L. Stratton1, T. S. Goodship3,4, P. D. Turnpenny5,6.
1Peninsula Clinical Genetics Service, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom; 2Peninsula College of Medicine & Dentistry, Universities of Exeter & Plymouth, Exeter, United Kingdom; 3Renal Medicine, Royal Devon & Exeter NHS Foundation Trust, Exeter, United Kingdom; 4The University of Exeter, Exeter, United Kingdom; 5Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom; 6Newcastle University, Newcastle, United Kingdom.

Atypical haemolytic uraemic syndrome (aHUS) can have high morbidity and mortality. Usually it is due to mutations in the Factor H, Factor I, or membrane cofactor protein genes, which play a role in the alternative pathway of complement activation. The trigger events for an episode of HUS leading to renal failure are unknown. We have previously presented initial penetrance data for four families with over 400 individuals, mainly resident in one region, who carry the same Factor H mutation [c.3643 C>G (p.R1215G)].1 Previously we knew of three families whom we have been unable to link to date. A fourth branch has now come to light. We have constructed updated Kaplan-Meier survival curves for this mutation to estimate the penetrance. In the current generation we have a large number of unaffected carriers. We have very few obligate unaffected carriers in previous generations, as consanguinity means we cannot clearly trace the line of descent of the mutation. We have therefore estimated the penetrance by including family members at 50 % and 25 % risk with appropriate weighting. Including such members lowers the penetrance from a lifetime risk of around 2/3 to just under 1/2 (0.45; 1.4/9). The penetrance of aHUS by adulthood falls from 1/3 to 1/4. We compare this approach with other methods of estimating historical carrier frequency in less than fully penetrant conditions.

P08.22 Analysis of association between age and JAK-STAT signaling pathway gene polymorphism

K. F. Sansbury1, R. S. Somova, T. R. Nasbulina, I. A. Tuktarova, O. E. Mustafina; Institute of Biochemistry and Genetics, Ufa, Russian Federation.

Aim of study was to estimate alleles and genotypes frequencies dynamic of STAT5A (rs98989323), JAK1 (rs310216) and JAK3 (rs3212780) genes with age.

Total group (1678 unrelated individuals, from 1 to 109 years, ethnic Tatars from Russia) was divided into young (1-20), middle-age I (21-35), middle-age II (36-55), aged (56-74), senile (75-99) and long-living (90-109) persons. Gene polymorphism was analyzed by PCR-RFLP. For comparison of age groups was used Fisher’s two-tailed exact test. Search of genetic marker’s associations with age was performed using logistic regression analysis (SPSS18.0).

In female there was an increase of JAK3*T/*T genotype frequency in age from 30 until 80 years (p=0.045, OR=1.019). In middle-age I group STAT5A*C/*C genotype frequency was lower than in aged (p=0.005), senile (p=0.005) and long-livers groups (p=0.002). Frequencies of STAT5A*C/*C and STAT5A*T/*T genotypes differed between aged individuals, in one hand, and senile and long-lived persons, on the other (p<0.01). STAT5A*T/*T genotype frequency was decreasing with age in both male (57-98 years, p=0.033, OR=0.971) and female (44-87 years, p=0.005, OR=0.976); also in female there was increasing of STAT5A*C/*T genotype frequency in 44-87 years (p=0.002, OR=1.029).

Thus, STAT5A (rs98989323) and JAK3 (rs3212780) gene polymorphisms are important for achieve of senile age in both male and female; STAT5A (rs98989323) polymorphic marker may be associated with longevity in male.

Supported by grant RPBR 10-04-0164a.

P08.23 Identifying additional variants associated to celiac disease by imputation-based GWAS

A. Koteramuk1,1,2, I. Ricaso-Ponce1,1,2, J. Gutierrez1,1,2, H. Westra1,1, L. Franke1,2, C. Wijmenga1,2, M. A. Swerts1,2,3.
1Genomic Coordination Center, Groningen, Netherlands, 2UMC Groningen, Groningen, Netherlands.

Celiac Disease (CeD) is a complex immune-mediated disorder caused by an unknown number of genetic variants. To date, 39 non-HLA loci have been identified by GWAS that explain 15% of the heritability. Previous GWAS studies in CeD were limited to directly genotyped SNPs. This study aims to boost the GWAS power through imputation. Genotyping data for four European CeD collections of cases (3,796) and controls (8,154) used in the previous GWAS study will be imputed with the pilot version of the Genome of the Netherlands (GoNL). GoNL consists of whole genome, high coverage (12), sequencing data from 250 Dutch trios. Additionally, we will assess the association of GoNL of using a population specific dataset (GoNL) compared with the multi-ethnic 1000 Genomes Project (1KG) reference. We did obtain our first results with the GoNL pilot data of 48 trio’s. Preliminary results in chromosome 20 indicate that GoNL contains genotypes for 99.3% of the HapMap550 SNP-set, whereas 1KG covers only 72%. The imputation R2 values were similar between the two reference panels for common markers (MAF > 5%) but exhibit a significant increase for GoNL in rare variants. We also measured the concordance between imputation with HapMap2 and GoNL and a validation dataset consisting of 1,758 samples genotyped on Immunochip in chromosome 3. GoNL imputation showed an average increase from 97% to 99% in the concordance and showed suggestive association for 4 novel variants in the CRGR locus (not present in HZM) that are not in linkage disequilibrium with a previously associated SNP.

P08.24 Evaluation of the performance of several imputation strategies in an admixed sample from Mexico City

S. Krithika1, A. Valladares-Salgado1, J. E. Parra1,2, A. Contreras1,2, H. Westra2, J. Komate-Rodriguez1, M. Cruz1, E. J.0. P. Rara2.
1University of Toronto Mississauga, Mississauga, ON, Canada, 2Unidad de Investigacion Medicina en Bioquimica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Mexico City, Mexico.

Evaluation of the performance of several imputation strategies in an admixed sample from Mexico City (N=1,310). We evaluated the: (a) impact of different reference panels on imputation; (b) potential differences in imputation performance between single-step and two-step ap-
proaches; and (c) effect of different INFO score thresholds on imputation performance.

Methods: The samples were genotyped with the Affymetrix 5.0 array. We randomly asked 5% of the markers directly genotyped on chromosome 12 (rs1049338) was individually associated with waist circumference, haplotype analyses revealed strong evidence of linkage disequilibrium signals. The concordance rates between imputed and observed genotypes reflect imputation accuracy and the proportion of non-missing genotypes indicate imputation efficacy. Results: Using an INFO threshold of 0.9 to define valid genotypes, the single-step imputation approach produced slightly higher concordance rates than the two-step strategy (99.1% vs. 98.4% - HapMap phase II combined panel), but at the expense of a lower proportion of non-missing genotypes (85.5% vs. 90.1%). The 1,000 Genomes panel produced similar concordance rates to the HapMap phase II panel (98.4%), but increased substantially the proportion of non-missing genotypes (94.7% vs. 90.1%). The average INFO scores of alleles with frequencies >1% was much lower than the scores for alleles >5%.

Conclusions: The program IMPUTE had an excellent imputation performance for common alleles. Genotype concordances were higher than 98.4% using all the imputation strategies. The best balance of imputation accuracy and efficiency was obtained with the 1,000 Genomes panel. However, rare alleles were not captured effectively by any of the panels.

P08.25
Insersion/Deletion Polymorphism of The Angiotensin-Converting Enzyme Gene And Knee Osteoarthritis
S. Vigit, A. Inanir, S. Aklame, O. Cester, N. Bukert, A. Rastemoglou
Gaziemnepass University, Medical Faculty, Department of Medical Biology, Tokat, Turkey, Gaziemnepass University, Medical Faculty, Department of Physical Medicine and Rehabilitation, Tokat, Turkey.

Objective/Aim: Knee Osteoarthritis (OA) is a multi-factorial disease. Various genetic polymorphisms have been reported that they might be associated with OA. Angiotensin converting enzyme (ACE) is a critical component of the renin-angiotensin system, and a large body of evidence indicates its proinflammatory role. The aim of the present study was to examine the possible role of angiotensin-converting enzyme (ACE) Ins/Del polymorphism in the development of knee OA.

Material and Method: In this study, we studied 102 (60 women, 42 men) patients with knee OA and 150 (87 women, 63 men) healthy control groups. ACE I/D polymorphism was analyzed by using POR (Polymerase Chain Reaction) method.

Findings: DD, DI and II genotype frequencies of ACE I/D polymorphism was detected 27%, 58%, and 15% in patient group and 32%, 50%, and 18% in control group, respectively. There were not significant differences in genotype/allele frequencies of ACE gene polymorphism between patients with knee OA and controls (p=0.24).

Result: Our results reflect that ACE I/D polymorphism does not have a role in susceptibility to Knee OA in Turkish patients. Currently, we continue to testing higher number of people in both patient and control groups to obtain more data.

P08.26
Association analysis of the leptin receptor gene haplotypes with cardiovascular risk phenotypes
Z. Tomas, M. Zajc Petronović, T. Škarč-Juric, N. Smolej Naranić
Institute for Anthropological Research, Zagreb, Croatia, Zagreb, Croatia.

Aims: Leptin is an adipocyte-derived protein with an important role in regulation of food intake, metabolism, reproductive and immune function. It acts through its specific receptor which is predominantly expressed in hypothalamus. Aim of this study was to investigate association of haplotypes of the leptin receptor gene (LEPR) with several cardiovascular (CVD) risk phenotypes, namely, body mass index, waist circumference, serum lipid, fibrinogen and C-reactive protein levels.

Methods: We selected 43 single nucleotide polymorphisms (SNP) in and near LEPR gene from genome-wide association study data (Human Hap300 Illumina platform) of 986 inhabitants of the island of Vis, Croatia. We used haplotype software to assess linkage disequilibrium (LD) structure in genomic region of LEPR gene and Unphased software for haplotype association analysis.

Results: SNPs were grouped into nine blocks according to LD structure. Although none of the single markers in LD block comprised of six SNPs (rs1782754, rs1171269, rs1022981, rs6673324, rs3790426 and rs1049338) was individually associated with waist circumference, haplotype A-C-A-A-G-A of this LD block showed the strongest association signal (p = 7.085 x 10-22). However, after permutation testing the result was found to be only marginally significant.

Conclusion: Haplotype association analysis of CVD risk phenotypes show marginally significant association of LEPR gene only with waist circumference.

P08.27
Allele-based N-Test in linkage analysis
S. Khour, S. Mansoor, S. Shafi
1Department of Statistics, Islamia College University Peshawar, Peshawar, Pakistan, 2Department of Statistics & Operations Research, College of Sciences, King Saud University, Riyadh, Saudi Arabia.

There are many tests of inheritance based upon sibling information for diseases that have late onset. The N-test (Green et al. 1983) is one of these tests, which utilizes information from affected siblings. The N-test is the count in affected siblings of the most frequently occurring haplotype from the father plus the analogous count from the mother. When applied to haplotypes, the N-test excludes recombinant families from the analysis. In this study we modified the N-test to be based on alleles instead of haplotypes. This modified allele-based N-test can include all families (recombinant as well as non-recombinant). We carried out a simulation study to find the thresholds and powers.

P08.28
A robustness study of parametric and non-parametric tests in Model-Based Multifactor Dimensionality Reduction for epistasis detection
J. M. Mahachie John, E. S. Guareva, F. Van Lishout, K. Van Steen, Montefiore Institute, University of Liege, Liege, Belgium.

Model-Based Multifactor Dimensionality Reduction (MB-MDR) is data mining technique that enables the fast identification of epistasis, without the need to make restrictive assumptions about the modes of inheritance. The most commonly used implementation of MB-MDR involves testing one multi-locus genotype cell versus the remaining cells. By construction, this procedure creates two imbalanced genetic groups that subsequently need to be compared. To date, for continuous traits, we have adopted a standard F-test to make such group comparisons. However, when either the assumption of normality or homoscedasticity or both are violated, highly inflated type I errors and false positives are to be expected. In this study, we assess, through simulations, the effects of aforementioned model violations on the performance of MB-MDR to detect epistasis signals, and propose remedial measures in order to maintain efficiency. Since important lower order genetic effects can also give rise to inflated type I errors or false positive epistatic effects, we restrict our simulation study to pure epistasis models. In particular, we consider normal, chi-square and t-distributions with constant and non-constant phenotypic variances. In all simulating settings, we apply the standard F-test, as well as a novel implementation based on the Welch’s F-test. The original traits were either left untransformed or first transformed into new traits via rank and logarithm transformation, or via a rank-transformation to normality.

In conclusion, when performing MB-MDR screening for gene-gene interactions with quantitative traits, we recommend to first rank-transform traits to normality, prior to classical F-testing.

P08.29
Association of TNF polymorphism rs1800629 with Multisystem inflammatory disorder (MSD) in a group of German patients and healthy controls
K. C. Harms, R. P. Kapitza, J. Pohl, M. Kars, M. Stahrmann, J. Bernsteck. 1
1Institute of Human Genetics, Hannover Medical School, Hannover, Germany, 2Department of Psychiatry and Psychotherapy, University of Luebeck, Luebeck, Germany, 3Department of Anesthesiology, Pain Clinic, Hannover Medical School, Hannover, Germany.

Causes of MSD are not sufficiently elucidated yet, but genetic factors are suspected to influence MSD pathogenesis. The main symptom MSD patients suffer from is pain. As prior studies have demonstrated that genetic polymorphisms of different proinflammatory cytokines are associated with pain, our goal was to find out whether cytokine polymorphisms are also associated with MSD. Blood from 149 MSD patients and 149 demographically matched healthy controls was used for genotyping of nine polymorphisms located on seven cytokine genes. Thereafter statistical analysis was performed. In addition to the examination of possible associations with MSD, we searched for correlations with individual thermal and mechanical detection and pain thresholds, which were determined by quantitative sensory testing (QST). Association with MSD was found for alleles and genotypes of rs16944 (interleukin1 β), rs1800629 (tumor necrosis factor α) and rs990253 (lympha
The association of the MYF6 gene polymorphism with size and composition of muscle fibers

A. Dravetaslavova1, I. Astratenkova1, F. Magi2, D. Caporossi1
1Research Institute of Physical Culture, St. Petersburg, Russian Federation, 2St. Petersburg State University, St. Petersburg, Russian Federation, 3University of Rome “Foro Italico”, Rome, Italy.

Transcription factor myf5 regulates expression of many genes involved in development, maturing and work of human skeletal muscle. The results of our previous studies showed that frequency of MYF6 964T genotype and 964T allele was significantly higher in endurance athletes in comparison with control subjects. The 964T allele carriers had 5% bigger cross-sectional area (CSA) of m. rectus femoris in comparison with 964C genotype carriers. In the present study the DNA of 8 young healthy active males and 26 elite ice-skaters was genotyped using PCR-RFLP method. Histomorphological and immunohistochemical analyses were conducted. Percentage composition and CSA of muscle fibers were measured.

Average CSA of muscle fibers in young males was almost two times larger among TT genotype carriers (14385 ± 14616 mkm²) in comparison with CC homozygotes (23065 ± 20691 mkm²) and heterozygotes (25642 ± 20084 mkm²), (P < 0.0001). Content of fast muscle fibers in ice-skaters was 4.7% higher in TT carriers, than in CC homozygotes (23065 ± 20691 mkm²) and heterozygotes (25642 ± 20084 mkm²), (P < 0.0001). Content of slow muscle fibers in ice-skaters was 40.7 ± 2.5%, and content of slow fibers was 66.4 ± 2.5%, which did not differ among MYF6 genotypes. In TT homozygotes average CSA of both types of muscle fibers was larger than in CC homozygotes and heterozygotes (TT - 6278.8 ± 1560.4 m², CC - 5500.7 ± 8527.2 m², CT - 5195.4 ± 12788.8 m², P = 0.04).

In conclusion, the results of this study in two independent samples have shown the association of 964T genotype with larger CSA of muscle fibers. It is necessary to conduct replication studies of the MYF6 C964T polymorphism in greater samples of elite athletes.

P08.32
Association of FOXE1 in nonsyndromic cleft lip with or without cleft palate in Central European and Mesoamerican populations

A. Maraleva1,2, A. Buniello1,2, B. Lorente-Cánovas1,2, N. Pirastu1,2
1Intitute of Human Genetics, Life & Brain Center, University of Bonn, Bonn, Germany, 2Department of Genetics, Life & Brain Center, University of Bonn, Bonn, Germany, 3Department of Oral and Maxillofacial Surgery, University of Göttingen, Göttingen, Germany, 4Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico, 5Centre de Investigacion y Desenrollo en Cientificas de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico, 6Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany, 7Erasmus Medical Center, University Medical Center, Rotterdam, Netherlands, 8Radboud University Medical Center, Nijmegen, Netherlands.

Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is one of the most common birth defects. Its etiology is multifactorial, with both genetic and environmental factors contributing to this craniofacial malformation. Several genes have been suggested to play a role in NSCL/P development. However, only the IRF6 gene has shown a convincing degree of consistency across studies. Recently, the forkhead box E1 (FOXE1) gene on chromosome 9q22 has emerged as promising candidate gene (Moreno et al., 2009). In that study, comprehensive genetic analyses in NSCL/P samples from different ethnicities revealed two markers, located inside a 70 kb LD-block containing FOXE1, to be strongly associated with NSCL/P. Also, FoxE1 knockout mice show a clefting phenotype, providing further evidence for FOXE1 being a susceptibility gene for NSCL/P. However, so far, the genetic findings on FOXE1 in NSCL/P have not been convincingly replicated.

In order to further elucidate the contribution of FOXE1 to NSCL/P, we investigated the two most strongly associated markers of the initial study (rs3758249, rs4460498) in two case-control samples of Central European (949 NSCL/P cases, 1,163 controls) and Mayan Mesoamerican (156 NSCL/P cases, 338 controls) descent. We obtained significant associations for both variants in both samples, with rs4460498 providing the lowest P-values (Fs (1,426) = 6.5x10-17, P = 9.0x10-151). Furthermore, we obtained evidence that the effect size increases for homozygous carriers of the risk alleles, suggesting a recessive effect. Our data conclusively identify FOXE1 as a second confirmed candidate gene for NSCL/P and give rise to further investigations into its underlying functional basis.

P08.33
Analysis of association of polymorphic variants of DSS422 and DSS402 receptor gene gamma-amino butyric acid GABRG2 with the level of intellectual development of man.

A. Maraleva1, O. Gumerova2, Bashoir State Pedagogical University name of M.Kamilly, IUS, Russian Federation.

INTRODUCTION: gamma-aminobutyric acid (GABA) is the basic type of inhibitory neurotransmitters in humans, providing a process of inhibition of the central nervous system by using three types of receptors. The gene GABRG2 (Gq4) encodes the alpha subunit of the gamma receptor GABA and contains 9 exons. This gene has two polymorphic site (DSS422, DSS402), affecting gene expression and alter the permeability of the membrane for the transmission of nerve impulses. The analysis of polymorphic variants of DSS422 and DSS402 on the GABRG2 gene in individuals with different levels of intellectual development.

METHODS: The polymerase chain reaction (PCR) carried out an analysis DSS422 and DSS402 polymorphisms of the gene receptor gamma-amino butyric acid GABRG2 in 180 unrelated individuals. The level of intellectual development (IQ) in subjects determined by the method of Cattell. According to the performance IQ subjects were divided into two groups: those with high (above 140 points) and low (below 95 points) level of intellectual development.

RESULTS: Analysis of association of polymorphic loci studied showed a significant reduction in the frequency of allele DSS422 * 1 (7.61% vs. 21.15% in the group with low IQ; P = 0.0009, x² = 13.3887), and increased frequency of allele DSS402 * 2 (57.89% vs. 28.84%, P = 0.0031, x² = 9.3491) in the group with a high level of intellectual development.

P08.34
Comparison of running time of variance-component based methods for whole genome association analysis

G. B. Sotomayor1, N. M. Belonosova1, D. T. Arenovich, Y. S. Aulchenko2, P. S. Poulter1
1Institute of Cytology and Genetics, Novosibirsk, Russian Federation, 2Institute of Human Genetics, Life & Brain Center, University of Bonn, Bonn, Germany, 3Department of Oral and Maxillofacial Surgery, University of Göttingen, Göttingen, Germany, 4Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico, 5Centre de Investigacion y Desenrollo en Cientificas de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico, 6Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany, 7Erasmus Medical Center, University Medical Center, Rotterdam, Netherlands, 8Radboud University Medical Center, Nijmegen, Netherlands.

The association of GWAS with complex traits, such as intellectual development, is currently an active research field. Several of the most powerful and flexible methods of accounting for genetic substructures in genetic association testing is the variance component (VC) approach based on the mixed models. To decrease the computational com...
plexity of this method, it was proposed using a two-stage score test instead of the standard likelihood ratio test. Several fast implementations of the score test, including approximate ones, have been developed recently. These methods differ in their computational speed and the accuracy of the SNP effects estimation and the running time of the different implementations of score test (mmscore, EMMAX, FaST-LMM, GRAMMAR-Gamma), using simulated data. The GRAMMAR-Gamma implementation provides the fastest means to run genome wide association study using mixed models. Compared with EMMAX and the FaST-LMM, GRAMMAR-Gamma achieved a speed-up of more than 30 and 10 times, respectively, for the data studied. The more individuals and genetic markers are analyzed, the larger is the expected speed-up of GRAMMAR-Gamma compared to other methods. While the scenario above assumes use of an SNP array, one of the current challenges in statistical genomics is the analysis of whole-genome re-sequencing data. We investigated a scenario in which 36.5 millions of SNPs in 3,000 people were analyzed. Using GRAMMAR-Gamma method, the analysis of this data set was completed in 38 m in.

We conclude that GRAMMAR-Gamma is a fast tool for the analysis of human GWA scans. Its role will increase in the future with the availability of larger sample sizes and increased number of genetic markers.

P08.35

Linkage analysis of quantitative traits with a spike in the distribution

T. I. Axenovich, I. V. Zorkoltseva, C. M. van Duijff1
1Institute of Cytology and Genetics, Novosibirsk, Russian Federation, 2Erasmus Medical Center, Rotterdam, Netherlands.

Quantitative data coming from proteomics and metabolomics studies often have irregular distribution, characterized by presence of a proportion of ob-
servations in the point mass (spike) at zero and some continuous distribu-
tion of non-negative values. Thus these data contain information about both the binary (zero or not) and continuous components. The general approach to simultaneous analyses of these components was proposed by Broman (2003). However, his method focuses on experimental crosses. We intro-
duced Broman’s approach in the parametric linkage analysis of pedigrees data with mixture of large number of normal and point-mass components. We developed GADS software, which implements this method. Our software package includes not only the programs for parametric linkage analysis, but also the program for complex segregation analysis, which allows the esti-
mation of the model parameters used in linkage. We tested our method on the real data about vertical cup-to-disc ratio, the important characteristic of the optic disc associated with glaucoma, in a large pedigree from a Dutch genetically isolated population. Significant linkage signal was obtained on chromosome 6q23–q24 (LOD = 3.33) with the help of GADS, whereas the analysis of the continuously distributed values demonstrated only a sug-
gestive linkage to this chromosome. Our results support the feasibility of the simultaneous analyses of the point-mass observations and continuous measurements for the QTL mapping. The software GADS is freely available at http://mga.bionet.nsc.ru/soft/index.html.

P08.36

Implication of two transforming growth factor-beta1 (TGF-beta) gene polymorphisms in TGF-beta serum levels and susceptibility to acute myocardial infarction

A. Tobarataei Panah1, R. Akbarzadeh Najari1, S. Shadherian1
1Department of Biology, Islamic Azad University, East Tehran Branch, Tehran, Islamic Republic of Iran.

Purpose: Transforming growth factor beta-1 (TGF-β1) gene plays an important role in acute myocardial infarction (AMI), however little is known about the relation of variations within the gene and risk of cardiovascular diseases. In this study, we evaluated the influence of TGF-β1 polymorphisms on the onset and progression of AMI. Methods: Genomic DNA and peripheral blood mononuclear cells (PBMCs) of patients was extracted with AMI and 913G/C TGF-β1 polymorphism and serum TGF-β1 levels were measured. Results: The frequency of ‘T’ allele in -509 C/T and ‘C’ allele in 913G/C poly-
morphisms were significantly higher in the patients than control subjects (P<0.001). There were significant differences in circulating levels of TGF-β1 in the patients than in control subjects (34.96±1.74 vs 30.46±1.46 respecti-
vly, P<0.001) which these concentrations are associated with its gene po-
lymorphism. There was a significant increase in serum levels in the patients who carry the ‘T’ allele in -509 C/T and ‘C’ allele in 913G/C, respecti-
vly (P<0.001). The mRNA expression levels of TGF-β1 were significantly higher in the patient sera compared with controls (TGF-β1/β-actin, 286±1.02

via 1.28±0.89, P<0.001). Conclusions: Our results confirmed the association between the TGF-β1 polymorphisms and risk of AMI which suggest that genetic polymorphisms in TGF-β1 might be helpful for determining susceptibility to AMI in Iranian patients. There are also significant relationship between serum TGF-β1 and occurrence of AMI and susceptibility to AMI might be related to TGF-β1 gene expression which affects serum levels.

P08.37

Genetic causes of Primary microcephaly in Iranian population

H. Najmabadi1, L. Musante1, I. Jari1, Z. Fatollahi1, M. Garshasbi1, S. Abedini1, M. Hosseini1, A. Tzschach1, F. Behjati1, T. Wineher1, K. Kahrib1, H. Ropers2
1Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran, 2Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.

The volume of human brain through evolution has been tripled since the diver-
gerence from chimpanzees. This change has resulted in much higher com-
plex wiring and physiology of the human brain. In primary microcephaly, reduc-
tion in brain size-without gross abnormalities in brain architecture or gyralformation-results in intellectual disabilities in majority of cases. So far, sev-
eral loci (MCPH1-7) with the additional four novel genes (CAPN10, CNKRS1, HIST1H4B, and ZBTB40) have been identified by our group for this disorder. Identification of these genes, which result in microcephaly, can explore the understanding of evolution of human brain size.

Total of 114 families with two or more affected individuals with ID and pri-
mary microcephaly have been recruited at Genetics Research Center since 2004 of which 18 families had ataxia or other minor neurological symptoms. Short stature was observed in 12 families and the remaining families did not show any additional features. In addition, all the affected individuals with MCPH 5 gene regardless of their mutation had short stature. All the known genes have been excluded and the causative mutation in MCPH genes was detected only in 20% of the families. For the rest large families, autozo-
gy mapping was performed and one affected from each family has been sub-
jected to exome sequencing. So far, we have identified number of novel loci on chromosome 2. 4, 14, 17, and 21. Our results indicate that there are additional genes involved in microcephaly and there is high heterogeneity among the microcephaly families.

P08.38

Analyses of MEFV Mutations in Patients with The Rheumatoid Arthritis

A. Inanir1, S. Yigit2, A. Hahlooglu1, A. Buttemoglu3, O. Atce3
1Gaziosmanpasa University Medical Faculty, Department of Physical and Medicine, Tokat, Turkey, 2Gaziosmanpasa University Medical Faculty, Department of Medical Biology, Tokat, Turkey.

Objective/Aim: Rheumatoid Arthritis (RA), a systemic, inflammatory, auto-
immune disorder, is called a complex genetic disease, meaning that several genes and environmental factors act in concert to cause pathological events. Immun system genes including Mediterranean Fever (MEFV) gene may affect the phenotype of RA. Therefore, we aimed to investigate the relationships of MEFV gene mutations (M694V, M680I, V726A, P369S and E148Q) and) and Rheumatoid Arthritis in Turkish population.

Material And Method: In this study, we studied 110 (63 women, 47 men) patients with RA and 140 (77 women, 63 men) healthy control groups. MEFV mutations were analyzed by using PCR (polymerase chain reaction) and RFLP (Restriction Fragment Length Polymorphism) methods.

Findings: The frequencies of MEFV gene mutations were detected 27/110 (24.5%) and 15 (10.7 %) in patient group and control group, respec-
tively. Our results showed that there were no significant differences between MEFV gene mutations and Rheumatoid Arthritis (p=0.006).

Result: Our results reflect that MEFV mutations have a role in susceptibility to Rheumatoid Arthritis in Turkish patients. Currently, we continue to test higher number of people in both patient and control groups to obtain more data.

P08.39

Genome-wide, permutation-based rare variant analysis with INTERSNP-RARE

D. Drichel1, A. Lacour1, C. Herold1, V. Schueller2, T. Vaitsiakhovich1, M. Leber2, A. Tzschach1, H. Ropers2
1German Center for Neurodegenerative Diseases, Bonn, Germany, 2Institute for Medical Biometry, Informatics and Epidemiology, Bonn, Germany.

Due to growing accessability to comprehensive, genome-wide data, systematic investigation of disease association with rare variants (MAF<5%) beco-
mes increasingly appealing. We present INTERSNP-RARE, a software for genome-wide rare-variant testing using different testing procedures: CMAT (cumulative minor allele test), COLL (collapsing test, a version of CMC) and FR (Fisher-rare, a version of the test). We offer an implementation of corresponding extensions to variable-threshold (VT) tests using a method based on permutations. Combined with permutation-based determination of f-value, this approach promises maximized power without overcorrection for multiple testing while accounting for LD structure.

All rare-variant tests operate on bins, physically continuous chromosomal segments. Bins can be created algorithmically, using distance or number of (certain) SNPs. Additionally, creating bins from user-supplied data in various formats is supported, facilitating binning strategies based on a priori information like LD block structure or genomic function. Various functions for bin modification, like merging and flipping are supported. Results from our power study using simulated data offer insights into strengths and shortcomings of implemented tests under different conditions. Using 20 to 60 causal, protective or neutral rare SNPs per bin, we find that the single-marker analysis outperforms other approaches in some scenarios, in particular for relatively large MAFs and few causal markers (~1%), while CMAT and COLL have excellent power in models with ~30-50% damaging and up to 20-30% protective variants. FR is well-powered even for a low fraction of causal SNPs (upwards from 1%) and highly robust with increasing number of protective markers.

P08.40
Explore the association between cytokines, cytokine related genes and antidepressant in major depressive disorder: a Bayesian approach
W. Chien1,2, Y. Cheng, I. Lin, Y. Bai, M. Lin1; 1Institute of Public Health, National Yang-Ming University, Taipei, Taiwan; 2Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.

With the recent advance in pharmacogenetics, how to combine data of genetic markers and biomarkers to predict treatment response in diseases has become an important issue in population health sciences. This kind of studies generally contain data from a number of subjects, each of whom has been followed repeatedly over time, with a binary or continuous response and possibly some covariates recorded for each subject on every time. Thus, the issue of the correlation of repeated measures in a single subject has to be taken into account in statistical analysis. For binary outcomes with repeated measurements, one of the most commonly used analysis methods is generalized linear mixed model (GLMM) and the parameter estimation in GLMM typically involves maximum likelihood. However, in small sample sizes, likelihood-based estimation can be unreliable and their variance components are difficult to estimate. To overcome such problems, we apply the Bayesian framework in the GLMM by assigning prior distributions for the fixed effects, random effects as well as for variance components. After deriving posterior distributions of these parameters, we can generate posterior samples by MCMC to make inferences. The performance of the proposed procedures was compared with likelihood-based methods by simulation studies. Finally, we applied our proposed model to a case-control major depression study with twelve week treatment of antidepressants to evaluate whether cytokines and their related genes might play some role in susceptibility to depressive disorders as well as in the treatment response of antidepressant.

P08.41
Analysis of IL-17 A and IL17F Genetic Polymorphisms as Risk Factors for Allergic Rhinitis
F. Fatih M, Khazreiz, A. Salehi, N. Bagheri, K. Khiani Ghatreh, M. Hashemzadeh; Cell and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Islamic Republic of Iran.

Background and Aims: The development of allergic rhinitis entails a complex interaction between genetic predisposition and environmental exposure to different factors that allergens are the most important. Responding molecules are: chemokine's and their receptors, interleukins and their receptors, mastophil peroxidase and leukotriene's, among others. The inter-leukin-17 cytokines (IL17A and IL17F) are emerging as critical players in host defense responses and inflammatory diseases. This study investigated the association between single-nucleotide polymorphisms (SNP) in IL17A gene promoter (rs2275913, IL17 G152A) and IL17F exon 3 (rs763780 IL17F 161His-Arg) and Rhinitis-related traits among the patients in Iran.

Methods: DNA was extracted using standard phenol-chloroform method. The screening of mentioned polymorphisms was performed using PCR-RFLP procedure. A case-control association study was performed (rhinitis group, n=300 and control group, n=160). Chi-square test was performed in compare proportions of subjects with different clinical features among subjects with different genotypes. (All statistical analyses were performed using SPSS).

Result: There was significant association between rs2275913; IL17A and allergic rhinitis (p=0.025) but no association between rs763780; IL17F and cited disease in Chaharmahal va Bakhtiari province was found (p=0.468). Conclusion: Our data indicated that the IL17A may play an important role in the inflammatory response and promoting allergic rhinitis and rs 763780; IL17F have no role in rhinitis in Iran.

P08.42
Contribution of APO E alleles and ACE I/D polymorphism in the development of hypertension (HT) in Sleep Apnea-Hipoapnea Syndrome patients
M. Alonso1, J. De Frutos2, C. Arroyo3, M. Durán1, I. Fernandez1, F. Del Campo3; 1IBGM (Instituto de Biología y Genética Molecular), Valladolid, Spain; 2H.U.Rio Hortega, Valladolid, Spain.

Sleep apnea/hypopnea syndrome (SAHS) is a common condition affecting approximately 0.3-4% of the middle-aged population and is defined on the basis of symptoms of daytime sleepiness and objective measures of disordered breathing during sleep. Several studies have identified SAHS as a risk factor for hypertension, but a direct etiologic link between these disorders has not been established definitively. Aims: Evaluate the influence of polymorphisms on the APO E gene and the I/D polymorphism on ACEI in the presence of hypertension (HT) in Sleep Apnea-Hipoapnea Syndrome patients.

Methods: APO E and ACEI I/D genotypes were obtained from 99 controls and 114 patients with a diagnosis of sleep apnea-hypopnea syndrome after polysomnography in the Sleep unit of the Río Hortega Hospital.

Results: There were not any difference in the APO E alleles frequency between patients and controls, but SAHS patients carrying the APO E e4 allele showed an increased frequency of HT 3.145 higher than ε3 homoygous and ε2 carriers (CI 1.269-7.79). These findings keep significant even after correction for sex. The ACE I/D genotypes were in Hardy-Weinberg equilibrium (p=0.05) and they seem don’t have any influence on the development of HT in these patients (OR 0.470 (CI 0.21-1.08). Conclusion: Our results demonstrate that the presence of the e4 allele increases the probability to develop HT in SAHS patients. We suggested that this allele could be useful as a biological marker for identification of a subgroup of SAHS patients who are more likely to have HT.

P08.43
SVM-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies
Y. Chiu, V. Feng; Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.

Gene-gene interaction plays an important role in the etiology of complex diseases, which may exist without a genetic main effect. Most current statistical approaches, however, focus on assessing an interaction effect in the presence of the gene’s main effects. It would be very helpful to develop methods that can detect not only the gene’s main effects but also gene-gene interaction effects regardless of the existence of the gene’s main effects while adjusting for confounding factors. In addition, when a disease variant is rare or when the sample size is quite limited, the statistical asymptotic properties are not applicable; therefore, approaches based on a reasonable and applicable computational framework would be practical and frequently applied. In this study, we have developed an extended support vector machine (SVM) method and an SVM-based pedigree based generalized multifactor dimensionality reduction (PGMDR) method to study interaction in the presence or absence of main effects of genes with an adjustment for covariates using limited samples of families. A new test statistic is proposed for classifying the affected and the unaffected in the SVM-based PGMDR approach to improve performance in detecting gene-gene interactions. Simulation studies under various scenarios have been performed to compare the performances of the proposed and the original methods. The proposed and original approaches have been applied to a real data example for illustration and comparison. Both the simulation and real data studies show that the proposed SVM and SVM-based PGMDR methods have high prediction accuracies, consistencies, and power in detecting gene-gene interactions.
The four SNPs in genes involved in the hyposia-related signaling pathway: VEGF+405C>G (rs2010963), HIF1A 1771C>T (rs15164965), 1900C>A (rs11549467) and HMOX1 -413A>T (rs2017746) were analyzed in search for the functional differences predisposing either to the aneurysmal or to the occlusive type of arterial disease. The case-control study was designed, in which the series of 535 patients with abdominal aortic aneurysm (AAA), 365 patients with aortic occlusive disease (AOID) and 316 persons without symptoms of vascular diseases were analyzed. Associations between studied alleles, haplotypes and the intermediate traits related to the vascular diseases were also examined. The frequency of VEGF+405C allele carriers in the AAA (50.6%) and AOID (40.5%) groups was 1.4-fold higher than that in the control group (41.6%; p=0.01 and p=0.048, respectively). AOID patients significantly differ from the other groups in the frequency of HMOX1 -413T allele carriers; the observed frequencies were: 61.8% (AAID) vs 71.3% (AAA, p=0.003) vs 74.8% (controls; p=0.004). In patients, weak positive correlations between dose of HMOX1 -413T allele and fasting glucose (β=0.07; p=0.037) and triglyceride (β=0.07; p=0.04) levels were found (adjusted for age, gender and type of vascular disease). However those associations should be considered carefully because there was a deviation in HMOX1 genotype distribution from HWE in two out of three studied groups.

In conclusion, 1) VEGF+405C allele is the risk factor of large arteries diseases; 2) HMOX1 -413T allele may be involved in AAA pathogenesis by increasing the predisposition to diabetes and dyslipidemia. Supported by the National Science Centre grant NN443 540 440.

P09.003
Correlation between polymorphism of ACE gene and Insulin-like Growth Factor-I (IGF-1) in malnourished children
O. C. Margineanu, C. Duicz, C. Banescu;
1Pediatric Department No 1, University of Medicine and Pharmacy Tg. Mures, Romania, Tg. Mures, Romania, Pediatric Department No 2, University of Medicine and Pharmacy Tg. Mures, Romania, Tg. Mures, Romania; 2Genetic Department, University of Medicine and Pharmacy Tg. Mures, Romania, Tg. Mures, Romania, 3Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland.

Malnutrition is a clinical problem caused by inadequate intake of one or more nutritional elements, and it is one of the most important health problems in developing countries. The aim of this study is to determine the relationship among body weight, concentrations of IGF-1 and ACE gene polymorphisms in malnourished children.

Material and method: The study group consisted of 50 children diagnosed with malnutrition. Fifty healthy children were enrolled as the control group. All children were genotyped for I/D gene ACE polymorphism.

Results: Three genotypes of 16th intron of ACE gene (D/D, D/I, I/I) were de-
Adipophilin was constantly secreted into breast milk during the whole period of the study. The maternal serum circulating levels were extremely low (<0.8 μg/l), while the adipophilin levels in breast milk substantially exceeded serum levels at the given timepoints (p = 0.03). Two SNPs in exonic sequence of PLIN2 gene were identified, synonymous rs2228416 and missense rs35568725 that were not associated with maternal serum / breast milk levels of adipophilin.

Conclusion: This is the first study to demonstrate that adipophilin is secreted into human breast milk during the whole 6 months after the birth. We do not report major association investigated exonic variations of PLIN2 gene with adipophilin levels in maternal serum / breast milk in the Central-European population.

Results: Adipophilin was constantly secreted into breast milk during the whole period of the study. The maternal serum circulating levels were extremely low (<0.8 μg/l), while the adipophilin levels in breast milk substantially exceeded serum levels at the given timepoints (p = 0.03). Two SNPs in exonic sequence of PLIN2 gene were identified, synonymous rs2228416 and missense rs35568725 that were not associated with maternal serum / breast milk levels of adipophilin.

Conclusion: This is the first study to demonstrate that adipophilin is secreted into human breast milk during the whole 6 months after the birth. We do not report major association investigated exonic variations of PLIN2 gene with adipophilin levels in maternal serum / breast milk in the Central-European population.
Late-Onset Alzheimer disease (LOAD) is the most common form of AD that affecting people over 65 years old. The etiology of LOAD is complex that has strong genetic heterogeneity. The studies show that the different regions on the genome have significant associations with LOAD. Genome-wide association studies (GWAS) have suggested that DNA methylation patterns may change over time. However, few data are available concerning the rate of these changes in specific genes. A recent study found that hypomethylation of the promoter of the dopamine transporter (DAT) gene was positively correlated with alcohol dependence, and negatively correlated with alcohol craving. The aim of the present study was to replicate these findings in a large sample of alcohol dependent patients and population-based controls matched for age and sex. No difference in methylation level was observed between patients and controls, and no difference in methylation level was observed before and after alcohol withdrawal in patients. However, patients with more severe craving showed a trend towards lower DAT methylation levels (p=0.07), which is consistent with previous findings. Furthermore, in our overall sample, DAT methylation levels increased with age. Interestingly, a separate analysis of patients suggested that this finding was mainly driven by the patient group. Although the present data do not clarify whether chronic alcohol abuse is responsible for this phenomenon or merely enhances an aging specific process, our findings suggest that hypomethylation in alcohol dependent patients is a consequence, rather than a cause, of the disorder.

P09.012
Genetic testing of Alzheimer’s Disease associated polymorphisms using biochip-based assay
1Engelhardt Institute of Molecular Biology RAS, Moscow, Russian Federation, 2Vavilov Institute of General Genetics RAS, Moscow, Russian Federation, 3Research Center of Mental Health, RAMS, Moscow, Russian Federation.

Late-onset Alzheimer’s disease (AD) is the most common form of dementia in the elderly. The presence of an APOE epsilon4 allele is a well-established genetic risk factor for AD, with a higher percentage of epsilon4 allele in patients with AD comparing to general population. Recent genome-wide association studies also have identified the other loci of interest including CLU, TOMM40, EXOC3L2, GAB2, A2M, CR1, BNI and PICALM, as putative genetic determinants of the late-onset form of AD. The aim of the work was to develop biochip for simple and rapid genetic tests of allele variations in these genes in population and AD cohorts. The genotyping assay has been developed employing multiplex PCR and allele-specific hybridization of the amplon probes on low-density gel-based biochips. In total, set of 235 case-control subjects of Russian origin have been tested to validate the sensitivity and specificity of the biochip. The genotype data are in agreement with described associations in both Russian and other European origin populations showing association of APOE epsilon4 allele and CLU-C allele (rs11136000) in AD (OR = 2.34, 95%CI= 1.22-4.47, p=0.01 and OR = 1, 95%CI=1.06-2.4, p = 0.042, respectively). Additionally, protective effect for the APOE epsilon2 allele has been observed (OR = 0.28, 95% CI=0.13-0.63, p = 0.001).

The work was supported by Ministry of Science and Education of Russian Federation (State contract # 02.52711.0006) and EU 7-th Framework Programme (Grant Agreement # 242257).

P09.014
Association study between APOE and Tnf-α gene variations and sporadic Alzheimer’s disease in Iranian population
N. Safavi naini, S. Momeni, K. Kamali, M. Ohadi, M. Karimloo, H. Khorram Khorshid; Genetic Research Centre, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran.

Introduction: Amyloid β (Aβ) peptide deposits and Neurofibrillary tangles have key roles in pathogenesis and progression of the late-onset Alzheimer’s disease. However, in recent years, it has been reported that inflammation plays a significant role as well. Inflammatory mediators such as complement, chemokines and cytokines activators and inhibitors can release from activated microglia and astrocytes, causing neuronal dysfunction and death. One of the most important cytokines is tumor necrosis factor-α (TNF-α). This study was designed and carried out to determine the association between sporadic Alzheimer’s disease and the human TNF-α and APOE gene variations in Iranian population.

Materials and Methods: In this case - control study, the role of TNF-α gene polymorphism was determined in 167 sporadic AD patients and 163 healthy controls. Genomic DNA was extracted and Tnf-α-850T/C promoter polymorphism was genotyped using PCR/RFLP technique. Comparing the genotype and allelic frequencies were analyzed using chi-square and logistic regression tests by SPSS 11.5.

Results: The obtained results indicated that the frequency of Tnf-α-850 heterozygote genotype (CT) was significantly higher in AD patients comparing to healthy controls (p=0.038). Although no significant difference were observed in Tnf-α-850 homozygote genotype (TT) and T allele between the
studied groups. No interaction was shown between TNF-α -850 and APOE gene polymorphisms as well. Conclusion: These data suggest the role of TNF-α -850 TC genotype as a risk factor for AD in Iranian population. Although to show the effects of homozygote genotype (TT) and T allele, a study with a larger sample size maybe indicated.

P09.014 The effect of AVPR1B gene polymorphisms on personality traits in healthy individuals from Russia

Y. Suleymanova, A. Kazantsev, S. Malykh, E. Khusnutdinova
1Bashkir State University, Ufa, Russian Federation, 2Institute of Biochemistry and Genetics, Ufa, Russian Federation, 3Psychological Institute, Moscow, Russian Federation.

Since the role of arginine vasopressin in modulation of social behaviors was established, we aimed to define a single genotype and haplotype effect of AVPR1B gene polymorphisms on personality traits assessed with TCI-125. We recruited 1018 healthy individuals (68% women) of Caucasian origin (Russians-357, Tatars-549, Chuvas-112) from Russia (mean age 19.5±2.24 years) without any history of psychological pathologies. Genotyping of two polymorphisms was performed using PCR-RFLP. Statistical analysis was conducted with SPSS 13.0, PLINK v1.07, Haploview 4.1. ANOVA demonstrated an association of AVPR1B rs33911258 and Cooperation in males (p=0.003; F=8.77) occurred mainly due to the lower Cooperation in Tatar males bearing G-allele (p=0.028; F=4.90) compared to A/A-genotype-carriers. Subsequent haplotype analysis revealed an association of AVPR1B A*G-haplotype (rs28632197 and rs33911258, respectively, D'=0.87) and higher Self-transcendence (ST) (p=0.008; R²=0.6%) and G*A-haplotype and lower scores on ST (p=0.005; R²=0.7%) in the total group. The same effect of G*A-haplotype on ST was observed in Chuvas (p=0.007; R²=6.6%), mainly caused by haplotype effect in Chuvas females (p=0.002; R²=12.1%).

Our findings indicate that AVPR1B gene has larger impact on character traits than on temperament traits (according to TCI-125). Moreover, ethnicity modulates the genotypic and haplotypic effect of AVPR1B gene polymorphisms on sociability-related character traits. Study was supported by Russian Foundation for Basic Research (#11-04-97032-r.povolzhye-a).

P09.015 Array comparative Genomic Hybridization (array-CGH) as a clinical diagnostic tool in syndromic and nonsyndromic Congenital Heart Defects

1Department of Medical Genetics, University of Athens, «Aghia Sophia» Childrens Hospital,Greece, Athens, Greece, Greece, 2Alexander S. Onassis Public Benefit Foundation, Athens, Austria.

• Aim: Congenital Heart Diseases (CHD) are often associated with other congenital anomalies, peculiar facies and developmental delay and only few cases of chromosomal abnormalities are detected by conventional cytogenetic techniques. The microarray Comparative Genomic Hybridization analysis (array CGH) allows the identification of submicroscopic genomic rearrangements. This study describes for the first time in Greece, the application of array CGH, as a diagnostic tool for the investigation of patients with congenital heart disease.

• Materials-Methods: During the last 3 years, a total of 330 patients were studied, of whom 55 had CHD of unknown aetiology plus at least one additional indication of abnormal chromosomal phenotype but with normal conventional karyotype. High resolution 1x244K Agilent arrays were used in this study (> 236 000 probes average resolution of 8.9 Kb).

• Results: Submicroscopic genomic rearrangements (CNVs) ranging in size from 0.08 to 19.01 Mb were detected in 37/55 patients (67%). In 29 of these (52.7%) the following genes associated with heart disease were identified: DVL1, CHRD, DSP4, ETS1, KCNJ5, SCN3B, WNT7B, CDH3, ETS1, KCNJ5, MIR122, MRCL2, MRCL3, MYOM1, LPP1, LAM1, CIDEA, KCNG2, TOP3B, TOP3B2, HIC2, CACNA1B, EMT1, BAG3, XK2-1, RFXO1, EDN1, DNTBP1, MYL5, KCNT1, NOTCH1, MAML1, FLI4, PRKAG2, WNT7B, CYP27A1, NEXN, KCNJ1, ADAMTS13, CTNNAL4, CACNB2, IGLL3, SLC29A.

• Conclusions: In patients with CHD and / at least one additional indication of abnormal chromosomal phenotype array CGH analysis is mandatory to detect possible submicroscopic chromosomal abnormalities and provide proper genetic counseling.
P09.019

Immunoe-se modilng gene mporphisms and susceptibility to asthma and Opisthorchis felineus helminth invasion

I. V. Sal’tikova1, E. Y. Bragina1, L. M. Ogurovova1, V. F. Pazyrev2,3, M. B. Freidri1;
1Siberian State Medical University, Tomsk, Russian Federation, 2Research Institute of Medical Genetics, Tomsk, Russian Federation.

It has been shown that common genetic variants of cytokine and cytokine signal transduction genes, especially IL13 and STAT6, predict risk of asthma and allergy, as well as the intensity of helminth invasion by Ascaris and Schistosoma species. Opisthorchis felineus is a common helminth infection in Siberian region of Russia. So far, no information on genetic component of susceptibility for this infection was published. To investigate whether the same genes are involved in predisposition to asthma and O. felineus invasion, we analyzed 10 single-nucleotide polymorphisms (SNP) of immune-response modifying genes in 107 asthma patients, 103 individuals infected by O. felineus, 100 persons with combination of asthma and O. felineus infection, and control group of 126 healthy people.

The polymorphism rs25687 G/G genotype was associated with symptomatic O. felineus infection (P = 0.02), while the C/C genotype was associated with asthma (P = 0.03). The SOCS5 rs6737848 C/C genotype and the IFNG rs2097097 C/T genotypes were associated with asthma (P = 0.006 and 0.032, respectively) alone.

Thus, the PIAS3 rs12756687 polymorphism demonstrates the inverse association between asthma and O. felineus invasion clinical manifestation. This suggests that the gene-environmental interaction between the PIAS3 and O. felineus modifies the risk of development of asthma in the helminth endemic region. At the same time, the studied SOCS5 and IFNG polymorphisms are likely independent risk factors of asthma susceptibility.

P09.020

Evaluation of gene expression normalization strategy for real-time qPCR in leukocytes from asthmatic patients before and after treatment.

C. E. P. Kozmus1,2, L. Patačnik1;
1Center for Human Molecular Genetics and Pharmacogenomics, University of Maribor, Maribor, Slovenia, 2Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal.

The aim of this study was to identify the most suitable reference genes to normalize gene expression data obtained by qPCR from asthmatic patients. We analyzed 7 candidate reference genes (18S rRNA, ACTR, B2M, GAPDH, POL2AR, RPL13A and RPL32) previously reported as being the most stable in blood samples, in asthmatic patients before and after anti-asthma treatment, and control subjects. Variance of Cq values was analyzed and gene stability determined with geNorm. The influence of normalization strategy on ORMDL3, PSMD3, GSDMD, MAP3K2, SLC22A5, TRIM35 and EPHX2 gene expression was assessed using geNorm and BestKeeper. Cq values of ACTR, B2M and GAPDH were shown to be stable across samples obtained before and after treatment and also the top-ranking genes determined by geNorm. These produced the most consistent results of the target gene expression. When samples obtained before treatment were analyzed, POL2AR and B2M were chosen to be the best selection. Gene expression of ORMDL3 was shown to be significantly increased, and PSMD3, SLC22A5, MAP3K2 and TRIM35 were decreased in asthmatic patients before and after treatment compared to healthy controls. GSDMB was significantly decreased only in asthmatic patients after treatment. When comparing samples obtained before and after treatment, gene expression of PSMD3 and MAP3K2 was significantly decreased. In conclusion, a different combination of reference genes should be used according to whether changes in gene expression are being analyzed in samples from asthmatic patients before receiving treatment or together with samples obtained after anti-asthma treatment.

P09.021

Association between VEGF polymorphisms and asthma treatment response

M. Balantick, M. Rajavec, M. Shiberiñk Kivalar1, S. Suskovic, M. Slaric, M. Kasnik1, P. Micunovic2,1;
1The University Clinic of Pulmonary and Allergic Diseases Golnik, 4204 Golnik, Slovenia, 2University Clinical Centre Maribor, 2000 Maribor, Slovenia.

Background_Asthma affects around 300 million people worldwide. Vascular endothelial growth factor (VEGF), a regulator of angiogenesis, is elevated in asthma patients. VEGF contributes to airway responsiveness and remodeling, treatment of asthma decreased VEGF and inhibiting VEGF in mice diminished asthma symptoms. Therefore, polymorphisms in VEGF might be associated with asthma treatment response.

Methods: This study enrolled 131 children with asthma. They were treated with inhaled corticosteroid (ICS) fluticasone propionate or leukotriene receptor antagonist (LTRA) montelukast. We analyzed association between improvement of lung function, assessed by measurement of FEV1 – % of predicted, FEV1/FVC after 6 and 12 months of treatment and asthma control after 12 months of treatment, and polymorphisms, rs2146233 and rs833058, in the VEGF gene.

Results: Polymorphism rs2146233 A>C in VEGF was associated with response to ICS. Patients with the AA genotype had a greater improvement in FEV1 – % of predicted compared to the AC or CC genotype (p = 0.01). Conversely, the AA genotype was associated with no change in asthma patients regularly receiving LTRA (p = 0.02). Polymorphism rs833058 C>T was associated with treatment response to epidosically used LTRA. A subgroup of patients with the TT genotype had improvement in FEV1 – % of predicted compared to no improvement in patients with the CT or CC genotype (p = 0.03).

Conclusions: Our results showed that treatment response to commonly used asthma therapies, ICS or LTRAs, is associated with polymorphisms rs2146233 and rs833058 in VEGF, which makes VEGF a potent pharmacogenetic marker.

P09.022

Genetic polymorphisms of glutathione S-transferases M1, T1 and P1 and susceptibility to oxidative stress and atherosclerosis

I. I. Grubisa1, P. Dlesaić2, N. Dimkovic1, V. Dedić1, J. Mališić3, N. Vucinić1;
1Department of Human Genetics and Preclinical Diagnostics, Zvezdara University Medical Center, Belgrade, Serbia, 2Dedijer Cardiovascular Institute and Faculty of Medicine, University of Belgrade, Belgrade, Serbia, 3Faculty of Medicine, University of Belgrade and Clinical Department of Renal Diseases, Zvezdara University Medical Center, Belgrade, Serbia, 4European Center for Peace and Development Established by United Nations University of Peace, Belgrade, Serbia, 5Institute of Human Genetics, School of Dentistry, University of Belgrade, Belgrade, Serbia.

A persistent oxidative stress has been implicated in the pathogenesis of various diseases, among others atherosclerosis. Glutathione S-transferases (GSTs) provide protection against oxidative stress by detoxifying the end-products of lipid peroxidation. Polymorphic deletion variants in the GSTM1 and GSTT1 genes produce either a functional protein (non-deletion alleles or homozygous deletion) or result in the complete absence of the protein (homozygous deletion-null genotype) while GSTP1 Ile105Val functional polymorphism influences protein catalytic activity and stability. We investigated the association between these polymorphisms and susceptibility to oxidative stress in 60 angiographically documented patients with manifest atherosclerotic disease and 100 control individuals from Serbia. Genomic DNA was isolated from peripheral blood cells and genotyping was performed using polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) analysis for GSTP1 and multiplex-PCR or Real-time PCR methods for GSTM1 and GSTT1 gene variants. We observed significant association of GSTM1 null (OR=2.0, 95%CI=1.05–3.86, P=0.03) and GSTT1 null (OR=2.26, 95%CI=1.06–4.81, P=0.03) genotypes with atherosclerosis. Combined analysis of the two null genotypes demonstrated significant increase in risk (OR=15, 95%CI=3.09–73.3, P<0.001) too. GSTP1 Val105Allele (OR=0.63, 95%CI=0.39–1.03, P=0.06) and Ile/Val (OR=0.53, 95%CI=0.27–1.05, P=0.07) and Ile/Val (OR=0.41, 95%CI=0.12–1.43, P=0.16) genotypes showed a nonsignificant 1.6, 1.9 and 2.44 fold decrease in the risk of atherosclerosis, respectively. Our data provide evidence that both GSTM1 and GSTT1 null genotypes, alone or in combination, are associated with increased oxidative stress and atherosclerosis. A larger study group is needed to establish true relationship between potentially protective allele Val105 and disease.

References:
www.eshg.org
Toll-like receptor genes variants and atopic dermatitis in Volga-Ural region of Russia

M. Moradi Marjaneh1, E. Pirkhi, T. B. Doan, P. C. Thomson, I. C. A. Martin, C. Moran, R. H. Harvey

1Sydney Children's Hospital, Sydney, Australia, 2Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia, 3ReproGen - Animal Biosciences Group, Faculty of Veterinary Science, University of Sydney, Sydney, Australia, 4Women’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.

The formation of the atopic septum during cardiac development is a complex process being vulnerable to a wide range of dysmorphogenesis. A genetic link and an anatomical continuum between secundum atrial septal defect (ASDII) and patent foramen ovale (PFO) have been suggested by murine and human studies. While ASDII and PFO occur commonly and represent a significant burden to health resources, the genetic complexity of such conditions is not fully known. PFO incidence in inbred mice, as we reported earlier, is not fully known. PFO incidence in inbred mice, as we reported earlier, is strongly correlated with quantitative parameters of atrial septum. We previously mapped quantitative trait loci (QTL) underlying such parameters using F2 intercross between Q51S and 129T2 SJ inherent parental strains with extremes of septal dysmorphogenesis. Subsequently, breeding of parental strains continued for 12 further generations to establish an advanced intercross line (AIL). We genotyped 150 single nucleotide polymorphism (SNP) markers at an average interval of 2cm in 400 F14 mice. AIL confirmed the F2 QTL and significantly improved confidence intervals of the QTL. Afterward, we performed whole genome sequencing of the parental strains and identified variations between the sequences. The genome was partitioned into high and low SNP rate intervals and the genes within high SNP rate regions were identified as putatively affected genes. As a confirmatory method, we used mouse HapMap imputation genotype resource. The list of candidate genes was prioritized according to sequence and expression profiles. In conclusion, integrating QTL mapping and genomic technology form a powerful approach to dissect genetic complexity underpinning atrial septal abnormalities.

P09.025
The GABAergic hypothesis in the etiology of attention-deficit/hyperactivity disorder in the Portuguese population: a family-based association study

A. Marques1, J. Bouvola2, S. Nogueira1, A. Almeida1, A. M. Ambrósio2

1Clinical and Molecular Genetics Unit of National Institute of Legal Medicine, Coimbra, Portugal, 2Child Development Center of Coimbra Children’s Hospital, Coimbra, Portugal, 3IBILI- Faculty of Medicine of University of Coimbra, Coimbra, Portugal.

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders diagnosed during childhood and several studies demonstrated that ADHD is a highly heritable disorder with a strong genetic basis. However the identification of genes that may predispose to ADHD has been difficult. Several lines of evidence suggest that changes in genes from GABAergic system and particularly the GABA A receptors might be involved in ADHD, but this hypothesis remains unexplored by genetic studies. Therefore, the aim of this study was to investigate the role of a GABRB2 gene polymorphism (C1412T) in the etiology of ADHD, in the Portuguese population through a family-based association strategy. After obtaining informed consent, blood samples were collected from trios, composed by parents and respective offspring, diagnosed with DSM-IV and genomic DNA was isolated from peripheral leukocytes using an enzymatic method. The GABRB2 C1412T polymorphism was investigated with polymerase chain reaction amplification and fragment length polymorphism technique. We performed both haplotype relative risk (HRR) and transmission disequilibrium test (TDT) and found no association between the GABRB2 C1412T polymorphism and ADHD (HRR: $\chi^2 = 0.199$, df = 1, $P = 0.656$; TDT: $\chi^2 = 0.182$, df = 1, $P = 0.670$). The preliminary results obtained with HRR and TDT analyses do not support the hypothesis that the C1412T polymorphism of GABRB2 gene contributes with a minor effect to the expression of ADHD in the Portuguese population. However further studies with larger samples are in course in order to confirm or refute these results.

P09.026
Identifying phenotypes and exploring genetic aetiology of autism spectrum disorders: a British and Portuguese collaborative study

1CHU-Beaune, Beaune, France, 2Centre de Ressource Autisme, Reims, France, 3CHU-Nancy, Nancy, France.

Autism is characterized by limited verbal communication, lack of reciprocal social interaction, and stereotypical behaviour affecting preferentially Boys. Mental retardation and or seizures coexist in two-thirds of patients. Autism spectrum disorders are complex multifactorial disorders involving various genes, and many aetiological diagnosis remain unravelled. We report a collaborative study between our Genetic Department and the Autism Center (CRA). A population of 87 children with autism was selected. We identified 5 different phenotypic groups (8-32 children per group), using the behaviour and the intellectual efficiency evaluation criteria from the following tests PER-R, CARST and ADIR. Among them 45 patients (6-14 per group) were negative for FMR1 amplification and then tested by array-CGH (180K) to search for deletional chromosomal rearrangements. The Array-CGH analysis showed the presence of 49 copy number variants (CNV) not referred as polymorphisms in 28 children with an average of 2 CNV per patient. A deleterious CNV was found in 5 children from 4 different groups. A parental study was done in 10 families for 14 aberrations: 12 rearrangements were inherited and 2 were de novo with a 6q26 deletion (gene PACRG) and an isochromosome Yp (deletion of NLGN4Y) both considered of uncertain clinical significance (VOUS). Five CNVs were previously reported in autism: 1q21.2, 3p26.3, 2q22 (CNTN4), 15q13.3 (CHRNB7), 16p11.2 and Xp22.3. Three aberrations in 3p26 (dup) and Xp22 (del/dup) seemed more specific to autism as not present in our cohort of 400 patients with intellectual disability. In conclusion, the aetiologic diagnosis was found in 11% of autistic children.

P09.027
A 3-year-old patient with autism and microdeletion in the KIAA0442 (MAGUK) gene

M. Huesner1, D. Steinemann1, J. Schmidtke1, M. Arslan-Kirchner2

1Institute of Human Genetics, Hannover Medical School, Hannover, Germany, 2Institute for Cellular and Molecular Pathology, Hannover Medical School, Hannover, Germany.

A 2 1012- year-old boy with bilateral cleft lip and cleft palate as well as developmental delay was presented to our genetics clinic. He is the first child of non-consangunous healthy parents. He shows behavioural patterns of
the autism spectrum which include avoiding eye contact, no response to his name, playing alone and stereotyped movements when listening to music. His postnatal chromosomal analysis revealed a normal male karyotype 46,XY.

Array-CGH analysis showed a microdeletion of 170 kb: arr (7q11.22) (70.077-607-70.247,036) x1 d. This part of the chromosome some contain exons 6-15 of the 19 exons spanning the AUTS2-gene. His parents do not carry this microdeletion, indicating that it was a de novo event.

Autism spectrum disorder (ASD, OMIM 209850) encompasses different forms of autism with a broader phenotype. Two-thirds of all patients with ASD suffer from mental retardation. Among the genes involved, AUTS2-disruption has been described in 7 patients with ASD and mental retardation. In all of these seven patients translocations with different breakpoints between exon 1 and 7 and different translocation partners were the underlying mechanism of the disruption. Additionally other genes were disrupted according to the breakpoint of the partner chromosome. Our patient shares the same symptoms as the 7 patients with translocation, indicating that disturbed function of AUTS2 and not the truncated translocation partner causes the clinical presentation of the patients.

P09.028

Contribution of rare and common variants of the PTCHD1 gene to Autism Spectrum Disorder and Intellectual Disability

B. Torrico,1 A. Herráez,2 B. Franke,2 J. Buiteelaar,3 C. Freitag,2 A. Reiff,2 M. Marisato,3 M. Milà,2 C. Tomàs2; B. Cormand4;1 1Department of Genetics, University of Barcelona, Barcelona, Spain, 2Biomedical Network Research Centre on Rare Diseases (CIBERER), Barcelona, Spain, 3Child and Adolescent Mental Health Unit, Hospital Universitari Mutua de Terrassa, Terrassa, Spain, 4Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 5Department of University Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 6Department of Child and Adolescents Psychiatry, Psychosomatics and Psychotherapy, JW Goethe University Frankfurt am Main, Frankfurt am Main, Germany, 7Department of Psychiatry, Psychosomatics, and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany, 8Developmental Disorders Unit (UEDT), Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain, 9Biochemistry and Molecular Genetics Department, Biochemical Diagnosis Centre, Hospital Clinic, Barcelona, Spain.

Autism is a severe neurodevelopmental disorder, characterized by impaired verbal communication, limited reciprocal social interaction, restricted interests and repetitive behavior, often accompanied by intellectual disability (ID). Although it is one of the most heritable neuropsychiatric disorders, the underlying genetic factors remain largely unknown.

A recent study reported rare mutations in the X-linked gene PTCHD1 (patched domain-containing protein 1) in patients with autism spectrum disorder (ASD) and mental retardation. PTCHD1 is an expressed and transmembrane protein containing a patched-related domain. It is highly expressed in brain regions and encodes a transmembrane protein containing a patched-related domain. It has been suggested that PTCHD1 plays a role in the hedgehog signaling pathway.

In this study we aimed to investigate the possible contribution of common variants in PTCHD1 to ASD through a case-control association study. The study sample consisted of 595 Caucasian autistic patients (270 Spanish, 247 Dutch and 78 German) and 680 gender-matched controls (320 Spanish, 269 Dutch and 82 German). Twenty-eight tagSNPs were selected on the basis of linkage disequilibrium (LD) patterns. A significant association, that overcame the Bonferroni correction for multiple testing and permutations was obtained with the marker rs7052177 (p = 6.13e-4). Furthermore, in order to evaluate the possible participation of PTCHD1 rare variants in ASD and ID, we are currently performing a mutation screening in the Spanish ASD cohort, and in a small sample of 200 individuals with ID. The preliminary results of this study support the involvement of this gene in autism and cognitive impairments.

P09.029

Targeted next generation sequencing in Thai families with autism spectrum disorders identifies a novel variant, p.E683Q, in the CNTNAP2 gene

L. Prasertcharoen,1 F. Hayevederer1, S. Kulwongunchara,1 T. Sripio,1 J. Worachatkamjorn1; T. Somboonthan,1 T. Hansanakuncharoen,1 R. Rongravargarn,1 N. Ruangdaraganon1, A. Assawasintrak,2 D. Sangrahar1,2; T. Sangthanhorranggun1,2; T. Sutthima2;1 Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand, 2Genome Institute, National Center for Genetic Engineering and Biology, Pathumthani, Thailand, 3Ramathibodi Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand, 4Faculty of Medicine, Thammasat University, Pathumthani, Thailand.

Autism Spectrum Disorders (ASD) is a group of neurodevelopmental conditions characterized by distinct patterns of social deficits and communication impairment, rigid ritualistic interests and stereotypical behaviors. Recent genetic studies have shown that some synaptic genes, including NRXN1, NLGN3, NLGN4X, CNTNAP2 and SHANK3, are associated with ASD. To study these 5 genes in Thai multiplex families with ASD, the target regions of these candidate genes were enriched from whole-genome microarrays. The enriched DNA fragments from each index case were sequenced using 454 Sequencer FLX Titanium. Sequences were aligned and compared with reference sequence UCSC hg18 using Needle software. Variant annotations were focused on the exons and exon-intron boundaries, then novel variants were validated by Sanger sequencing. One novel variant, c.2047C>G (p.E683Q) in the exon 13 of CNTNAP2, was identified in a boy with ASD. The variant was transmitted from his mother but it was not present in his father and younger brother with ASD. This variant was not found in the 170 control alleles. Bioinformatic analysis showed that the glutamic acid (E) in CNTNAP2 protein was highly conserved across different species and the glutamine (Q) variant affected on secondary structure of CNTNAP2 protein. However, further studies involving a larger set of ASD samples (i.e. association studies) are necessary to determine the potential disease relevance of the p.E683Q in CNTNAP2. Otherwise, functional analysis of CNTNAP2 protein with p.E683Q isoform can give us the best conclusion.

P09.030

Mirror effects for Autism Spectrum Disorder due to gene dosage at 10q11.22 affecting GPRIN2 gene, a regulator of neurite outgrowth and PPRY1 gene involved in energy homeostasis.

V. Disciglio1, M. Fichera1, R. Ciccone1, M. Maciocco2; N. Nisso1, A. Fernández-Jaén2, G. Santo2, F. Failla1, M. A. Mencarelli1, C. Lo Rizzo1, G. Faust1, C. Romaro2, A. Renieri1; 1Medical Genetics Unit, Biotechnology Department, University of Siena, Siena, Italy, 2Laboratory of Genetics Diagnosis, IRCCS Ospedale S. Maria, Trino, Italy, 3Medical Genetics, University of Catania, Catania, Italy, 4Biologia Generale e Genetica Medica, Università degli Studi di Pavia, Pavia, Italy, 5Unidad de Neurologia Infanto-juvenil Hospital Universitario Quirón Centro CADE, Madrid, Spain.

We recently reported that a small duplication on 10q11.22 including GPRIN2 gene, a regulator of neurite outgrowth, and PPRY1, a gene involved in energy homeostasis is a candidate modifier for Rett syndrome. Specifically, duplications were found in the Zappella variant, the Rett variant with recovery of speech, and lacking the typical growth delay, underweighting and autistic features. Since PPRY1 knockout mice display underweight and reduced white adipose tissue an overexpression of PPRY1 due to gene duplication may be responsible for the higher body weight characterizing Zappella variant. We concluded that duplication at 10q11.22 may play a role in protecting from both underweighting and autistic features in Rett patients. We now report more convincing evidences that dosage balance at GPRIN2 locus plays a role in autism spectrum disorders (ASD). We observed 6 patients affected by ASD with an overlapping small deletion including the two genes (and extending to MAPK8 in one patient). We then compared a group of 164 ASD patients with a group of 180 syndromic and non syndromic intellectual deficit (SID/NSID) patients and 160 controls. Seven deletions were identified in the ASD group and none in the control group and 135 SID/NSID nor in control group (p=0.005 and p=0.008). We are currently extending this study to a second cohort including about 100 ASD patients and 135 SID/NSID. Overall, the data suggest that gene dosage at 10q11.22 affecting GPRIN2 gene may have mirror effects being duplication protective and deletion prone to ASD.

P09.031

Whole-genome methylation profile in BEN patients

R. G. Stanoev1; I. Dimova1, P. Dimitrov8, V. Simeonova5, M. Polenakovic6, V. Stefanovic7, R. Constantinescu1, V. Djuric,2 S. Lalchev,2 D. Tzvetanov3; 1Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria, 2National Center of Public Health Protection, Sofia, Bulgaria, 3Vratza District Hospital, Vratza, Bulgaria, 4Macedonian Academy of Sciences and Arts, Skopje, The Former Yugoslav Republic of Macedonia, 5Faculty of Medicine, Institute of Nephrology, University of Nis, Nis, Serbia, 6Institute of Anatomy, University of Bern, Bern, Switzerland.

BACKGROUND: Balkan endemic nephropathy (BEN) represents a chronic progressive interstitial nephritis in striking correlation with urethropelial tumors of the upper urinary tract. The disease has endemic distribution in the Danube river regions in several Balkan countries.

DNA methylation is a primary epigenetic modification that is involved in major processes such as repression of paternal gene expression. Epi-genetic tests can prove to be the bridge between environmental factors and genetic background in BEN development.

MATERIALS AND METHODS: Age matched pools of 45 female BEN patients and 45 healthy controls were created. We’ve performed high-resolution
Genome-wide methylation array analysis. We've analyzed the methylation status of 27,800 CpG islands of both groups to identify significant methylation profile differences.

RESULTS: Our experiments show significant disparity of the multi-variant profile status of several group comparisons. Significant hypomethylation in the patient group was discovered for the following genes: ADRA2A, B3GNT4, BTBD6, C4orf32, MIR153-2, TM6SF1, SSR4, HNRPNPH1, EVLII, TAL1, EBF3, C3orf12, IQSEC1, MSL2, FAM12A, RBMY1B, RBMY2EP showed significantly higher level of hypermethylation in patients.

CONCLUSIONS: Data obtained from our experiments suggest that dysregulation of cytoskeletal proteins, transcription factors, transmembrane ion channels as well as proteins involved in secretion processes, cell adhesion, DNA- spacing and cell proliferation can be key mechanisms in BEN pathogenesis. These results are in line with the key pathological alterations in BEN and further elucidate the precise mechanism behind BEN development.

Acknowledgements: funded by project T127520,127949 of SNSF, Swiss National Science Foundation.

P09.032

De novo copy number variation in bipolar affective disorder

Cardiff University, Cardiff, United Kingdom; Stanley Center for Psychiatric Research, Brigham and Women's Hospital, Cambridge, MA, United States; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, United States; Department of Genetics and Genomic Sciences, Mount Sinai school of Medicine, New York, NY, United States; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, United States; Department of Neurosurgery, Mount Sinai school of Medicine, New York, NY, United States.

An increased rate of de novo copy number variants (CNVs) has been found in several neuropsychiatric disorders, such as schizophrenia, autism and developmental delay. In this study we wanted to identify de novo CNVs in bipolar affective disorder (BD).

We used Illumina OmniExpress microarrays to genotype 119 BD offspring from 114 complete parent-offspring families passing strict QC criteria. CNVs were called by PennCNV. We excluded CNVs <10kb, covered by <10 probes, overlapping segmental duplications and with a frequency >1%.

The analysis identified 41 putative novel CNVs. Subsequent validation by a Z-Score calling algorithm, and manual inspection of the logRatios of the tints, reduced this to seven de novo in six parents. This rate of 5% is higher than the reported rates in controls (~1-2%), but similar to studies in BD.

Conclusions: These results are in unison with the key pathological alterations in BEN and further elucidate the precise mechanism behind BEN development.

P09.034

The gene encoding Kit ligand associates with Bronchopulmonary dysplasia

1. Department of Pediatrics, Institute of Clinical Medicine, University of Oulu, Oulu, Finland; 2. Department of Pediatrics, Tampere University Hospital, Tampere, Finland; 3. Child & Family Research Institute of British Columbia, Vancouver, BC, Canada.

Background. Bronchopulmonary dysplasia (BPD) is one of the most common chronic lung diseases associated with very preterm birth. Major risk factors are lung immaturity and inflammatory lung injury. As a result of improved treatment methods, increased infant survival has arisen the new BPD among the most immature infants. Based on twin studies, genetic factors play an important role in BPD susceptibility. However, the genetic background is still poorly understood.

Aims. Because guccocorticoid receptors are important in the process of lung maturation, the genes encoding guccocorticoid receptor (NR3CI) and Kit ligand (KITLG, involved in hematopoiesis and cell migration) were investigated as candidates for BPD.

Materials and methods. Total of 259 infants with gestational age <31 weeks born in Oulu University Hospital during 1997-2010 were studied. Of these, 61 were diagnosed with BPD. All infants were of Finnish origin. Eight KITLG and 23 NR3CI tagging SNPs were genotyped.

Results. Six SNPs of KITLG (rs1114906, rs10858753, rs1742193, rs4842477, rs11104948, rs693498) associated with BPD. The frequencies of two haplotypes including all the 8 SNPs were significantly different between infants with BPD and those without BPD. There was no association with NR3CI SNPs and BPD.

Conclusion. We are the first to show evidence that the polymorphisms of KITLG associate with susceptibility to BPD. This raises the possibility that transcription products of KITLG, expressed in endothelial cells or lung fibroblasts, are important in early lung growth. Present results remain to be confirmed.

P09.035

Association of leukocyte telomere length and cardiac-vascular fitness: Results of the Austrian Stroke Prevention Study.

1. Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Medical University Graz, Austria; 2. Clinical Section of Special Neurology, Department of Neurology, Graz, Austria; 3. Institute of Molecular Biology and Biochemistry, Centre of Molecular Medicine, Centre of Molecular Medicine; Clinical Section of Special Neurology, Department of Neurology, Graz, Austria.

Background. Telomeres are short repetitive sequences protecting the ends of chromosomes. Leukocyte telomere length (LTL) is related to age, inflammation, oxidative stress and life-style factors. Physical activity has been indicated to exert beneficial effects on LTL. This study investigates the effect of cardio-respiratory fitness (CRF) on LTL.

Methods. Relative LTL was measured by quantitative Real Time PCR in 907 participants of the Austrian Stroke Prevention Study, a community-based cohort study on brain aging.

CRF was estimated by exercise ECG in 794 subjects. The measured variables included diastolic and systolic blood pressure, heart rate during resting, peak and recovery phase. VO2max was calculated by the formula
15% weight [kg] maximum/resting heart rate. The associations between each of
the CRF variables and LTL were analyzed using multiple linear regression
by adjusting for age and sex (Model 1) and additionally for hypertension,
diabetes, cardiac disease and BMI (Model 2).
Results: We observed a significant association between LTL and maximum
achieved heart rate (MHR) (Model 1 β = −0.002, p = 0.022). Additional adjust-
ment for vascular risk factors did not alter the effect size and the strength
of this association (Model 2 β = −0.002; p < 0.018). All other CRF variables were
not significantly associated with LTL. The association was confined to sub-
jects above the age of 65 (Model 2β = −0.003; p = 0.005) to men (Model 2β =
−0.002; p = 0.043) and to normotensives (Model 2β = −0.004; p = 0.010). CONCLUSION: This is the first study investigating the association
between CRF and LTL in a healthy elderly population. Our results suggest a protective role
of MHR on LTL, which is present particularly in elderly, men, and normo-
tensives.

P09.034
Expression analysis of celiac disease candidate genes in the 6q22
GWAS peak
C. Bondar1, L. Plaza-Izurieta2, N. Fernandez-Jimenez2,3, I. Irastorza4, C. E. G. E. C.5, C. Wijmenga1, F. Chiró3, J. C. Vitoria2,6, J. R. Bilbao2,6
1University of La Plata, La Plata, Argentina, 2University of the Basque Country, Leioa-
Basque Country, Spain, 3BioCruces Research Institute, Barakaldo-Basque Country, Spain,
4Cruces University Hospital, Barakaldo-Basque Country, Spain, 5Spanish Consortium for
Celiac Disease Genomics, (SECD), Spain, 6University Medical Center Groningen, Groningen,
Netherlands.

Celiac disease (CD) is an immune mediated, multigenic disorder where HLA-
DQ2/DQ8 contributes about 35% to genetic risk. GWAS have found more than
26 regions for CD susceptibility, and several potentially functional can-
didate genes have been located within. Recently, the 1MMUCOH1 gene
typing array discovered additional 13 regions of susceptibility. The GWAS
signal in chromosome 6:128.0-128.4 kb pointed to THEMIS and PTPRK as
possible candidate genes, both with immune-related function. The signal
was narrowed to the PTPRK region in the subsequent study, but functional
confirmation is pending. The aim of this work was to determine the influence of associated SNPs on
THEMIS and PTPRK gene expression in the intestinal mucosa of active
and treated CD patients and controls.

We assessed the correlation between qPCR expression levels and SNP
gene ontology of the top SNPs in both studies (rs802734, rs57543914 and
rs72975916) and those most strongly associated in our CEGEC popula-
tion (rs10484718 and rs9491896). THEMIS showed higher expression in active CD compared to treated pa-
tients and controls, while PTPRK showed lower expression. Our study confir-
med an association with this region with CD in the local population, although
only rs802734 genotype showed any influence in THEMIS expression. Inter-
estingly we found a significant positive correlation between THEMIS
and PTPRK mRNA levels in CD patients but not in controls. Our results
suggest a possible role for both candidate genes in CD pathoge-
ness although further investigation is needed to clarify the impact of the
associated SNPs on their expression.

P09.037
Association of FUT2 (rs601338) with celiac disease in Finnish patients
1Research Program for Molecular Medicine and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland, 2Finnish Red Cross Blood
Service, Helsinki, Finland, 3Department of Gastroenterology and Alcohol Treatment,
Tampere University Hospital, 4Department of Medicine and University of Tampere,
Tampere, Finland, 5Pediatric Research Center, University of Tampere and Tampere
University Hospital, Tampere, Finland.

Intestinal microbiota plays an important role in human health, and its com-
position is determined by several factors, such as diet and host genotype.
However, host genes determining the intestinal microbiota composition are
largely unknown. Recently, we (Wacklin et al 2011) and Rausch et al. (2011)
have showed that polymorphism in FUT2, which defines the expression of
ABH and Lewis histo-blood group antigens in intestinal mucus and other
secretions, affects intestinal microbiota composition. The FUT2 gene en-
codes fucosyltransferase 2 enzyme. Non-functional enzyme resulting from
non-synonymous mutations at 338, 348, 603 SNPs (rs17828258, rs3559905,
rs4610-A) in FUT2 gene leads to the non-secretor phenotype (AA). Celiac disease is chronic inflammatory
enteropathy occurring in genetically predisposed individuals after dietary
gluten consumption. It is classically manifested in gastrointestinal tract (di-
arrhoea, malabsorption), but extra-intestinal symptoms, such as dermatitis
herpetiformis (DH) are also common. In spite of several well-known gene-
tic risk factors for celiac disease, environmental factors, e.g., microbiota, are
suggested playing role in development of celiac disease. Interestingly, FUT2
association with celiac disease was detected by Dickey et al. (1994), but not by
Hennekamp et al. (1996). Thus, it is possible that host genes could indirect-
ly via microbiota composition be involved in manifestation of disease.
We studied 1025 celiac disease patients and 2738 controls using Taqman assay
for rs601338. We found suggestive associations at level of genotype [Cases
and controls: f(AA) = 18.0%, 14.7%; f(AG) = 42.4%, 47.6%; f(GG) = 39.5%,
37.8%; p = 0.006] and recessive model (Cases and controls: f(AG) = 18.0%
14.7%; f(AG/GG) = 82.0%, 85.3%; p = 0.011).

P09.038
Expression of TLR signalling-related miRNAs (mir-21, mir-146a, mir-
155) in celiac disease
L. Plaza-Izurieta, N. Fernandez-Jimenez1, 2, I. Irastorza4, J. C. Vitoria4, 6, J. R. Bilbao4, 6
1University of the Basque Country, Leioa-Basque Country, Spain, 2BioCruces Research
Institute, Barakaldo-Basque Country, Spain, 3Cruces University Hospital, Barakaldo-
Basque Country, Spain.

BACKGROUND: MicroRNAs have emerged as important regulators of gene
expression by decreasing target mRNA levels. A trio of microRNAs, mir-21,
mir-146a and mir-155, have become proven to be of considerable interest in
relation to TLR signalling, and their dysregulation may be involved in many
inflammatory diseases, including celiac disease (CD)
AIM: To evaluate the expression and relationship with disease status of the-
se 3 microRNAs in the pathogenesis of celiac disease.

P09.039
Exploring the NFKB signalling pathway in celiac disease
N. Fernandez-Jimenez1, 2, A. Castallano-Habib1, I. Irastorza4, L. Plaza-Izurieta2,6, J. C.
Vitoria4, 6, J. R. Bilbao4, 6
1University of the Basque Country, Leioa-Basque Country, Spain, 2BioCruces Research
Institute, Barakaldo-Basque Country, Spain, 3Cruces University Hospital, Barakaldo-
Basque Country, Spain.

The NFKB transduction factor family regulates a large array of genes invol-
ved in immunity, inflammation and cell survival. Previous work of our group
showed constitutive activation of NFKB in the intestinal mucosa of patients
with untreated celiac disease (CD), suggesting a pivotal role in the perpetu-
ation of the inflammatory process. Using RT-PCR in a custom Taqman Low Density Array, we analyzed the expression of 93 NFKB cascade genes in biopsies from 16 active celiac patients, 16 treated celiac patients on gluten-free diet and 16 non-celiac controls laden with inflammation of the gut at biopsy.

Twenty-two genes were significantly overexpressed in mucosa from both
active and treated celiac patients compared to controls, and one was downregulated, confirming the overall upregulation of NFKB pathway in CD. Most of those genes have central regulatory functions in the cascade and are clustered in Apoptosis and Toll-like Receptor (TLR) signalling KEGG pa-

www.eshg.org
BACKGROUND: Celiac disease (CD) is defined as a Th1-mediated gluten-sensitive enteropathy. Recent studies have shown that Th17 cells may also contribute to disease pathogenesis. SOCS3 is known to be a negative regulator of the Th17 response, and has been considered a candidate gene in CD. A SNP in SOCS3 (rs4969170) has been recently associated with CD. AIM: To study the expression of SOCS3 in affected tissue in relation to rs4969170 genotype and to replicate the genetic association.

PATIENTS AND METHODS: Gene expression was analyzed in 29 CD biopsy pairs, taken at diagnosis and after 2 years on gluten free diet, and 12 controls. SNP rs4969170 was genotyped in 512 celiac patients and 607 controls from the CEGEC collection. TaqMan gene expression and genotyping assays were employed. RESULTS: Gene expression showed statistically significant differences when comparing celiac patients before and after treatment, and also with healthy controls. SOCS3 is downregulated in active disease, compatible with an increased Th17 response. No effect of the rs4969170 genotype on gene expression was detected, nor was the genetic association for this SNP replicated in our sample.

P09.041 Association of the matrix metalloproteinases, disintegrin and metalloprotease 33 and the tissue inhibitors of metalloproteinases genes polymorphic markers with chronic obstructive pulmonary disease

G. Korytnyk1, O. Tselousova1, L. Akhmadshina2, E. Viktorova2, T. Victorova1,2,
1Institute of Biochemistry and Genetics, Ufa Scientific Center, Ufa, Russian Federation, 2George-August University of Goettingen, Goettingen, Germany, 3Bashkortostan State Medical University, Ufa, Russian Federation.

The contribution of the polymorphic markers of the matrix metalloproteinases MMP1 (-1607 G>GG, rs1799750; -519 A>G, rs494379), MMP2 (-735C>T, rs9318242; 2660A>G, rs17576), MMP12 (-82 A>G, rs2276109), the disintegrin and metalloprotease 33 ADAM33 (1241A>G, rs2280091; 1349 C>G, rs2270949), the tissue inhibitors of metalloproteinases TIMP2 (-418G>C, rs8179090), TIMP3 (-1296T>C, rs9619311) genes to chronic obstructive pulmonary disease has been investigated. For this purpose, PCR-RFLP analysis of the gene polymorphisms in case (N=93) and control (N=154) groups has been performed. The 66A6 genotype of the MMP3 -1171 5A>6A polymorphism was associated with significantly high risk of chronic obstructive pulmonary disease (OR=2.490, Padj=0.003979 adjusted for age, sex, smoke pack-years, ethnos). Association analysis showed an association of the G-G haplotype of 13491 C>G and 1241A>G ADAM33 gene polymorphisms (OR=0.39, Padj=0.0012) with chronic obstructive pulmonary disease (OR=0.39, Padj=0.0012). Use of chronic obstructive pulmonary disease has been proved, with 95% of the CD patients carrying HLA DQ2 heterodimer and ca. 5% carrying DQ8 heterodimer. DQ2 and DQ8 negative individuals have been shown to be very unlikely to develop CD. Herein we present a colorimetric assay, based on enzyme-linked oligonucleotide assay (ELONA) technology in combination with reverse dot-blot Sequence Specific Oligonucleotide Probes (SSOP) approach, for rapid, easy to use and cost effective HLA typing of CD associated genes. Multiple polymorphic markers for medium to high resolution HLA typing of the DQ2 and DQ8 genes is demonstrated. Probes with high specificity for the cd associated alleles (DQA1*02:01, DQA1*03:01, DQ1*05:01/DQ1*05:05, DQB1*01:02/DQB1*02:02 and DQB1*03:02) were designed and tested by ELONA and surface plasmon resonance techniques (SPR).

Assay condition studies, performed by SPR and ELONA, revealed that detection can be performed in 25 minutes if operation temperature was set to 37°C.

Finally, the performances of the developed typing platform were validated by the analysis of a series of real patient samples.

P09.044 SNP association of CNTN4, CNTN5, CNTN6, CHL1 and GRIN2B corroborates and extends copy number variation data in autism

M. Post1, C. G. de Kovel1,2,3,4, M. Poot1,2,3, C. G. de Kovel1,2,3,4, M. Poot1,2,3,4,
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.

Celiac disease (CeD) is a common food intolerance, caused by a dysregulated immune response to dietary gluten. It is strongly associated to the HLA-DQA2/DQ8 genes, which explain 35% of the heritability. Genome-wide association studies for CeD identified a further 39 non-HLA loci that explain another 5%. To identify more risk genes, we performed whole-genome linkage in a four-generation Dutch family segregating for CeD. We mapped a dominantly inherited linkage region at chromosome 9p21-13 and another region at 6q25 using a model-free approach.

We hypothesize that these regions may contain causal mutations for CeD and applied whole-exome sequencing to two affected individuals from the family to look for mutations. As CeD segregates in the dominant-like matter, we looked for heterozygous changes present in both individuals. We selected all non-synonymous, nonsense and splice-site changes of unknown or low frequency (MAF<5%) using datasets from 1000 Genomes, an NHLBI exome-sequencing project, and a set of 500 Dutch controls.

Two missense variants, on chromosomes 9p21-13 and 6q25, were further investigated and were both predicted to be damaging. However, the 6q25 variant was also present in one spouse and the family grandmother, both of whom did not carry the risk haplotype. The 9p21-13 variant showed perfect co-segregation in the family and is in a gene of largely unknown function, although it is highly expressed in epithelial tissue. This opens up the exciting possibility that it might be involved in barrier function. Further studies should investigate the gene function and its involvement in CeD pathogenesis.

P09.043 Searching for a causative mutation in a four-generation family with celiac disease using next-generation sequencing

L. Richio-Ponce1, A. Saper2, C. C. van Diemen3, C. Wijmenga4,
1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.

We previously identified a further 39 non-HLA loci that explain another 5% of heritability for Celiac disease (CeD), a common food intolerance, caused by a dysregulated immune response to dietary gluten. It is strongly associated to the HLA-DQA2/DQ8 genes, which explain 35% of the heritability. Genome-wide association studies for CeD identified a further 39 non-HLA loci that explain another 5%. To identify more risk genes, we performed whole-genome linkage in a four-generation Dutch family segregating for CeD. We mapped a dominantly inherited linkage region at chromosome 9p21-13 and another region at 6q25 using a model-free approach.

We hypothesize that these regions may contain causal mutations for CeD and applied whole-exome sequencing to two affected individuals from the family to look for mutations. As CeD segregates in the dominant-like manner, we looked for heterozygous changes present in both individuals. We selected all non-synonymous, nonsense and splice-site changes of unknown or low frequency (MAF<5%) using datasets from 1000 Genomes, an NHLBI exome-sequencing project, and a set of 500 Dutch controls.

Two missense variants, on chromosomes 9p21-13 and 6q25, were further investigated and were both predicted to be damaging. However, the 6q25 variant was also present in a spouse and the family grandmother, both of whom did not carry the risk haplotype. The 9p21-13 variant showed perfect co-segregation in the family and is in a gene of largely unknown function, although it is highly expressed in epithelial tissue. This opens up the exciting possibility that it might be involved in barrier function. Further studies should investigate the gene function and its involvement in CeD pathogenesis.

P09.042 Colorimetric Assay For Medium-High Resolution HLA-DQ2/DQ8 Typing For Celiac Disease Predisposition Analysis

H. Todt1, V. Beni2, I. Katakis3, N. Alakulppi1, J. Partanen1, K. Lind4, L. Strömbom4, C. K. O’Sullivan5,6,
1Departement d’Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain, 2Department of Physics, Chemistry and Biology, Linköping, Sweden, 3Finnish Red Cross Blood Service, Helsinki, Finland, 4TATAA Biocenter AR, Göteborg, Sweden, 5Instituto Catalana de Recerca e Estudis Avançats, Barcelona, Spain.

Celiac disease (CD) is a small intestinal inflammation disorder, triggered by the intake of gluten protein that present in certain cereals. The prevalence of CD is about 1% in the European population. CD has been shown to affect only genetically predisposed individuals; strong relation between this disease and Human Leukocyte Antigens (HLA) has been proved, with 95% of the CD patients carrying HLA DQ2 heterodimer and ca. 5% carrying DQ8 heterodimer. DQ2 and DQ8 negative individuals have been shown to be very unlikely to develop CD. Herein we present a colorimetric assay, based on enzyme-linked oligonucleotide assay (ELONA) technology in combination with reverse dot-blot Sequence Specific Oligonucleotide Probes (SSOP) approach, for rapid, easy to use and cost effective HLA typing of CD associated genes.

Multiplex colorimetric assay for medium to high resolution HLA typing of the DQ2 and DQ8 genes is demonstrated. Probes with high specificity for the cd associated alleles (DQA1*02:01, DQA1*03:01, DQA1*05:01/DQA1*05:05, DQB1*02:01/DQB1*02:02 and DQB1*03:02) were designed and tested by ELONA and surface plasmon resonance techniques (SPR).

Assay condition studies, performed by SPR and ELONA, revealed that detection can be performed in 25 minutes if operation temperature was set to 37°C.

Finally, the performances of the developed typing platform were validated by the analysis of a series of real patient samples.

within or immediately bordering these genes. We compared a cohort of 74 ASD patients without relevant CNVs with a population-based cohort of 132 healthy individuals that were not related to the ASD families. After Bonferroni correction for multiple testing we found significant association for one SNP rs2516011 in intron 1 of CNTN4 (rs1420121), two SNPs within intron 7 and 9 of CNTN5 (rs6590473 and rs1122559), one SNP within intron 1 of CHL1 (rs17329247), one SNP within intron 1 of CNTN6 (rs9878022), and 5 SNPs flanking exon 4 of GRIN2B. Our data corroborate involvement of contactins in ASD as indicated by our previous CNV study and indicate that certain genes may harbour variants with both high penetrance and with a smaller degree of effect for the same phenotype.

P09.045
An association between JAK3, STAT3 and CCL2 gene variants and myocardial infarction

V. P. Timashev, V. A. Mareeva, T. R. Nasibullin, O. E. Mustafina; Institute of Biochemistry and Genetics Ufa Science Centre Russian Academy of Science, Ufa, Russian Federation.

Systemic inflammation is considered to be an important factor in the development of coronary artery disease. The aim of the current study was to investigate candidate genes in the inflammatory molecular pathways involved in the progression of atherosclerosis. To achieve this goal, we replicated SNPs in JAK1, JAK3, STAT3 and CCL2 genes in the study group consisting of patients with MI and control subjects. The group of MI patients of Russian ethnic origin (N=277), when compared to the control group (N=145), has demonstrated increased JAK3*T/*C genotype frequency (44.23% vs. 32.2%, respectively, P=0.032) and decreased JAK3*T/*C genotype frequency (50.0% vs. 63.56% respectively, P=0.015). Increased prevalence of STAT3*T/*C and CCL2*T/*G genotypes was observed in MI patients of Tatar ethnicity (N=220) (16.59% vs. 8.82%, P=0.031, and 5.12% vs. 6.88%, P=0.014 respectively). In our study, we have detected an association between MI and JAK3 rs312016 in Russians, STAT3 rs2193512 and CCL2 rs3917887 in Tatars. JAK3*T/*C was associated with increased risk of MI (OR= 1.67, CI: 1.06 - 2.64), while JAK3*T/*G was found to be protective (OR= 0.57, CI: 0.34 - 0.90). In Tatars, STAT3*T/*C and CCL2*T/*G carriers demonstrated higher risk of MI (OR= 2.05, CI: 1.08 - 3.92, and OR= 2.43, CI: 1.21 - 4.90, respectively). Further investigations are needed to confirm these results and to understand the mechanisms underlying the associations.
P09.049
Association analysis of OXTR and AVPR1B genes in criminal violence
1 Bashkir Research Center for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russian Federation; 2 Institute of Pathophysiology, Faculty of Medicine of Comenius University in Bratislava, Bratislava, Slovakia.

The existence of individual differences in response to painful stimuli suggests that genetic factors can be involved in its modulation. The aim of our study was to investigate the genetic variation of 16 genes involved in either in nervous system pathways or in drug metabolism, in patients from Salamanca (Spain), diagnosed CRPS.
Methods: Genomic DNA was extracted from peripheral blood by standard techniques. We selected 16 non-synonymous SNPs. Studies were performed using TaqMan probes (Applied Biosystems) for the analysis of the polymorphisms in the following genes: TRPV, GSTP1, CYP2D6, COMT, PTG2, HTR2A, SLCO6A4, OPRD, OPRM, CNR1, DRD2, GABRA1, GABRA2, PPARG, EDN1. Statistical analysis was performed comparing the different allelic variants of the genes in subgroups of patients: with a VAS below and over 50.

Results and conclusion: Preliminary analysis has shown significant differences in genotype distribution (p < 0.05) comparing both groups of patients in the EDN1 and PTG2 genes. When we split groups according sex, we find significant differences in EDN1 and IL1B for men, and in PTG2, GABRA1, TRPV and GSTP1 for women. That support the hypothesis that genetic variants could be associated with increased susceptibility to suffer pain.

P09.050
Higher post surgical opioid requirement in Crohn's disease - expression profiling of small intestine biopsies
R. Ubbo1, T. Minster1, T. Bau1, T. Foesticht1, R. Croner1, A. Ekici2, R. Bautenstraus2,3, A. Winterpacht1.
1 Institute of Human Genetics, University Hospital Erlangen, Erlangen, Germany; 2 Department of Pathology, University Erlangen, Erlangen, Germany; 3 Department of Surgery, University Hospital Erlangen, Erlangen, Germany.

Crohn's disease (CD) is a painful inflammatory bowel disease with complex polygenic inheritance. It has been shown that a number of CD patients require significantly higher post operative opioid doses than patients undergoing comparable abdominal surgery. We recently demonstrated that this is not due to the most common variants in components of opioid metabolism. CD, therefore, may be a suitable model for the identification of novel pain susceptibility genes. In order to further investigate the molecular and genetic basis of this difference in pain perception within CD patients, we focused our attention on the affected tissue. RNA was extracted from sections of inflamed and non-inflamed small intestine tissue of 3 CD patients with high and 3 patients with low postsurgical opioid requirement. Expression profiling of all 12 tissues was performed using Affymetrix U133 Plus2.0 microarrays. Expression profiles were compared between inflamed and non-inflamed tissue of CD patients with high and low postoperative opioid consumption.

The presence of differences in response to painful stimuli suggest that genetic factors can be involved in its modulation. The aim of our study was to investigate the genetic variation of 16 genes involved in either in nervous system pathways or in drug metabolism, in patients from Salamanca (Spain), diagnosed CRPS.

Methods: Genomic DNA was extracted from peripheral blood by standard techniques. We selected 16 non-synonymous SNPs. Studies were performed using TaqMan probes (Applied Biosystems) for the analysis of the polymorphisms in the following genes: TRPV, GSTP1, CYP2D6, COMT, PTG2, HTR2A, SLCO6A4, OPRD, OPRM, CNR1, DRD2, GABRA1, GABRA2, PPARG, EDN1. Statistical analysis was performed comparing the different allelic variants of the genes in subgroups of patients: with a VAS below and over 50.

Results and conclusion: Preliminary analysis has shown significant differences in genotype distribution (p < 0.05) comparing both groups of patients in the EDN1 and PTG2 genes. When we split groups according sex, we find significant differences in EDN1 and IL1B for men, and in PTG2, GABRA1, TRPV and GSTP1 for women. That support the hypothesis that genetic variants could be associated with increased susceptibility to suffer pain.

P09.051
Study of allelic variants in patients with CRPS from Samalancia (Spain)
M. López Bartolome1, D. Fernández García1, S. Lolato1, C. Muriel Villoria2, A. Ekici3, R. González Sarmiento4.
1 Unit of Molecular Medicine. Department of Medicine. University of Salamanca, Salamanca, Spain; 2 Cátedra Extraordinaria del Dolor. Grúental Foundation, Salamanca, Spain; 3 Unit of Pain. Anesthesia Service. Hospital Clínico de Salamanca, Salamanca, Spain.

Background: Complex regional pain syndrome (CRPS) is a chronic pain condition that is believed to be the result of dysfunction in the central or peripheral nervous systems.

Abstracts - European Human Genetics Conference 2012

www.eshg.org
bility gene, modifies risk of diabetes in CF. Analysis of three polymorphisms in TCF7L2 gene (rs7903146, rs12255372, rs11169260) was carried out in two groups of adult Russian CF patients: 47 patients with diabetes (mean age 22.6 years; 25 males : 22 females); 55 patients without diabetes (mean age 26.4 years; 27 males : 28 females). The frequency of the C allele and genotype distribution at rs11169260 polymorphism in TCF7L2 gene between two analyzed groups of CF patients was revealed. The frequency of C allele at rs11169260 is significantly lower in CF patients with diabetes than in CF patients without diabetes (0.394 versus 0.558; p=0.02). Allele C is associated with decreasing risk of diabetes in CF patients (OR=0.51 (95%CI 0.29-0.91); p=0.02).

P09.054
Changes in methylation of promoters of immune response genes during hemodialysis in patients with diabetic nephropathy detected at the level of cell-free DNA in plasma

M. Korabecna1, E. Pazarovkova2, A. Hedin3, V. Tesar4; 1First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic, 2Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic, 3Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.

Background: Of patients with diabetes mellitus (DM), 20%-40% develop diabetes nephropathy (DN) which belongs to one of the most frequent causes of hemodialysis therapy. The process of hemodialysis (HD) itself is not without the influence on patient’s immune system, additionally impaired immune functions are documented in DM patients. Elevations of cell-free DNA (cfDNA) concentrations during HD sessions were reported in numerous studies regardless of an applied therapeutic protocol. In this study, we focus on methylation status of promoter of immune response genes at the level of plasma cfDNA and their changes induced by the process of hemodialysis in DN patients.

Methods: We isolated plasma cfDNA from 20 patients with DN before and after HD session. The extent of promoter methylation of 24 genes involved in immune system activity in HD patients and its results can be further correlated with clinical data to bring new insights in the complex pathogenesis. Supported by grants no. 1/328 of Ministry of Industry and Trade and no. MSM0021620806 of Ministry of Education of the Czech Republic.

P09.056
Locomotor dysfunction and hypotonia in Down syndrome mouse models for the Stch-App region as a consequence of dosage sensitive genes controlling muscular metabolism and mitochondrial function

V. Braude, S. Potekhin, M. Karousa, I. Sahan, J. Bizot, C. Borel, F. Trouche, D. Dembele, S. E. Antonarakis, M. Diereza, V. Herault1; 1IGBMC, Illkirch, France; 2CNRS UPS44 TAAM, Illkirch, France; 3Center for Genomic Regulation, Barcelona, Spain; 4Key-Obs, Orleans, France; 5University of Geneva Medical School, Geneva, Switzerland; 6Ko Yo, Orleans, France; 7Center for genomic regulation, Barcelona, Spain; 8INP U94 TAAM, Orleans, France; 9ICS, Illkirch, France.

Aneuploidies of human chromosome 21 (Down syndrome and monosomy 21) lead to variable physiological abnormalities, with constant mental retardation and delayed locomotor skills. Delayed motor performance, weak muscle strength and exercise limitation observed in individuals with Down syndrome are not yet understood and remain a challenging issue. They have been attributed to impaired coordinated input due to cerebellar dysfunction, but might have a more complex origin. Phenotypic investigation of mouse models for triplication (5Ts21Ya) and monosomy (5Ms21Ya) for the Stch-App region revealed the existence in this region of genes sensitive to dosage that are controlling muscle strength, motor function and endurance. A transcriptome analysis of skeletal muscle in Ms21Ya mice revealed up-regulation of genes implicated in mitochondrial function and in the oxidative phosphorylation pathway, a finding that was confirmed by the visualization of increased number of mitochondrial cristae. The opposite down regulation was observed in Ts21Ya mice, although with less effect. In addition, myopathy-like muscle fiber and mitochondria damage was observed in Ms21Ya model. Our findings demonstrate that one or more gene(s) present within the Stch-App region are implicated in the regulation of muscle energy metabolism and integrity, and may play a role in the motor impairment observed in Down syndrome. We propose that locomotor deficit observed in Down syndrome are the result, not only of a central nervous system defect, but also have a peripheral origin that the Stch-App region contributes to these. Candidate genes for this new phenotype are currently under investigation.

P09.057
Aging alters DNA methylation level in the genes involved in common diseases

H. Kitajima1, K. Ohnada1, R. Tabayangag1, K. Yamamoto2; 1Division of Genome Analysis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan, 2Department of Medicine and Bio-Regulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, 3Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Aging affects various physiological processes and increases susceptibility to diseases. Whether aging alters DNA methylation level and how the aging-related epigenetic changes influence disease traits are of great interest. To settle this matter, we performed epigenome-wide association study by analyzing approximate 450K DNA methylation sites using the blood sample of total 288 subjects in Japanese general population. We conducted multistage association analysis between DNA methylation level and age by adjusting with sex and body mass index using general linear model for 96 subjects in each of the two analyzed groups of 288 subjects. We identified 71 methylated sites of 11 genes associated with age which showed P-value < 0.001 in every three sets and showed P-value 1.0 x 10^-42 to 1.0 x 10^-14 in combined set. The functional information of these genes are as follows: 3 sites in one of the susceptibility loci of Diabetes Mellitus, 2 sites related to fatty acid metabolism, 2 sites in the coactivator of the androgen receptor, 1 site in proapoptotic pathway, 1 site related to atherogenesis of the blood vessels, 1 site related to oxidative stress and 1 site related to the immune system. Our results suggest that aging may alter epigenetic status in the genes involved in common diseases such as diabetes, dyslipidemia, cardiovascular disorder and cancer.

P09.058
Investigation of variants of diverse hormone receptor genes and the male pattern baldness major genetic susceptibility loci AR/EDA2R and 20p11 in women with female pattern hair loss

S. Redler1, R. Tsai-Ahmeir1, M. Birch1, K. Dawson2, D. Drichel3, F. E. Brockschmidt1, K. A. Giehl4, N. Kluck1,6, R. Kruse1,6,2, K. A. Dobson7, G. Lutz1,7, H. Wolff1,2, R. Becker4, M. Böhm1, M. M. Nöthen1,4, A. G. Messenger1, R. C. Betz1; 1Institute of Human Genetics, Bonn, Germany, 2Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom, 3Department of Dermatology, Royal Hallamshire Hospital, Sheffield, United Kingdom, 4German Center for Neurodegenerative Diseases (DZNE), Bonn, Bonn, Germany, 5Department of Dermatology, University of Munich, Munich, Germany, 6Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany, 7Dermatological Practice, Paderborn, Germany, 8Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany, 9Department of Dermatology, University of Münster, Münster, Germany, 10Department of Dermatology, Royal Hallamshire Hospital, Sheffield, Sheffield, United Kingdom.

Androgenetic alopecia is a common hair loss disorder which occurs in both sexes. The disorder is termed male-pattern baldness (AGA) in men, and female pattern hair loss (FPHL) in women. Although the precise etiopathogenesis of FPHL remains unknown, one likely hypothesis is that sex steroid hormones are crucial for the development of FPHL. However, we could not demonstrate significant association for any of the 32 genotyped variants of the hormone receptor genes androgenate-gene (CYP19A1), progestate receptor (PR), estrogen receptor alpha (ESR1), estrogen receptor beta (ESR2), androgen receptor (AR), 5-alpha-reductase alpha polypeptide 1 and 2 (SRD5A1, SRD5A2) and estrogen receptors 1 and 2 (ESR1, ESR2). Another likely hypothesis is that FPHL and AGA share common disease-causing mechanisms and a common genetic background. The two major susceptibility loci for AGA are the X-chromosomal locus AR/EDA2R; and a locus on chromosome 20p11. We performed a fine mapping study of AR/EDA2R and genotyped five SNPs from the chromosome 20p11 ajan that reached genome-wide significance in a recent GWAS of AGA. No significant association was obtained for any of the 20p11 variants, assuming that this locus do not influence susceptibility to FPHL. At AR/EDA2R, seven markers showed significant association in the subgroup of early affected UK patients, suggesting that the AR/EDA2R locus may be specifically involved in the pathogenesis of early-onset FPHL. Enlargement of the collective of 230 patients (145 UK; 85 German) and 129 controls (779 UK; 150 German) as well as a genome-wide association study might help to understand the role of AR/EDA2R and to identify further genes contributing to the development of FPHL.
Multi-ethnic fine-mapping reveals potential causal variants for a complex disease

R. C. Almeida1, J. Biscoe-Ponce1, A. Sperer1, G. Trynka1, J. Gutierrez-Achury1, J. Romano1, L. Franks1, H. Westra2, J. Bilboz2, D. Barutani3, L. Grecos3, M. Mazzilli3, A. Sood4, B. Cukrowska4, K. Hunte5, E. Urcelay5, D. van Heel6, C. Wijmenga6,7
1Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands, 2University of Brasilia School of Health Sciences, Brasilia, Brazil, 3Department of Genetics, University Medical Centre Groningen and University of Groningen, Groningen, Netherlands, 4Immunogenetics Research Laboratory, Hospital Dr Cruces, Bizkaia, Spain, 5Department of Experimental Medicine, Faculty of Medicine, University of Milan-Bicocca, Monza, Italy, 6European Laboratory for Food-induced Diseases, University of Naples Federico II, Naples, Italy, 7Department of Molecular Medicine, Sapientia University of Rome, Rome, Italy, 8Dayanand Medical College and Hospital,Ludhiana, Punjab, India, 9Department of Pathology, Children’s Memorial Health Institute, Warsaw, Poland, 10Biocentre of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, United Kingdom.

Our aim was to refine the associated region in the LPP locus by comparing the risk haplotype across four independent populations of European origin, using the Cross test, a haplotype association algorithm. We have shown that risk haplotypes in the four populations are derived from the same common ancestor and thus may carry the same causal variant in all four populations. By comparing risk haplotypes to non-risk haplotypes, we were able to narrow down the region from 70 kb to 18 kb.

To investigate functional regulatory elements at this region, we used ENCODE annotation to indicate the most likely candidate variants. We suggest that deregulation of transcription factor binding properties might be a causal mechanism underlying the association of the LPP region to celiac disease. These variants should be studied further by functional means.

FTO levels affect RNA modification and the transcriptome

T. B. Moller1, M. Ziehe1, L. Kleit-Hattig1, E. Mladenova1, J. Thomsen1, U. Rother1, B. Horstemkem2
1Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany, 2Analytical and Environmental Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany.

Gene-environmental interactions (GxE) are in focus of contemporary studies of allergic diseases and traits. Helmhinst venom is recognised as an important factor influencing atopic disease risk. Earlier, we revealed that liver fluke Opisthorchis felineus invasion has a significant impact on epide-

miological portrait of allergic diseases and immune functional status in atopy in Siberian populations (Parasitol Res 2007;101(4):1165-8). We now set out to investigate if the helminth invasion is an environmental factor modifying genetic risk of allergy.

Twenty one single nucleotide polymorphisms (SNP) of immune-response genes were analysed in 222 healthy people and 207 bronchial asthma (BA) patients with established status of O. felineus invasion. Linear regression models were built using the interaction of the SNPs and O. felineus invasion as a predictor of BA and total IgE levels.

Three significant GxE models were found for BA, including rs2069705 (IFNG: P = 0.001); rs2066807 (STAT2; P = 0.015); and rs673848 (SOCS5; P = 0.004). Odds ratios for the significant GxE terms indicated approximately 2-times higher or lower risk of BA in corresponding groups. Two significant GxE models were obtained for total serum IgE, and included rs2069705 (IFNG; P = 0.046) and rs167769 (STAT5; P = 0.032). In both models, the presence of the helminth invasion associated with lower IgE levels. The results lacked the significance after correction for multiple testing likely, due to small sample size. However, the data is the first indication of the importance of O. felineus invasion as an environmental factor modifying genetic risk of BA and atopy.
suicide. However, no genetic studies have been performed with NMDAR1 gene in order to explore the hypothesis of glutamatergic system in suicide susceptibility. The aim of this study was to test the potential involvement of single nucleotide polymorphism G1970A of NMDAR1 gene in the etiology of suicide in the Portuguese population. Peripheral blood was collected from suicide victims and controls in the National Institute of Legal Medicine, Portugal and using a standard method, genomic DNA was extracted. The polymorphism G1970A in the coding region of NMDAR1 gene was investigated by RFLP-PCR. The PCR product was digested with MspI enzyme at 37°C and after digestion, the fragments were separated by electrophoresis on a 3% agarose gel.

For the G1970A polymorphism of NMDAR1 gene, there was no significant differences either in allele frequency or genotype frequency between two groups (p = 0.05). In this study no evidence of association was found between the G1970A polymorphism of NMDAR1 gene and suicide in our sample and these results suggest that this polymorphism does not play a major role in the susceptibility to suicide.

P09.064
Genetic predisposition to tuberculosis in native and immigrant Siberian populations

A. Tabas, A. N. Amr, E. Dragoina, N. Babushkina, A. Amr, A. Garanova, V. Puzyreva1,2; Research Institute of Medical Genetics, Tomsk, Russian Federation; Siberian Medical University, Tomsk, Russian Federation.

There is a difference in prevalence of tuberculosis (TB) among ethnically divergent Siberian populations with highest rates of disease among aboriginal Asian populations. Given the similar environment, differential genetic background can be responsible for distinguished TB liability in native and immigrant Siberian populations. We addressed this issue in a study of common polymorphisms of twelve immune-response modifying genes in Siberian populations of Russians (304 patients, 265 controls), Tuvinians (238 patients, 263 controls), and Yakuts (150 patients, 135 controls). Both ethnic specific and common association between the genes and TB were identified. The rs12756687 (PIAS3), rs3760903 (PIAS5), rs167769 (STAT6), rs1024611 (MCP1) and rs2697905 (IFNG) polymorphisms were associated with TB in Russians. The rs7572482 (STAT4), rs3760903 (PIAS5), and rs167769 (STAT6) were linked to disease in Tuvinians. The rs16967593 (STAT5B), rs3760903 (PIAS5), rs17800703 (IFNGR2), rs1024611 (MCP1) were associated with TB in Yakuts. The PIAS5 gene was associated with TB in all studied populations suggesting it as a cosmopolitan TB gene. However, while in Russians the common allele was protective against the disease (OR=0.67, P = 1E-6), in Tuvinians and Yakuts it increased the risk of TB (OR = 1.4, P = 0.032, OR = 1.67, P = 0.035, respectively). STAT5 gene common allele was protective in Russians and predisposing in Tuvinians; while in case of MCP1 gene, common allele was predisposing in Russians and protective in Yakuts. This finding suggests specificity in allelic effects predisposing to TB in Asians and Russians of Siberia. Molecular mechanisms of these inverse effects are to be investigated.

P09.065
Genome-wide association study identifies sequence variants associated with hematological traits in Asian population

J. Oh, Y. Kim, Y. Kim, Y. Cho; Korea National Institute of Health, Chungcheongbuk-do, Korea, Republic of.

To identify genetic loci influencing hematological traits, we conducted a genome-wide association study (GWAS) of 8,842 subjects recruited from population-based cohorts in Korea. Replication from independent population (N=7,861) to validate GWAS results revealed SNPs reaching genome-wide significance for selected hematological traits. We identified significant associations between platelet count and genetic variants in four regions on chromosome 4p16.1 (Pcombined = 1.46 × 10^-9, in KIAA0232), 4q25 (Pcombined = 6.68 × 10^-12, in or near EGF), 12q24.12 (Pcombined = 1.11 × 10^-9, in SH2B3) and 6p21 (Pcombined = 1.69 × 10^-9, in BAK1). GWAS for WBC showed strong evidence of genetic association on 17q21.1a (Pcombined = 1.1 × 10^-9) which contains CSF3 gene. Blood hematological traits were significantly associated with this SNP on 22q12.3d (P = 2.2 × 10^-9) localizing to TMPRSS6 that is required to sense iron deficiency. Two SNPs were detected for their association with RBC from GWAS (RBC data not available in replication subjects). One (P = 8.6 × 10^-10) is located on 6p21.11 in MED20 encoding a component of the mediator complex. The other (P = 3.3 × 10^-10) localizes to matocrit (Pcombined = 5.1 × 10^-22) and hematocrit (Pcombined = 5.1 × 10^-22). This locus is known to play an important role in proliferation and differentiation of hematopoietic progenitor cells. Our findings might enhance to unravel molecular mechanisms underlying these hematological traits.

P09.066
The estimation of Heritability analyses for BMI of Genome-wide Association studies based on Korean cohort

J. Lee, Y. Kim, Y. Kim, N. Kim, J. Oh, B. Han; J. Lee; NII, Korea, Chungwon, Korea, Republic of.

Many Single nucleotide polymorphisms were significant for various risk factors, but these SNPs account for small fraction. We estimated heritability from the number of risk alleles related on BMI and analyzed linear model. For population and twin-family based on cohort in Korea, we predicted and compared the heritability for BMI using various methods. The aim of this study was to estimate variation and their heritability for BMI including genotype information. We have constructed community and twin-family based on cohort, which is an ongoing prospective studies and surveyed samples were drawn from the Korean Genome and Epidemiology Study and Korea Genome Analysis Project in Korea. From Twin-Family cohort, we selected 2,473 subjects in twin-family cohort and surveyed their zygosity using the self-report questionnaires about 2,000 items and genotyped using Affy 6.0. From community-based cohort(KARE, Korea Association Resource), we selected 8,942 subjects and surveyed their self-report questionnaires about 1,400 items and genotyped using Affy 5.0. We estimated heritability for BMI using SOLAR, GCTA, GENABEL. These were estimated and optimized Quantitative genetic analysis adjust age and sex. The estimation value of heritability for BMI based on twin-family cohort, was 0.67(p=2.1E-86) using SOLAR(including only epidemiological data) and was 0.44(p<0.000) using GCTA and was 0.44(p<0.000) using GENABEL(including epidemiological and genotype data). The estimation value of heritability for BMI based on KARE, was 0.15(p=1.3E-04) using GCTA and was 0.18(p<0.000) using GENABEL. The estimation difference of heritability between Twin-Family and KARE cohort, it depends on sampling error and related/unrelated structure.

P09.067
Estimated heritability of the metabolic syndrome components in the Tehranian families: Tehran Lipid and Glucose Study (TLGS)

M. Zarekesh1, M. Daneshpour2, R. Fam1, M. Fallahi1, N. Hassanzadeh1, K. Guty1, F. Hosseinpouh1, A. Momeneh1, F. Azizi1; 1Obesity Research Center, Research Institute for endocrine sciences Shahed Behesht University of Me, Tehran, Islamic Republic of Iran, 2Kowsar Research Center of Human Genetic, Tehran, Islamic Republic of Iran, 3Endocrine Research Center, Research Institute for Endocrine Sciences, Shahed Behesht University, Tehran, Islamic Republic of Iran.

Introduction: Growing evidence suggests that the metabolic syndrome has both genetic and environmental bases. To evaluate the possibility of further genetic analysis, this study estimated the heritability of the metabolic syndrome (MetS) components in the families with metabolic syndrome among from Tehran Lipid and Glucose Study.

Methods: We investigated 904 nuclear families with two biological parents and at least one offspring (1565 parents and 2448 children), aged 3-90 years of Tehran Lipid and Glucose Study, whom metabolic syndrome information was available and had at least two members of family with metabolic syndrome. MetS was defined in adults according to the Joint Interim Statement (JIS) criteria and for offspring as Cooks guide lines. Variance component methods were used to estimate age and sex adjusted heritability of the metabolic syndrome component using SOLAR software.

Results: The heritability of waist circumference (WC), HDL-C, triglyceride (TG), fasting blood sugar (FBS), systolic blood pressure, and diastolic blood pressure as continuous traits after adjusting for age and gender, were 27, 46, 36, 29, 25, and 26%, respectively. When the metabolic syndrome components were analyzed as discrete traits, the estimates of age and gender adjusted heritability for abdominal obesity, low HDL-C, high TG, high FBS, and high blood pressure varied to 22, 40, 34, 38, and 25%, respectively (p<0.05).

Conclusion: We clearly demonstrated a significant heritability of MetS components among TLGS families. The results strongly encourage efforts to identify the underlying susceptibility genes.

P09.068
Association of HIF1A gene Pro582Ser polymorphism with strength status and strength performance in children

R. T. Gabbasov1, A. A. Arkhipova1, V. A. Borisova2, A. M. Hakimullina2, D. N. Gaevrilo3, A. V. Kaznatcheva1, A. G. Williams1, S. H. Day1, I. L. Abetem1; 1Kazan State Medical University, Kazan, Russian Federation, 2St Petersburg Research
Hyperuricemia has been generally classified into uric acid (urate) "overproduction type," "underexcretion type," and "combined type" based on only renal urate excretion, without considering an extra-renal pathway such as gut excretion. We recently showed that ABGG2/BCRP is a high-capacity urate exporter and that its dysfunction is a major cause of hyperuricemia and gout. Here we evaluated how ABGG2 dysfunction affects urate excretion pathways.

Clinical parameters for urate handling including urinary urate excretion were examined in 644 male outpatients with hyperuricemia. Severity of ABGG2 dysfunction in them was estimated by genotype combination of two common ABGG2 variants, nonfunctional Q789X (rs72552713) and half-functional Q141K (rs2231142). We investigated the relationship between ABGG2 dysfunction and urinary urate excretion, and evaluated urine excretion pathways among ABGG2-deficient and wild-type mice treated with uricase inhibitor, oxonate.

Unexpectedly, urinary urate excretion was inversely associated with ABGG2 excretion function. Mild, moderate and severe ABGG2 dysfunctions significantly raised the risk of overproduction hyperuricemia (overproduction type and combined type). In abgg2-deficient mice, serum urate levels and renal urate excretion were increased, while intestinal urate excretion was decreased, compared to those of wild-type mice.

Together with high extra-renal ABGG2 expression, these results suggested that a decrease in extra-renal urate excretion, especially in intestinal excretion, by dysfunctional ABGG2 is a common mechanism of hyperuricemia, often misunderstood as urate "overproduction." Thus, "overproduction" hyperuricemia in the current classification should be renamed "renal overload" hyperuricemia, which is caused by two mechanisms, "extra-renal underexcretion" and genuine "urate overproduction."
P09.073
Association of IRF6 gene polymorphisms with nonsyndromic cleft lip with or without cleft palate

M. Pousada1, I. Akota1, B. Barkane1, A. Krumina1, B. Lace1,
1Dpto. De Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain,
2Istituto di Ricerca Genetica e Biomedica (IRGB) CNR, Cagliari, Italy, 3Ospedale Regionale Microcitemia ASL9, Cagliari, Italy, 4Nefrologia e Dialisi, Azienda Ospedaliera G. Brozzi, Cagliari, Italy.

P09.074
The genes in irritable bowel syndrome research network Europe (GENIEUR)

B. Niesler
Institute of Human Genetics, Heidelberg, Germany.

P09.075
Molecular characterization of the KCNA5 gene in Pulmonary Arterial Hypertension Spanish patients

G. Pousada1, A. Balloira1, C. Vilariño1, D. Valverde1.
1Unidad de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain, 2Servicio de Neumología, Instituto de Ricerca Genetica e Biomedica (IRGB) CNR, Cagliari, Italy, 3Ospedale Regionale Microcitemia ASL9, Cagliari, Italy, 4Nefrologia e Dialisi, Azienda Ospedaliera G. Brozzi, Cagliari, Italy.

P09.076
Circulating phospholipids are associated with telomere length in a Dutch family-based study

A. Demirkan1, L. Broer1, V. Codé2, P. Upupa1, G. Liebich1, G. Schmitz1, B. A. Oostra1, N. J. Samani3, A. Isaacs1, C. M. van Duijn1.
1Genetic Epidemiology Unit, Departments of Epidemiology and Clinical Genetics, Erasmus MC, Rotterdam, Netherlands, 2Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom, 3Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany.

Telomeres are necessary for both successful DNA replication and maintenance of chromosomal integrity. Telomere length (TL) declines with age and, these decreases are associated with increases in coronary artery disease, obesity and insulin resistance. Both TL and various lipid particles have been associated with longevity. Here, we study the relationship between TL in white blood cells, measured by quantitative PCR, and plasma levels of 24 sphingomyelins (SPM), 9 ceramides, 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidyl ethanolamines (PE) and 16 PE-based plasmalogens, assessed using mass spectrometry. A total of 784 persons were included from the Erasmus Rucphen Family Study and analysed using variant component analyses (SOLAR version 4.3.1), adjusting for age, sex and batch effects. After Bonferroni correction, TL was strongly associated with 11 PC species (smallest P-value = 2.31 x 10^-09, with PC 40:3), SPM 23:0, SPM 23:1 (P-value = 1.16 x 10^-04 and 2.39 x 10^-04), LPC 22:0 (P-value = 3.16 x 10^-09) and PE 42:7 (P-value = 1.81 x 10^-04). Results remained significant after adjusting for plasma HDL-C and LDL-C. Backward regression analyses showed that four of the initial fifteen lipid species (LPC 22:0, PC 38:1, PC 42:6, PE 42:7) were independently associated with TL. Our results suggest a link between TL and phospholipid metabolism that may help to explain the role of fatty acids and lipids in longevity as showed in animal and family-based studies.
P09.078

Susceptibility variants on chromosome 7p21.1 suggest HDAC9 as a new candidate gene for male-pattern baldness

S. Heilmann1,2, F. F. Brockschmidt1,2, J. A. Ellis1,4, S. Eigelslohov1, S. Hanneken1, C. Herold1, S. Moebus1, M. A. Alblas5, B. Lippe6, N. Khall6, L. Priebe1,2, F. A. Denghardt1,2, R. Abou Jamra1, C. Meesters1, K. H. Jochel1, R. Erdel1, S. Harrap7, J. Schumacher1, H. Pröhlisch1, R. Kruse1,2, A. M. Hillmer1,2, T. Becker7, T. Becker7, M. M. Nöthen1,2,1,2

1Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany, 2Institute of Human Genetics, University of Bonn, Bonn, Germany, 3Department of Physiology, University of Melbourne, Melbourne, Australia, 4Murdoch Children’s Research Institute, Parkville, Australia, 5Department of Dermatology, University of Düsseldorf, Düsseldorf, Germany, 6Institute of Medical Biometry, Informatics, and Epidemiology, University of Bonn, Bonn, Germany, 7Institute for Medical Informatics, Biometry, and Epidemiology, University of Duisburg-Essen, Essen, Germany, 8Institute of Human Genetics, University of Erlangen, Erlangen, Germany, 9German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany, 10Department of Cardiology, West German Heart Center Essen, University of Duisburg-Essen, Essen, Germany, 11Department for Reproductive Medicine, Birth and Childbirth, 12Private dermatology practice, Paderborn, Germany, 13Genome Technology & Bioinformatics, Genome Institute of Singapore, Singapore, Singapore.

Male-pattern baldness (androgenetic alopecia, AGA) is the most common form of hair loss among humans. Numerous studies have unequivocally identified two major genetic risk loci: the X-chromosomal androgen receptor (AR) located at Xp11.22 and the paired box 1 (PAX1) forkhead box A2 (FOXA2) loci as being directly implicated in AGA. Although these loci explain a significant proportion of the overall genetic risk for AGA, additional genetic risk factors still await identification. Here, we performed a GWAS using a German sample of 581 severely affected cases and 617 partially unaffected controls. The best association signal was found for rs756853, located intronically in the histone deacetylase 9 (HDAC9) gene on chromosome 7p21.1. A fine-mapping analysis within the case-control sample and a family-based analysis revealed rs756853 and rs2249817, respectively, as primary associated SNPs. The association finding for rs2249817 was confirmed within an independent Australian sample (P = 0.0026). A combined analysis of severely affected German and Australian cases (N=639) and unaffected controls (N=384) for rs2249817 revealed a strong association signal of P = 0.0090, 8 odds ratio 1.63 [1.36–1.95]. Tissue expression studies demonstrated a significant level of HDAC9 expression in both androgen receptor-deficient ARKO mice and androgen receptor-positive 2XT1 mice. Although these loci explain a significant fraction of the overall genetic risk for AGA, additional genetic risk factors still await identification. Here, we performed a GWAS using a German sample of 581 severely affected cases and 617 partially unaffected controls. The best association signal was found for rs756853, located intronically in the histone deacetylase 9 (HDAC9) gene on chromosome 7p21.1. A fine-mapping analysis within the case-control sample and a family-based analysis revealed rs756853 and rs2249817, respectively, as primary associated SNPs. The association finding for rs2249817 was confirmed within an independent Australian sample (P = 0.0026). A combined analysis of severely affected German and Australian cases (N=639) and unaffected controls (N=384) for rs2249817 revealed a strong association signal of P = 0.0090, 8 odds ratio 1.63 [1.36–1.95]. Tissue expression studies demonstrated HDAC9 expression in various tissues, including AGA relevant tissues. Genotype-specific expression as well as splice studies revealed no strong genotype effects, although smaller effects cannot be excluded. Pathway analyses however support the hypothesis that HDAC9 plays a functional role in AGA via interaction with the AR gene. The genetic data of the present study thus provide strong evidence that HDAC9 is the third AGA susceptibility gene.

P09.080

Migraine susceptibility factors: the role of GABA genes in females’ liability

M. Almog1,2, L. J. Neto1,2, J. Pereira-Monteiro1,2, J. Barros2, J. Sequeira2, A. Sousa2, I. Alonso2, C. Lemos2,1

1UnIGENe, IBMC - Universidade do Porto, Porto, Portugal, 2ICBAS, Universidade do Porto, Porto, Portugal, 3Neurology Department - CHI, Porto, Portugal.

Migraine is a chronic disorder characterized by episodes of headache and autonomic and neurological symptoms. Several studies showed that migraine is influenced by genetic and environmental factors. The female-to-male ratio of migraineurs is 3 to 4:1 and high among women than men. The role of common variants of GABA genes in the X-chromosome in migraine susceptibility was assessed, aiming to explain the differences in disease frequency between males and females. An association study with 188 unrelated cases and 287 migraine-free controls showed no association with childhood obesity. Insertion genotype (II) of exon 8 and AA genotype was found to be increased in patients (p<0.001), while DD genotype was higher in controls (p=0.0092). The distribution of UCP2 gene promoter variation GG, GA and AA genotypes was 17.5%, 46.2% and 36.3% in obese compared with 65%, 30% and 5% in the controls. II genotype was found higher in patients (p<0.0001), while DD genotype was higher in controls (p=0.0092). The distribution of UCP2 gene promoter variation GG, GA and AA genotypes was 17.5%, 46.2%, 36.3% in obese compared with 16%, 63%, 21% in the controls. Statistically, AA genotype was found to be increased in patients (p<0.011).

Conclusion: The present study showed that UCP2 gene variations were associated with childhood obesity. Insertion genotype (II) of exon 8 and AA
Recent findings by Terruzzi et al. (2011) suggest that DNA hypomethylation induces the activation of factors determining proliferation and differentiation of myoblasts promoting muscle growth and increase of muscle mass. The C677T polymorphism of the MTHFR gene (involved in DNA methylation) was shown to be associated with reduced 5,10-Methylenetetrahydrofolate reductase activity. We therefore hypothesized that carriers of the MTHFR T allele may have DNA methylation deficiency, and as a consequence, increased skeletal muscle mass and predisposition for high level athletic performance.

To test this hypothesis, we examined the MTHFR gene C677T polymorphism in 1,819 Russian athletes and 1,041 controls. We also investigated the association between the MTHFR polymorphism and muscle fiber characteristics in 47 physically active healthy men. Genotyping for the C677T variant was performed by PCR-RFLP. Muscle fiber characteristics of m. vastus lateralis was determined by immunohistochemistry. The MTHFR TT genotype (9.5 vs. 6.6%; P=0.0088) and T allele (30.3 vs. 26.3%; P=0.0015) frequencies were significantly higher in athletes compared with control subjects. Furthermore, the highest frequencies of the MTHFR TT genotype (13.9%; P=0.003) and T allele (54.1%; P=0.0099) were found in a group of highly elite athletes (n=223). The carriers of the MTHFR T allele (n=25) had significantly higher cross-sectional area of slow-twitch fibers (5545+/−242 vs. 4900+/−169 square microns; P=0.0175) than CC homozygotes (n=22). Thus, the MTHFR gene C677T polymorphism is associated with athlete status and muscle fiber hypertrophy. Collectively, our data support the hypothesis that the presence of MTHFR T allele has a beneficial effect on athletic performance.

Circadian rhythm genes and multiple sclerosis (MS)

P. Lavrut, G. Rudolf, A. Mover, L. Lovrecić, S. Ristić, N. Starcevic Cizmarević, M. Kapović, J. Sepsić, A. Stanković, M. Zivković, E. Đinčić, R. Raicević, S. Sega Jazbec, Z. Klemenc Ketić1,2, B. Peterlín1,2

Clinical Institute of Medical Genetics, Ljubljana, Slovenia, Department of Biological and Medical Genetics, School of Medicine, University of Ljubljana, Ljubljana, Slovenia, Postgraduate Study, School of Medicine, University of Rijeka, Rijeka, Croatia, Laboratory of Radiobiology and Molecular Genetics, University of Nuclear Sciences ‘Vinca’, Belgrade, Serbia, Department of Neurology, Medical Military Academy, Belgrade, Serbia, Department of Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia, Department of Family Medicine, Medical School, University of Ljubljana, Ljubljana, Slovenia, Department of Family Medicine, Medical School, University of Maribor, Maribor, Slovenia.

Background: Evidence from epidemiological studies indicates, that prevalence of MS varies with geographic latitude, with increasing distance from the equator on both hemispheres. We hypothesized that explanation for the latitude effect might be related to sun exposure which has been shown to impact internal circadian rhythm. This rhythm is controlled by circadian rhythm genes and that could therefore affect MS susceptibility.

Methods: A total of 826 Caucasian patients and 888 healthy unrelated ethnically matched controls without family history of MS, were included in the study. In patients, the diagnosis of MS was established according to McDonald’s criteria. Altogether, 8 SNP were included in our study, 4 in CLOCK gene: rs611520, rs6850524, rs111932595 and rs11324436; and 4 in ARNTL gene: rs3789327, rs418192, rs4757144 and rs12363415. The significance of association for individual SNPs was analyzed using the Chi-Square test (2). Odds ratios (OR) and their respective 95% confidence intervals (CI) were calculated using the logistic regression analysis to compare the allelic frequency and genotype distribution in patients and control subjects.

Results: Significant difference in distribution of ARNTL rs3789327 polymorphism genotypes was found in patients with MS in comparison to controls, with P-value of 4.6e-07 and odds ratio equal to 0.56 (95% CI: 0.45-0.71). Other SNPs in ARNTL and CLOCK genes did not display significant association with MS susceptibility.

Conclusion: We provide evidence for association between genetic variation in ARNTL gene and multiple sclerosis. Further studies will be required to substantiate the significance of these genetic variations.
familial and sporadic cases (p=0.16) or between isolate cases and cases from elsewhere in Finland (p=0.26). Since the common variants do not seem to explain the increased familial prevalence in these multiplex families or in the isolate, we hypothesize that there are specific variants that contribute to MS predisposition in familial cases and in the Southern Ostrobothian region.

P09.087
Investigation of relationship Between ATP5β gene expression and multiple sclerosis disease
J. Motiei, 1 M. Sanati, a. mimrinan;
1Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGE, Tehran, Islamic Republic of Iran).

Multiple sclerosis (MS) is an inflammatory, demyelinating, neurodegenerative disorder of the central nervous system (CNS) with unclear exact cause; however, it is clear that an individual’s immune system plays a vital role in the disease. Disease onset usually occurs in young adults and it is more common in women. A number of studies have reported mitochondrial defects in MS and implied a pathogenic role for mitochondria in axonal degeneration. Mitochondria respiratory chain are the most efficient producers of ATP and defects in ATP synthesis may be an important factor in neurodegenerative disease such as Parkinson, Alzheimer’s and MS. Analysis of the mitochondrial proteome in experimental autoimmune encephalomyelitis (EAE) show the importance of the mitochondrial ATP synthase (ATP5b). In this study, we tested the altered expression of ATP5b in LCLs derived from 30 patients with MS and 31 controls. A significant reduction of ATP5b mRNA expression was seen in MS patients (P < 0.05). According to our results, we suggest that ATP5b could be used as a biomarker for early diagnosis of MS. However, more researches are necessary to reach this goal.

Keywords: Multiple Sclerosis, Mitochondria respiratory chain, EAE model, ATP5b, RealTime PCR

P09.088
Does miR-634 play a role in multiple sclerosis predisposition?
E. M. Puraboschi,1 V. Rimoldi, T. Tabaglio, G. Soldà, S. Duga, R. Asselta;
1Department of Biologia e Genetica per le Scienze Mediche, Università degli Studi di Milano, Milano, Italy.

Multiple sclerosis (MS) is a neurological disorder characterized by chronic inflammation, demyelination, and axonal damage, probably caused by an altered immune response.

The primary kinase C alpha gene (PRKA, encoding a protein critical for T-lymphocyte activation) was the first non-HLA gene demonstrated to be involved in MS both by linkage and association studies, and subsequently replicated in 4 populations. This gene produces at least 2 alternative transcripts with different 3’UTR, and hosts a microRNA, miR-634, in its intron 15. Since several miRNAs have recently been implicated in MS pathogenesis, and our preliminary results suggest that both PRKA and miR-634 are differentially expressed in MS patients vs healthy controls, we decided to better explore expression of these genes.

The PRKA and miR-634 discordant expression profiles in different human tissues suggested the presence of an independent miRNA promoter and/or the possible miR-634-mediated silencing of PRKA. Transfection experiments followed by luciferase-based and RTPCR assays demonstrated the existence of a microRNA-specific promoter. Co-transfection of a vector expressing the wild-type pre-miR-634 hairpin into HeLa cells, together with a vector expressing the existence of a miRNA-specific promoter. Co-transfection of a vector expressing the miR-634-mediated silencing of PRKCA. Transfection experiments with different 3’UTR, and hosts a microRNA, miR-634, in its intron 15. Since several miRNAs have recently been implicated in MS pathogenesis, and our preliminary results suggest that both PRKA and miR-634 are differentially expressed in MS patients vs healthy controls, we decided to better explore expression of these genes.

Keywords: Multiple Sclerosis, Mitochondria respiratory chain, EAE model, ATP5b, RealTime PCR

P09.089
Modulatory influence of vitamin D receptor genotype on OPG/RANKL System and Pathogenesis and Clinical Manifestations in Multiple Sclerosis
S. Ahmad*, K. Mirzaee1, A. Hossein-nezhad*, F. Mokhtar,1 A. Tootoo*, A. Najf-mashar1;
1Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran, 2Tehran, Islamic Republic of Iran, 3Department of Nutrition and Biostatistics, School of Public Health and institute of public health research, Tehran University of Medical Sciences, Tehran, Iran, Tehran, Islamic Republic of Iran.

The OPG/RANKL has identified role in immune system via T-cell-activating cytokines. Considering that immune mechanisms play a key role in the pathogenesis of MS, OPG/RANKL might be important in the underlying mechanism of the disease. The aim of this study is to measure plasma levels of OPG and RANKL as well as to analyze VDR polymorphism (rs2228570) in MS patients and healthy individuals to detect any potential correlation. We included a total of 397 participants, 105 of them suffering from two different types of MS, namely relapsing and remitting and secondary progressive multiple sclerosis.

The results showed differences in the plasma levels of OPG and RANKL between patients and the healthy control group that were statistically significant. We found higher plasma levels of OPG and lower RANKL concentrations in RRMS patients in comparison with PPMS and SPMS types of the disease. We detected higher plasma levels of OPG and lower RANKL in subjects with F allele compared to those with f allele in healthy subjects. However, contradicting results were observed when patients with MS were analyzed. We detected lower plasma levels of OPG and higher RANKL concentrations in patients with F allele in comparison with those with f allele. This might define a role for FokI polymorphism and OPG/RANKL system in the pathogenesis and progression of multiple sclerosis with further clinical applications.

P09.090
Association of MMP-8 promoter gene polymorphisms with myocardial infarction: A hospital based study
S. Dayakar1, T. Parvathi Ramana Reddy1, B. Shyamala Seiskaram1, S. Madhavan1;
1Department of Clinical Biochemistry, Institute of Genetics & Hospital for Genetic Diseases,Osmania University, Hyderabad-500016, India, 2Apollo Hospitals Educational and Research Foundation, Hyderabad-500033, India, 3Instituto de Genetica,Dpto.de Biologia Molecular Y Genomica, Centro Universitario de, Guadalajara, Jalisco, Mexico.

Matrix metalloproteinases (MMPs) are the family of peptidases enzymes responsible for the degradation of extracellular matrix (ECM) proteins. MMP-8 cleaves collagenotype I three times more potently than two other interstitial collagenases, MMP-1 and -13. Therefore, MMP-8 plays an important role in atherosclerosis. The aim of the study was to investigate the association of two MMP-8 polymorphisms, rs11225395 (-799C/T) and rs1320632 (-381A/G). 319 patients were studied out of whom 152 individuals were documented angiographically for coronary athesclerosis without any evidence of previous MI. 167 patients with normal coronary arteriograms were included as healthy controls. PCR-based restriction fragment length polymorphism (RFLP-PCR) method was applied. MMP-8-799C/T gene polymorphism was observed with CC 93/152 (61.1%), CT among 34/152 (22.3%) and TT in 25/152 (16.4%) among the patients with MI; while in control group, 151/167(90.4%) had CC genotype, 13//167 (7.7%) CT and 3/167 (1.7%) carried TT. The prevalence of TT was 9.0 times higher among the control patients than the controls (16.4% vs. 1.7%), while patients with MI (799C/C 93/152 (61.1%), 381A/G gene polymorphism was observed with AA 89/152 (58.5%), AG among 36/152 (23.6%) and GG in 27/152 (17.7%) patients with MI; while in control group, 144/167 (86.2%) had AA genotype, 21/167 (12.5%) AG and 2/167 (1.1%) carried GG. The prevalence of GG was 15.0 times higher among the patient cases than controls [17% vs. 1.1%, p < 0.0001]. Our preliminary data indicate that MMP-8-381A/G, 799C/T gene polymorphisms could be a risk factor for MI. Further studies may explore more to confirm the role of these polymorphisms.

P09.091
Long-term outcome of anti-VEGF treatment in patients with neovascular age-related macular degeneration is influenced by the initial response and the genotype of complement factor H (CFH)
B. Kloeckener-Gruissem1, M. Menghini1, F. Fleischhauer1, M. Kurz-Levin1, F. Satter1, D. Barthelmes1, W. Berger1;
1University of Zurich, Institute of Medical Molecular Genetics, Schwerzenbach, Switzerland, 2ETH Zurich, Zurich, Switzerland, 3University Hospital of Zurich, Zurich, Switzerland, 4University of Sydney, Save Sight Institute, Sydney, Australia, 5Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland.

The outcome of anti-VEGF treatment in patients with neovascular age-related macular degeneration (AMD) is influenced by several factors. The aim of this study was to assess the impact of three parameters - loading phase, (ii) initial response for the long-term outcome and (iii) the effect of the complement factor H (CFH) polymorphism (p.His402Tyr). Patients treated with ranibizumab for neovascular AMD were analyzed over a period of 24 months. Visual acuity (VA) was recorded at each visit, effects of loading phase and initial response were analyzed, and the genotype of CFH rs1061170 (c.1204C>T, p.His402Tyr) was determined. The study included 238 eyes. A change of +5.0 [-1.1] and +11.5 [-5.9] letters was observed with a
P09.092
Nuclearcytoplasmic Shuttling of Disease Protein in Autosomal Dominant Machado-Joseph Disease

Neurodegenerative disorders are a large category of conditions all caused by a loss of structure or function of neurons, often resulting in progressive neuronal death. Of these conditions, Machado-Joseph Disease, or Spinocerebellar Ataxia Type 3 (SCA3) is an autosomal dominant, late onset neurodegenerative disease associated with a coding expansion of a CAG repeat in the Ataxin-3 gene. The expanded unstable CAG repeat encodes for an abnormally expanded polyglutamine (polyQ) track which in turn causes protein misfolding and aggregation. The most recent research in polyQ disorders has focused on protein transport mechanisms responsible for the trafficking of disease proteins. The ability of proteins to be shuttled between the cytoplasm and the nucleus confers on them the capability to affect cellular transcription in the nucleus and avoid the cellular clearance machinery of the cytoplasm. For disease proteins such as expanded Ataxin-3, localization of protein aggregates to the nucleus has been shown to worsen disease phenotype and increase symptoms in SCA3 animals. In this work we use microscopy, cell viability studies and the filter trap assay to analyze the possible partners of Ataxin-3 which affect the localization, aggregation, pathogenicity, and protein trafficking of this protein. With further understanding of the pathways involved in the progress of SCA3, it will be possible to determine potential targets of therapy to mitigate the course of the disease in patients.

P09.093
The relationship of the COMT gene polymorphism rs4680 with the components of nicotine dependence in a central Romanian population
K. Ceep, C. Banescu, N. Argroa, A. Tudoran Butilia, G. Duduta; University of Medicine and Pharmacy Tg Mureș, Tg Mureș, Romania.

Through dopamine release nicotine activates the mesocorticobulbic reward pathway which mediates reinforcement of continued use. Thus, in the multifactorially determined addiction, enzymes responsible for dopamine metabolism and polymorphisms of their genes may be involved. The rs4680 functional polymorphism of COMT (catechol-O-methyl-transferase) due to a Val→Met substitution results a high (H, G1497) and a low activity allele (L, A1497). It has been suggested that carriers of the H allele might present an increased risk to develop dependence, however, results have been contradictory, and no study in this respect has been carried out in our population. In a case-control study of 113 smokers and 84 non-smokers, we assessed nicotine dependence by NDSS, HSI and FND adapted for the local population, and genotyped for rs4680 by PCR-RFLP using NlaII.

Allele frequency in the smoker and non-smoker study group was 53.1 and 46.9 versus 44.4 and 55.6, respectively. Though genotype associated risk for smoking was not statistically significant (GG vs AA; OR = 1.96, 95%CI: 0.5-8.2, p = 0.16; GG vs GA+AA:1.54, 95%CI: 0.57-4.34, p = 0.2), the overall scores of dependence and its certain components, namely drive and priority, showed significant differences across the genotypes (p<0.05).

In conclusion, COMT might be a risk modifier involved in nicotine dependence rather than a susceptibility gene. Studying the various traits of dependence on a higher number of subjects would be meaningful and could have direct practical implications in cessation management.

P09.094
Association between a promoter SNP in MUC5B and idiopathic pulmonary fibrosis in the Newfoundland population
A. Pirzada, M. Woods, B. Fernandez, K. Mahoney, G. Zhai; Memorial University, St. John’s, NL, Canada.

Idiopathic pulmonary fibrosis (IPF) is a late-onset, complex genetic disease characterized by inflammation/scarring of the lung parenchyma. To date, heterozygous causal variations in TERT, hTR, SFTP C, SFTP D that account for 2-20% of IPF in various populations have been documented. Recently, Seibold et al identified a promoter variant (rs35705950) upstream of MUC5B that is associated with IPF in US populations.

A TaqMan SNP Genotyping assay and a 7900HT Real-time PCR analyzer were used to genotype rs35705950 in our cohort. A case-control analysis was carried out using 110 affected individuals and 277 healthy controls from the Newfoundland population. Our results showed that there was significant association between rs35705950 genotypes and IPF. The odds ratio for individuals affected with IPF who were heterozygous for the variant allele of this promoter polymorphism was 5.4 (95% confidence interval, 3.3 to 9.6, P < .001). The odds ratio for individuals affected with IPF who were homozygous for the variant allele was 12.2 (95% confidence interval, 3.3 to 44.7, P < .001). Furthermore, some of our cases displayed familial segregation of the variant allele with the phenotype.

This study supports the suggestion that the minor T allele of rs35705950 is a contributor to the pathogenesis of IPF. The MUC5B gene encodes for a major gel-forming mucin macromolecule in respiratory secretions and is upregulated in some other lung diseases. Further evidence of association is provided by tissue expression studies done through previous research.

P09.095
Common variants in HFE and TMPRSS6 are strongly associated with iron parameters but not with serum hepcidin, regulator of systemic iron homeostasis
E. Gatlibe, S. H. Vermeulen, D. W. Swinkels; Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands.

Introduction: Genome-wide association studies have convincingly shown that single nucleotide polymorphisms (SNPs) in HFE and TMPRSS6 are associated with iron traits. However, the role of hepcidin, central regulatory molecule of systemic iron homeostasis, in these associations is not clear. Here, we investigated the associations between common variants in HFE and TMPRSS6 with hepcidin and iron traits, including iron concentration and haemoglobin concentration.

Methods: A total of 103 SNPs in HFE and TMPRSS6 were extracted from genome-wide SNP data of 1832 individuals from the general population (Nijmegen Biomedical Study). Associations with serum iron parameters and hepcidin (sHep) were studied using linear regression analyses, adjusted for age, gender and time of blood sampling.

Results: The associations between rs1800562 in HFE and rs855791 in TMPRSS6 with iron and transferrin saturation (TS) were confirmed (p<1E-10) and were independent of sHep. sHep was not statistically significantly associated with any of the SNPs, but sHep/ferritin and sHep/TS ratio were independent (p between 1E-7 and 1E-3). Our data suggested the presence of an interaction between rs1800562 and rs855791 in relation to sHep and a haplotype effect of rs1799945, rs198053 and rs1800562 in HFE, independent of rs1800562.

Conclusion: SNPs in HFE and TMPRSS6 influence iron parameters independent of sHep and affect iron parameter ratios. This unexpected finding suggests that there might be other, yet unknown, hepcidin-independent mechanisms which play a role in these associations. Larger sample sizes are needed to draw definite conclusions about the additional effect of combination of HFE and TMPRSS6 SNPs on sHep and iron traits.

P09.096
Association of the FTO variant with obesity in two ethnic groups in Slovakia
S. Mareková, J. Bernasová, J. Čarnogurská, I. Boronová, A. Božikova, D. Gabriková; Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Presov, Slovakia.

Obesity is a global epidemic, arising from the interaction between environmental factors and genetic variants. Recently, common genetic variants in the FTO gene have been found to be associated with obesity phenotype in multiple ethnic groups. The aim of this study was to test the association of the rs9939609 polymorphism with obesity indices in two ethnic groups in Slovakia. Genotyping was performed in 294 Roma and 560 Slovak ethnic subjects, using the TaqMan assay. The minor allele A frequency at rs9939609 polymorphism in the FTO gene was 0.46 in Roma and 0.44 in Slovak ethnic group. The genotypes distributions in Roma (AA 21.2%; AT 50.7%; TT 28.1%) and Slovak (AA 18.9%; AT 50.4%; TT 30.7%) ethnic groups were compatible with the Hardy-Weinberg equilibrium. We observed that the mean values of obesity indices in Roma subjects with AA genotype were significantly higher than in ethnic Slovaks with the same genotype (BMI=28.7±6.6 kg/m²...
Results: We identified about 2300 down- and 2700 up-regulated probes between SOA and controls, and about 2600 down- and 2100 up-regulated probes between IOA and controls. None of the probes showed DE between IOA and SOA. We also identified (0.02 threshold) 74 pathways DE between the SOA and controls and 42 IOA vs controls. No DE pathways were found between the IOA and SOA. We hope that these observations could suggest an excellent candidates genes and pathways for OA/TOF etiology.

P09.100
Identification of genes involved in the initiation of osteoarthritis

M. Lee, C. Chou1, C. Wu1, X. Chen1, 2
1Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, 2Department of Orthopaedic Surgery Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.

Objective: The aim of this study is to select small areas from osteoarthritic cartilages and subchondral bone of different severities to represent different stages of disease to provide a more complete picture of the molecular alternations in OA pathogenesis as well as to identify genes involved in the initiation of OA.

Methods: Joint tissues were collected from the knee tibia plateau from primary OA and non-OA patients undergoing total knee arthroplasty. Severity of destruction was estimated based on histopathology assessment (OA-RSI grading system). Each tibia plateau was divided into three parts: outer lateral tibia (oLT) regions defined as undamaged stage (OARSI score: OA=5.23±1.95, n=67), inner lateral tibia (iLT) regions defined as intermediate stage (OARSI score: OA=5.23±1.95, n=71), and medial tibia (MT) regions defined as damage stage (OARSI score: OA=1.68±2.56, n=52).

Expression profiling analysis was performed using Agilent microarray on these regions and real-time quantitative PCR using a second cohort of patients were performed for replication.

Results: Our results revealed that 958 transcripts were significantly up or down regulated at least 2-fold between these three stages. These genes were related to the cell matrix interaction, extracellular matrix remodeling, bone metabolism, matrix remodeling, intracellular signal transduction, inflammation, cytokine, cell proliferation, WNT signaling. For example, COL5A1, ACAN, and MMP1 were differentially expressed in OA-RSI grading system.

Conclusion: This study revealed some novel genes which have not been reported in cartilage to play a role in the pathology of OA. These results identify molecular targets that can be further investigated in the search for therapy or as biomarker for OA.

P09.101
The study of polymorphisms P447L of calcitonin receptor gene (CALCR) and A986S of calcium response receptor gene (CASR) in women with postmenopausal osteoporosis from Volga-Ural region of Russia

A. Maltsev1, R. Khusainova1, I. Yanberdina2, E. Khaustudinova2
1Bashkir State University, Ufa, Russian Federation, 2Bashkir State University, Institute of Biochemistry and Genetics USC RAS, Ufa, Russian Federation.

Osteoporosis characterized by reduced bone mass, and disruption of bone architecture, resulting in increased risk of fractures. The aim of this study was to examine any associations of polymorphisms c.1377C>T (P447L) and c.2965G>T (A986S) in calcitonin receptor gene (CALCR) and case response receptor gene (CASR) with fractures and BMD level in Russian postmenopausal women. As the object of the research were 828 DNA samples (366 with fractures and 462 without fractures). According to the literature data *T allele of polymorphism P447L gene CALCR in homozygotic state is associated with 366 fractures. As a result of our research individuals with fractures *T allele frequency was lower (0.66) compared with the control group (0.68) the difference doesn’t measure up the statistical significance. With the arrangement according to BMD level in women with osteoporosis *T allele frequency was lower compared with the control group (0.66 and 0.68, respectively). The study of polymorphism A986S of Ca+ receptor gene (CASR) revealed no certain difference arrangement allele frequency and genotypes between women with fractures and women without fractures. In our research the tendency of rising frequency *T*T genotype in women with low level of BMD (0.034) was found compared with the control group (0.005) the difference doesn’t measure up the statistical significance. Our results show no associations of polymorphisms A986S Ca+ receptor gene (CASR) and polymorphism P447L in calcitonin receptor gene (CALCR) with the fractures and BMD level in postmenopausal women from the Volga-Ural region of Russia.
P09.102

Associations of polymorphic variants of OPG gene with male osteoporosis in the Volga-Ural region of Russia

R. Shakhrov1, R. Khusnutneva, E. Khamatudina
Institute of Biochemistry and Genetics ASC RAS, Ufa, Russian Federation.

Osteoprotegerin (OPG), a secreted member of the tumor necrosis factor receptor family, is a potent inhibitor of osteoclast activation and differentiation.

We examined the effect of polymorphisms c.1217-15 C>T (rs1027347), c.6890-8 A>T (rs7844539), c.750 T>C (rs2073617), 163 A>G (rs2073273), 245 T>G (rs1314069), 1181 G>C (rs2073618) in the OPG gene with fractures and level of BMD in 131 Russian men with osteoporosis, 149 with osteopenia and matched control (n=152).

The study of polymorphic loci c.1217-15 C>T localized in 1 intron of the OPG gene revealed that frequency “T” allele was 0.14 in male patients with osteoporosis, in control group - 0.16, the differences were not significant.

Frequency of allele “C” of locus c.6890-8 A>C in men was higher (0.32), compared with the control group (0.11), the differences did not reach statistical significance.

The study of polymorphic loci c.950 T>C (rs2073617) and 163 A>G (rs3102735) located in the promoter of the osteoprotegerin gene, also revealed no associations with fractures and BMD level in men from Russia.

The analysis of polymorphism 1181 G>C (rs2073618) in the first exon revealed highly significant differences among patients with osteoporosis and controls. It was found heterozygous genotype “GC” associated with increased risk of osteoporosis (χ²=7.11; p<0.007; OR=1.95[1.19-3.19]), homozygous genotype “GC” was protective for the development of osteoporosis (χ²=6.65; p<0.009; OR=0.49 [0.28-0.84]). This locus was not associated with fractures.

Thus, we found association of 1181 G>C (rs2073618) locus of OPG gene with decreased BMD level in male from Volga-Ural region of Russia.

P09.103

Morphogenetic gene Meis1 and bone characteristics in 1975 patients

K. Schweighofer1, E. Lerchbauer1, A. Fahlleitner-Pammer1, H. Dobling1, T. Fieber1, W. Rennert2, B. Übermayr-Pietsch2
1Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University, Graz, Austria, 2Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria.

Bone mineral density, an important parameter in the diagnosis of osteoporosis, is determined by heredity in about 50 to 80 percent, dependent on its measuring site. Many candidate genes are known to be involved in the inheritance of bone characteristics. We investigated a polymorphic morphogenetic gene called Meis1 which belongs to the HOX (homeobox-containing genes) family and is an evolutionarily highly conserved gene. It is involved in the regulation of the development of segmental vertebral structures and a variety of other tissues.

We investigated the effect of two SNPs in the MEIS1 gene in 1975 patients either traditionally referred to our outpatient clinic or investigated in nursing homes. Life style factors, fracture incidence, routine laboratory and parameters of bone turnover and bone mineral density at 3 sites (DXA Hologic 4000 plus) or bone heel ultrasound were compared between genotypes.

Genotype frequencies of MEIS1 SNP rs2049019 were 45.5% (wildtype, WT), 44.7% (heterozygotes, HE) and 9.9% (homozygotes, HO) and 31.2% (WT), 50.6% (HE) and 18.3% (HO) of rs6716792. We detected a significant association of SNP rs2049019 with bone mineral density, body size and testosterone levels in young males. Old males homozygous for one of the two SNPs, showed a significantly higher bone ultrasound values at all sites measured compared to WT or HE persons.

The morphogenetic gene Meis1 is known to influence a variety of bone characteristics during development. We show associations with bone parameters in adults, this gene might therefore be of importance for diagnostic and therapeutic aspects in osteoporosis.

P09.104

Identification of novel genetic markers that predict disease severity and complications in Paget’s Disease of Bone

N. Alonso, O. M. E. Albagha, M. Rios-Visconti, S. H. Ralston; Rheumatic Disease Unit-IGMM-Molecular Medicine Centre, Edinburgh, United Kingdom.

Paget’s disease of bone (PDB) is a skeletal disorder affecting 2% of the UK population over 55. Some patients show deafness, bone deformity, fractures and osteoarthritis. Mutations of SQSTM1, found in 10% of patients, are significantly associated with disease severity (Rios-Visconti et al.BMIR, 2010). We analysed seven SNPs (rs10494112, rs4294134, rs4258413, rs1561570, rs10498635, rs5742915, rs3018362) associated with PDB in a recent GWAS in 771 patients without SQSTM1 mutations from the PRISIM study (Albagha et al Natur Gen, 2011). The study population was divided by the number of risk alleles carried (<14, n=254;14-16, n=254>16, n=259). Total disease severity score was significantly increased in patients carrying >16 risk alleles (6.24±0.10 vs5.57±0.16, p<0.0001). They had a greater number of affected bones (1.45±0.04 vs1.23±0.07, p<0.009) and received previously a greater number of treatments for PDB (2.01±0.40 vs1.74±0.07, p<0.001). Deafness due to skull involvement was also increased (1.0% vs. 5.8%, p=0.037). There was no difference between the groups in quality of life scores. We found that the novel risk alleles interacted with SQSTM1 mutations to affect disease severity. Patients with SQSTM1 mutations carrying >16 risk alleles had a 44% increase in disease severity score, compared with SQSTM1 negative patients carrying <16 alleles (7.82 ± 0.50 vs 5.40 ±1.10, p=0.001). We conclude that the novel risk alleles identified recently not only predispose to the development of PDB but also significantly influence disease severity both alone and in combination with SQSTM1 mutations. They could identify patients at high risk of complications and this, in turn, could target therapy more effectively.

P09.105

Genetic pathways for ADHD show association to hyperactive/impulsive behavior

P. Schifano1, J. Waldman2, S. Faraone3, J. Buitelaar4, B. Franke5, S. Reichert1, R. Khusainova, E. Khusnutdinova; 1Department of Psychiatry and Neuroscience and Physiology, SUNY Stony Brook, Stony Brook, NY, United States, 2Department of Neurology, Hospital for Sick Children and Department of Psychiatry, University of Toronto, Toronto, ON, Canada, 3Department of Psychiatry, University of Virginia, Charlottesville, VA, United States, 4Department of Psychiatry, University of Nijmegen, Nijmegen, The Netherlands, 5Radboud University Nijmegen Medical Centre, Departments of Psychiatry & Human Genetics, Nijmegen, Netherlands.

Finding genetic risk factors for Attention-Deficit Hyperactivity Disorder (ADHD) has been challenging. As multiple genes with small effect size are assumed to play a role, considering multiple SNPs within the same analysis might increase the explained phenotypic variance, thereby boosting the power of genetic studies. We investigated whether a pathway-based analysis, considering SNPs within the same biological pathway simultaneously, could bring us closer to unraveling the underlying genetic component of ADHD.

Biological pathways involved in dopamine, serotonin and noradrenaline neurotransmission as well as genes involved in neurite outgrowth, were investigated for pathway-based association to ADHD using data from the International Multicentre ADHD Genetics (IMAGE) study. The DSM-IV inattention and hyperactivity/impulsivity scales of the Conners’ Parent Rating Scale were used to assess ADHD symptom severity in the 931 probands. From the imputed and pruned genome-wide data 6501 SNPs were selected and used for the association analysis.

Combined analysis of the four pathways showed significant association with the hyperactive/impulsive score (p=0.0049), but no association for inattentive or combined scores (p>0.05). Post-hoc analyses showed contribution of three pathways (p<0.05) to the hyperactive/impulsive score, only the dopamine pathway showed less nominal significance (p=0.07).

The current analysis specifically finds association to the hyperactive/impulsive component of ADHD, suggesting similar underlying mechanisms for the studied pathways. Other mechanisms may be involved in the inattentive component of the disorder. These findings show that pathway-based association analyses may overcome power problems in association testing by taking into account allelic heterogeneity.

P09.106

Genetic variants of interferon-γ and periodontitis in patients with coronary heart disease

S. Schultz1, A. Schlitt2, T. Seifer3, A. Latze4, K. Werden5, B. Hofmann6, C. Gläser7, H. Schaller1, S. Reichert8
1Department of Operative Dentistry and Periodontology, Halle, Germany, 2Department of Medicine III, Halle, Germany, 3Department of Cardiothoracic Surgery, Halle, Germany, 4Institute of Human Genetics and Medical Biology, Halle, Germany.

Background: Periodontitis and coronary heart disease are inflammatory diseases. Both are influenced by genetic predisposition. The c.-874T>A polymorphism of the gene encoding for interferon-γ (IFN-γ) has been associated with altered cytokine production.

We investigated whether a combined method, a total of 960 consecutive patients with angiographic proven coronary heart disease (no or mild periodontitis n=493, severe periodontitis: n=447) were prospectively included in the study entitled “Periodontitis and Its Microbiological Agents as Prognostic Factors in Patients with Coronary Heart Disease” (ClinicalTrials.gov identifier: NCT01045070).
In this subanalysis, the c-874T>A polymorphism of the gene encoding for IFN-γ was analyzed by CTS-PCR-SSP Tray kit (Heidelberg, Germany). Subgingival bacterial colonization (11 bacteria) was assessed using a polymerase chain reaction (PCR)/DNA probe test (micro-lentix). Results: The genotype (p=0.987) and allele frequencies (p=0.860) of the c-874T>A polymorphism were not risk indicators for the severity of periodontitis in patients with coronary heart disease. However, AA-genotype and A-allele carriers had a decreased risk for subgingival colonization of P. intermedia (genotype: p=0.006, allele: p=0.01) and E. corrodens (genotype: p=0.034, allele: p=0.013). These associations remained also significant after forward stepwise binary logistic regression analyses considering age, gender, smoking, diabetes, plaque index as well as other potential confounders. Conclusions: Despite the c-874T>A polymorphism of the gene encoding for IFN-γ could be shown to be associated with subgingival colonization of P. intermedia and E. corrodens there was no evidence that it is a risk indicator for severity of periodontitis in coronary patients.

P09.107
Genetic polymorphism and mRNA levels of TNFα and TGFβ genes in patients with chronic leg ulcers
M. Zagozda1, M. Fic2, A. Sarnecka2, W. Oleszewski2, M. Durlik1,2,3
1 Moszkowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland; 2 Cental Clinical Hospital, Ministry of Internal Affairs, Warsaw, Poland.

TNFα and TGFβ mediate a number of biological processes, including lipid metabolism, coagulation, endothelial function and also have an essential function in healing of pathological wounds such as venous leg ulcers. The purpose of this study was to investigate frequencies of single nucleotide polymorphisms in TNFα and TGFβ genes and evaluate expression of mRNA levels in chronic leg ulcers. The study population consisted of 65 patients with chronic leg ulcers and 95 healthy control subjects. Polymorphisms were investigated by PCR-RFLP method. The level of TNFα and TGFβ gene expression was performed by Real-Time PCR with GAPDH as internal control. There were differences in frequency of genotypes TNFα G-308A in both groups. Patients showed higher frequency of AA (43%) and lower of GG (15%) than controls (59% and 21%, respectively). TGFβ 29T>C heterozygotic genotype was similar in both groups (53% in patients, 46% in controls). There were differences in frequency of genotypes TNFα G-308A in both groups. Patients showed higher frequency of AA (43%) and lower of GG (15%) than controls (59% and 21%, respectively). TGFβ 29T>C heterozygotic genotype was similar in both groups (53% in patients, 46% in controls). TT genotype was lower (19%), however polymorphic CC genotype was more often (28%) represented in patients than in controls (44% and 10%, respectively). TGFβ 74G>C GG genotype reached 80% whereas GC 20%. The polymorphic CC genotype was not detected both in study and control groups. The level of TNFα gene expression was higher than in control group whereas in case of TGFβ the level of expression was similar in both groups. Analyzed polymorphism of TNFα gene could be a probable risk factor in patients with leg ulcers and should be taken into account during medical treatment.

P09.108
Association of PON1 and APOA1 genes polymorphism with men’s life expectancy in Russian population
V. Mikroskhnina1, A. Zahruchk2, O. Strotkina3, A. Taratashina3, S. Pchelina3
1 Saint-Petersburg Pavlov State Medical University, Saint-Petersburg, Russian Federation; 2 Peterburg Nuclear Physics Institute, Saint-Petersburg, Russian Federation, Saint-Petersburg State University, Saint-Petersburg, Russian Federation.

Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated enzyme that prevents oxidation of low-density lipoproteins. Apoprotein A1 (APOA1) is the key protein of HDL. PON1 and APOA1 play important role in the prevention of atherosclerosis. So PON1 and APOA1 are plausible candidates for human longevity due to its modulation of cardiovascular risk. In our previous studies we demonstrated that PON1 192Q/R polymorphism is associated with higher risk of premature atherosclerosis and myocardial infarction and APOA1 83C/T polymorphism is associated with reduced risk of atherosclerosis in Russian population. We conjectured that polymorphism of PON1 and APOA1 genes can be associated with longevity in Russian men. The aim of this study was to investigate distribution of 192Q/R PON1 genotypes and APOA1 (apoC3 and apoC5,C1) in patients with coronary heart disease of elderly men which we observed during 8 years (75-104 years old, mean age 94.1±5.7). In the moment of the beginning of investigation, N=114). There was no association of (-108)C/T PON1 and 83C/T and (-75)G/A APOA1 gene variants with life expectancy for men. Unexpectedly, the 192R allele was over-represented in the group of elderly men when compared with population (p<0.05). The genotype (-108)C/T PON1 and (-75)G/A APOA1 gene variants were under-represented in the group of men that lived 85 years or longer (age of death 85-105, mean age of death 91.0±4.1, N=114) and found significant differences when compared with population (p<0.05). Men heterozygous for 192Q/R PON1 have 2 times higher chances to live till 85 (p<0.01).

P09.109
Allelic imbalance in retinal expressed disease genes: a common phenomenon?
S. Bulendran1, R. Wissinger, S. Schimpf-Linzenholtz
Institute of Ophthalmic Research, Tuebingen, Germany.

In retinal dystrophies, reduced penetrance and variability in disease expression with respect to onset, course, and severity is a well-documented feature. This makes reliable genotype/phenotype correlations as well as individual disease prognosis difficult. Although the basis of this variability is largely unknown, it is commonly accepted that secondary genetic factors (modifier genes) are key factors for this phenomenon. We hypothesized that cis-acting variants governing human gene expression levels play a crucial role in phenotypic variation and disease penetrance in hereditary retinal disorders.

The aim of this project is the identification of such cis-acting gene variants and the determination of their impact on disease expression. To demonstrate if and how common allelic imbalance (AI) in retinal expressed genes are, experiments were done in crossbreeds of five different inbred mouse strains as a proof-of-principle experiment. Up to now more than 25 different retinal genes were screened for heterozygous cSNPs applying PCR and sequencing. We applied Pyrosequencing assays on RT-PCR amplified cDNAs generated from retinal RNA to determine allelic expression differences based on the identified cSNPs.

Using the Pyrosequencing technology, we identified an AI in 7 retinal disease genes. In two of those genes we can see the AI already on genomic level suggesting a copy number variation. Screening of the Pde6c gene revealed a 116-bp insertion on cDNA level that results in a premature termination codon leading, due to the nonsense mediated mRNA decay, to a downregulation of the mutant transcript. For the remaining genes the cause of the AI has to be verified.

P09.110
Lack of association between CFIH and ARMS in psoriasis and psoriatic arthritis
1. Ilepre1, A. castellab, 2. persicob, 2. guallicciob, 3. perricenc, 1. Mazzacab, 4. novelli, 5. giardinaa
1. Department of Biopathology, Centre of Excellence for Genomic Risk Assessment in Multifactorial and, rome, Italy, 2. Dermatology, 3. S. Croce di Gesti, Hospital, Fatebenefratelli, Benevento, Benevento, Italy, 4. Rheumatology, University of Rome, La Sapienza, rome, Italy, 5. Dermatology, Tor Vergata Hospital, Rome, rome, Italy,

Psoriasis (Ps, OMIM 177900) is a chronic hyperproliferative inflammatory disease of the skin, scalp, nails, and joints. About 30% of affected develop psoriatic arthritis (PsA, OMIM 607507). Psoriasis and psoriatic arthritis have a multifactorial etiology, involving environmental (infections, drugs, stress, smoking and climate) and genetic factors. It’s well known that inflammation plays a central role in the development of many multifactorial diseases, as in age-related macular degeneration (AMD, OMIM 603705). As psoriasis and psoriatic arthritis share with AMD a multifactorial etiology and the inflammation as central process, we analyzed the same complex genetic associations associated with AMD in our cohorts of Ps and PsA.A number of 400 Ps cases, 510 PsA cases and 400 healthy controls were tested for rs1061170 (Y402H) in the CFIH gene and rs1049024 (A69S) in the ARMS2 gene. Our results suggest that variations in these genes are not associated with the development of Ps and PsA.

The work was supported by ADIPSIO. (Italian Association of psoriatic subjects)

P09.111
Genome-wide analysis of copy number variants suggests common and rare copy number variants contributing to psoriatic arthritis
1. Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany, 2. Department of Internal Medicine II, Division of Rheumatology, Johann Wolfgang Goethe University, Frankfurt/Main, Germany, 3. Psoriasis Rehabilitation Hospital, Bad Bentheim, Germany, 4. Department of Dermatology, University of Münster, Münster, Germany, 5. Dermatology, University of Göttingen, Göttingen, Germany.

Psoriasis (Ps, OMIM 177900) is a chronic hyperproliferative inflammatory disease of the skin, scalp, nails, and joints. About 30% of affected develop psoriatic arthritis (PsA, OMIM 607507). Psoriasis and psoriatic arthritis have a multifactorial etiology, involving environmental (infections, drugs, stress, smoking and climate) and genetic factors. It’s well known that inflammation plays a central role in the development of many multifactorial diseases, as in age-related macular degeneration (AMD, OMIM 603705). As psoriasis and psoriatic arthritis share with AMD a multifactorial etiology and the inflammation as central process, we analyzed the same complex genetic associations associated with AMD in our cohorts of Ps and PsA.

The work was supported by ADIPSIO. (Italian Association of psoriatic subjects)
first in silico analysis revealed “batch effects” at 16 loci - false-positive findings due to erroneous CNV-determination of single batches. Of the remaining 17 loci, in silico association analysis showed association at 15 loci (n=9; MAP>5%, n=6; MAP>5%, 11 loci with p<1x10^-10). Validation of those 15 CNVs with an alternative quantitative method (MLPA) confirmed CN-variation at 11 loci. For four common CNVs, perfect concordance between array system and MLPA was observed in 136-157 individuals. Genes located in or nearby CNVs are reported to be involved in immune regulatory pathways, maintenance of extracellular matrix or signal transduction and are therefore plausible candidates. These four validated common variants fit a dosage-additive model with a p-value of 1.1x10^-7, suggesting the presence of simple additive effects towards disease susceptibility. Ongoing studies aim to replicate associations in independent case-control studies, if replicated to identify the break points and to functionally analyze the CNVs.

P09.112

Too much, but also too little of calrectulin in major psychiatric disorders

S. Farahb, A. Mirab Zadeh, M. Ohalb;

1Genetic Research Center, Tehran, Islamic Republic of Iran, 2Welfare and Rehabilitation University, Tehran, Islamic Republic of Iran.

Evidence on population association studies support the hypothesis that the high heritability of major psychiatric disorders is a combination of relatively common alleles of modest effect, and rare alleles some with relatively large effects. We have recently reported three mutations in the proximal promoter of the human calreticulin (CALR) gene at positions -48C, -205T and -220A that co-occur with the spectrum of psychosis, including schizophrenia, schizoaffective disorder, and bipolar disorder type I. The frequency of those mutations was estimated at <0.0007, and none of those mutations were detected in the control population (p<0.005). Mutations -48C and -220A were found to increase the expression of the CALR gene. The third mutation at -205C>T was detected in an isolated case of schizoaffective disorder.

In this paper, the functional implication of mutation -205T was studied in the human neuroblastoma cell lines BE(2)-C and LAN-5, and HEK-293 cell lines. In contrast with other mutations in the promoter region, which increase expression of the gene, the -205T mutation significantly decreased gene expression in those cell lines in comparison with the wild-type -205C-nucleotide (p<0.0005, p<0.001, and p<0.017, respectively). Treatment of the cells lines with the anti-psychotic drug, valproic acid, showed synergistic increase in gene expression in the cell lines with the mutant -205T allele vs. wild-type -205C constructs (p<0.001). We propose that a deviation from normalcy in the level of CALR in either direction is associated with major psychiatric disorders.

P09.113

Cannabis and psychosis: a systematic review of genetic studies

V. Ulloa1,2, A. Tomassini1,6; B. Hrdlickova2,3, E. Di Maria1,6; M. O’Connell1,2, M. Posthumus1,6, M. Latrro1,3, N. Cerf-Bensussan1,2, C. J. Mulder1, V. Kurnar1, W. J. Wyen1,6, J. Zhernakova1,8.

1Division of Medical Genetics, Galliera Hospital, Genova, Italy; 2PhD programme in Translational Medicine, University of L’Aquila, L’Aquila, Italy; 3Department of Health Sciences, Psychiatric Unit, University of L’Aquila, L’Aquila, Italy; 4Genetic Unit, IRCCS Centro S. Giovanni di Dio-Fatebenefratelli, Brescia, Italy; 5Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy; 6Department of Health Sciences, University of Genova, Genova, Italy.

Though the basic pathophysiology of psychosis is largely unknown, the role of synaptic dysfunction and altered neural connectivity that originate in neurodevelopment is currently recognised. There is reliable evidence that genes contribute to the aetiology of psychosis and recent findings provided consistent clues for an overlap in genetic susceptibility across the traditional psychosis categories.

Genetic variations can influence disease risk through the interaction with environmental factors (gene-environment interaction). Epidemiologic studies suggested that chronic use of cannabis is a risk factor for the development of psychosis. Recent researches have focused on the identification of genetic variants that moderate the effect of cannabis on psychosis risk under the gene-environment interaction paradigm.

We performed a systematic literature search to identify genetic studies that explored the association between cannabis and psychosis. We included genetic studies that reported the direct measures of genetic risk in the association between cannabis and psychosis.

Out of 184 articles identified in the screening phase, 14 articles met the inclusion criteria. We reported a structured summary of populations studied, methodology, genetic variations used as predictors, evaluations of cannabis use, outcome measures and main results.

The current state and limitations of genetic researches on interplay cannabis and psychosis is discussed. We address how the application of new genetics technologies and the harmonization of the data between the studies could allow to consistently identify genetic risk variants that in conjunction with exposure to cannabis may explain the occurrence of psychotic symptoms.

P09.114

Matrix metalloproteinase genes on chromosome 11q22 and range of motion measurements in physically active individuals

M. C. Burger, K. O’Connell1, S. M. Rolingh, M. Posthumus1, M. Collins1; 1BRC/JCT Research Unit for Exercise Science & Sports Medicine, University of Cape Town, South Africa, 2Division of Health & Life Sciences, University of Nottingham, United Kingdom, 3South African Medical Research Council, Cape Town, South Africa.

INTRODUCTION: A recent heritability study demonstrated that human range of motion (ROM) has a substantial genetic component. The objective of this study was to investigate if variants within the MMP10, MMP1, MMP3 and MMP12 genes associate with ROM measurements, including sit-and-reach (SR), straight leg raise (SLR) and total shoulder rotation (SHTR), in physically active individuals.

METHODS: Three hundred and thirty-four physically active Caucasians were genotyped using a Taqman assay, for 15 SNPs, MMP10/11q22, MMP1 1G/265insC, MMP11 1G/265insC, MMP1 1G/C, MMP12 1G/C, MMP10 rs796720 and MMP12 A/G rs2276109 variants. Genotype effects on SR, SLR and SHTR ROM measurements were determined. Significance was accepted p<0.05.

RESULTS: There were no significant differences between the MMP10 (SR, mm: CC 267±114mm, n=222; CT 273±102, n=70; TT 252±113, n=16; p=0.923), MMP11 (SR, mm: 1G1G 267±110, n=79; 1G2G 265±116, n=170; 2G2G 282±110, n=64; p=0.507), MMP3 (SR, mm: AA 265±114, n=118; AG 277±102, n=160; GG 257±120, n=88; p=0.078) or MMP12 (SR, mm: AA 265±110, n=147; AG 270±110, n=61; GG 331±61, n=7; p=0.321) genotypes and the SR ROM measures. Furthermore there were no significant genotype effects on SLR and SHTR. Interestingly, individuals with the minor MMP12 rs2276109 GG genotype were much more flexible for all measurements (SR, mm: GG 331±61, n=7; AA+AG 265±110, n=308; p=0.135), however, due to sample size, this finding was not significant.

CONCLUSION: The MMP10, MMP11, MMP3 and MMP12 genes were not associated with ROM in this study. Due to the observed trends and rarity of the MMP12 GG genotype, further analysis with a larger sample size is required.

P09.115

Genome-wide association study for refractory celiac disease (RCDII) in Europeans

1Department of Genetics, UMC, Groningen, Netherlands, 2University of Groningen, Groningen, Netherlands, 3Department of Gastroenterology, FUMC, Amsterdam, Netherlands, 4Université Paris Descartes, Paris, France, 5Assistance Publique des Hôpitaux de Paris, Gastroenterology, Hôpital Écully, Georges Pompidou, Paris, France, 6Fondation Jean Dausset-Centre d’Etude du Polymorphisme Humain (CEPH), Paris, France, 7Department of Rheumatology, LUMC, Leiden, Netherlands, 8Donna alla Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.

Celiac disease (CeD) is a common autoimmune disorder triggered by dietary gluten in genetically susceptible individuals. The only treatment is a lifelong, gluten-free diet (GFD). However, about 5% of CeD patients do not respond to GFD and some develop refractory celiac disease (RCD), which is characterized by persistent symptoms, severe malabsorption, and intestinal damage despite a strict GFD. RCD patients with clonal T-cells, referred to as ‘RCDII’, have a high mortality and poor prognosis due to the development of lymphomas.

To discover genetic risk factors associated with RCDII, we performed a genomewide association study (GWAS) in a Dutch cohort (88 patients, 846 controls), validating the top-associated variants in an independent French cohort (33 patients, 787 controls). This revealed 21 potential susceptibility variants in 15 independent loci (p < 1x10^-5); we genotyped the top 15 variants. Using the Fisher Exact test, we found evidence for association with two variants in our replication cohort: SNP4 in the KLF12 gene at chromosome 13 (p = 0.04, OR = 1.703) and SNP7 in the WWOX gene at chromosome 16 (p = 0.007, OR = 2.139).

None of the known celiac disease susceptibility variants showed association with RCDII, suggesting that the RCDII phenotype is due to different genetic factors. To further validate our findings, we are currently performing replications in other European RCDII cohorts.
Investigating the association of rs1800801 and rs1800802 single nucleotide polymorphisms on the promoter of MGP gene with Renal Stone

M. Karamati1, M. Taghizadeh1, B. Ahadi2, G. Zarrinrad3, A. Tahbibi4; 1Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran, 2Section of Urology, Dr. Lhalbafnejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.

The Matrix Gla Protein (MGP) is an important inhibitor of calcification. Polymorphisms of MGP have been shown to be associated with stone formation in kidney. Mainly two single nucleotide polymorphisms (SNPs) G-7A (rs1800801) & T-138C (rs1800802) on MGP gene have been suggested to play a role in susceptibility to calcification which may affect gene expression due to their location in promoter region of the gene. This work is investigating the possible association of these two SNPs with the formation of renal stone in Iranian population using a family based (Pedigree) association study.

So far 100 trios were recruited. After obtaining their written consent, blood samples were taken and DNA was extracted. For genotyping, the target region was amplified by PCR and the products were sequenced. Genotypes of both SNPs were confirmed for 40 trios so far. Analysis of the preliminary data shows over transmission of A allele for rs1800801 and T allele for rs1800802. We have also observed an over transmission in Padi4-/- B6 and C57BL/6 (B6) mice by speed congenic method. We used Padi4-/- mice highly expressed in bone marrow, macrophages, neutrophils and monocyte.

rs1800801 was identified as a risk variant for RA. The minor allele was associated with disease susceptibility and its frequency was significantly higher in patients with RA compared with healthy controls. These studies suggested that multiple genes and its functions were related with disease causing and development.

Previously, pepolylarginine deaminase type 4 (PADI4) was identified as a susceptibility gene in Japanese population. PADI4 was chosen for our study. PADI4 is a member of the PADI gene family and converts arginine residue (peptidylarginine) to citrulline residue (peptidylcitrulline). PADI4 is highly expressed in bone marrow, macrophages, neutrophils and monocyte. Pepolylcitrulline is an interesting molecule in RA, because it is an antigen of ACFA and only PADI4 translated protein from PADI4 gene can produce pepolylcitrullines, via modification of protein substrates. To evaluate the importance of PADI4 gene in the progression of RA, we generated Padi4-/- C57BL/6 (B6) mice by speed congenic method. We used Padi4-/- mice to show that PADI4 is affected to development and progression of collagen induced arthritis (CIA), well known as an RA model animal. Padi4-/- B6 and WT mice were immunized with Chicken type II collagen (CII) for CIA. Clinical disease score was reduced and the incidence of WT and Padi4-/- mice was 56% and 44%, respectively. Padi4-/- mice also significantly reduced inflammatory gene expression due to their location in promoter region of the gene.

This work is being continued by genotyping the rest of samples and the full data will be presented at the meeting.

Unraveling the implication of de novo mutations in the genetics of schizophrenia

S. L. Girard1,2, A. P. Dion1, J. Gautier1, S. Geoffroy1, M. Dubé1, G. A. Rouleau1,2,3; 1Center of Excellence in Neuromiotics, Montréal, QC, Canada, 2Beauvau-Saucier Pharmacogenomics Centre of the University of Montréal, Montréal, QC, Canada, 3CHU Ste-Justine Research Center, Montréal, QC, Canada.

Recently, a wave of studies has shown that de novo mutations play a very important role in the genetic mechanisms of psychiatric disorders. Our group has shown that there is an enrichment of pathogenic de novo mutations in schizophrenia. Other groups have made the same observation in schizophrenia, but also in autism and mental retardation. We are now trying to characterize this paradigm using two methods. First, we are looking at healthy twins to evaluate the rates of germ line and somatic de novo mutations using exome capture. This is the first report of an exonic de novo mutation rate that can be used as a direct comparison to the previous studies. We are also doing a follow up of the genes identified in the first study using an enrichment solution in order to evaluate the rare variants burden of each gene in a schizophrenia cohort. We are resequencing approximately a hundred genes that were found to harbour a de novo mutation in previous studies, in a cohort of 250 schizophrenia patient and 250 healthy individuals.

Analysis of copy number variants (CNV) and gene expression in monoyzygotic twins discordant for schizophrenia

F. B. Basmanov1,2, S. Hermès1, A. Sharma1, K. Langbein1, A. Hedman1, M. Böhlen1, S. Edkins1, E. Brommon1, H. Sauer1, R. Mietzsche2, N. van Haren1, I. Nenadic3, R. Ophoff4, H. Walshof5,6, M. Weisbrod7, M. M. Noetzel7,8, P. Hoffman1, S. Cichon1,2,9; 1Institute of Human Genetics, University of Bonn, Bonn, Germany, 2Institute of Medical Genetics, Life & Brain Center, University of Bonn, Bonn, Germany, 3Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany, 4UCLA Center for Neurobehavioral Genetics, Los Angeles, CA, United States, 5Psychiatric Department, SRH Kliniken Karlsbad-Langensteinbach, Karlsbad, Germany, 6German Center for Neurodegenerative Disorders (DZNE), Bonn, Germany, 7Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organisation of the Brain, Genomic Imaging, Research Centre Juelich, Juelich, Germany.

Schizophrenia is a severe and debilitating neuropsychiatric disorder with an estimated heritability of 60-80%. Recent studies have shown that rare, highly penetrant variants account for a fraction of the overall genetic risk. Several recent disease-associated rare variants have been identified several times in sporadic cases as independent de novo mutations and are obviously subject to negative selection. These findings support the hypothesis that the recurrent de novo occurrence of risk variants may compensate for risk variants that constantly disappear from the gene pool by negative selection. It is reasonable to assume that schizophrenia susceptibility genes identified by de novo mutations in patients might carry mutations similar to such as other rare single nucleotide mutations but also rare copy number variants (CNVs). We tested this hypothesis by starting from 3 potential schizophrenia susceptibility genes that were reported to carry de novo mutations by Xu et al. (2011). Using Illumina BeadArray data of 1,637 patients with schizophrenia and 1,627 population-based controls, we investigated whether CNVs at these loci might contribute to the allelic spectrum in schizophrenia. Each individual’s SNP-chip information was analyzed with Quan-

tiSNP and PennCNV. In two genes, RB1C1 and OR4C46, we found CNVs overrepresented in patients compared to controls providing further support for an involvement of these genes in the development of schizophrenia. We are currently extending our analyses to large, independent case-control datasets. From a functional point of view, it is noteworthy that RB1C1 insufficiency causes neuronal atrophy. This may provide a link to pathophysiological considerations in schizophrenia.
gene expression patterns is the investigation of phenotypically discordant monozygotic (MZ) twins. Recent studies have identified differences in copy number variation (CNV) between MZ twins with both concordant and discordant phenotype suggesting that somatic mosaicism may not be uncommon. These findings suggest that CNV analysis in phenotypically discordant MZ twins may provide a powerful tool for identifying disease susceptibility loci.

In the present study, we utilized 20 MZ twins discordant for schizophrenia (n=18) or schizoaffective disorder (n=2) collected in 3 medical research centers located in Germany and The Netherlands. All 20 pairs are currently being genome-wide genotyped on Illumina HumanMni15 beadchips to analyze CNV discrepancies. In addition, for 7 of these discordant MZ twin pairs peripheral mRNA is available and will be subjected to whole genome expression profiling by use of Illumina HumanHT-12 Expression BeadChips to determine potentially differentially expressed regions and to enable integration of the genetic and expression data.

P09.121 Genetic association of RGS2 gene variants with schizophrenia and antipsychotic response
A. Gareeva1, D. Zakirov2, E. Khusnutdinova1; 1Institute of Biochemistry and Genetics of Ufa Scientific Center, Russian Academy of Sciences, Ufa, Russian Federation, 2Bashkir State University, Ufa, Russian Federation.

Schizophrenia is a common and complex psychiatric disorder with a strong genetic component. As regulators of G protein signaling and regulators of G protein signaling-like proteins play a pivotal role in dopamine receptor signaling, genetically based, functional variation could contribute to individual variability in therapeutic and adverse effects.

The present study aimed at exploring whether two single nucleotide polymorphisms (SNPs) rs2746073 and rs2746072 within RGS2 gene could be associated with schizophrenia and whether they could predict clinical outcomes in 300 patients of two ethnic groups (158 Russians and 142 Tatars) from the Volga-Ural region of Russia treated with antipsychotics. Baseline and final clinical measures, including PANSS and SAS scales were recorded. No significant association was found with the diagnosis of schizophrenia. However analysis of variance revealed that genotype RGS2*T/*T to be a marker of reduction of Negative (P=0.03) and General Psychopathology (two-tailed), analysis of variance (ANOVA), and chi-square test.

The present study was aimed at exploring whether two single nucleotide polymorphisms (SNPs) rs2746073 and rs2746072 within RGS2 gene could be associated with schizophrenia and whether they could predict clinical outcomes in 300 patients of two ethnic groups (158 Russians and 142 Tatars) from the Volga-Ural region of Russia treated with antipsychotics. Baseline and final clinical measures, including PANSS and SAS scales were recorded. No significant association was found with the diagnosis of schizophrenia. However analysis of variance revealed that genotype RGS2*T/*T to be a marker of reduction of Negative (P=0.03) and General Psychopathology (two-tailed), analysis of variance (ANOVA), and chi-square test.

This work was supported by grant of the Russian Foundation for Humanities (I-06-07054a).

P09.122 Influence of GRIN2B gene polymorphic loci on antipsychotic treatment response and susceptibility to schizophrenia
D. Zakirov1, E. Saleimamova1, A. Gareeva1, E. Khusnutdinova1; 1Institute of Biochemistry and Genetics of Ufa Scientific Center, Russian Academy of Sciences, Ufa, Russian Federation.

One major problem in the schizophrenia (SZ) treatment is finding the right drug for the right patients.

We aimed to examine the effect of five polymorphic loci (rs1805502, rs7301328, rs1805247, 5806A/C, rs1805482) of GRIN2B gene on treatment response to typical antipsychotics (TA) in schizophrenia patients from Russia.

Study sample comprised of 300 drug naive patients with the first episode of SZ (159 Russians and 142 Tatars) from the Volga-Ural region of Russia. Clinical response and severity of Extrapyramidal symptoms (ES) were determined by administering the PANSS and SAS scales at baseline and at days 21 and 45. Differences between groups were tested by using unpaired t-test (two-tailed), analysis of variance (ANOVA), and chi-square test.

Analysis of variance detected genotype GRIN2B *T/*T (rs1805247) to be a marker of reduction of Negative (P<0.03) and General Psychopathology symptoms (P=0.04) in Tatar patients on the 21 assessment day.

ANOVA revealed GRIN2B *T/*T (rs1805052) genotype to be a marker of low risk of ES development (P=0.03) in Russian patients on the 21 assessment day.

Analysis of association ecedule allele GRIN2B *T (rs1805247) to be a risk marker for schizophrenia in Tatars (OR=2.38, p<0.001) and a CTC haplotype encompassing rs7301328, rs1805247, and C allele of rs1805482 of GRIN2B gene was significantly overrepresented among Tatar patients (OR=2.32).

Our results are preliminary and suggest that the SNPs in GRIN2B gene may influence the treatment response to TA and susceptibility to schizophrenia.

Further studies are necessary to confirm the reported associations. This work was supported by the Russian Foundation for Humanities grant 11-06-00554a.

P09.123 Association study of candidate gene polymorphisms with paranoid schizophrenia susceptibility in Russian population
D. Galaktionova1, O. Gra1, A. Gareeva1, E. Khusnutdinova1, T. Nauskina; 1Institute of Biochemistry and Genetics, Russian Academy of Sciences, Moscow, Russian Federation, 2Institute of Biochemistry and Genetics Russian Academy of Sciences, Ufa, Russian Federation.

Schizophrenia is a multifactorial disorder (about 1% in the most populations studied) and is characterized by the contribution of multiple susceptibility genes that can act in conjunction with epigenetic processes and environmental factors. Based on previous molecular genetic studies following polymorphisms: HTR2A (rs6311, rs6314, and rs7997012), BDNF (rs6265), SLC6A4 (rs28914382), DISCI (rs7337597), ZNF804A (rs1344706), RELN (rs7341475), COMT (rs165599), RELN (rs7341475), COMT (rs165599), SLC1A5 (rs1227175) have been chosen and analyzed in 198 patients with schizophrenia and 192 healthy individuals. The genotyping procedure included multiplex PCR with fluorescently labeled nucleotides and allele-specific hybridization of labeled PCR products with a biochip. The statistically significant association between rs6314 (P = 0.014, OR = 2.26) of HTR2A gene and risk of paranoid schizophrenia was found. Also it was shown that genetic variants rs6311 (P = 0.011, OR = 2.33) and rs6313 gene HTR2A (P = 0.008, OR = 2.40) were associated with suicidal behavior in schizophrenic patients.

The work was supported by Ministry of Science and Education of Russian Federation (State contracts # 02.74.10.11.0869 and 02.52.17.11.006).

P09.124 Association study of class II cytokine genes with psoriasis in three ethnic groups from Russia
M. Khodzhaeva1, V. Ahmetov1, K. Ringo1, R. Röstep1, T. Trüeb1, S. Köks1, E. Khusnutdinova1; 1Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russian Federation, 2Department of Dermatology and Venerology, University of Tartu, Tartu, Estonia, 3Department of Physiology, University of Tartu, Tartu, Estonia.

Background: The molecular basis of pathogenesis of psoriasis remains unclear, but one unifying hypothesis of disease aetiology is the cytokine network model. The class II cytokines (CF2) and their receptors (CRF2) are all involved in the inflammatory processes and single nucleotide polymorphisms (SNPs) in respective genes have been associated with psoriasis in a previous study of the Estonian population.

Objective: We performed a replication study of 47 SNPs in CF2 and CRF2 genes in independent cohorts of psoriasis patients of three ethnic groups (Russians, Tatars, and Bashkirs) from the Volga-Ural region of Russia.

Methods: DNA was obtained from 499 psoriasis patients of three ethnic groups from the Russia and 581 ethnically matched controls. 47 SNPs in the loci of CF2 and CRF2 genes were selected by SNPlexBrowser version 3.5. Genotyping was performed using the SNPlex (Applied Biosystems) platform.

Results: Comparison of allele frequencies between cases and controls using chi square test revealed differences for seven SNPs rs274666, rs30461, rs3795299, rs1344264, rs10784680, rs4896227 and rs2834171. Only the SNP rs30461 in the IL29 gene displayed a statistically significant association with psoriasis in the cohort of Russians when adjusted for multiple comparisons (corrected P-value (Pc) =0.008, OR =0.44).

Conclusion: Our results suggest that polymorphisms rs30461 of the IL29 gene may contribute to a protection to psoriasis in Russian population. In addition, there might be a probability that other variations in CF2 and CRF2 genes influence susceptibility to psoriasis, but further investigations are needed to provide more conclusive evidence their exact contribution.

P09.125 Additional Patients and an Association Study support a Role of SOX9 in CD-ACD-PRS Phenotypic Continuum and in CPo.
L. Desmyter1, M. Quintre1, M. Ghassibe2, W. Courtes1, S. Kivirkko3, H. Antoine-Poiret4, E. Amey1, B. Bayer1, G. François1, R. Vanwijck4, O. Boute5, P. Pellerin6, M. Rubini7, M. Vukladic2; 1Laboratory of Human Molecular Genetics, de Duve Institute, Brussels, Belgium, 2Center for Human Genetics, Cliniques universitaires St Luc, Université catholique de Louvain, Brussels, Belgium, 3Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland, 4Centre Labriopatolain, Division of Plastic Surgery, Cliniques universitaires St Luc, Université catholique de Louvain, Brussels, Belgium, 5Centre de génétique, Centre hospitalier universitaire de Lille, Lille, France, 6Service de chirurgie plastique et reconstructive, Centre hospitalier universitaire de Lille, Lille, France, 7Sez. Génétique Médica, Dip. Medicina Sperimentale e Diagnostica, Università di Ferrara.
Abstracts - European Human Genetics Conference 2012

Ferrara, Italy.

Sox9 has an essential role in chordogenesis. Nonseence mutations and deletion of Sox9 suggested haploinsufficiency to underly campomelic dysplasia (CD), a rare autosomal dominant disease characterized by campomelia, skeletal defects and Pierre Robin sequence (PRS). Translocations in the 5'SOx9 upstream or downstream of Sox9 were reported in less severe CD patients. Some translocations and deletions further upstream have been identified in patients with acampomelic campomelic dysplasia (ACD) and PRS, suggesting that these three syndromes form a continuum of phenotypes. We report the identification of a translocation 60kb upstream of Sox9 in a patient with classical features of ACD. In parallel, we identified a deletion in a PRS family that overlaps a deletion reported in a patient with the more severe CD phenotype. These data and their interpretation lead us to test whether or not there is a genetic association between the SOX9 locus and cleft palate (CP) and/or PRS. We used three SNPs in a cohort of case-parent trios analyzed using TDT. While two SNPs, tagging a conserved region upstream of SOX9, achieved borderline significance (p=0.045 and p=0.052) in the PRS cohort, significant over- or under-transmission of an intragenic SNP was detected in the combined CP+PRS cohort (p=0.026), with a relative risk of 0.43. The association has been replicated in an independent Italian CP-cohort. Our data are in agreement with the hypothesis that removal or disruption of cis-regulatory elements upstream of SOX9 can lead to phenotypes of gradual severity. We show for the first time an association of SOX9 with CP and PRS.

P09.126 Investigating copy number variants within a cohort of individuals with specific language impairment

N. H. Simpson1, F. Geronzi1, C. Francez1, S. J. L. Knight1, A. P. Monaco1, S. Fisher2, D. Newbury2, S. L. J. Consortium1.
1Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 2Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.

Specific language impairment (SLI) is a developmental language disorder that, in the absence of any comorbid neurological deficits, affects an individual’s spoken and/or receptive language despite adequate intelligence and accessibility to learning. SLI is a common childhood disorder with an estimated prevalence between 3% and 7% in school-age children. The prevalence of SLI is much lower in adults. It is a complex genetic disorder that is closely related to autism, dyslexia and ADHD. SLI has a high genetic component with twin studies finding a monogenic concordance rate of up to 70%. Recent studies of neurodevelopmental disorders have implicated copy number variants (CNVs) in conditions such as autism, intellectual disability and ADHD. Therefore a study of CNVs within families containing individuals with SLI is currently being performed. Our SLI cohort has collected a cohort of samples from across the UK that have been phenotypically well characterised for language. 176 of these families containing 186 individuals with SLI have been genotyped using the Illumina HumanOmniExpress beadchip that contains more than 700,000 SNPs. The SNP data is being used to identify CNVs across the genome using the copy number detection algorithms QuantiSNP and PennCNV. Data will be presented on the frequency and burden of CNVs in cases compared to their unaffected siblings and of novel variants. CNVs of interest are to be validated using quantitative PCR. To our knowledge this will be the first genome-wide CNV analysis performed within a cohort of samples with SLI.

P09.127 Association study of the functional polymorphisms in candidate genes with ischemic stroke in residents of central Russia

M. Avdonina1, Z. Nasedkina1, A. Vannikova2, E. Bondarenko1, P. Slominsky2, N. Shumakova3, S. Shibakova4, A. Zuevadat4, V. Skvortsova5.
1Saratov State Medical University, 2Bashkir State University, 3Saratov State University, 4Saratov State Medical University, Moscow, Russian Federation, 5Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Moscow, Russian Federation.

The frequencies of 34 SNP in candidate genes associated with ischemic stroke (F12, PON1, PON2, NOS2, PDE4D, HIF1a, GIPha, CYP11B2, REN, AGT, AGT-R1, AGTR2, RBK2, ADRB2, ACE, FGF, F2, F7, GP11a, PAI-1, MTHFR, APOE, NOS2, NOS3, ILA, ALOX5AP, ADRB3) have been studied in ischemic stroke (IS) patients and healthy controls, the residents of Central Russia. Also polymorphism in TUB gene (rs4578427) and rs2881013, rs7415364 in non-coding regions revealed in genome-wide association study in Russian population were analyzed. The genotyping procedure included the amplification of selected gene sequences following by hybridization of fluorescently labeled beads with SNP-specific DNA probes immobilized on a biochip. An analysis of allele and genotype frequencies for each SNP in IS patients (n=300) and controls (n=300) did not reveal any significant difference. The pair-wise comparison of genes demonstrated that the frequency of geno-type combination PON1 A/- x PON2 GG was higher in the group of IS patients (p=0.044, OR=3.4, 95% CI 1.06-10.4) compared to controls and, thus, was associated with higher risk of stroke. Further the analysis using MDR (Multifactor Dimensionality Reduction) algorithm has been performed. The statistically significant association with stroke for several genotype combinations was revealed, for example for FGB G/- x ACET/- x MTHFR C/- x PAI-1 5G/5G (p=0.018, OR=2.6, 95% CI 1.1-2.56).

P09.128 Association analysis of CNH, CHRH1 and CHRM2 genes in suicidal behavior

A. Zainullina1, Z. Khalilova1, A. Valylina1, K. Kinasheva2, D. Gavrysin1, S. Cohen-Wood3, I. Craig1, P. McGuffin1, E. Khusnutdinova2.
1Institute of Biochemistry and Genetics Ufa, 2Scientific Center of RAS, Ufa, Russia Federation, 3Bashkir State University, Ufa, Russia Federation, 4University College London, MRC Unit for Lifelong Health and Ageing, London, United Kingdom, 5Institute of Psychiatry, Medical Research Council Social Genetic and Developmental Psychiatry Centre, London, United Kingdom.

Disregulation in the stress response of the HPA axis, involving the corticopeptide-releasing hormone (CRH) and its main receptor (CRHR1), is considered to play a major role in suicidal behavior (SB). Cholinergic mechanisms are also implicated in stress. The aim of the present study was to investigate three genes involved in stress response, the corticotropin-releasing hormone gene (CRH), the CRH receptor 1 gene (CRHR1) and the muscarinic cholinergic 2 receptor gene (CHRM2), for association with suicidal behavior (SB) in Russian population.

Cases were 288 suicide attempters hospitalized in the Clinical Research Hospital (Ufa, Russia). Controls were 348 individuals without a personal or familial (first degree) history of neuropsychiatric disorders and SB. Two SNPs (rs6159, rs1870393) of the CRH gene, five SNPs (rs242941, rs242938, rs242950, rs187647, rs187648) of the CHRM1 gene and four SNPs (rs1824024, rs2061174, rs3520786, rs324650) of the CHRM2 gene were genotyped. For pairwise linkage disequilibrium and haplotype analysis, the Haplovie 4.1 program was used. Odds ratios (OR) with 95% confidence intervals (CI) were calculated.

The only association we observed was an allele association between CRHR1 rs870886 and SB: C was significantly overrepresented in patients with SB as compared to controls (OR=2.65, 95%CI: 1.12-2.02). Haplotype analysis showed a significant overrepresentation of the CHRM2 (rs1824024, rs2061174, rs3520786, rs324650) C-G-G-T haplotype (OR=12.48, 95%CI: 1.24-2.01) in suicide attempters as compared to controls. These results may help understand better the pathophysiology of suicidal behavior, its prevention and treatment.

This work was supported by grant of the Russian Foundation for Humanities (11-06-00554).

P09.129 Copy number variations (CNVs) in the androgen receptor gene (AR) in British patients with systemic sclerosis - a pilot study

1Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, 2Centre for Rheumatology, Royal Free and University College Medical School, London, United Kingdom, 3Bashkir State University, Ufa, Russia Federation.

Systemic sclerosis (SSc) is an autoimmune disorder characterized by excessive fibrosis and vascular abnormalities in various organs. It is the end result of a complex interaction of genetic factors and unknown environmental influences. Three subgroups can be distinguished, morphea, limited and diffuse SSC. SSCs is 3 (diffuse SSC) to 9 (limited SSCs) times more frequent in females than in males which has been discussed in order to elevated ratios of skewed X-chromosome inactivation (XCI) in female patients.

Previously, we investigated the XCI patterns in a cohort of 205 patients with limited SSc and 97 patients with diffuse SSc using the human androgen receptor (AR) gene (HUMARA) assay. This analysis identified 34 patients (11%) that were homzygous for the CAG polymorphism in the AR gene, thereof 17 patients belonging to the limited SSc subgroup (17 of 205, 8.3%) and 17 patients belonging to the diffuse SSc subgroup (17 of 97, 17.5%). To verify if homozygosity of the AR gene itself might contribute to the female predisposition for SSc indicated by elevated ratios of skewed XCI. Two SNPs (rs6159, rs1870393) of the CRH gene, five SNPs (rs242941, rs242938, rs242950, rs187647, rs187648) of the CHRM1 gene and four SNPs (rs1824024, rs2061174, rs3520786, rs324650) of the CHRM2 gene were genotyped. For pairwise linkage disequilibrium and haplotype analysis, the Haplovie 4.1 program was used. Odds ratios (OR) with 95% confidence intervals (CI) were calculated.

The only association we observed was an allele association between CRHR1 rs870886 and SB: C was significantly overrepresented in patients with SB as compared to controls (OR=2.65, 95%CI: 1.12-2.02). Haplotype analysis showed a significant overrepresentation of the CHRM2 (rs1824024, rs2061174, rs3520786, rs324650) C-G-G-T haplotype (OR=12.48, 95%CI: 1.24-2.01) in suicide attempters as compared to controls. These results may help understand better the pathophysiology of suicidal behavior, its prevention and treatment.

This work was supported by grant of the Russian Foundation for Humanities (11-06-00554).
Association of leukocyte telomere length and plasma antioxidants

Methods: Relative LTL was measured by quantitative Real Time PCR in 907 participants of the Austrian Stroke Prevention Study, a community-based cohort study on brain aging. Levels of plasma antioxidants including ascorbate, cryptoxanthin, canthaxanthin, lycopene, α-carotene, β-carotene, retinol, γ- and α-tocopherol and zeaxanthin were measured by HPLC in 614 subjects. Association between plasma antioxidants and LTL was analyzed using multiple linear regression by adjusting for age and sex (Model 1) and additionally for hypertension, diabetes, cardiac disease and BMI (Model 2).

Results: A stronger association between LTL and antioxidant (Model 1: β=0.033,95%CI:0.020,0.050;p<0.001), lycopene (β=−0.192,95%CI:−0.338,−0.045;p<0.01), retinol (β=−0.045,95%CI:−0.084,−0.005;p<0.029) and β-carotene (β=0.052; 95%CI:0.104,0.000;p=0.050). After adjusting for vascular risk factors (Model 2) the significance of the associations and the effect sizes remained unchanged.

Conclusion: This is the first study investigating the association between plasma antioxidants and LTL in a healthy elderly population. Our results suggest a protective role for ascorbate and an opposite role for lycopene, retinol and β-carotene in maintaining telomere length. The effect of these antioxidants on LTL is not mediated by vascular risk factors.

A rare SNP (MAF=0.0022 in MORGAM) on chromosome 11 was associated with total mortality (p=2.9×10^-10; HR=4.6,95% CI 2.7-7.9). The SNP showed association to mortality also in independently analyzed MORGAM subsamples: men, women, two Finnish cohorts and the combined non-Finnish cohorts. Furthermore, the SNP was associated with CVD, CHD and cancer mortality (p<10^-4) and with CVD and CHD events (p<0.05). None of the SNPs studied for association with risk factors survived correction for multiple testing.

Conclusions: The genome-wide significant association of a rare variant on chromosome 11 with mortality is highly interesting as it does not seem to mediate through common risk factors. Replication of the association in multiple subcohorts and disease end points gives strength to the original finding.

Screening of first degree relatives of type 1 diabetes patients by using HLA genotyping in combination with regular autoantibodies testing

Introduction: The most important genes which are related to type 1 diabetes (T1D) are supposed to be genes for HLA class II molecules. First degree relatives (FDR) of T1D patients have an increased risk to develop the diseases as well. In the Czech republic we screen FDR (children under 18 years of age) of T1D patients and we provide HLA genotyping and annual screening for T1D associated autoantibodies (Abs). Methods: In our programme (established in 2001) 724 children were HLA genotyped (by PCR-SSP method), 170/724 children developed at least one autoantibody during their follow-up, in 37/740 tested persons T1D was dia-
As a result, 17 SNPs were associated with IL-1Ra at p < 10⁻¹², while adjusting with age, sex, BMI and WHR. Furthermore, 29 SNPs were associated with IL-1Ra at p < 10⁻⁸⁻¹¹. While testing the association of the top SNPs with leukocyte transcriptome data, one polymorphism in IL1F10 was shown to act as cis-eQTL to PANK and trans-eQTL to ALDH2 in chr 12 and LILRB4 in chr 19.

Conclusion: IL-1Ra has shown a clinical significance and association with a number of medical conditions. Identifying genetic variants associated with IL-1Ra level in circulation provides further information about related pathophysiological pathways and enables the evaluation of its potential effects on cardiovascular disease and diabetes.

P09.138

Genetic characteristics of Lithuanian and Latvian patients with ulcerative colitis

J. Skviečiene-Vaičaitienė1, G. Kaladziūtė2, V. Jonaitytė-Itina1, A. Zvirbliene3, T. Balčiūnienė1, G. Danapane1, G. Prunculienė2, M. Lėda1, S. Schreiber4, A. Franke5, L. Kapčinkas2,1

1Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania, 2Institute of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania, 3Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany, 4Center of Hepatology, Gastroenterology and Dietetics, Vilnius University, Vilnius, Lithuania, 5University of Latvia, Riga, Latvia.

Introduction. Genetic susceptibility is known to play a large part in the predisposition to ulcerative colitis (UC). The past years have witnessed remarkable success in the identification of low-penetrance, high-frequency susceptibility variants in inflammatory bowel disease (IBD). However, a large part of the genetic variance in IBD is still unaccounted for. Thus, we aimed to investigate the role of the IBD-associated genetic variants in a Lithuanian and Latvian population. We performed a replication study in 447 Lithuanian and Latvian UC patients and 1,154 controls. In total, 77 SNPs that showed moderate or strong association in five GWAS were studied. Single marker case-control, genotype-phenotype association analysis, and SNP-SNP epistasis analysis were performed.

Results. After correcting for multiple testing, we confirmed associations with IL2RA (rs1736135, P = 8.01E-06), IL21 (rs7746082, P = 6.41E-05), JAK2 (rs10758669, P = 8.08E-06), RNAF6 (rs3806308, P = 2.40E-06), and ORMDL3 (rs2872507, P = 1.24E-06). No association with any disease subphenotype was found. SNP-SNP interaction analyses showed significant associations between the SNPs in the PTPN22 (rs2476601) and C10orf31 (rs3764147) genes and increased risk for UC (P = 1.64E-06, OR = 2.44). In silico prediction of the interactive network of these genes further validated a possible interaction.

Conclusions. We confirmed the association of five loci (IL21, IL21, JAK2, RNAF6, and ORMDL3) with UC in the Lithuanian-Latvian population. SNP-SNP interaction analysis showed that the combination of the SNPs in the T-cell processes involved gene PTPN22 (rs2476601) and gene participating in Mycobacterium infection clearance C10orf31 (rs3764147) increase the risk for UC.

P09.139

Association study for HLA Class II genes (HLA-DQA1, HLA-DRB1 and HLA-DQB1), CIITA gene polymorphisms (-168A/G and +1614 G/C) and multiple sclerosis, in a sample from Rio de Janeiro, Brazil.

E. R. Paradela1,2, A. L. S. Figueiredo1,3, J. Sventoraityte-Skieceviciene1,2, M. Nuotio1,2,1,3, V. Salomaa2,1,3,2

1Department of Neuroscience, Uppsala University, Uppsala, Sweden, 2University of Latvia and Department of Endocrinology, Pauls Stradiņš Clinical University Hospital, Riga, Latvia.

Introduction: The human major histocompatibility complex (MHC) class II region consists of two agonists, two receptors, and a receptor antagonist, IL-1Ra.

Methods: Transcriptome data

Results: Three of the SNPs in the FTO and TMEM18 genes and T2D in the population of Latvia. Our data support the evidence that obesity susceptibility variants may have an impact on T2D risk through the mechanisms unrelated to those involved in the BMI regulation.

Conclusions: Screening of FDR of T1D patients allows early disease diagnosis (p=0.005).

P09.137

Genetic determinants of IL-1-receptor antagonist in the circulation

M. Nuotio1,2,3, K. Kristiansson1,2,3, M. Perola2,1,3, V. Salomaa2,3

1Institute for Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany, 2Institute of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania, 3Institute of Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania.

Introduction: Interleukins play an essential role in human immune system acting as mediators of inflammation and tissue damage. The interleukin-1 superfamily consists of two agonists, two receptors, and a receptor antagonist, IL-1Ra. IL1RN in chr 2 has been carefully studied, since IL-1Ra concentration in circulation shows a clinical significance and association for example with AMI. Systemic elevation in IL-1Ra concentrations has been previously shown to enable the better control of type 2 diabetes. Recombinant form of IL-1Ra is also commonly used drug in a treatment of rheumatoid arthritis and gout. We wanted to perform GWAS for IL-1Ra concentrations in circulation in independent Finnish population- and case-control-cohorts. We also wanted to test the association of resulting top SNPs with leukocyte transcriptome data.

Methods: We performed GWAS in a sample consisting in total of 7169 adults.

Results: As a result, 17 SNPs were associated with IL-1Ra at p < 10⁻¹², while adjusting with age, sex, BMI and WHR. Furthermore, 29 SNPs were associated with IL-1Ra at p < 10⁻⁸⁻¹¹. While testing the association of the top SNPs with leukocyte transcriptome data, one polymorphism in IL1F10 was shown to act as cis-eQTL to PANK and trans-eQTL to ALDH2 in chr 12 and LILRB4 in chr 19.

Conclusion: IL-1Ra has shown a clinical significance and association with a number of medical conditions. Identifying genetic variants associated with IL-1Ra level in circulation provides further information about related pathophysiological pathways and enables the evaluation of its potential effects on cardiovascular disease and diabetes.
polymorphism +1614G/C of the CIITA gene and the HLA-DRB1*15:01 allele were present, susceptibility to MS was increased. In addition, our results suggested that HLA-DRB1*08:01, HLA-DRB1*11:01, HLA-DRB1*11:02, and HLA-DRB1*13:03 contributed to resistance against MS, with RR of 0.5, 0.7, 0.27 and 0.27, respectively.

P09.140 Polymorphism in IL12RB1 Contributes to the Risk for Uterine Leiomyomas

L. Zemljic, U. Potocznik1,2; 1Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia, 2Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia.

Uterine leiomyoma (ULM), a common female pelvic benign tumour, occurs in ~40% of women. The mechanism of ULM development is believed to be the result of complex interactions between genes and environment. The aim of this study was to investigate the role of single nucleotide polymorphisms (SNPs) in genes IL12RB (rs6887695, IL12RB1 (rs11575934) and IL23R (rs7517847) as the potential risk factors for ULM. The association study was performed in a group of clinically diagnosed ULM and 92 women with verified absence of myomas used as the control group. Women with three or more (multiple) ULM had higher prevalence of positive family history (40.0% vs. 19.5%; p=0.029), higher number of miscarriages (60%; p=0.005), higher percentage of smoking (57.4% vs. 21.1%; p=0.001), higher prevalence of GG genotype with G allele frequency in IL12RB1 (p=0.036; OR=0.13 and p=0.029; OR=0.46 respectively), lower age at menarche (0.8 years; p=0.15), lower age at first sexual intercourse (17.7 vs. 19 years; p=0.003), lower number of pregnancies (46%; p=2x10^-6) and lower parity (46%; p=1x10^-6) compared to healthy controls. Women with solitary ULM had lower parity (27%; p=0.006) and higher prevalence of AG and GG genotypes in IL12RB1 (rs11575934 polymorphism (p=0.037; OR=0.52) compared to healthy control subjects. Our results clearly show an association of GG genotype and G allele frequency in IL12RB1 with prevalence of multiple ULM and AG+GG genotypes with solitary ULM. The rs11575934 polymorphism, together with epidemiological factors can contribute to a higher risk for development of ULM.

P09.141 Allele specific hemizygosity in Velocardiofacial syndrome as a risk determinant of schizophrenia

M. GUDDPON1, X. Bonilla2, F. Santoni2, C. Gehrig1, S. Dahoun1, S. Eliez2, S. Antonarakis2; 1University Hospitals of Geneva, Geneva, Switzerland, 2University of Geneva Medical School, Geneva, Switzerland.

Velocardiofacial syndrome is caused by a microdeletion in 22q11.2 ranging between 1.5 and 3 Mb, containing about 60 genes, with an incidence of 1 in 4,000 live births. One third of VCFS patients develop schizophrenia during early adulthood. The incidence of schizophrenia in patients with VCFS is thirty times higher than in the general population; thus making the 22q11.2 deletion an important risk factor for schizophrenia.

Based on the high incidence of schizophrenia in these individuals, we hypothesized that some patients with VCFS develop schizophrenia due to allele-specific hemizygosity of one or more critical regions in the 22q11.2 locus. Paired-end libraries were prepared from 37 VCFS patients, 21 with schizophrenia and 16 without. A custom-made SureSelect target enrichment library was used to capture the 3Mb non-deleted allele on chromosome 22q11.2 plus 2000 bp of upstream and downstream genomic sequences. The enriched region was then sequenced on an Illumina HiSeq2000. Bioinformatics analysis revealed that 98% of the targeted region was covered at least 8x and on average 2500 variants were detected per sample.

The complete haplotype of the non deleted 22q11.2 region was created using approximately 3500 unique variant sites (including on average 16 non-synonymous sites per sample). A candidate region that showed allele-specific enrichment in VCFS patients with schizophrenia was identified. Validation with an independent sample is ongoing. This study suggests that the remaining hemizygous region in microdeletion syndromes could be a further risk determinant for certain variable phenotypes of such syndromes.

P09.142 Association of single nucleotide polymorphism in TGBF1 and acute radiation-induced mucositis in patients with nasopharyngeal carcinoma

I. Cheuk1, S. Yip1, D. Kwong2, V. Wu3; 1Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 2Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.

Radiation therapy (RT) is the standard primary treatment of nasopharyngeal carcinoma (NPC), which is particularly common in southern China. Radiation-induced side effects may affect treatment outcomes and lead to postponement of RT. Studies have shown that genetic variations in genes that control cellular processes may act as potential markers to detect radiation hypersensitivity in normal tissues. Blood samples were collected from local Chinese NPC patients treated with RT to extract genomic DNA. Patients in control (n=34) and case groups (n=34) were matched based on age, sex, staging treatment regimen, and severity of mucositis. Severity of mucositis was graded by oncologists based on radiation morbidity scoring criteria published by Radiation Therapy Oncology Group (RTOG). Eleven tag single nucleotide polymorphisms (SNP) were selected from TGBF1 and XRCC1.

Four out of six tag SNPs (rs12983047, rs11466345, rs4803455, rs2241716) in TGBF1 were genotyped. The major allele (A) of rs2983047 at the 3’ flanking region of TGBF1 was found to be associated with increased risk of developing radiation induced mucositis with an odd ratio 2.16 (95% confidence interval 1.06-4.41, p=0.0328, chi-square test). No significant difference was found in all tag SNPs of XRCC1 (rs25487, rs231343, rs1001581, rs12611088, rs3213282).

XRCC1 did not show association to radiation-induced mucositis while TGBF1 may be a potential marker for exploring individual variation of radiation sensitivity in normal tissues. The remaining tagSNPs (rs1800469, rs1800470) of TGBF1 will be genotyped for haplotype analysis. Complete analysis of all tag SNPs in TGBF1 may provide support for our hypothesis.

P10. Evolutionary and population genetics, and Genetic epidemiology

P10.01 Investigation of the effect of polymorphic variants of genes ACE and BDKRB2 on hemodynamic parameters of power and strength athletes

E. V. Lekontsev, V. P. Pushkarov, V. Y. Vishnev, D. A. Dyatlov, L. M. Kuklov; Ural State University of Physical Culture, Chelyabinsk, Russian Federation.

In the course of the experiment we tried to study the functional state of central and peripheral hemodynamics (noninvasive tetrapolar impedance cardiometry) and the speed and power modes do not realize their “genetic potential”. The study can make a preliminary conclusion that the athletes with genotypes ACE*D/D and BDKRB2*+9/+9, more efficient at high loads and moderate power. And in the types of endurance -6 (total pepefericheskoe resistance) (p = 0,039986) compared with the athletes with genotype ACE*0/- and BDKRB2*-9/-9 statistically significant increase in the rate AfPG (amplitude photoplethysmogram) (p = 0,044709), reduction in vivo (stroke volume) (p = 0,031834) and the speed and power modes do not realize their “genetic potential”.

P10.02 Differential selection for the 3.7-type and 4.2-type single alpha-globin gene deletions within the same population

S. S. Chong1,2,3, Z. Yap1, K. Sun2, C. R. L. Teo1, A. S. C. Tan1,2; 1National University of Singapore, Singapore, Singapore, 2National University Health System, Singapore, Singapore, 3National University Hospital, Singapore, Singapore, 4University College London, London, London, United Kingdom, 5Nanyang Technological University, Singapore, Singapore.

The complete haplotype of the non deleted 22q11.2 region was created using approximately 3500 unique variant sites (including on average 16 non-synonymous sites per sample). A candidate region that showed allele-specific enrichment in VCFS patients with schizophrenia was identified. Validation with an independent sample is ongoing. This study suggests that the remaining hemizygous region in microdeletion syndromes could be a further risk determinant for certain variable phenotypes of such syndromes.
Since the 1950s, the relationship between high carrier rates for α- and β-thalassemia mutations and selective survival advantage in tropical and sub-tropical "malarial belt" regions has been well established. Mechanistically, the ααα- and ααβ-α-globin single gene deletions arise from non-allelic recombination between the homologous α1- and α2-globin genes during meiosis, with concomitant production of reciprocal ααα- and ααβα-α-triplicated alleles, respectively. A characteristic signature of positive selection for the ααα- deletion has been its significantly higher frequency compared to its reciprocal ααβα- allele frequency within the same population. Much less is known about the relative frequencies of the ααα- and ααβα-α-crossover alleles. Using simple, multiplex PCR strategies, we genotyped 1,285 meiosis, with concomitant production of reciprocal ααα- and ααβα-α-triplications. The frequency of the ααα- deletion was significantly higher than its reciprocal ααβα- triplication, consistent with the hypothesis of positive selection for ααα- in malarial endemic regions. In marked contrast, there was no significant difference between the ααα- and reciprocal ααβα- allele frequencies in the same population groups, suggesting an absence of positive selection for the ααα- allele. Similar frequencies of the ααβα- and ααβα-α-triplicated alleles suggest negligible difference in crossover frequencies at the ~1.3kb X-homology and ~1.6kb Z-homology boxes. The factor(s) underlying preferential positive selection for the ααα- allele but not for the ααα- allele, within the same population groups, merits further investigation.

P10.03

Ancestry Informative Markers Set in Brazilian Amerindians and Ancestry Estimates in Brazilian Quilombo Remnant Communities

C. E. V. Wiezel1, M. R. Luizão1, M. M. B. Sant’Anna1, R. Abal-Sanudo1, I. R. Sousa2, V. C. K. M. N.2, C. T. Mendes-Junior1, A. L. Simões1
1FacMedicina Ribeirão Preto, Unv. São Paulo, Ribeirão PretoSP, Brazil; 2State University of Santa Cruz, Santa Cruz(BA), Brazil; 3State University of Bahia, Salvador (BA), Brazil; 4Dep Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, Florianopolis(SC), Brazil; 5Dep Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis(SC), Brazil; 6Dep Quimica, Faculidade de Filosofia Ciências e Letras de Ribeirão Preto, Unv. São Paulo, Ribeirão Preto(SP), Brazil.

Individual and population ancestry can be estimated by AIMS (ancestry informative markers with high allele frequency differentials between founder populations). Ancestry estimates of Brazilian population depend on the knowledge of the frequencies of genetic markers in the three founder populations (Portuguese, Amerindian and African). The main objective of this study is to determine the frequencies for 24 AIMS (FY, RB, LPL, AT3, Sb19.3, APO, PV92, CKMM, DRD2, MID93, MID57, MID154, MID187, TSC, DRD2TAQ1, OCA, WI-161587, WI-11153, GC1.1F, GC1.5W, WI-17163, WI-14319, WI-7423) in Amerindians for use in estimates of ancestry in three Brazilian population samples (Teresina, Jequié and São Paulo) and in four (Mimbo, Sítio Velho, Gaucinha and São Gonçalo) quilombo remnant communities (Brazilian ancestry areas founded by fugitive slaves 150-200 years ago). The 24-AIMS were sufficient for an adequate discrimination among the considered ancestral populations. All ancestry estimates were tri-hybrid. African estimates ranged from 45.1% (Sítio Velho) to 68.7% (Gaucinha). Mimbo, Sítio Velho and Gaucinha showed a higher African contribution in comparison with São Gonçalo (15.5%, 33.8%, 14.3% and 3.5%, respectively). A higher European contribution was observed in urban populations from different Brazilian regions (Northeast or Southeast). This finding was expected and had been previously reported by mtDNA, Y and autosomal AIMS. Population differentiation (FST) showed significant differences among all quilombo remnants. Our findings could reveal the different founding histories of the quilombo remnants studied, as well as generate reliable ancestry estimates of urban populations from different Brazilian regions.

Support: FAPEP, CNPq.

P10.04

Analysis of C9orf72 repeat expansion in an Italian cohort with amyotrophic lateral sclerosis

C. Tiloca1, D. Calabria2, N. Ticozzi1, C. Colombo1, C. Morelli3, E. Onest1, F. Verde1, A. Calò2, G. Chiatante1
1Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; 2Department of Neurological Sciences, “Dino Ferrari” Center, University degli Studi di Milano, Milan, Italy.

Amyotrophic Lateral Sclerosis (ALS) is an adult-onset and fatal neurodegenerative disease characterized by the selective loss of upper and lower motor neurons. At present, the most common genetic cause of ALS (~10% of patients are classified as familial forms (FALS)) is an AATTT hexanucleotide expansion (C9orf72). This C9orf72 gene is known as a major cause of ALS (23-47%) and fronto-temporal dementia (FTD) (1-2-29%), which can often occur together with ALS in the same individual or familial pedigree.

We assessed the frequency of the C9orf72 repeat expansion in a large cohort of ALS Italian patients, including 35 FALS and 487 SALS cases. The genetic analysis was performed by a two-step protocol including a standard PCR with primers external to the expanded region and a fluorescent repeat-primed PCR. In our cohort, 20% of FALS (7/35) and 4.1% of SALS (20/487) patients carried a pathogenic repeat expansion (more than 40 repeats). We also observed C9orf72 repeat expansion in 0.2% (1/382) of controls included in the study.

Survival time was shorter in patients carrying the repeat expansion and a prevalence of bulbar onset was also observed. Our findings suggest that C9orf72 hexanucleotide repeat expansion can be considered the most common cause of SALS in Italian population with large impact even on sporadic forms, according to previous studies conducted on cohorts of different origin.

P10.05

Molecular characterization of the ancestral centromere of chromosome 2

G. Chiatante1, A. Calò1, F. Verde1
1Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy

Human chromosome 2 is the product of a head-to-head fusion of two acrocentric ancestral chromosomes, Iip and Iiq, which remained separated in chimpanzee and gorilla. The dicentric chromosome originated from the fusion reached stability by inactivating one centromere corresponding to the Iiq, through the loss of alphoid DNA, via poorly understood mechanisms. Unlike the fusion point, the ancestral centromere mapping at q2q1.1-2q2.1 has been poorly investigated.

Here we performed comparative in silico and molecular analyses in chimpanzee, gorilla, orangutan and macaque genomes in order to shed light on the genomic organization of the 2.1 Mb region encompassing the ancestral centromere. This approach allowed us to track precisely the evolutionary history of the ancient centromere and the corresponding pericentromeric region, whose assembly is still complicated by segmental duplications. In particular our data invalidated the hypothesis of the neocentromere formation occurred in macaque lineage and confirmed the pericentric inversion occurred in the common ancestor of human, chimpanzee and gorilla. In this study we provide the patterns of segmentally duplicated regions among chromosomes for each analyzed species and propose a two-steps model to explain the rearrangements occurred in the region flanking the ancestral centromere, highlighting species-specific deletions and duplications.

P10.06

Using ancestry-informative markers to identify fine structure across 15 populations of European origin.

L. M. Huckins1, V. Boraska1, C. Franklin1, J. Floyd, Genetics Consortium of Anorexia Nervosa, Welcome Trust Case Control Consortium, P. Sullivan1, D. Collier1, C. Bulik2, C. Tyler-Smith1, E. Zagonis1, I. Tschumioua1
1Wellcome Trust Sanger Institute, Hinxton, United Kingdom; 2University of Split, Split, Croatia; 3University of North Carolina, Chapel Hill, NC, United States; 4King’s College, London, United Kingdom.

The Wellcome Trust Case Control Consortium 3 anorexia nervosa genome-wide association scan includes 2,907 cases from 15 different populations of European origin genotyped on the Illumina 670k chip (UK, Dutch, Swedish, Finnish, German, Austrian, Polish, Northern Italian, Southern Italian, Greek, USA, Canadian, Czech, French, Norwegian). This offers a unique opportunity to study genome variation within and across these populations, and establish genomic relationships with other publicly available populations of European ancestry. We have examined the allele frequency spectrum of common variants, and compared genomic characteristics across these populations and also with populations from the 1000 Genomes Project. It is usual to identify population structure in such studies using only common variants with minor allele frequency (MAF)>5%; we find that this may result in highly informative SNPs being discarded, and suggest that instead all SNPs with MAF>1% should be used. We have established informative axes of variation identified via principal component analysis and highlight important features of the genetic structure of diverse European-descent populations (November et al., 2008), some studied for the first time at this scale. We identified ancestry-informative markers using a method novel to the human genetics field, which may correct for sample size bias in smaller population sizes (following the bias-corrected entropy estimator proposed by Panzeri and Treves, 2007) and which allows for more efficient use of these SNPs.
Five novel mutations in the GDAP1 associated with Charcot-Marie-Tooth disease in Iranian families

E. Mohammadi Pargoo1,2, G. Ayari3, S. Hassan Tonekaboni1, P. Vaghmaei4, M. Houshmand5;
1Science and research branch of Islamic Azad University, Tehran, Islamic Republic of Iran, 2Department of genetics Bucharest, Bucharest, Romania, 3Department of Pathophysiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania, 4National Institute of Medical Genetics Bucharest, Bucharest, Romania, 5Max-Planck-Institute für Molecular Genetics, Berlin, Germany.

Abstract: GDAP1 gene, is expressed in the peripheral nervous system and is involved in the maintenance of axon integrity. Mutations in GDAP1 gene have been associated with autosomal recessive neuropathy resulting in either demyelinating CMT4A or axonal neuropathy with vocal cord paresis. Total genomic DNA was extracted from whole blood of the patients and their family members by using standard procedures. PCR-sequencing method was used to analyze the whole coding regions of the GDAP1 gene in all samples. Five novel mutations (c.100_101insT; c.820_830delTG; c.254C>T (p.P85C); c.102G>C (p.S34F) and IVS5+25C>T) were identified in GDAP1 gene. In order to show that these found novel mutations are pathogenetic normal controls were sequenced for all of these genes for whom no such mutations were found. We are going to discuss about clinical and molecular aspects of our patients. We need further investigation to prove these mutations as founder effect in Iranian population.

Distribution of eleven autosomal markers in middle age population from South Romania

D. Cinompoe1,2, N. Pandur1,2, S. Sandule1,2, P. Apostol1, M. Toma1,2, M. Stavarache1,2, I. Rada1, C. Serfucincan1, A. Craciun1, A. D. Ion1,2
1Department of genetics Bucharest, Bucharest, Romania, 2Department of Pathophysiology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

Abstract: The South part of the Romanian population presents minor cultural and linguistic differences but isn’t well studied at the genetic level. In the present study we have chosen the distribution of eleven common di-allelic markers associated with some common human diseases in healthy population living in South Romania. Materials and methods. Healthy Caucasian subjects (n=648, 18-66 years old, M/W: 1/1) living in Bucharest and eight districts from South Romania were selected for this study. PCR or PCR-RFLP protocols were used for genotyping rs1801133, rs3767140, rs2229569, rs1805807, rs5186, rs3842752, rs6808, rs2225670, rs4649994, rs1800469 and eNOS ID polymorphisms. PowerMarker3.25 and Arlequin3.11 software were used to calculate summary statistics and to compare genotypes distribution between districts. Results. No deviations from Hardy-Weinberg equilibrium were observed. The polymorphisms were similar represented in both gender. The observed heterozygosity was found to be in the range of 0.31 (rs2229569) and 0.49 (rs2225670). Average PIC was 0.31 and the overall theta was 0.003. The distribution of genotypes, theta, PIC and gene diversity indicated no significant differentiation of analyzed population. In age grouped subjects the T allele of rs1801133 increases progressively from subjects of 59-66 years to those with 18-26 years (21.7% vs 41%, p=0.003).

Conclusions. On the bases of eleven di-allelic markers we found no significant differentiation of Caucasian population from South Romania. Acknowledgements. This paper is supported by the Sectoral Operational Programme Human Resources Development, financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/189/1.5/S/44109.

Carrier frequency of the splice site mutation IVS1+1G>A in GJB2 gene in several indigenous populations of Eastern Siberia

N. A. Barashkov1,2, L. U. Dzhemileva3,4, L. P. Pesakh1,2, A. V. Solovier1, E. E. Fedorov1, S. A. Fedorova1, E. K. Kharitonova1,2
1Yakut Scientific Centre of Complex Medical Problems, Siberian Branch of the Russian Academy of Medical Sciences, Yakutsk, Russian Federation, 2M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation, 3Institute of Biochemistry and Genetics, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation, 4Republican Hospital #1 - National Medical Centre, Ministry of Public Health of the Sakha Republic, Yakutsk, Russian Federation, 5Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.

Abstract: Extremely high prevalence of splice site mutation IVS1+1G>A in GJB2 gene, observed in homogenous state in Yakut deaf patients, allowed us to propose that IVS1+1G>A may also be a common pathogenic mutation among other North-East Asians. However, Siberian populations are significantly distinguished by anthropologic and linguistic affiliations, as well as by their population genetic history. We studied the IVS1+1G>A carrier frequency in several indigenous populations of Eastern Siberia (Eastern Siberia): Turkic-speaking Yakuts and Dolgans, Tungusic-speaking Evenks and Evens, and Yukaghir with uncertain (Paleo-Asian or Uralic) linguistic affiliation, and also Slavic-speaking Russians inhabiting the Sakha Republic. Among 423 individuals with normal hearing, originated from investigated populations,
mutation IVS1+1G>A in heterozygous state was found in 20 subjects: Yakuts (14), Dolgans (2), Evenks (3), and Evens (1), and this mutation was absent in Yukaghirs and Russians. Carrier frequency of IVS1+1G>A is apparently associated with specific linguistic affiliation of studied ethnic groups. Higher frequency of IVS1+1G>A mutation was found in Tungusic-speaking Yakuts (11.7%) and Dolgans (4.7%). Lower rate of this mutation was found in Tungusic-speaking Evens (3.8%) and Evens (2.0%), and this mutation was not found at all in Uralic or Paleo-Asiatic-speaking Yakuhkirs and Slavic-speaking Russians. Patterns of the IVS1+1G>A mutation prevalence among the studied populations, in general, correspond to the data from mtDNA and Y chromosome lineages studies in Sakha Republic populations that provides evidence of most reliable distinctions between Yakut’s and Yakukhir’s gene pools.

The study was supported by grants of RFBR (11-04-01221-a) and FP (C2.740.1.07.01, 16.740.11.0190, 16.740.11.0346).

P10.12
A bi-directional Mendelian Randomization analysis in 42,024 individuals of European ancestry identifies a causal relationship between obesity and low vitamin D status

K. S. Vimalesswaran1, D. J. Berry2, M. R. Jervelins1,1,1, J. C. Whittaker3,4, A. D. Hingorani3,5, E. Hopyinen, for the D-CarDia collaboration; 1MRC Centre of Epidemiology for Child Health, UCL Institute of Child Health, London, United Kingdom, 2Institute of Health Sciences and Biocenter Oulu, University of Oulu, Oulu, Finland, 3Department of Biostatistics and Epidemiology, School of Public Health, Mailman School of Public Health, Columbia University, New York, USA, 4Charity Institute for Environmental Health, Imperial College, Faculty of Medicine, London, United Kingdom, 5Department of Children, Young People and Families, National Institute for Health and Welfare, Oulu, Finland, 6Department of Epidemiology and Population Health, London School of Hygiene and Tropical medicine, London, United Kingdom, 7Genetic Epidemiology Group, Department of Epidemiology and Public Health and the Centre for Clinical Pharmacology, University College London, London, United Kingdom.

25-hydroxyvitamin D [25(OH)D] is associated with body mass index (BMI) but the direction of causality is uncertain. We explored the causal direction of the relationship between obesity and vitamin D using genetic markers as instrumental variables in bidirectional Mendelian Randomization analysis. We tested associations of 12 obesity-related SNPs with BMI (for validation) and with 25(OH)D (for causal association) individually and in combination as an allelic score in 42,024 individuals based on a meta-analysis from 21 studies. Also, we examined associations of four vitamin D-related SNPs with BMI (validation) and with 25(OH)D (association) individually and in combination using separate allele scores for SNPs involved in either synthesis or metabolism of 25(OH)D. Each 1 kg/m2 higher BMI was associated with 1.15% lower 25(OH)D. The BMI and 25(OH)D scores showed strong associations with BMI (P = 6.30x10−10 and 25(OH)D (synthesis, P = 8.07x10−10; metabolism, P = 1.07x10−11), respectively. The BMI score was associated with a lower 25(OH)D (P = 0.004), but no association was seen between 25(OH)D scores and BMI (P = 0.08). A 10% increase in genetically instrumented BMI was associated with a 4.4% lower 25(OH)D (P = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from GIANT consortium (n = 123,864, P = 0.57 for 25(OH)D scores). Based on a bidirectional genetic approach that limits its confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while there was no evidence that lower 25(OH)D contributes to elevated BMI. Hence, population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency.

P10.13
Evolutionary aspects of centriole associated proteins

A. Mikelkaa1, A. Sánter1, R. Mikelkaa2, P. Toomik1, I. Mikelkaa1, E. Juronen1; 1Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia, 2Labeks Ltd, Tartu, Estonia, 3Department of Food Science and Hygiene, Estonian University of Life Sciences, Tartu, Estonia, 4Institute of General and Molecular Pathology, University of Tartu, Tartu, Estonia.

Introduction. We have reported earlier the centriole staining with the anti- trimethyl monoclonal antibody, named MAb Tit1 SH1.11 (Mikelkra et al., 2010). This antibody was developed using the synthetic peptide S-ANKYQGEPL-LESDSVWAK-C corresponding to an amino acid sequence in the A-band of the titin molecule as immunogen. Now we have further studied the binding of the antigen of MAb Tit1 SH1.11 (titin) with centrioles in association with some other relevant proteins and in connection with the evolution of titin molecule.

Results. We have restricted the epitope of MAb Tit1 SH1.11 by subpeptide mapping to a hexapeptide. According to the data in protein databases this amino acid sequence is located in the COOH-terminus of several different Fn3 domains in the A-band of titin molecule both in human and several other organisms. Our immunohisto- and cytochemical studies with MAb Tit1 SH1.11 in human, mice and zebrafish showed a striated staining pattern in muscle cells and also staining of centrioles, cytoplasm and nuclei in non-muscle cells.

Conclusions. The data prove our previous findings that titin has in addition to its well known roles in muscle cells also an important role in non-muscle cells as a centriole associated protein, and this phenomenon is highly conserved in the evolution. Acknowledgements. This work was partly supported by target financing SF 0188096/08 of the Estonian Ministry of Science.

P10.14
Genetic epidemiology of Charcot-Marie-Tooth disease in the Cypriot population

P. Nicolau1, E. Zampa-Papunicolaou1, P. Routou1, K. Kleopa, A. Georgithia, T. Kyriakides, K. Christodoulou; 1The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.

Charcot-Marie-Tooth disease (CMT) or hereditary motor and sensory neuropathy (HMSN) is one of the most common inherited neuromuscular disorders, affecting approximately 1 in 2,500 people. According to electrophysiological criteria, HMSN is classified into two main subgroups: demyelinating type (HMSN or CMT1), characterized by decreased motor nerve conduction velocities (MNCV), and axonal type (HMSN II or CMT2) that is characterized by normal or slightly reduced MNCV(s). Further subdivisions within those two types are based on the inheritance pattern and the results of molecular genetic investigations. Inheritance in CMT can be autosomal dominant (AD), X-linked, or autosomal recessive (AR). CMT is associated with more than 30 loci and about 25 causative genes are thus far known. We performed clinical, neuropathological and molecular genetic studies in thirty-six Cypriot families with CMT. The molecular genetic investigation revealed thirteen familial cases of the most frequent mutation, the MPZ22 duplication, six families with the S22F point mutation in the PMP22 gene, four families with CX32 gene mutations, two families with MPZ gene mutations, two families with MFS2 gene mutations and one family with a GDAPI gene mutation. Seven families were excluded from the common CMT genes and are still pending molecular genetic diagnosis and one family is under further investigation for a candidate novel MNC2 mutation. In conclusion, the PMP22 duplication which is the most frequent CMT mutation worldwide is also the most frequent CMT mutation in the Cypriot population. Five out of the eight other mutations are novel, not reported in other populations.

P10.15
Marriage and population genetic structure in southern Morocco

H. Hami1, L. Sbi1, A. Mohbati, A. Soulanymani; Laboratory of Genetic and Biometry, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.

The choice of spouse has direct consequences on the distribution, structure and heterogeneity of a population’s gene heritage. The aim of this study is to evaluate geographical endogamy rate among the population of Souss-Massa-Drâa region in southern Morocco in order to estimate the degree of reproductive isolation (or openness) of the population studied.

The study was conducted within a randomly selected sample of Souss-Massa-Drâa population. Various types of endogamous marriage were measured, based on the place of birth, place of residence and geographical origin of the spouses and their parents (600 couples).

The results show a strong tendency towards geographical endogamy of nuptiality (78%). This tendency is important among couples within parental generation. The results of intergenerational comparisons show decrease in endogamy rates from parental generation to current generation. However, this decrease is not statistically significant (p>0.05).

The homogamy index method confirms these results and indicates the importance of this marital behavior among the younger generation.

P10.16
Evolutionary dynamics of the primate LRBCC7 gene family

G. Giannuzzi1, P. Siswar2, M. Malagi1, C. Belkens1, T. Marques-Bonet3, N. NISc Comparative Sequencing Program4, J. C. Mulli5, M. Venturas6, E. Eichler7, 1Department of Biology, University of Bari, Bari, Italy, 2Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, United States, 3Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey, 4Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland, 5Institut de Biologia Evolutiva, Universitat Pompeu Fabra (IEB CISC-IUFF), Barcelona, Spain, 6Genome Technology Brigham and KO Intramural Sequencing Center (NSC), National Human Genome Research Institute, Bethesda, MD, United States, 7Howard Hughes Medical Institute, University of Washington, Seattle, WA, United States.

Core duplicons in the human genome represent ancestral duplication modu-
les shared by the majority of intrachromosomal duplication blocks within a given chromosome. These cores are associated with the emergence of novel gene families in the hominoid lineage but their genomic organization and gene characterization among other primates is largely unknown. Here, we investigate the expression and potential function of the core duplication on chromosome 17 that led to the expansion of LRRC37 during primate evolution. A comparison of the LRRC37 gene family organization in human, orangutan, macaque, marmoset, and lemur genomes shows the presence of both orthologous and species-specific genes in all primate lineages. Expression profiling in mouse, macaque, and human tissues reveals that the ancestral expression of LRRC37 was restricted exclusively to the testis. In the human lineage, the pattern of LRRC37 became increasingly broader, with significantly higher levels of expression in the cerebellum and thymus, and showed a remarkable diversity of alternative splice forms. Transfection studies indicate overexpression of the product can induce filipodia formation in HeLa cells. Subcellular localization of FLAG-tagged recombinant LRRC37 protein indicates that the protein product is secreted after cleavage of a transmembrane precursor.

P10.17 Deep analysis of human single nucleotide polymorphisms in the Cytochrome P450 superfamily

P. Polimanti¹, S. Piacentini², D. Manfellotto², M. Fuciarelli³;
¹Department of Biology, University of Rome, Rome, Italy; ²Center of Clinical Pathophysiology, “San Giovanni Calibita” Fatebenefratelli Hospital - AFA, Rome, Italy.

Cytochrome P450 (CYP450) superfamily comprises enzymes involved in the cytochrome electron transfer chains. Several studies highlighted that single nucleotide polymorphisms (SNPs) in human CYP450 genes affect disease risk and drug efficacy. Furthermore, CYP450 genes showed a significant variability in the human populations, suggesting that the investigation of inter-ethnic differences in CYP450 genes may be useful to understand individual gene specific properties and then to provide personalized and optimal clinical therapies. This study deeply analyses SNPs in the fifty-seven CYP450 genes, investigating the differences in human populations and evaluating the functional aspect of the variants.

Using the HGDP and HapMap databases, we analyzed the genetic differences of 449 SNPs in the fifty-seven CYP450 genes evaluating the data from 62 human populations. The HapMap Linkage Disequilibrium (LD) data were used to examine the LD in CYP450 genes: 1,033 SNPs were in perfect LD (r²=1) with the previously investigated SNPs. Bioinformatic analyses were performed to predict the functional impact of the CYP450 SNPs.

The analyses of SNPs among human populations highlighted that ethnicity is an influencing factor of CYP450 variability. Considering the functional impact of the variants, we provided an analysis of the functional inter-ethnic variation of CYP450 superfamily. Furthermore, we also considered some SNPs with a high functional impact in order to explain inter-ethnic differences in various health aspects.

In conclusion, our study supplies a deep investigation of CYP450 superfamily highlighting how the population demographic history affects human variability of CYP450 genes and how this variation influences human health.

P10.18 Population analysis of deafness in Mexico in the last century: effects of the genetic background

F. Loaeza-Becerral¹, M. D. Rivera-Vega¹, S. A. Cuevas-Covarrubias²;
¹Facultad de Medicina UMSNH, Genetica, Hospital General de Mexico, Fac Medicina, UNAM, Mexico, D.F., Mexico; ²Genetica, Hospital General de Mexico, Mexico, D.F., Mexico.

BACKGROUND: Deafness in Mexico is currently the 2nd leading cause of disability. Internal migration and Mexican revolution caused population and geographical redistribution of this disability. OBJECTIVE: To determine geographical distribution of hearing loss focused to congenital sensorineural hearing impairment. METHODS: Analysis of the Mexican population (1900 to 2010) about deaf people and their geographical distribution. RESULTS: The proportional increasing in general population and people with hearing loss between 1900 and 2010 was 730.87% and 5,450.93% respectively. The Mexican Revolution produced a demographic declination that required nearly three decades to return to the previous level. Nevertheless, deafness showed a few changes with persistence in some areas. DISCUSSION: Genetic composition, founder effects and genetic drifts seem to have decisive influence on the persistence of such problems where the inheritance is recognized. More detailed studies are necessary to clarify these findings.

P10.19 Mitochondrial DNA mutations are not a common cause of non-syndromic hearing loss in Republic of Macedonia

E. Sukarova Stefanovska¹, M. Davceva Cakovic³, I. Filipov², D. Ponce-Karanfilova³;
¹Macedonian Academy of Science and Arts, Research Center for Genetic Engineering and Biotechnology, Skopje, The Former Yugoslav Republic of Macedonia; ²University Clinic of Otorhinolaryngology, Skopje, The Former Yugoslav Republic of Macedonia.

Mutations in mitochondrial DNA (mtDNA) are found to contribute to sensorineural deafness, including both syndromic and non-syndromic forms. Hot spot regions for deafness mutations are the MTRNR1 gene, encoding the 12S rRNA and the MTTS1 gene, encoding the tRNA for Ser(UCN). Nuclearide changes are observed with a variable frequency among different populations of deaf persons. Among the known mtDNA mutations, the A1555G is the most common genetic cause of deafness, with variable frequency of 0.4 to 5.4%, also found both in non-syndromic autosomal recessive hearing loss (SNHL) patients and among healthy individuals (SNHL). The aim of this study was to determine the presence and frequency of the most common mtDNA mutations among 130 Macedonian patients with nonsyndromic hearing loss. A SNPshot analysis for screening of the five mitochondrial DNA mutations associated with deafness (A1827G, 961delT+Cn, T1095C, G1494T and A1555G) was performed. None of analyzed deafness-associated mutations were identified in the studied patients. Additionally MTRNR1 gene of 1061bp with only two SNPs was sequenced in order to detect other variants that could influence the pathologic effect of the GJB2 mutation. Mutational screening revealed the presence of one potentially pathogenic substitution 9691G in one patient and a G709A polymorphism in two patients. An unreported variant G1303A was found in a patient with only GJB2 mutation 35delG. In conclusion, our result suggests that mitochondrial DNA mutations do not represent a significant risk factor for sensorineural deafness in Macedonian population.

P10.20 APCS and RB4: possible modifiers of age at onset in familial amyloid polyneuropathy (FAP ATTRV30M)

D. Santos¹, T. Coelho¹, J. L. Neto¹, J. Pinto-Basto², J. Sequeiros³, I. Alonso³, L. Almada³, C. Lemos³, A. Sousa³;
¹UnIGENe, IBMC - Universidade do Porto, Porto, Portugal; ²Unidade Clínica de Parapamidoles, CHP, Porto, Portugal, ³ICBAS - Universidade do Porto, Porto, Portugal.

Familial amyloid neuropathy (FAP ATTRV30M) is an AD inherited disease, due to a point mutation in the TTR gene. Remarkable differences in mean age-at-onset (AO) have been described in different clusters, including within Portuguese population. Among Portuguese families, FAP shows a wide variation in AO (17-82 yrs) and asymptomatic carriers aged 95 can be found; this variation is also often observed between generations.

We previously studied in Portuguese patients (Soares et al, 2005) found a modifier effect in AO for APCS and RB4, when comparing classic and late-onset patients with controls. However, variation between generations was not taken into account.

Our aim was to investigate if these two candidate-genes have a modifier effect in AO variation from parent to offspring. We collected a sample of 36 FAP families with at least 2 generations. We selected 5 tagging SNPs and also the 5 SNPs previously described. These SNPs were analysed by SNAPSHOT and RFLP, respectively. Samples’ genotyping is currently underway and results are being analyzed with the GeneMapper v4.0 software.

Preliminary results in 5 FAP families showed that although for RB4 we found different genotype’s frequencies in patients for rs7079946 and rs17484721 from HapMap, no striking differences were found in order to detect other variants that could influence the pathologic effect of the GJB2 mutation. Our aim was to investigate if these two candidate-genes have a modifier effect in AO variation from parent to offspring.

We collected a sample of 36 FAP families with at least 2 generations. We selected 5 tagging SNPs and also the 5 SNPs previously described. These SNPs were analysed by SNAPSHOT and RFLP, respectively. Samples’ genotyping is currently underway and results are being analyzed with the GeneMapper v4.0 software.

P10.21 Variability in age-at-onset of familial amyloid polyneuropathy (FAP ATTRV30M): an extended haplotype effect

C. Lemos¹, T. Coelho¹, D. Santos³, J. L. Neto¹, M. Alves-Ferreira¹, J. Pinto-Basto³, J. Sequeiros³, I. Alonso³, A. Sousa³;
¹UnIGENe, IBMC - Univ.Porto, Porto, Portugal, ²Unidade Clínica de Parapamidoles, CHP, Porto, Portugal, ³ICBAS - Universidade do Porto, Porto, Portugal.

FAP ATTRV30M is an AD systemic amyloidosis, due to a point mutation in the transthyretin (TTR) gene. A wider variability in age-at-onset (AO) has been uncovered, including among Portuguese patients [17-82 yrs]. Early (less than 40) and late-onset (greater than 50) cases are not separate enti-
ties, often coexisting in the same family, with offspring showing anticipat-
on - a much earlier A0 than their affected parent. The ‘protection’ seeming
to exist in late-onset cases may be lost in just one generation, raising
the hypothesis of a closely linked modifier. Therefore, our aim is to identify ge-
netic modifiers closely linked to the TTR locus that may in part explain the
observed A0 variability.

Haplotype analysis is on-going in 100 families, using intragenic SNPs and
flanking STRs for extended haplotypes. Fifteen tagging SNPs were selected based on a data dump from the HapMap Project and using HapMap v4.1, with a minor allele frequency (MAF) of 0.1% and covering 6.0 Kb around the TTR locus. SNP genotyping is currently underway by SNAPSHOT using a multiplex approach. Eight microsatellite markers were also selected, encompassing 11.4 Mb. STRs genotyping is being performed by PCR, using fluorescent-labeled primer pairs and genotypes is being determined using GeneMapper v4.0 software.

In a preliminary group of five families analyzed so far, no differences were found in the disease extended haplotypes. In the total sample of 100 fam-
ilies, we expect to find some variants or regions that may confer protection to some TTR V30M carriers (late-onset patients or aged asymptomatic car-
rriers).

P10.24

How contemporary human reproductive behaviours influence the
role of fertility-related genes: the example of the P53 gene

R. Coelho1,2, T. Coelho1,4; 1,2, T. Coelho3

1Department of Medical Genetic, Faculty of Medicine, Tabriz university of Medical
Science, Tabriz, Islamic Republic of Iran; 2Department of Medical Genetic, Tabriz
university of Medical Science, Tabriz, Islamic Republic of Iran; 3Department of
agronomy; 4Tabriz Genetic Science,, Tabriz, Islamic Republic of Iran,

The spectrum of Familial Mediterranean Fever (MEFV) Mutations in the North-west of Iran. FMF is an auto-inflammatory autosomal recessive disorder character-
ized by recurrent and self-limited attacks of fever, abdominal pain, synovi-
tis and pleuritis which are caused by altered pyrin due to a mutated MEFV
gene. The most severe complication is amyloidosis, which can ultimately lead to renal failure. FMF is predominantly found among the Mediterranean population, as well as Armenians, Turks, Arabs and Jews. The MEFV gene majorities of mutations found on exons 2, 3 and 10. To date, 180 mutations and polymorphisms have been reported with varying prevalence according to the population studied. Our aim was to identify the distribution and the frequency of the MEFV gene mutations in FMF patients in the North-west of Iran. Five hundred unrelated patients with clinical manifestation of FMF were screened for MEFV mutations in exons 2, 3, 5 and 10 using direct sequenc-
ing. The most frequent mutation, M694V, represented only 26.2% of the alleles examined, followed by E148Q in 24.75%, V726A in 11.25% and M680I in 10.75%, respectively. Two novel missense mutations, P313H in 11.4% and P1315S in 5.06%, were found in heterozygous state in 25 cases. In conclusion molecular analysis rather than clinical symptoms to diagno-
sis of FMF patient is very trustful therefore to know variations in mutation frequency according to regions of Iran lead to early and correct diagnosis of patient and prevention of amyloidosis with commence lifelong prophylactic treatment of affected individuals with colchicine.

P10.23

The use of survival analysis to estimate age-at-onset of familial
amyloid polyneuropathy (FAPATTTRV30M) highlights gender
differences in early-onset (p<.04) patients but fails to detect in late-
onset (p=.50) patients

A. Souda1, T. Coelho2, C. Lemos2, D. Mendonça1

1ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Univ. Porto, Porto, Portugal, 2IBMC
-Instituto de Biologia Molecular e Celular, Porto, Portugal, Centro Hospitalar do Porto
(CiP), Porto, Portugal, “ISUPP - Instituto de Saúde Pública, Univ. Porto, Porto, Portugal.

RAP (ATIRV30M) is an AD systemic amyloidosis due to a point mutation in the transthyretin (TTR) gene. First described in Portugal by Andrade (1952) as a disease of young adults (p<.040rs), Portuguese patients have been char-
acterized by early onset (35.1), unlike patients from Sweden (56.7) and Bae-
arlacios Islands (45.7) who bear the same mutation. However, late-onset
patients (p>.50) and aged asymptomatic carriers have been increasingly
ascertained.

While in Portuguese series women had later onset than men, the same was not found either in Swedish or Baearlacisc series, what raises interesting questions concerning gender and age-at-onset distribution(s). So far, age-at-onset in Portuguese series has only been analysed using information on patients. For the first time we use survival analysis methods, including in the sample age-at-last-observation of asymptomatic carriers, as censored data. Survival curves of patients and carriers were compared by gender using the log rank test. Our sample consisted of 2424 patients (1283 men) and 433 (144 men) proven asymptomatic carriers regularly followed up by the same group of neurologists.

Conventional t-test for independent samples showed significant differences in mean age-at-onset between men (33.1) and women (37.5) patients (p<0.001), whereas in the asymptomatic group no significant age dif-
fences were found (37.9 vs. 37.1). The rank of survival analysis showed overall different gender distributions and also when considering individuals with onset/age<40yrs. However, for late-onset cases (onset/age>49 yrs), no differences were found. Further studies are necessary to correct for possible confounding factors and better understand if we are in presence of different underlying gender distributions.

P10.25

Functional SHMT1, MTR and MTRR gene variants of folate metabolism
in Roma and average Hungarian population samples

University of Pécs, Clinical Center, Department of Medical Genetics, Pécs, Hungary.

The serine hydroxymethyltransferase 1 (SHMT1), 5-methyltetrahydrofolate-
to-homocysteine methyltransferase (MTR) and 5-methyltetrahydrofolate-
hyomocysteine methyltransferase reductase (MTRR) genes play essential roles in folate metabolism. The aim of the study was to analyze three single nucleotide polymorphisms (rs1979277 in SHMT1, rs1805087 in MTR and rs1801394 in MTRR gene) in the Roma population and to compare the results to the average Hungarian Caucasian population samples. We geno-
typed 293 (113 males, 180 females, mean age 41.7 ± 16.2 years) randomly selected, unrelated Roma subjects from different locations. Pooled DNA of a group of 276 carefully selected, clinically healthy subjects (153 males, 123 females, mean age 37.1 ± 17.7 years) were also studied. The genotypes were analyzed using real-time PCR method. The prevalence of the minor allele A of SHMT1 rs1979277 was 25.9% in the Roma group, and it was 33.5% in the controls (p<0.05), the frequency of the homozgyous AA genotype was 6.10%, while it was 10.5% in the controls. The prevalence of the G allele of MTR rs1805087 was 32.1% in the Roma group and 20.5% in the controls (p<0.05). The frequency of the homozgyous GG genotype was 8.20%, while it was 10.5% in the controls (p<0.05). The frequency of the homozgyous GG genotype was 8.20%, while it was 10.5% in the controls (p<0.05).
it was 19.6% in the controls (p<0.05). All three variants between the Roma and the Hungarian Caucasian population significant difference was found.

P10.26 Gene x Environment interactions and their impact on the stress response system as studied in space-flight analogs
P. De Boever1*, N. Goswami2, P. Roma3, H. Hinghofer-Szalkay4, S. Schneider5, G. Schoeters6*
1Efhem Institute for Technological Research, Mol, Belgium, 2Hasselt University, Diepenbeek, Belgium, 3Medical University of Graz, Graz, Austria, 4Johns Hopkins University, Baltimore, MD, United States, 5German Sport University Cologne, Cologne, Germany, 6University of Antwerp, Antwerp, Belgium.

Environmental and social cues activate the stress response system and stimulate a series of adaptation processes along the hypothalamus-pituitary-adrenal axis (HPA). An overload of the HPA can lead to decreased well-being and is associated to functional illnesses. We are studying under well-controlled conditions how gene x environment interactions impinge on the stress response system. For this purpose, we are using space flight analogs (SFA) to investigate the effect of gravitational unloading, isolation and confinement on healthy individuals. The conditions of SFA are known to induce stress, which can lead to cardiovascular, muscular, immunological, and behavioral problems. SFA are important to identify the health effects astronauts can experience during stay in low Earth orbit or during space exploration, and results obtained from this research has also direct relevance for a better understanding of the impact of social isolation, sedentary lifestyle, aging, and osteoporosis.

We present an overview of the use of these unique SFA for studying gene x environment interactions. More specifically, we will focus on our ongoing studies in the Antarctic station Concordia. Using an approach of integrated physiology we are studying the impact of isolation and confinement on health. We apply behavioral assays and questionnaires, physiological analyses (blood pressure, and heart rate variability), stress physiology (salivary cortisol and alpha-amylase), neurochemical markers of social affiliation and stability (oxytocin and testosterone), and gene expression changes in blood and saliva. Genotypes associated with HPA reactivity (e.g. brain derived neurotrophic factor, corticotropin-releasing hormone) and human social behavior (e.g. oxytocin) are determined in saliva.

P10.27 The prevalence rates of hereditary disorders in European part of Russia
R. A. Zinchenko1, E. K. Ginet2
1Research Center for Medical Genetics, Moscow, Russian Federation, 2Flemish Institute for Technological Research, Mol, Belgium.

Based on a genetic epidemiological study, the prevalence rates of autosomal dominant (AD), autosomal recessive (AR) and X-linked hereditary disorders (HDs) in 13 regions of European part of Russia (7 ethnic groups) were established: Russian from seven populations, Adygean, Mari, Chuvashes, Udmurt, Bashkirs, Tatars and Udmurts. The size of the investigated populations was more than 3 million inhabitants (about 3000 HDs of OMIM could be identified by this research). Genetic differentiation between populations of different hierarchical levels by estimated load of HDs was established. On the contrary, the differences between the populations by the load of AD and AR diseases appear statistically significant. First, the load of both AD and AR diseases is always 2 times higher in rural populations as compared with that in urban populations. Second, the differences are also seen while comparing the load of the autosomal HDs in various ethnic groups. For example, the load of AD and AR pathology among the Mari, Chuvashes, Bashkirs, Tatars and Udmurts is higher than that among the Russians. The load of AD diseases varied between populations from 1.01 to 15.66 per 1000 persons. The load of AR diseases varied from 0.85 to 6.33. The differences between the populations in their load of X-linked diseases are no significant. Analysing the load of AD and AR diseases varied from 0.85 to 6.33. The differences between the populations of different ethnic origins. For several AD/AR mutations, their origin from appropriate ancestral founder chromosome was shown, approximate estimations of "age" obtained, and presumable regions of their origin outlined. This work presents the results of the carrier frequencies' analysis of the major (for European countries) mutation c.35delG (GJB2 gene) among 2308 healthy individuals from 18 European populations of different ethnic origins: Bashkirs, Tatars, Chuvashes, Udmurts, Komis-Pernyaks, Mordvins, and Russians (the Volga-Ural region of Russia); Byelorussians, Ukrainians (Eastern Europe); Abkhazians, Avars, Cherkessians, and Ingushes (Caucusus); Kazakhs, Uzbeks, Uighurs (Central Asia); and Yakuts, and Altaians (Siberia). The prevalence of the c.35delG mutation in the studied ethnic groups may act as additional evidence for a prospective role of the founder effect in the origin and distribution of this mutation in various populations worldwide.

For the analysis of the haplotypes and the estimation age of the mutation c.35delG in the GJB2 gene, three high-polymorphic microsatellite markers were used: D13S175, D13S141, and D13S143, flanking the DFNB1 locus, which contains the GJB2 gene. The haplotype analysis of chromosomes with the c.35delG mutation in patients with nonsyndromic sensorineural hearing loss (N=112) and in population samples (N=358) permitted the reconstruction of an ancestral haplotype with this mutation, established the common genealogy of the majorities of the studied mutant chromosomes, and provided the estimated time of the c.35delG mutation carriers expansion (11,800 years) on the territory of the Volga-Ural region.

P10.29 Haploptype diversity and reconstruction of ancestral haplotype associated with the c.35delG mutation in the GJB2 gene among various European populations of Russia
L. U. Dzhemileva1, O. L. Posukhi1, N. A. Barashkov2, S. Lobov3, E. K. Khatsimdinova2
1Institute of Biochemistry and Genetics, Ufa Research Center, Russian Academy of Sciences, Ufa, Russian Federation, 2Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation, 3Yukat Research Center of Complex Medical Problems, Siberian Branch, Russian Academy of Medical Sciences, Yakutsk, Russian Federation.

The spectrum and prevalence of the GJB2 gene mutations are specific to populations of different ethnic origins. For several GJB2 mutations, their origin from appropriate ancestral founder chromosome was shown, approximate estimations of "age" obtained, and presumable regions of their origin outlined. This work presents the results of the carrier frequencies' analysis of the major (for European countries) mutation c.35delG (GJB2 gene) among 2308 healthy individuals from 18 European populations of different ethnic origins: Bashkirs, Tatars, Chuvashes, Udmurts, Komis-Pernyaks, Mordvins, and Russians (the Volga-Ural region of Russia); Byelorussians, Ukrainians (Eastern Europe); Abkhazians, Avars, Cherkessians, and Ingushes (Caucasus); Kazakhs, Uzbeks, Uighurs (Central Asia); and Yakuts, and Altaians (Siberia). The prevalence of the c.35delG mutation in the studied ethnic groups may act as additional evidence for a prospective role of the founder effect in the origin and distribution of this mutation in various populations worldwide. For the analysis of the haplotypes and the estimation age of the mutation c.35delG in the GJB2 gene, three high-polymorphic microsatellite markers were used: D13S175, D13S141, and D13S143, flanking the DFNB1 locus, which contains the GJB2 gene. The haplotype analysis of chromosomes with the c.35delG mutation in patients with nonsyndromic sensorineural hearing loss (N=112) and in population samples (N=358) permitted the reconstruction of an ancestral haplotype with this mutation, established the common origin of the majorities of the studied mutant chromosomes, and provided the estimated time of the c.35delG mutation carriers expansion (11,800 years) on the territory of the Volga-Ural region.

P10.30 Genotype distribution of GLCCI1 rs377972 in Roma and Hungarian Caucasian samples
B. Duga1, L. Magyari1, L. Jaromi1, I. Janiczek1, P. Kisfalvi1, B. I. Melegh2, C. Sipeky3, B. Melegh4
1Department of Medical Genetics, Pecs, Hungary, 2Department of Medical Genetics, Pecs, Hungary.

Asthma is a specific respiratory disease which is widespread in most ethnics. The rate of the asthma incidence is 3.3%, which means 235 million people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012). Often the first choice of treatment is glucocorticoid derived, however in numerous people suffer from this disease in worldwide (WHO data from 2012).
P10.31
The role of ethnicity in prevalence of glutathione S-transferases (GSTs) polymorphisms in a healthy Tunisian population: The example of GSTM1*0/*0, GSTT1*0/*0, GSTP1 Ile105Val, and GSTA1*A/*B
H. Kamoun1, E. Ben Salah2, F. Kallabi2, S. Matoussi3, E. R. Mhouni1,4, A. Fourati2, F. Fakhfakh3, H. Ajadi2
1Laboratory of Molecular Genetics, Faculty of Medicine, Sfax, Tunisia; 2Research Unit, Chemical Tunisian Group, Sfax, Tunisia; 3Centre of Biotechnology, Sfax, Tunisia.

Genetic polymorphisms in glutathione S-transferases (GSTs) genes might influence the detoxification capacity of the body, and therefore impact cancer risk. Owing to the presence of these genetic variants, inter-individual and ethnic differences in GSTs detoxification capacity have been observed in various populations. Therefore, the study was performed to determine the prevalence GSTM1*0/*0, GSTT1*0/*0, GSTP1 Ile105Val and GSTA1*A/*B polymorphisms in 154 healthy individuals from South Tunisia, and to compare them with those observed in North and Centre Tunisian populations and other ethnic groups. GSTM1 and GSTT1 polymorphisms were analyzed by a Multiplex-PCR approach, whereas GSTP1 and GSTA1 polymorphisms were examined by PCR-RFLP. The frequencies of GSTM1*0/*0 and GSTT1*0/*0 genotypes were 53.9% and 27.9%, respectively. The genotype distribution of GSTP1 was 47.4% (Ile/Ile), 40.9% (Ile/Val), and 11.7% (Val/Val). For GSTA1, the genotype distribution was 24.7% (*A/*A), 53.5% (*A/*B), and 21.4% (*B/*B). The combined genotype distributions of GSTM1, GSTT1, GSTP1 and GSTA1 polymorphisms showed that thirty one of the 36 possible genotypes were present in our population; eight of them have a frequency greater than 5%. To the best of our knowledge, this is the first report of GSTs polymorphisms in South Tunisian population. Our findings demonstrate the impact of ethnicity and reveal a characteristic pattern for Tunisian population. The molecular studies in these enzymes provide basis for further epidemiological investigations in the population where these functional polymorphisms alter therapeutic response and act as susceptibility markers for various clinical conditions.

P10.32
Whole-genome genotyping of saliva-extracted DNA from participants of an Internet based survey: reliability and success rate
K.V. Allebrandt1, M. Zaharieva2, S. Stayanov2, M. RadiyovitchBlagoevich2, P. Lichtner2, T. Mettinger2, T. Roenseberg2
1Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany; 2Institute of Human Genetics, Helmholtz Zentrum Muenchen, Neuhberg, Germany.

Whole-genome genotyping (WGTT) demands high quality DNA, usually obtained with whole blood-extracted DNA. Self-administered collection protocols can make it feasible to obtain biological material without meeting survey participants. Additionally, non invasive, painless sources of biological samples, such as saliva samples are included to improve participation rate. With the intent to conduct a genome wide association study with subjects to cancer risk. To test the reliability of the method, we evaluated the concordance rates between a few (N = 10) saliva- versus the respective individual blood-extracted DNA samples with a high-density genotyping array (Illumina HumanOmniExpress 700K). Genotypes were consistently across sources of biological material; concordance rates between genotype calls of saliva- versus blood-extracted DNA samples from the same individuals were > 99% ± 3%. Regarding genotyping efficiency, average genotype call rates were also similar for saliva- (97.3 ± 5%) and blood-extracted (99.5 ± 0.2%) DNA. Among the returned self-collected saliva-kits, 378 high-quality DNA samples were genotyped with an average call rate of 99.0 ± 1%. However, approximately 14% of the saliva-extracted DNA did not meet quality control criteria (inspection of absorbance scans and gel electrophoresis) - even after using a re-purification protocol - and could not be used for WGTT. Although blood-extracted DNA provides higher quality DNA, saliva-extracted DNA has proven to be a reliable method to obtain biological material for high-density genotyping arrays.

P10.33
Genetic determinants of IgG synthesis in the cerebrospinal fluid of patients with multiple sclerosis
E. Allerrecht1, D. Buck2, M. Adlant1, A. Goris3, N. Haueneiter2, A. Jochim2, S. Cepok2, V. Grummel2, B. Dubois2, A. Berthele1, P. Lichtner2, C. Gugger1, J. Windelman12, R. Hemmer1
1Laboratory of Human Genetics, Technische Universitat Muenchen, Munich, Germany; 2Laboratory for Neuroimmunology, Section of Experimental Neurology, KU Leuven, Leuven, Belgium; 3Institute of Human Genetics, Helmholtz Zentrum Muenchen, Munich, Germany.

Multiple Sclerosis (MS) is considered a chronic inflammatory disease of the central nervous system of autoimmune origin involving T and B cells. Intrathecal IgG synthesis is observed in the majority of patients with MS. Whereas the amount of intrathecal IgG synthesis varies largely between patients, intrathecal IgG remains rather constant in the individual patient. Based on this observation it seems reasonable to assume that genetic factors may impact on the extent of intrathecal IgG synthesis. To investigate the genetic determinants of intrathecal IgG synthesis in MS patients, we performed a genome-wide association study (GWAS) based on 526,014 SNPs of the Human660-Quad chip in 233 MS patients. For replication, we genotyped 18 SNPs, showing an association with intrathecal IgG synthesis (p<1x10-5), in an independent validation cohort of 279 MS patients using Sequenom. Five of the 18 SNPs, which could be replicated in the first validation cohort, were additionally analyzed in a second validation cohort containing 152 MS patients genotyped on the Illumina Human660-Quad chip. Patients of all three cohorts are of European descent. All five SNPs showing a significant association with intrathecal IgG synthesis in the discovery and replication cohorts (p=2.61x10-7; p=3.83x10-8; p=1.2x10-2) are clustered in one locus on chromosome 14 and are in linkage disequilibrium.

The results of this study suggest that intrathecal IgG synthesis in MS patients is genetically determined by a region located on chromosome 14. Further investigation of this region will identify the responsible gene and its role in the regulation of IgG levels in MS patients.

P10.34
Genetic history of “Yakut” diseases
V.A. Stepanov1, N. Maximov2, V. Kharkov2, K. Kartanov3, A. Marusin2
1Institute for Medical Genetics, Tomsk, Russian Federation; 2Yakut Scientific Centre, Yakutsk, Russian Federation.

The phenomenon of accumulation of rare genetic diseases in isolated populations with founder effect is well known. French Canadians, Ashkenazi Jews, Finns, Afrikanners are among the examples. In Siberian Russia the Yakut population is characterized by the accumulation of several mongoloid disorders with the prevalence in Yakuts more than ten times higher that anywhere in the World. Such diseases as spinoocerebellar ataxia 1, myotonic dystrophy, inherited methemoglobinemia, oculopharyngeal muscular dystrophy (OPMD), Yakut eye phenotype syndrome (3M syndrome) and recently described SCOP syndrome belong to the list of “Yakut” diseases. We have investigated the genetic variability in Yakuts using Y-chromosomal, mtDNA, X-chromosomal markers and genome-wide SNPs, and found reduced genetic diversity associated with the bottleneck effect. This effect, according to phylogeny of specific Yakut Y-chromosomal lineages, is dated back to 11 th - 12 th centuries. To the best of our knowledge, the first whole-genome analysis of CUL7 gene in 3M syndrome, NAG gene in SCOP syndrome and PABPN1 gene in OPMD suggested that the accumulation of the disorders in Yakuts was driven by two major events: a bottleneck about 1000 years ago, associated with the initial migration of ancestors of modern Yakuts from south to north; and population expansion approximately 350 years ago when Yakuts extended from the central part into the territory of their modern settlement.

We suggest that research of Mendelian and common diseases in isolated Siberian populations may provide a new source of understanding of disease genetics, as well as improving the quality of health care to indigenous peoples.
thereby to give a more realistic picture of the criminality.

Design: Register-based cohort study comparing the incidence of convictions among men diagnosed with KS (N=934) and 47,XYY (N=161) with an age and calendar time matched sample (1:100) from the general population (N=98,979 and 15,535, respectively) in Denmark, from 1978 to 2006. Crime was classified in eight types (sexual abuse, homicide, burglary, violence, traffic, drug-related, arson, and “others”).

Results: In KS, the incidence of convictions was significantly increased of sexual abuse, burglary, arson and “others”, but significantly reduced of traffic. Adjusting for socio-economic factors reduced the HR's, but convictions of sexual abuse remained significantly increased. In 47,XYY the incidence of convictions was significantly increased of all types, except of traffic and drug-related. After adjustment for socio-economic factors, convictions of sexual abuse remained significantly increased.

Conclusion: This large study, covering all diagnosed individuals with KS and 47,XYY in Denmark, demonstrates that KS and 47,XYY are convicted of a number of specific offenses more frequently than the background population. The study also demonstrates that unfavorable socio-economic conditions are part of the explanation, since adjustment for socio-economic factors reduced the hazard ratios in both cohorts.

P10.36
Further Development of the Malta Biobank
J. Vella, A. Flott, C. Scerri, A. Felice; University of Malta, Malta, Malta.

The Malta Biobank forms part of the Laboratory of Molecular Genetics at the University of Malta and is a founding member of EuroBioBank (EBB) and Biobanking and Biomolecular Resources Research Infrastructure (BBMRI). It is designated as the BMRR-Malta node by the Government of Malta. "Further Development of the Malta Biobank" is a new biobank project which is being setup with the aim of developing a research resource to discover the genetic causes of disease states in the Maltese population thus increasing medical knowledge of diseases locally. Based on Hb quantitative epidemiology it is assumed that 2-3 alleles at 2-3 loci could generate a broad range of quantitative complexity in phenotypes and account for target-selective pressures on the regional shaping of genomes.

A new “identifiable” collection of biological samples and associated health and lifestyle information from approximately 1% of the population, i.e. 4200 individuals, will be collected. The collection will be representative of the Maltese population in both age and gender and will be based on Maltese family structures. One newborn cord blood sample will be collected together with its family of approximately 30 to 40 members. Informed parental consent will be obtained from ante-natal classes. Immediate family members will be asked to take part in the study and other family members interested to participate in the study will also be sampled with informed consent. Clinical analysis will include: anthropometric measurements; a complete blood count (CBC); a haemoglobin profile; a lipid profile; urinary metabolites and SNP typing.

P10.37
Genetic variants associated with lipid metabolism and cognitive ability at 8 years of age: A Mendelian randomization analysis from the Avon Longitudinal Study of Parents and Children (ALSPAC)
C. Bonilla, D. A. Lawlor, B. Gunnell, A. R. Ness, Y. Ben-Shlomo, S. M. Ring, G. Davey Smith, S. J. Lewis; University of Bristol, Bristol, United Kingdom.

Brain development occurs most rapidly in utero and in young children. Consequently, it places a high demand on the supply of nutrients from the diet, since adequate nutrient concentrations are required for cell growth, synaptogenesis and myelination. Nutrient deficiency during this time could influence a child’s cognitive ability later in life. Because lipids are vital for membrane biogenesis during cellular growth, a relationship between lipids and cognitive ability has been suggested. It is not possible to infer causality from conventional observational studies as associations between nutrition and cognitive ability are confounded by lifestyle and environmental factors.

To circumvent this, we used a Mendelian randomization, a method that exploits genetic variation associated with a modifiable exposure to examine the causal effects of that exposure on the outcome of interest. We examined six SNPs, that have been previously associated with plasma lipids, in mothers and children from the Avon Longitudinal Study of Parents and Children (ALSPAC). We detected an association of an APOE-linked SNP with its family of approximately 30 to 40 members. Informed parental consent will be obtained from ante-natal classes. Immediate family members with other family members interested to participate in the study will also be sampled with informed consent. Clinical analysis will include: anthropometric measurements; a complete blood count (CBC); a haemoglobin profile; a lipid profile; urinary metabolites and SNP typing.
The complete sequencing of mitochondrial DNA has contributed a great deal to the understanding of the timing and direction of human dispersals around the world. To elucidate the early stages of human colonization process outside of Africa and to investigate the demographic history of human populations, we have sequenced the mtDNA of 275 Iranians represented by Persians (N=105), Mazandaranians (N=4), Azerbaijanians (N=22), Kurds (N=5), Lurs (N=5), Armenians (N=10), Bakh-
titarians (N=2), Gilakis (N=2), Indians (N=1), Turkmen (N=10), and Qash-
qais (N=109). Overall diversity is very high, with 252 different sequences falling into 75 major haplogroups within macrohaplogroups L, N, and M. The majority of Iranian mtDNAs (90.9%) belongs to Western Eurasian compo-
nents composed of haplogroups N1, N2, X, J, U, and R0, though the im-
 pact of African (L2a, L3d, L3f), Southern Asian (R8, M4, M5, M18, M42), and
Eastern Eurasian (A4, B4, C4, C5, D4, F1, G2a) lineages is also perceptible
being found at frequencies of 1.5%, 2.5%, and 5.1%, respectively. Results of
molecular dating of Iranian mtDNA lineages show that macrohaplogroup N
and its haplogroups N1, R, U, R2'T coalesce to the time of 45-60 kya, mark-
ing the first stages of modern human movement out of Africa. The ancient
ancestry of Iranian gene pool is also confirmed by revealing of the unique
N23 lineage survived both in Persians and Qashqais, albeit at low frequen-
cies. This study was supported by Russian Federation for Basic Research (11-04-00620) and by Far-East Branch of the Russian Academy of Sciences (12-H1-A-06-101).

P10.41 mtDNA haplogroups in the population of Lithuania
I. Žemaiciai1, V. Čiupinauskas2, V. Kučinskas3, A. Farmaki2, L. Southam1, K. Palin1, N. W. Rayner1,3, E. Daoutidou2, I. Tachmazidou, C. Sipeky, B. Duga, L. Jaromi, L. Magyari, B. I. Melegh, B. Melegh;
University of Pécs, Department of Medical Genetics, Pécs, Hungary.

Clodipogrel is a widely used thrombolytic aggregation inhibitor, which has recently been in the focus of a debate because of its serious side effects. There are many factors that affect its efficacy, like SNPs in genes of specific receptors and enzymes. The pharmacogenetic investigation of these fac-
tors might also leave clinical benefit. In our study we investigated variants of paraoxonase 1 (PON1) and purinergic receptor P2Y, G-protein coupled, 12 (P2RY12) genes and their distribution in average Hungarian and Roma samples. For the PON1 gene we chose rs662 (Q129R) and rs85-4560 (L55M), for the P2RY12 gene we analysed 3 SNPs, rs2046934, rs798347 and rs6801273 as the most frequently investigated naturally occurring variants. We genotyped 491 Roma and 477 Hungarian samples with PCR-RFLP me-
thod. For the Q129R variant the frequency of the GG genotype is more than 2.5 times higher in the Hungarian group compared to the Roma (11.3% vs 4.3%, p=0.001). In the G allele frequencies similar significant difference could be detected (24.8% vs 31.7%, p<0.001). For the L55M variant the frequency of the TT genotype was more than 2.5 times higher in the Roma individuals compared to the Hungarian group (10.0% vs 3.8%, p=0.001). For the 3 P2RY12 variants we could find significant differences only in rs2046934: the frequency of the CC genotype is 7 times higher in Hungarians than in Romans (1.4% vs 0.2%, p<0.05). The data presented here confirm major differences between the distribution of PON1 and P2RY12 variants in Hungarian and Roma patients that might have clinical implications.

P10.44 Analysis of polymorphism at eight nuclear genome DNA loci in Tatars
V. P. Petrova1, E. E. Timkovskaya2, T. A. Vasilyeva, R. A. Zinchenko;
Research Center of Medical Genetics, Moscow, Russian Federation.

Population genetic survey of the indigenous populations of the Tatarstan Republic (Russian Federation) belonged to the two Tatar ethnic groups: Kazan (Arsky, Atiinsky districts) and Michari (Buinskyl, Droija-
novskiy districts), was carried out. DNA samples of 450 individuals from four districts were examined at eight polymorphic DNA loci of nuclear genome, dailleci: CCRS (del32), ACE (del/ins), DT723 (KM19), NOS3 (VNTR), and poly-
alllic: THO1 (STR), FABP2 (STR), FPTR1 (W566A/GTP), PAH (VNTR). Allele and genotype frequency distributions were obtained for individual samples and districts as well as for the ethnic group overall. Analysis of allele’s frequen-
ty of autosomal DNA markers in Tatar subpopulations shows considerable genetic differentiation between them. The highest level of genetic diversi-
ty in dailleci system was established at locus ACE (del/ins). Hs = 0.6867, in multi
talleci system - at locus THO1 (STR), Hs = 0.8069. The index of mean heterozygosity is 0.4784. The analysis of dendrograms, based on correla-
tions between the matrix of genetic distances, and multidimensional scaling analysis prompted us to conclude that Arsky and Atinsky subpopulations of Tatar are genetically closer to each other than to Buinskyl and Droija-
novskiy subpopulations. Our findings are consistent with evidences on Tatar ethnogenesis and historical facts. Analysis of genetic distances between po-
dulations of the Volga-Ural region shows that the population of Tatars joined the cluster of Chuvash, Udmurt and Mari populations before the population of Tatars.

P10.45 Population isolates from Greece offer potential for powerful disease gene mapping: the HELIC-Pomak and MANOLIS studies
I. Tachmazidou1, A. Farmaki1, L. Southam1, K. Palin1, N. W. Rayner1,3, E. Daoutidou2, I. Naftili1, K. Panoasopoulo1, G. Dedousir1, E. Zeggini1;
The study of low-frequency and rare variants can be empowered by focusing on isolated populations, in which rare variants may have increased in frequency and linkage disequilibrium tends to be extended. Sequencing is efficient in isolates, because variants are shared in extended haplotype contexts, supporting accurate imputation. Here we assess sample sets collected from two Greek populations: the Pomak villages are a set of religiously-isolated mountainous villages in the North (population size 11,000). Anogia is a mountainous village on Crete, with high levels of longevity (population size 4,000). 747 and 1118 individuals respectively were typed on the Illumina OmniExpress platform. We calculated genome-wide IBS statistics to assess the degree of relatedness and compared it with the general Greek population (707 samples with OmniExpress data, TEENAGE study). We additionally calculated the proportion of individuals with at least one “surrogate parent” as a means for accurate long-range haplotype phasing and imputation, as proposed by Kong et al, Nature Genetics 2008. We find 1-1.4% of individual pairs with pi-hat = 0 and ~0.4% with pi-hat>0.1 in the isolates compared to 0% in the general Greek population. We also find that ~89%-92% of subjects have at least one surrogate parent in the isolates, compared to ~1% in the outbred Greek population. We have established the HELIC-Pomak and MANOLIS cohorts as genetic isolates and are currently whole-genome sequencing 250 individuals to enable imputation and subsequent association testing. This approach has the potential to identify novel robust associations with disease-related complex traits.

Population stratification assessment and genomic control in Brazilian Head and Neck Squamous Cell Carcinoma (HNSCC) patients

L. F. Araujo, M. M. Luzano, G. A. Mellott, M. A. Pereira, A. A. Marques, A. X. Ribeiro, Santos, S. E. Santos, M. A. Silva Jr; 1,2, I. Kennerknecht1; 1, Medical School of Ribeirão Preto- USP, Ribeirão Preto/SP, Brazil; 2, National Institute of Science and Technology in Stem Cell and Cell Therapy. Regional Blood Center of Ribeirão Preto, Ribeirão Preto/SP, Brazil; 3, National Institute of Science and Technology in Stem Cell and Cell Therapy. Regional Blood Center of Ribeirão Preto, Ribeirão Preto/SP, Brazil, 4, Federal University of Paraíba, Belém-PA, Brazil.

HNSCC is the sixth leading cancer by incidence in the world. In Europe, about 87.5 thousand people died from HNSCC in 2008. In Brazil, the mortality rate is estimated in 12 thousand deaths per year. While the genetic basis of susceptibility to HNSCC has not been defined, an increasing number of studies report its association to genetic risk factors. However, the polymorphism frequencies often vary between ethnic groups. Population stratification can cause spurious relations in population-based association studies. For minimizing spurious association, studies recommend adjusting for population stratification. Ethnic categories are usually based on self-reports or complex phenotypic evaluation, but those are pointed as poor predictors of genic ancestry. This study intends to evaluate the presence of stratification in a population of 28 patients diagnosed with HNSCC and 74 paired healthy controls from Brazil. A twenty Ancestry Informatory Markers (AIMs) set based on InDel’s markers were selected based on high allele frequency divergence between different ancestral samples. The samples were genotyped by High Resolution Melting analysis followed by DNA sequencing. Population structure was inferred using STRUCTURE software. The 20-AIMs set was able to distinguish individuals from different parental populations. The population sample of cases exhibited a proportion of 0.349, 0.226 and 0.425, for Ameridian, European and African contribution, respectively. As for the control population, it was found the proportions of 0.041, 0.822 and 0.137, respectively. The ancestral proportions in cases and control population diverged, confirming the importance of population stratification in case-in-case paired association studies. Financial Support: CNPq, INCITE, FundHarp.
items constitute the core dataset; 23 clinical items contain longitudinal information. The database contains information on 1832 patients from eleven countries (February 2012), with or without mutations in known genes. These numbers can expand indefinitely. Data are entered by a clinician in each center who supervises accuracy. This network was constructed to make available pooled international data for the study of RTT natural history and genotype-phenotype correlation and to indicate the proportion of patients with specific clinical features and mutations. We expect that the network will serve for the recruitment of patients into clinical trials and for developing quality measures to drive up standards of medical management.

P10.50 Genetic variation of six X chromosomal STR loci in Bayash Roma samples from Croatia

A. Baresić, M. Perićić-Salihović, Institute for Anthropological Research, Zagreb, Croatia.

X chromosome STRs are another tool for exploring different populations and their genetic characteristics and have been more and more used and more recently to accompany autosomal and uniparental markers data in population genetics. In the present study, six X-chromosomal microsatellite loci (DXS983, DXS1225, DXS8092, DXS986, DXS1066 and DXS8082) were used to analyze 79 samples of unrelated male individuals from two Bayash Roma populations living in Croatia. The microsatellite loci studied were the following: 5-8 in Medimurje and 4-9 in Baranja, while the overall gene diversity values varied from 0.9673 to 0.9926, respectively. The most informative marker was DXS8092 (0.80628) whereas DXS1066 (0.18103) was the less informative one. Our results show that there is a statistically significant difference between Baranja and Medimurje samples based on haplotype frequencies, which conforms to our previously obtained data from uniparental markers.

P10.51 Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee

University of Bari, Bari, Italy, University of Washington, Seattle, WA, United States, University of Washington, Seattle, WA, United States, Washington University Genome Sequencing Center, St. Louis, MO, United States, Universitat Pompeu Fabra, Barcelona, Spain.

Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. We generated approximately 10-fold genomic sequence coverage from a western lowland gorilla and integrated these data into a phylogenetic framework to develop a comprehensive view of structural variation. We discovered and validated over 7,665 structural changes within the gorilla lineage including sequence resolution of inversions, deletions, duplications and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet parallel patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. We present here a comprehensive overview of inversions, deletions, segmental duplications and retrotranspositions within the gorilla genome. Comparisons with humans and other apes reveal that parallel and independent mutational processes have more dramatically restructured chimpanzee and gorilla genomes.

P10.52 Pharmacogenetic variations of the SLC01B1 gene in Roma and Hungarian population samples

C. Stepyk, B. I. Melegi, J. Janicsek, B. Daga, G. Tarlos, I. Szabo, L. Jarmoli, L. Magyari, K. Komlosi, K. Hadzsie, B. Melegh;

Department of Medical Genetics, University of Pécs, Pécs, Hungary.

SLCO1B1 gene encodes for hepatic transporter protein OATP1B1 that is involved in active cellular influx of statins and many other drugs. The A389G and T521C polymorphisms of the SLC01B1 gene affect the activity of OATP1B1, which result in muscle myopathy, derangements in hepatic function and psychiatric adverse drug reactions. To improve the predictability of inter-ethnic and inter-individual differences we studied the genetic variability of SLC01B1 polymorphisms in Roma and Hungarian populations. Genotypes of 470 Roma and 442 Hungarian healthy subjects for the rs2306283 (A389G) and rs1490056 (T521C) polymorphisms were determined by PCR-RFLP assay. Comparing the genotype and allele frequencies of Roma and Hungarian populations differences were found in the SLC01B1 388 AA (24.5 vs. 45.5%), AG (42.1 vs. 36.6%) and AA vs. AG frequencies are 17.9% genotypes and in G allele frequency (0.545 vs. 0.362) between the studied groups (p=0.02).

Furthermore, the frequency of SLC01B1 521 T (67.0 vs. 65.2%) was higher in Roma than in Hungarian samples (p=0.05). Similarly to other Caucasian populations, the 388G allele is the minor allele in Hungarians, while in Roma the 388A was found to be the minor allele. The 388G allele frequency of Roma is similar to that found in populations of Indian origin, however, the minor allele frequency of T521C SNP is almost three times higher in Roma than in Indians. Furthermore, the Roma population differs from Hungarians and Caucasians in common SLC01B1 polymorphisms. The results of SLC01B1 polymorphisms found in the Hungarian population were similar to that observed in other Caucasian populations.

P10.53 Age-related phenomena in telomere length

L. Bruer, V. Codgi, P. Hennemann, N. Amirn, A. Isacuc, B. A. Oostra, K. W. van Dijk, N. J. Samani, C. M. van Duijn;

Erasmus MC, Rotterdam, Netherlands, University of Leicester, Leicester, United Kingdom, Leiden University Medical Center, Leiden, Netherlands.

Telomere length (TL) is considered a proxy for biological aging. Studies conducted in the 'oldest-old' often find no significant association with longevity, possibly due to reduced variability in TL with age, leaving these studies underpowered. The most important age-related association for TL is with cardiovascular disease (CVD).

We measured TL in the Erasmus Rucphen Family (ERF) study (n = 2,769) to study several characteristics of TL: first, we estimated the heritability of TL using POLY, second, we tested for the equality of variances to compare TL variability in different age categories, and third, we investigated the relationship of TL with known metabolic risk factors for CVD including adipokines. TL was highlyheritable (h² = 0.65, p-value = 1.45*10⁻¹⁰) Over the entire age distribution (18 to 88 years), we observed a significant reduction in TL variability with age, ranging from 0.150 in younger individuals to only 0.053 in older individuals (p-value = 4.23*10⁻¹⁰). Descendants of the 'oldest-old' had above average TL, suggesting that the 'oldest-old' themselves had above average TL when they were young. Of the 18 metabolic traits tested, only adiponectin was associated with TL after correction for multiple testing (p-value = 5.94*10⁻⁵).

In conclusion, we found that TL has a significant and large heritability and that the variability of TL decreases with age, pointing to a survivor effect. Of all the CVD related traits tested, only adiponectin was significantly associated with TL suggesting a relationship between adiponectin and TL in the development of CVD.

P10.54 Association of IRGM polymorphisms and susceptibility to tuberculosis in zahedan, southeast of Iran

M. Taberi, G. Bahari, M. Hashemi, M. Naderi, A. Moazeni Rooz, E. Eskandari Nassab;

Zahedan University of Medical Sciences, Zahedan, Islamic Republic of Iran.

Tuberculosis (TB) is a major cause of morbidity and mortality throughout the world. IRGM1 is an important protein in the innate immune system against TB. Indeed by regulating autophagy in response to intracellular pathogens it has a critical role in the innate immune system. Polymorphisms against TB. Indeed by regulating autophagy in response to intracellular pathogens it has a critical role in the innate immune system.

In the present study we found that there is a significant and large heritability and the variability of TL decreases with age, pointing to a survivor effect. Of all the CVD related traits tested, only adiponectin was significantly associated with TL suggesting a relationship between adiponectin and TL in the development of CVD.
P10.55 Vistatin: Association with Genetic Variability in Vistatin (PBEF) Gene, Anthropometric Parameters and Dietary Composition in Obese and Non-Obese Central-European Population

J. A. Bienertova Vasku1, J. Stastny1, J. Tomandl1, M. Tomandlova1, M. Forget1, Z. Spichal1, P. Bienert1, D. Stafova1, A. Vaska1,2
1Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic, 2Department of Preventive Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic

Visfatin (PBEF/Nampt) is a recently identified adipocytokine which harbors strong insulin-mimetic activity. However, nothing is known about whether visfatin is related to specific nutritional behavior which may result in obesity development. This is the first study focusing on genetic variability of the visfatin gene and its association with circulating visfatin, anthropometric parameters and dietary composition.

We analyzed a total of 6 exons and adjacent non-coding regions of the PBEF gene in 20 extremely obese Czech individuals (mean BMI 52.2 kg/m2 ± 5.0 SD) using direct sequencing and a frequency of rs3202559 was established in the population of another 665 individuals with complete 7-day food records and complex anthropometric measurements. Plasma levels of visfatin, leptin and leptin-receptor were measured in all sequenced individuals and in part of the validation cohort.

Three common polymorphisms were identified, two in non-coding regions (rs784111774 A/C, rs75164769 A/C) and one synonymous SNP in exon 7 (rs3202559 A/G). The rs3202559 showed significant correlation with visfatin plasma levels throughout the entire study cohort (p < 0.001); there was a significant tendency towards higher visfatin levels in G allele carriers with GG homozygotes having the highest visfatin plasma levels. Furthermore, a negative correlation was observed between visfatin and leptin plasma levels (p = 0.01). No association between investigated SNPs and anthropometric parameters or native dietary composition was observed.

This is the first study to demonstrate that the rs3202559 polymorphism in the PBEF gene is related to circulating levels of visfatin.

P10.56 Allelic and genotypic frequencies of CYP3A5, CYP2C19 and VKORC1 in Bulgarian population

1Medical University, Sofia, Department of Medical Chemistry and Biochemistry, Sofia, Bulgaria, 2Molecular Medicine Center, Sofia, Bulgaria, 3National Genetic Laboratory, University Hospital of Obstetrics, Sofia, Bulgaria, 4National Sports Academy, 5Vasile Levski, Sofia, Bulgaria, 6St. Etatheer University National Multi-profile Active Treatment Hospital, Sofia, Bulgaria

VKORC1, CYP2C19 and CYP3A5 polymorphisms are frequently studied in pharmacogenetics. VKORC1 is the key enzyme of the vitamin K cycle and a molecular target of coumarins, which represent the most commonly prescribed drug for therapy and prevention of thromboembolic conditions. CYP2C19 and CYP3A5 are members of the cytochrome P450 mixed-function oxidase system and they are involved in the metabolism of xenobiotics.

The goal of this study was to determine the allelic and genotypic frequencies of important variants in CYP3A5, CYP2C19 and VKORC1 in Bulgarian population and compare them with the frequencies in other populations. We examined 134 unrelated healthy subjects for polymorphisms in CYP3A5, CYP2C19 and VKORC1 by High Resolution Melting on Rotor-Gene Q.

The allelic frequencies for CYP3A5*3 and CYP2C19*2 were 88.3% and 13.8%, respectively, while VKORC1 1173C>T and VKORC1 1639G>A were found in 51.87% and 45.52% of the subjects tested, respectively. Genotypic frequencies were as follows: 10.45%A/A, 2.24%A/G, 87.31%GG (CYP3A5); 74.63%GG, 23.13%GA, 2.24%A/A (CYP2C19): 26.87%GG, 55.22%GA, 17.91%AA (VKORC1 -1639G>A) and 25.37%CC, 45.52%CT, 20.11%TT (VKORC1 1173C>T). Overall our results showed that the frequencies of allelic and genotypic variants of CYP3A5 and CYP2C19 in Bulgarians were similar to those reported for several other Caucasian populations. Also, a high-prevalence haplotype 1173CC-TT and VKORC1 1639GG-A polymorphisms among Bulgarians was found.

High-resolution melting analysis provides a simple and accurate method for genotyping of VKORC1, CYP2C19 and CYP3A5. The results of the current study will be useful for clinical pharmacogenetics investigations and for drug dosage recommendations in Bulgarian population.
P11.059
Ethnogenic Estimation of Baltic ancestry
A. Puzikov1, L. Plass2, L. Prieuralis3, S. A. Limbrosh4, A. Kurnina1;
1Riga Stradiunas University of Medicine and Pharmacy, Riga, Latvia,
2Riga biomedical Research and Study Centre, Riga, Latvia, 3Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russian Federation.

Background. Y chromosome is widely used as marker in population genetic studies. The aim of this study was to estimate the possible genetic origin of Balts performing Y chromosome haplogroup (Y-Hg) analysis of Russian individuals that inhabit historical regions of Baltic tribes and to compare Y-Hg frequencies with incidence of Y-Hg in Latvian population.

Material and methods. A study encompassed 192 men that represent four Northern-Western and Central Russian regions and 153 unrelated ethnic Latvians. DNA samples were hierarchically genotyped (using appropriate PCR followed by RFLP or sequencing of corresponding PCR products) by 10 Y chromosome polymorphic markers (M9, SRY1532, Tat, P21, M170, P57, M253, M172, YAP, M35) to establish their haplogroup.

Results. Similar incidence of main Y-Hg's - N1c, R1a, and I was found in analysed Russian regions and Latvian population. Significant differences in Y-Hg distribution in comparison to other regions under study were observed only in Mezen (Archangel district, Russia). In Mezen the Slavic component representing R1a haplogroup had the lowest frequency (20%) in comparison to other Russian (~55%) and Latvian (~40%) subpopulations. On the other hand the Fino-Ugric speaking population representing haplogroup N1c was the most common in Mezen (51%) in comparison to other Russian (~15%) and Latvian (~4%) subpopulations.

Conclusions. No significant differences in common Y-Hg distribution among analysed Russian and Latvian populations were found. The analysis of Y-Hg genofund in Mezen indicates possible Fino-Ugric ancestry that could be confirmed after Y haplotype (Y-STR) analysis.

P11. Genomics, Genomic technology including bioinformatics methods, gene structure and gene product function and Epigenetics

P11.001
IonTorrent: 2nd generation sequencing in a diagnostic laboratory
B. Dworniczk1, S. Fleige-Menze1, N. Bogdanova-Markov1, P. Penhelamp1;
1University Hospital Muenster, Institute of Human Genetics, Muenster, Germany, 2University Children’s Hospital Muenster, Department of General Pediatrics, Muenster, Germany.

Molecular diagnosis of complex human genetic disorders is still challenging since in most cases multiple genes harboring putative deleterious mutations have to be investigated. Currently Sanger sequencing is applied, however capillary sequencing is excessive time-consuming and expensive for the screening of multiple genes. In the last years next generation sequencing technologies have been developed, but because these technologies are especially made for large sequencing projects it is not easy to scale them down for screening a set of disease causing genes in a diagnostic setting. In order to fill this gap IonTorrent recently introduced a sequencing device with mean throughput utilizing sequencing technology based on the detection of hydrogen ions that are released during the polymerization of DNA. Based on our established sequencing approach we tested the performance of this technology especially in respect to usability, software requirements and accuracy. As templates we used exclusively PCR amplicons left over from the routine analysis without further normalization. Per sequencing run (314 chip) we analyzed simultaneously 600-800 fragments using bar codes and Fluorescence in situ Hybridization (FISH). As a result, 18 patients were found to carry potentially causative aberrations, one of which was de novo and 17 were inherited from unaffected parents. Four aberrations reside within genes, known to cause autism susceptibility and six are associated with schizophrenia and/or developmental delay and/or mental retardation. None of the above aberrations is found in copy number variation databases or normal ethnically matched population. Moreover, population comparison revealed an increased rate of rare disease-associated variants in normal parents of children with autism. The above data supports the multifactorial model of autism etiology and the sum of genetic and environmental factors that lead to the disease are yet to be identified.

P11.004
Explore thefate of brain-derived neurotrophic factor in mood disorders
F. Ye, P. Kuo1;
1Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan, 2Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan.

The neurotrophic hypothesis for major affective disorders (MD) has been proposed over a decade. Brain-derived neurotrophic factor (BDNF) is one of the most studied, which plays an important role in neuronal survival and differentiation. However, the features and underlying mechanisms of BDNF for MD is yet clear. Previous studies using different designs often reported inconsistent results for the relationship between BDNF and MD. This study aims to explore the features of BDNF for its role in MD, including aspects in molecular evolution, literature review of genetic association studies, and pathway analysis. Results of sequence alignment among different species revealed that BDNF is a highly conserved gene, having >75% identity in chordates with human and 85.9%-100% in vertebrates. Molecular evolutionary analysis found no signs of recent positive selection. Literature review and meta-analysis exhibited inconsistent association results for rs6265 in MD, which is the most studied marker that locates in the coding region of pre-cursor BDNF (pro-BDNF). Mature BDNF was produced from pro-BDNF and the two proteins have opposite biological functions. Studies in European seabass showed that stress changed the ratio of pro-BDNF and BDNF, implicating the necessity to study pro-BDNF for MD. We identified proteins that interact with BDNF and mapped these genes to genome-wide association datasets of MD. Pathway analyses identified possible biological pathways that involved with BDNF for MD. We concluded that examining the features of BDNF systematically can provide opportunities to have a better understanding for the mechanisms underlying mood disorders.

P11.005
Anticipation in Beckwith-Wiedemann syndrome: Gradual increase in maternal H19/ICR1 methylation associated with tall-statured mothers and BWS in their children
S. Berland1, M. Appelbäck1, O. Bruland1, D. Mackay2, I. Temple2, G. Houge1;
1Center for medical genetics and molecular medicine, Bergen, Norway, 2Wessex Genetics Service, University of Southampton, Southampton, United Kingdom.

Beckwith-Wiedemann syndrome (BWS) was diagnosed in two sisters and their male cousin. Both sisters had classical BWS features including Wilms tumour. Their male cousin (DZ twin) died from medical complications after a caesarian section in week 29. Birth weight was 2.1 kg and he had visceromegaly, macroGLOSSIA and general subcutaneous oedema. The children’s two mothers and their sister were tall statured (178, 185 and 187 cm) and one had mild BWS features as a child. Their parents had average heights of 173 cm (mother) and 180 cm (father). This 2nd generation’s increased stature and BWS manifestation BWS with taller generation. Within this generation the methylation in maternal H19-locus, from 0.49 (normal range 0.50±0.20) in the grandmother to on average 0.70 in the next generation and 0.85 in the affected children. This data was reproduced by bisulphite treatment and subclone sequencing to quantify the degree of CpG-methylation in a part of the H19 imprinting

array-based Comparative Genomic Hybridization (array-CGH) with a variety of platforms applied in diagnostic and research centers. One of the arrays that combines high resolution and relatively low complexity of analysis is the Agilent 400K custom array (Agilent Santa Clara, CA), which can reliably identify variations and duplications in sequence data for the potential of the above platform to enter the little understood area of genetic basis of autism, limiting our sample heterogeneity by focusing on the population of Cyprus. A cohort of 50 patients, their parents and 50 ethically matched normal control samples were tested using aCGH with Agilent 400K custom array, after chromosomal imbalances and fragile X syndrome were ruled-out. Microarray results were confirmed with real-time PCR and Fluorescence in situ Hybridisation (FISH). As a result, 18 patients were found to carry potentially causative aberrations, one of which was de novo and 17 were inherited from unaffected parents. Four aberrations reside within genes, known to cause autism susceptibility and six are associated with schizophrenia and/or developmental delay and/or mental retardation. None of the above aberrations is found in copy number variation databases or normal ethnically matched population. Moreover, population comparison revealed an increased rate of rare disease-associated variants in normal parents of children with autism. The above data supports the multifactorial model of autism etiology and the sum of genetic and environmental factors that lead to the disease are yet to be identified.
control region (ICR1). Long-range PCR did not detect any microdeletions in ICR1 that could explain the lack of maternal allele demethylation. However, ICR1 sequencing revealed the same maternal point variant g.1979595T>C that had been described previously as a cause of BWS in three brothers (Demars et al, Hum Mol Genet 19, 803-14, 2010). This point variant was on the paternal allele in the non-affected grandmother. Mutation in this region affect OCT binding, and our data suggests that this interferes with gonadal switching from paternal to maternal imprinting and that H19 intronic interaction might play a role in this process.

P11.006 Methylation index as a prognostic marker in bladder cancer patients

M. Nemtsova1, A. Babayan1, D. Karyakin1, D. Zalasevicius1
1Research Centre for Medical Genetics, Moscow, Russian Federation, 2Sechenov Moscow Medical Academy, Moscow, Russian Federation, 3Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany, 4Medical Radiology Research Centre, Obninsk, Russian Federation.

Bladder cancer (BC) is a common malignancy worldwide. At the time point of diagnosis 70% of BCs present as superficial BC (SBC), which do not penetrate the muscle layer of the bladder. The rest 30% of cases present muscle-invasive BC (MIBC). SBC has better prognosis, though recurrences happen in 30% of cases after the primary tumor removal. MIBC has much worse prognosis and survival. Therefore it is of a prior importance to reveal possible markers of recurrences or progression of SBC into MIBC. It is proposed that methylation pattern might reflect the ability of BC to recur and/or to progress.

We examined 119 tumor samples from 108 SBC patients and 11 MIBC patients. Recurrence status after 1 year was known for 39 SBC patients: 31 patient developed relapses, 8 did not. Genomic DNA was extracted from fresh tissue. We investigated the status of promotor hypermethylation of RASSF1A, RARB, P16, CDH1 using methyl-sensitive PCR. Methylation index (MI) (or mean frequency of methylation) was defined as the ratio between the numbers of methylated genes to total number of examined genes in each sample. Statistical significance was evaluated using the Mann Whitney U-test.

SBC had a significantly lower extent of methylation (median MI 0.1) than MIBC (median MI 0.25) (p=0.017). Recurrent within 1 year SBCs showed median MI 0.0 while non-recurrent tumors had median MI 0.2 (p=0.047). Our results show that MI might be used as a sensitive marker for the assessment of recurrence and progression potential of SBCs.

P11.007 Identification of an integrated molecular network for congenital anomalies of the kidney and urinary tract

K. E. Benke1, G. Poelmans2, M. Nicolau1, L. F. van der Zanden3, L. Ellegaard4, E. M. E. van Rongeren3, N. V. A. M. Knoers3
1University Medical Center Utrecht, Utrecht, Netherlands, 2Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 3Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 4Department of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands.

Congenital anomalies of the kidney and urinary tract (CAKUT) form a spectrum of developmental malformations, including multicystic dysplastic kidney, renal hypoplasia, and duplex collecting system. CAKUT are the most common cause of end-stage renal disease in children. Based on previous disease modelling, it is anticipated that variants in genes expressed during embryonic kidney development play an important role in CAKUT etiology. To gain insight into protein signalling cascades contributing to CAKUT and to visualize these molecular pathways, an analysis of 185 CAKUT candidate genes was conducted using Ingenuity Pathway Analysis software. The 185 candidate genes were selected based on experimental evidence implicating them in CAKUT pathogenesis. Extensive literature mining was subsequently performed to identify the biological mechanisms through which the CAKUT candidate genes interact during embryonic development. The bioinformatic analysis revealed a significant enrichment of molecular pathways regulating Wnt/beta-catenin signalling (28/185 genes, p=9.72*10^-34), basal cell carcinoma signalling (18/185 genes, p=1.31*10^-33), and stem cell pluripotency (22/185 genes, p=6.21*10^-32). In addition and based on the subsequent and extensive literature search, we built an integrated protein signalling network for CAKUT. Within this network, glial cell line-derived neurotrophic factor (GDNF)-dependent signalling, which is essential for growth, maintenance and differentiation of epithelial and mesenchymal cells during kidney and urinary tract development, plays an important role. Our results provide important clues for improving our understanding of the molecular background of CAKUT which in turn is essential for identifying novel treatment targets for these disorders.

P11.008 Identification and functional characterization of trans-acting factors involved in the post-transcriptional regulation of CDKS5R1

F. Zuccatti1, A. Barbieri1, C. Colombrari1, S. De Palma2, S. Moncine2, C. Gelfi2, A. Ratti2, M. Venturini1, P. Biva1
1Department of Biomedical Sciences and Technologies, University of Milan, Milan, Italy, 2Department of Medical and Biological Sciences, University of Milan, Milan, Italy.

CDKS5R1 encodes p53, an activator of p53, a proline-directed serine/threonine kinase that phosphorylates proteins involved in CNS development and maintenance. CDKS and p53 were found to show an important role in neuronal migration and differentiation during CNS development and were also implicated in some neurodegenerative and cognitive disorders. Both the CDKS5R1 3'-UTR remarkable site and its conservation during the evolution and its potential indicative of an important function in post-transcriptional regulation. We recently reported that CDKS5R1 3'-UTR contains regulatory elements affecting transcript stability. In particular, a 138 bp region, that does not contain known miRNA binding sites, has been identified as the most destabilizing portion of the 3'-UTR by luciferase assays. UV cross-linking and site directed mutagenesis experiments allowed us to delimit potential binding sites for RNA binding proteins (RBPs), among which we identified the nLAEs, showing a stabilizing activity on CDKS5R1 transcript after over-expression and silencing experiments. To search for putative destabilizing factors, pull-down experiments have been carried out, allowing us to identify further binding factors, among which hnrNPA2/B1. The validation of hnrNPA2/B1 binding and the study of its silencing/over-expression might help us to close the possible role of this protein on CDKS5R1 post-transcriptional regulation.

This study will help to define the functional role of the gene, addressing studies on the CDKS5R1 implication in the pathogenesis of neurodegenerative and cognitive diseases.

P11.009 Fast and cost effective ChIP-sequencing with PGM™ system reviews epigenomic landscape change in the MCF-7 cells upon estrogen stimulation

Z. Chen1, C. Allen2, L. Pickle2, R. Bennett2
1Life Technologies, Carlsbad, CA, United States, 2Life Technologies, Paisley, United Kingdom.

ChIP-Seq provides a digital high resolution map of genome-wide protein and DNA interactions. With continuing evolving of next generation sequencing technologies, more and more sequencing platforms become well suited for the ChIP-Seq application. PGM™ system is a revolutionary semiconductor based low-cost next generation sequencing system, offers long read length and the fastest sequencing turnaround time. It provides a new tool for ChIP-Seq application. We evaluate PGM™ system performance on ChIP-Seq application in comparison with SOLiD system. Human breast adenocarcinoma MCF7 cells were treated with estrogen. Chromatin immunoprecipitation with RNA pol II and ER-alpha antibodies were performed with MAGNIFY™ Chromatin immunoprecipitation System, which enabled fast enrichment of immunoprecipitated complex and efficient DNA recovery from transcriptional machinery of cells. The ChIP DNA samples were further constructed into ChIP-Seq libraries with an efficient ChIP-Seq library construction procedure, which enabled us to construct a library using as low as 1 ng ChIP DNA. Barcoded ChIP-Seq libraries were prepared for SOLiD system, while non-barcoded individual ChIP-seq libraries were constructed for PGM™ system. Both types of libraries were sequenced on SOLiD and PGM™ systems, respectively. The ChIP-Seq data from both systems showed expected response upon estrogen treatment in the MCF7 cells. The effect of different sequencing read length, ranging from 50bp to 200bp, on the ChIP-Seq profiling was investigated. In depth analyses of the ChIP-Seq data from both systems will be presented.
high quality therapeutic protein production in CHO cells. In this study, we examined global changes in gene expression in CHO cells across differing cell subtype and media-specific parameters. Eight CHO RNA samples from different cultures were sequenced on two full slides of a SOLiDTM System resulting in 760 million base pair sequence reads. These reads were mapped to multiple reference sequences including CHO ESTs, mRNAs and well as mouse chromosomes with annotated genes with cognate functional data. From this, we report estimates of transcript expression levels and use known annotation to infer functional differences that can be associated with changing basic bioproduction growth conditions. These findings may uncover novel genetic mechanisms that could be optimized for improved bioproduction. This analysis of this data set represents the characterization of the CHO transcriptome at an unprecedented depth.

P11.011
Chromatin changes in human mesenchymal stem cells during cultivation and differentiation
A. V. Lavrov, Y. I. Vodgorodn; Research Center of Medical Genetics, Moscow, Russian Federation.

Epigenomics is one of the most exciting branches of modern cell biology. Role of chromosomal territories (CT) in cell physiology in norm and disease remains poorly understood though chromatin structure is highly important for epigenetic regulatory mechanisms. Mesenchimal stem cell (MSC) is a useful model for studying CT role in stem-cells and during differentiation. Our aim is to study CT changes in MSC during cultivation and differentiation in vitro.

Human MSC derived from adipose tissue and bone marrow were prepared at early (before 4) and late (after 5) passages, and also after adipogenic and osteogenic differentiation. Over 2000 nuclei were analyzed using FISH with centromeric probes to chromosome 6 and 18. It was found that chromosome 6 holds a more distant radial position than chromosome 18 with medians of 0.65 and 0.47 respectively. Homologues of both chromosomes are always placed at different radial distances keeping medium (0.48±0.67) and outer (0.71±0.87) layers for chromosome 6 and inner (0.35±0.46) and medium layers (0.49±0.67) for chromosome 18. Comparison of cells at early and late passages, adipogenic and osteogenic differentiation revealed significant (p<0.0008 for chromosome 18 and p=0.03 for chromosome 6) distal displacement of both chromosomes in cells at late passages and after both differentiations also. Described particular chromatin pattern in cultivated MSCs differs from CT structure in both differentiated (i.e. lymphocytes) and embryonic stem cells. This pattern could be unique characteristics of MSC necessary for epigenetic regulation of their activity; and observed changes may reflect similar processes during differentiation and prolonged cultivation.

P11.012
A next generation sequencing panel based approach in ciliopathy diagnostics
N. Ortiz Brüchle, M. Begemann, A. Venghaus, J. von Bothmer, T. Eggermann, K. Zerres; RWTH University Hospital Aachen, Aachen, Germany.

Many primary ciliopathies are syndromal autosomal recessive diseases characterized by defects of primary cilia function. Cystic kidneys, brain abnormalities and liver fibrosis are overlapping findings in the often severe ciliopathies as Meckel syndrome (MKS) or Joubert syndrome related disorders (JSRD). To identify the underlying gene defect is often challenging because of the genetic heterogeneity with 10 and 16 known genes respectively. Our aim was to develop a bench top NGS instrument based approach to efficiently analyze the most relevant MKS/JSRD genes and concurrently achieve the wherewithal coverage. The overall detection rate is about 50%: MKS1, MKS3/JBTS6 (TMEM67), MKS4/JBTS5 (CEP290), MKS6/JBTS9 (CC2D2A), JBTS3 (AHBI) are the mainly contributing loci. Taking into account own data and data from the literature mutation frequencies divide approximately as follows: MKS1 (7%), MKS3 (7-16%), MKS4 (10%), MKS6 (10%) for MKS and JBTS3 (8%), JBTS5 (7-20%), JBTS6 (9%), JBTS9 (9-10%) for JBTS respectively. Further known genes play only little role for the overall detection rate.

We used the GS Junior system (Roche) and chose the amplicon protocol. We designed gene specific oligonucleotides for the above named genes including adapter sequences. The corresponding PCR amplicons were pooled followed by emulsion PCR and enrichment. The data were analyzed with the SeqNext module (SeqPilot JSI). We analyzed about 20 patients (including controls) and hereby present our experiences regarding this approach: detection rates (false negative and positive rates), average coverage for the investigated amplicons, influence of homopolymers on the data quality and number of fragments to be reanalyzed by Sanger sequencing.

P11.013
Comparison of different reference genes used for qPCR-based CNV quantification
N. Foul, M. Pasquali, C. Beckmann, U. Deutsch, A. Missel; QIAGEN GmbH, Hilden, Germany.

Copy Number Variant (CNVs), the change of the DNA copy number in the genome, has been recently shown to be a widely-spread phenomenon that affects about 10-20% of the human genome. The occurrence of the CNVs has been associated with various diseases such as autism, autoimmune disorders, and cancer.

The most commonly used molecular biology tools for discovery of CNVs are array and next-generation sequencing (NGS). These two high-throughput methods can discover multiple potential CNVs, which normally need to be validated with an independent method. Once validated, the confirmed CNVs can also be examined in a large number of samples to identify the statistically significant association of the CNV and phenotype. Quantitative PCR (qPCR), with its ease of use, sensitivity, and scalability, is often the method of choice for CNV validation and association studies. Relative quantification principle is used to determine any possible change of gene copy numbers.

Since the consistent copy number of the reference gene is essential for the qPCR-based CNV quantification, we evaluated the reliability of commonly-used single copyreference genes such as Tert. Our results suggest that, compared to single copy genes, stable multi-copy regions can serve as a more sensitive and reliable CNV quantification reference.

P11.014
Comprehensive cancer gene research panel sequencing using fast, efficient and scalable Ion AmpliSeq technology and semiconductor sequencing

Targeted enrichment of exons regions from genomic DNA has proven useful for mapping somatic disorders in cells. Whole exome sequencing has adaptation barriers associated with the extensive time needed for hybridization-based capture methodologies. Exon centric sample preparation methods are especially challenged in applications that require gDNA analysis from degraded sources, such as archived FFPE specimens. We have developed a fast, easy-to-use, highly multiplexed PCR-based selection procedure for next generation sequencing. This process merges the specificity and speed of highly efficient PCR amplification with extremely scalable single-tube amplicon multiplex ranging from 12 to 3,000. This technology has been used to design primer pools to enrich coding gDNA sequence regions from an array of key cancer genes. The Ion AmpliSeq™ Comprehensive Cancer Panel interrogates exons in hundreds important cancer genes, covered by over 12,000 amplicons which can be sequenced on a lon318™ chip. This kit is suited for archival (FFPE) samples, requiring only 1 ng of gDNA per reaction. When the libraries are processed and sequenced with the Ion OneTouch™ and PGM™ Sequencer, mutations present at low frequency can be quantified from DNA to results within a day. The typical sequencing per base uniformity exceeds 96% for the amplicon panel. Using bi-directional sequencing protocols, per base accuracy exceeds 99.5%. We report cancer gene somatic variant frequencies from studies using paired normal/tumor samples. This technology enables rapid and efficient focused sequencing in a variety of both basic and translational research settings.

P11.015
Delineation of the reliability of in silico copy number variation (CNV) sequencing from different Illumina SNP arrays
S. Hermès1,2, J. Priebé1,2, F. Degenhardt1,2, M. M. Nöthen1,2,3, S. Cichon1,2,4, P. Hoffmann1,2
1Institute of Human Genetics, Bonn, Germany; 2Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany; 3German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; 4Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Brain, Genomic Imaging, Research Center Juelich, Jülich, Germany.

Illumina SNP arrays are widely used to identify common and rare susceptibility variants involved in the etiology of multifactorial diseases. Besides SNP-based genome-wide association studies, SNP-arrays allow to in silico analyze Copy Number Variants (CNV). There has been a comprehensive discussion in the field to what extent in silico CNV calls are reliable. For individual associated CNVs, validation by quantitative PCR (qPCR) is usually performed which is labour-intensive and requires large amounts of DNA. Moreover, it is almost impossible to qPCR-validate CNVs from in silico burden analyses which test the genome-wide frequency of CNVs between patients and controls. In order to get an objective overview of the reliability of in silico
Nonsynonymous single nucleotide polymorphisms (SNPs) in the coding regions of genes can lead to amino acid changes and potentially affect protein function and, therefore, susceptibility to disease. Several computational methods have been developed for the classification of SNPs regarding their impact on protein function and resulting pathogenic potential. In this study, we evaluated the performance of seven commonly used pathogenicity analyses were performed for all non-synonymous variants based on evolutionary conservation (DNA and protein level) and mutation impact on the protein.

Combined with the targeted resequencing we identified 30 de novo mutations which likely explain the ID phenotype. Nine involved known ID genes (RARS3B, SYNGAP1, GRIN2A(n=2), PDHA1, LR2P, TUBA1A, TCF4, GRIN2B), eight occurred in new, recurrent, and potentially overlooked, mutation among Italian patients. Haplotyping analysis suggests that it originated from at least two independent events.

To further characterize the mutation, a genomic region including the affected pseudoexon and surrounding intronic sequences was cloned into an expression vector and transfected into HeLa cells. RT-PCR analysis identified two alternative splicing products, produced by the activation of two different cryptic acceptor splice sites: one including the 104-bp pseudoexon (78.7% of transcripts), the other leading to the inclusion of a 65-bp pseudoexon (21.3% of mRNAs). Allele-specific measurement of wild-type and aberrant splicing demonstrated: i) a low level of pseudoexon inclusion in the F508del transcript (not containing the splicing mutation); ii) a residual wild-type splicing in the c.1584+18672A>G RNA; iii) the allele-specific degradation of aberrant transcripts; iv) the relative strength of the different cryptic splice sites. Interestingly, the residual wild-type splicing detected in transcripts bearing the c.1584+18672A>G mutation well correlates with the milder clinical phenotype of patients.

Screening of 481 CF patients identified c.1584+18672A>G in two additional individuals, demonstrating that it is a recurrent, and potentially overlooked, mutation among Italian patients. Haplotyping analysis suggests that it originated from at least two independent events.

To further characterize the mutation, a genomic region including the affected pseudoexon and surrounding intronic sequences was cloned into an expression vector and transfected into HeLa cells. RT-PCR analysis identified two alternative splicing products, produced by the activation of two different cryptic acceptor splice sites: one including the 104-bp pseudoexon (78.7% of transcripts), the other leading to the inclusion of a 65-bp pseudoexon (21.3% of mRNAs). Allele-specific measurement of wild-type and aberrant splicing demonstrated: i) a low level of pseudoexon inclusion in the F508del transcript (not containing the splicing mutation); ii) a residual wild-type splicing in the c.1584+18672A>G RNA; iii) the allele-specific degradation of aberrant transcripts; iv) the relative strength of the different cryptic splice sites. Interestingly, the residual wild-type splicing detected in transcripts bearing the c.1584+18672A>G mutation well correlates with the milder clinical phenotype of patients.

P11.016
Generation of Customized and Read-To-Use Genetically Engineered Mice

M. BURLING; ICS, ILLURING, France.

The Institut Clinique de la Souris - ICS - is a research infrastructure that provides extensive services ranging from the development of mouse models to comprehensive phenotyping. The Genetic Engineering and Model validation Department is dedicated to the development and molecular validation of new mouse models. Mouse models can be valuable models to better understand the molecular processes of monogenic diseases or to test drugs in vivo. We can generate duplications and deletions of defined genomic fragment (CNVs) as observed in human disease. We always work in strong interaction with the scientists and make sure to define their needs. Many publications have already arisen from mice generated at ICS.

The department is also driving several internal R&D programs and is involved in several international consortium (EUROCMM, EUCOMMtools, GENCODE, IMPC, PHENOMIN).

We have generated a CreERT2 zoon (http://www.ics-m.cnfr/mousecre/). When bred with conditional knock-out mice these lines allow the generation of time and cell specific knock-out after injection of Tamoxifen. We will give you an example of a fully characterized mouse line: Insulin1-CreERT2. The Cre expression is observed in the β-cells, the translocation in the nucleus is confirmed in the presence of Tamoxifen as expected for an inducible line. By breeding this line with Rosa26 reporter line, a specific LacZ staining is observed in the β-islet cells. This line was phenotyped (under chow diet) and no glucose intolerance was observed at the difference of the Rat Insulin Promoter (RIP)-Cre line. A comparative study (Ins1-CreERT2 versus RIP-Cre) was performed and will be detailed.

P11.017
Performance of seven mutation pathogenicity prediction methods in the classification of missense variants of the CYP1B1 gene

G. Chavarria-Soley; Universidad de Costa Rica, San José, Costa Rica.

Non-synonymous single nucleotide polymorphisms (SNPs) in the coding regions of genes can lead to amino acid changes and potentially affect protein function and, therefore, susceptibility to disease. Several computational methods have been developed for the classification of SNPs according to their predicted effect on protein function and resulting pathogenic potential. In this study, we evaluated the performance of seven commonly used pathogenicity prediction methods available on the Internet (SIFT, nsSNPAnalyzer, Panther, pMut, PolyPhen, PhD-SNP, and SNAP). In order to test them, non-synonymous SNPs in the CYP1B1 gene - which codes for the cytochrome P450 1B1 enzyme - were selected. A total of 129 missense variants in CYP1B1 were identified in the literature, from which 87 could be classified as pathogenic or neutral according to criteria such as segregation with disease phenotype, and effect on function, among others. The algorithms showed significant variation in the assignment of the variants to three categories (non-neutral, neutral, or prediction), with a low 37% prediction rate for Panther. Pairwise concordance between methods in the classification of variants as pathogenic or neutral varied between 37% and 94%. The accuracy in the prediction of the pathogenicity of the variants was higher than 68% with all methods except pMut (47%). The highest false positive and false negative rates were found for SIFT and pMut, respectively. Taking into account the rate of prediction, accuracy of prediction, false positive, and false negative rates, the methods with the overall best performance in the present study was nsSNP-analyzer, closely followed by SIFT, Polyphen and SNAP.
High throughput qPCR DNA methylation marker testing and validation

AIT, Vienna, Austria.

Over recent years elucidation of genomewide epigenetic changes has become a routine application. As with other genomewide approaches confirmation of elucidated DNA methylation changes have to be validated using alternative methods and also on additional samples. In principle several strategies either based on bisulfitelc DNA conversion or methylation sensitive restriction enzyme (MSRE) digestion are suitable for confirmation of methylation changes. During our biomarker-research efforts on several cancer entities we have found that quantitative methylation analyses are inevitably for analyses. Therefore we have set up a cost efficient MSRE-based qPCR strategy and have qualified 576 methylation markers according MIIQE guidelines. For enabling high throughput analyses of the qPCR assays performing 9216 qPCRs in a nanoliter scaled microfluidic qPCR array per run, DNA target concentrations were determined based on IonTorrent sequencing and obtained very good correlation of results. Nanoliter scaled MSRE based HTqPCR outperforms standard qPCRs with respect to material costs, data quality and efficiency. Preamplification enables also parallelized analyses of up to 96 targets starting with 5–10ng DNA with high reliability and is currently under investigation for methylation testing of cell free DNA in serum.

Screening of muscular disease genes with the Access Array System of Fluidigm and Roche’s GS Junior

J. E. Rock, A. Gehrg, S. Rost, C. R. Miller
Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany.

Sequence of large genes like the DMD gene or of a group of genes, e.g. muscular disease genes, for many patients in parallel is a major application in our diagnostic laboratory. In addition to Sanger sequencing, we have established next generation sequencing (NGS) with the 454 GS Junior (Roche). For target enrichment, the Access Array System of Fluidigm is used which allows parallel amplification of 48 target regions for 48 samples in one single PCR setup. By the combination of target-specific primers and individual-specific barcode primers with 454 adaptors, sequencer-ready amplicons libraries can be produced in a single step.

The Access Array System is being established for the parallel screening of multiple candidate genes in patients with muscle diseases. In a first step, the DMD gene has been resequenced in a total of 80 patients in whom mutations and SNPs had already been identified by classical Sanger sequencing. The sequence coverage was satisfying (at least 15-fold by default) and all known variations could be retrieved. We are now extending the system to other genes for muscular diseases, especially the genetically heterogeneous limb-girdle muscular dystrophies (LGMD).

The combination of Access Array System and GS Junior sequencing has proven reliability and practicability as a time and cost efficient alternative for classical PCR and Sanger sequencing. The system seems to be particularly suitable for diagnostics as it is easy-to-use and requires only small amounts of genomic DNA and PCR reagents in order to obtain a sufficient amount of sequence data within three days.

Placental liprotein lipase DNA methylation levels are associated with impaired glucose tolerance and maternal and fetal blood lipid profiles

A. A. Houde1,2, M. F. Hivert3, P. Perron2, J.-S. St-Pierre, D. Gaudet2,3, B. Brissos2, L. Bouchard2,4
1Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada, 2ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada, 3Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada, 4Department of Pediatrics, Chicoutimi Hospital, Saguenay, QC, Canada.

Background: According to the fetal programming (or Barker’s) hypothesis, newborns exposed to a detrimental fetal and perinatal environment are more susceptible to develop obesity type 2 diabetes (T2D) and related chronic disorders but the underlying molecular mechanisms are poorly understood. Lipoprotein lipase gene (LPL) is an important regulator of lipid metabolism and transport and has been associated with obesity, T2D and dyslipidemia. The aim of this study was to determine the impact of impaired glucose tolerance (IGT) exposure on newborn LPL gene DNA methylation levels and lipid profile.

Methods/Results: Placental tissues and blood samples were obtained from 128 women (31 with IGT) and their offspring. Glucose tolerance was assessed using a 75-g oral glucose tolerance test (OGTT) between weeks 24 and 28 of pregnancy. LPL DNA methylation was determined by bisulphite pyrosequencing. There were up to 9% (p<0.05) differences in LPL DNA methylation levels between women with or without IGT. Placental LPL gene DNA methylation levels were associated with 2h-glucose post-OGTT levels (r=–0.204, p=0.022) and first trimester maternal triglycerides concentration (r=–0.201, p=0.05) and total cholesterol/HDL ratio (r=0.207, p=0.021). Cord blood (n=93) cholesterol (r=–0.216, p=0.041), HDL (r=0.208, p=0.05) levels and total cholesterol/HDL ratio (r=0.248, p=0.05) were also correlated with placental LPL DNA methylation.

Conclusion: These results suggest that fetal LPL DNA methylation levels are dysregulated by maternal glucose tolerance with a possible functional impact on cord blood lipid profile. They provide insights on the molecular mechanisms that may be involved in fetal programming and long-term development of obesity and dyslipidemia.

DNA methylation patterns of mitotic and meiotic chromosomes from human spermatogenic cells

1Saint-Petersburg State University, Saint-Petersburg, Russian Federation, 2D.O.Ott’s Institute of Obstetrics and Gynecology, Saint-Petersburg, Russian Federation.

We studied DNA methylation patterns of mitotic and meiotic chromosomes from human spermatogenic cells. Samples were obtained from 5 patients with fertility problems in IVF clinic by tests biopsy. Chromosomes were fixed on slides with ethanolic acid (3:1) after coelhagines treatment in hypotonic solution. Analysis of DNA methylation was performed by immunochemistry with monoclonal antibodies against 5-methylcytidine. Chromosomes were identified by QFI/AC staining. Among 119 analyzed dividing cells several types were detected by their specific morphological features: mitotic diploid and polyploid spermatogenesis and meiotic spermatocytes at the pachytene, diplonme and diakinesis stages. DNA methylation pattern of mitotic chromosomes appeared to be a specific banding pattern, resembling R-banding. It differed by number of bands and DNA methylation intensity from that in lymphocytes and human mesenchymal stem cells, described in our previous study. DNA methylation level of heterochromatic blocks of chromosomes 1, 9, 16 and Y demonstrated the most feasible difference: in most mitotic spermatogenesis these regions were hypomethylated. Pachytene chromosomes showed less obvious Me-banding pattern, pro...
A genomic approach for DNA methylation & hydroxymethylation analysis

M. Krispin, X. Sun, R. Lavratti, T. Chang, E. Bacon, A. Pettersson, M. Van Eden, X. Jia; Zymo Research, United States.

DNA methylation and hydroxymethylation are some of the most important epigenetic modifications that can occur in the human genome. For instance, DNA methylation plays a vital role in the regulation of gene expression in normal cell development and aging, but also in the formation and progression of cancer and other diseases. Large scale identification of putative epigenetic biomarker candidates is achievable with the ability to profile DNA methylation and hydroxymethylation at the genome level. Once validated, specific biomarkers could be applied to clinical and molecular diagnostic fields. Due to the availability of Next Gen sequencing technology, a number of new technologies have been developed for interrogating DNA methylation and hydroxymethylation at the genomic scale. Zymo Research has recently perfected sample prep and bioinformatic analysis as part of its new DNA Methylation and Hydroxymethylation Profiling Services. These epigenetic services combine next generation sequencing with Zymo’s well-established epigenetic technologies and innovative bioinformatic algorithms for the most streamlined, comprehensive genome scale data generation to date. With these new services— hundreds of epigenomic biomarker candidates can be discovered simultaneously.

P11.025

P11.026

A genome-wide search for novel imprinted genes

J. Beggio, M. Heitmann, D. Gritzri, J. Richter, D. Ammerpohl, R. Siebert, B. Horsthemke, K. Buising;
1Institut fuer Humangenetik, Universitaetsklinikum Essen, Essen, Germany, 2Institute fuer Humangenetik, Universitaetsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany.

NLPR7 is a maternal effect gene as mutations in this gene cause recurrent hydatidiform moles, spontaneous abortions and stillbirths, whereas live births are very rare. We have studied a patient with multiple developmental defects born to a mother with a heterozygous NLPR7 mutation. By genome-wide CpG methylation analysis of blood DNA from the patient, his parents, and 18 normal controls on Illumina 27K arrays we found that the patient had methylation changes (delta >0.3) at almost all known imprinted loci as well as at 77 other loci. Using each control as a pseudo-proband, we found methylation changes at only 11-26 (median 17) loci not known to be imprinted. In order to identify novel imprinted genes among the 77 conspicious loci in the patient, we selected 22 genes (mainly hypomethylated genes) for deep bisulfite sequencing on the IODHE/454 Genome Sequencer in the patient and at least two additional controls who were heterozygous at the test locus. Apart from FAM50B, which we proved to be imprinted, we did not observe allele-specific DNA methylation at these loci. We conclude that the patient has methylation defects at almost all imprinted loci as well as an excess of methylation changes at apparently non-imprinted loci. Our data also suggest that the number of genes that are imprinted in blood is rather low and that most of them have been discovered.

P11.027

Genome wide DNA methylation profiling of monzygotic twins discordant for trisomy 21

A. Leterouze, M. R. Sallani, F. Santoni, A. Sharp, P. Makrythanasis, S. E. Antonaraki; 1University of Geneva, Geneva, Switzerland; 2Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, United States.

DNA methylation is essential in mammalian development and has an effect on gene expression. We hypothesize that methylation differences induced by trisomy 21(T21) contribute to the phenotypic characteristics and variations in T21 patients. In order to determine the methylation differences in T21 without the noise of the genomic variation, we studied samples from monzygotic twins discordant for T21. We also collected samples from monozygotic twins concordant for T21, normal monzygotic twins without T21, and unrelated normal and T21 individuals to use as controls. We applied Reduced Representation Bisulfite Sequencing (RRBS) to generate nucleotide resolution of DNA methylation based on high throughput sequencing (HiSeq 2000) between each pair of twins. Methylation state of 4,278,489 CpGs with at least 8X coverage was obtained for the monzygotic twins discordant for T21. An initial analysis of methylation percentages differences between these twins identified 1000 differentially methylated regions (DMRs) (FDR<0.001 and at least 4 fold change in methylation differences). These DMRs were correlated with the deregulation of gene expression. The analyses of the control samples are ongoing. The study of methylation differences in monzygotic twins discordant for genetic abnormalities is a promising approach to understanding the molecular mechanisms of aneuploidies.
In conclusion, slightly lower MTHFR DNA-methylation levels may be associated with NTD. Additional studies are warranted to confirm our results.

P11.030 Differential expression of microRNAs in peripheral blood mononuclear cells of Down syndrome children
1 São José do Rio Preto Medical School - FAMEER; Department of Molecular Biology, São José do Rio Preto, Brazil, 2 São Paulo University, Department of Genetics, Medical School of Ribeirão Preto, Ribeirão Preto, Brazil, 3 International Center of Research and Training (CIPE), AC Camargo Hospital, São Paulo, Brazil.

Down syndrome (DS) or Trisomy 21 is the most common human chromosomal disorder. DS phenotype includes several developmental features, intellectual disability, immunological alteration, congenital heart disease, high risk for specific types of leukemia and neurological alterations. Recent studies show that DS results in the over-expression of microRNAs, which could result in low expression of specific proteins and contribute to DS phenotype. To identify differentially expressed microRNAs in peripheral blood mononuclear cells of DS and non-DS children and the biological processes relevant to DS pathogenesis associated with their predicted gene targets of microRNAs differentially expressed, we investigated the expression pattern of 754 mature microRNAs using TaqMan® Low Density Arrays (Applied Biosystems). Of the 490 mature microRNAs expressed in this cell type, 49 are low-expressed in DS group. The microRNAs located in chromosome 21 did not present differential expression between the groups. Target prediction was performed using TargetScanHuman v. 5.2, software and information about gene targets was obtained using the Bioprocess, a database that obtains data from NCBI. Bioinformatics analysis showed that genes involved in relevant biological processes, such as apoptosis, reactive oxygen species metabolism, mitochondrial metabolism, immune system, cell aging, cell cycle and division and control of gene expression, are predicted targets of microRNAs differentially expressed in DS children. In conclusion, DS children present low expression of microRNAs not located on chromosome 21 in peripheral blood mononuclear cells and biological processes relevant to DS pathogenesis are associated with predicted gene targets of these microRNAs differentially expressed in DS children.

P11.032 Epimutations of imprinting genes and early pregnancy loss
E. A. Szatovena, I. N. Lebedev
1 Institute of Medical Genetics, Tomsk, Russian Federation.

Genomic imprinting is one of the most significant epigenetic phenomena, which led to a new biological interpretation and functional component. We performed DNA methylation analysis of the cytotrophoblast (CT) and extraembryonic mesoderm (EM) from 5 first-trimester spontaneous abortions (6.8±1.1 weeks) as a control group using HumanMethylation27 BeadChip (Illumina, USA) comprising 409 CpG sites oriented near promoter region of 60 imprinted genes. Sixteen (26.6%) imprinting genes have revealed abnormal methylation patterns in both CT and EM. Imprints were used to examine transcripts and patterns of differentially expressed genes. We conclude that CT and EM epigenetic patterns are associated with the differentiation and function of trophoblast cells.

P11.033 Methylation analysis of three imprint genes in ICSI versus IMSI sperms by limiting dilution bisulfite pyrosequencing
J. Kuhler, T. Hansmann, N. El Hajj, E. Schneider, B. Linek, T. Hahne, M. Schorsch, T. Haufl
1 Institute of Human Genetics, University of Wuerzburg, Wuerzburg, Germany, 2 Department of Gynecology and Obstetrics, University Medical Center, Mainz, Germany, 3 Fertility Centre, Wiesbaden, Germany.

Optimum selection of sperm cells may increase the success rate of intra-cytoplasmatic sperm injection (ICSI) for human infertility treatment. For standard ICSI the embryologist selects normal looking sperm under an inverted microscope. Recently, a new method, intracytoplasmatic morphologically selected sperm injection (IMSI), was introduced. For IMSI only the most normally shaped sperms without a vacuole in the nucleus are retrieved using a higher definition microscope. Several recent studies have shown that abnormal sperm parameters are associated with aberrant methylation imprints. To compare the epigenetic quality of different sperms from the same males, we have used limiting dilution bisulfite pyrosequencing, which allows one to study the methylation levels of multiple genes in pools of about 10 sperms each. First, we have analyzed the methylation patterns of two maternally imprinted genes, hLTHT and hP63G, and one paternally imprinted gene, hH1L2 in ICSI versus IMSI sperm samples from 5 males. Secondly, we have compared IMSI sperms versus sperms with a clearly visible vacuole from 10 males. Thirdly, we compared IMSI sperms versus abnormal shaped sperms with a vacuole in 5 males. Overall, we found a low rate (0-4%) of epimutations (abnormal allele methylation) in all groups and no between-group differences. Although we cannot exclude epigenetic differences in genes other than those studied, our results do not support the hypothesis that IMSI selects better quality sperms, improving fertilization and pregnancy outcome.

P11.034 Utilizing next generation sequencing for exome analysis
K. A. Stangier, F. Ernst, Y. Kamar, T. Paprotka
1 GATC Biotech AG, Konstanz, Germany.

Next generation sequencing has changed the possibilities for analyzing human exomes. Several commercial kits are available allowing exome enrichment with subsequent library preparation in a cost efficient way. These libraries can be directly analyzed on e.g. an Illumina HiSeq. Enrichment is performed by pull down of coding regions with baits, which differ in overall design depending on the manufacturer. The depth of analysis can be enhanced by increasing the number of reads by using higher sequencing coverage mapped on the genome or the targeted region. We used commercially available exome enrichment kits and designed a pipeline for data quality analysis, mapping and especially SNP detection. The mapping of reads was analyzed in detail to determine the efficiency of enrichment for the targeted regions. Variants were filtered according to several criteria like base quality, read quality, thresholds for coverage, and the overall mapping quality.

In order to improve the overall quality of reads for data processing, a quality score which represents the probability of a particular base mismatch in the reference genome was established. This highly increased the probabilities of validating certain mismatches. In addition, FFPE samples were used for exome enrichment and the mapping and SNP detection compared to other starting material. Utilizing exome sequencing in clinical and genetic diagnosis and personalized disease risk profiling is expected in the near future. Optimizing the sensitivity and data analysis pipelines will help to integrate exome analysis into a common clinical setup.

P11.035 Accurate detection of de novo mutations in rare and common neurodevelopmental disorders
A. Holscher1, E. L. J. M. Visser1, B. W. M. von Boeijen1, J. M. Beecham1, K. Lao2, J. de Ligt1, H. G. Brunner1, C. Kilsen3, J. A. Veltman1
1 Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 2 Life Technologies, Foster City, CA, United States.

Many dominant Mendelian disorders occur sporadically because the severity and early onset of the disorder preclude transmission to subsequent generations. In such cases, exome sequencing represents the first systematic approach to identify many genes that cause sporadic diseases. It has been demonstrated that de novo mutations cause rare syndromic forms of dominant Mendelian disease, such as Schinzel-Giedion syndrome and Kabuki syndrome were first identified by applying overlap strategies. de novo mutations in the same gene in multiple independent affected individuals. Subsequent studies focused on the role of non-syndromic mutations in common neurodevelopmental disorders, such as intellectual disability, autism and schizophrenia by applying a trio design, i.e. trio sequencing of patient-parent trios. In order to establish a robust approach optimized for de novo analysis, we used latest SOLID 5500XL sequencing technologies in combination with the recently announced wildfire product (Life Technologies, Foster City, CA). The latter allowed the highest number of analyzed DNA molecules (>1 billion reads, or reads per lane), a fast process, long reads, high throughput and importantly allowed reliable calling of disease causing de novo mutations by applying exome sequencing to patient-parent trios. As a proof-of-concept for this novel technology we studied a patient with Baraitser-Winter syndrome.
syndrome, a well-defined disorder characterized by distinct craniofacial features, ocular coloboma and a neuronal migration defect. Using whole-exome sequencing of a patient-parent trio, we identified a de novo missense mutation in the cytoplasmic actin-encoding gene ACTB.

P11.036 Detection of Interstrand and Intrastrand DNA Crosslinks with Two-Dimensional Strandness-Dependent Electrophoresis

B. Gudmundsson1, N. G. Thorarinsdottir1, S. Thongphip1, A. Snogrenova1, J. J. Jonsson1
1Dept. of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland, 2BioCul Inc., Reykjavik, Iceland, 3Laboratory of Genome Maintenance, Rockefeller University, New York, NY, United States, 4Dept. of Genetics and Molecular Medicine, London, United Kingdom

Two-Dimensional Strandness-Dependent Electrophoresis (2D-SE) is a novel technique, where a nucleic acid analysis is used to assess quality of samples, efficiency of molecular procedures and DNA damage. In the first dimension nucleic acid fragments are separated based on length and strandness i.e. double-stranded DNA, single-stranded DNA and DNA•DNA hybrids. The nucleic acids are heat denatured before the second dimension electrophoresis and thereafter fragments separate only based on length. After 2D separation, differences between different strandness and lengths of the nucleic acids in the original sample.

We tested if 2D-SE could be used to detect DNA crosslinks. Patients with Fanconi anemia (FA), a group of rare recessive disorders with heterogeneous clinical features, are extremely susceptible to DNA crosslinking agents. Human genomic DNA in solution and fibroblast cell cultures with mutations in FANCA and FANCD1 genes were treated with the different crosslinking agents diepoxybutane, mitomycin C and cisplat in and analysed with 2D-SE. Increased amount of DNA migrating behind normal dsDNA was observed as expected for molecules with interstrand crosslinks since they prevent full denaturation of dsDNA. Intrastrand crosslinks causing bending of nuclear acids and ssDNA migrating in front of arc dsDNA were also observed. Lesions were dosage-dependent and correlated with cytogenetic abnormalities.

Repair efficiency as measured with 2D-SE, was lower in the FA cell types compared to the wild-type cells. 2D-SE has potential use in research, for Fanconi anemia diagnosis, and in chemosensitivity testing as the cytotoxicity of many cancer medications depends on their DNA crosslinking ability.

P11.037 Application of next generation sequencing to identify causative variant at the BCL11A locus

F. Danjou1, L. Utsold1, P. Perrusi2, C. Sabin3,4, F. Buxemner5, R. Berrett5, F. Reinier5, A. Angulo1,6, L. Maschio1, C. Jones2, S. Satta2, F. Demartis2, R. Amanati6, G. Abeam6, D. Schlessinger7, R. Galanello7, F. Cucca7, S. Sanna1, M. Udo1
1Clinica Pediatrica 2a, Dipartimento di Scienze Biomediche e Biotecnologie - Università di Cagliari, Ospedale Regionale Microcisteme ASL8, Cagliari, Italy, 2Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy, 3Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy, 4Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States, 5Center for Advanced Studies, Research, and Development in Saradna (CfS), AGCT Program, Parco Scientifico e Tecnologico della Sardegna, Pula, Italy, 6Intramural Research Program, National Institute on Aging, Baltimore, MD, United States

In the past few years, genome-wide association studies have improved our understanding of the molecular basis of fetal hemoglobin (HbF) levels, which is one well known elucidating factor of both beta-thalassemia and sickle cell anemia disorders. Transcriptome sequencing led to the identification of the BCL11A transcription factor as one of the main genetic modifier of the two disease phenotypes. Although several studies have shown that BCL11A functions as a developmental stage-specific repressor of HbF expression controlling globin switching both in human and mouse, the specific contribution of associated variants in the development of the two diseases is still unclear. Here we applied whole genome sequencing data from genotyping and targeted and whole-genome sequencing using next generation technology to identify causative variants at the BCL11A locus. We performed at two steps imputation using BCL11A targeted sequencing of 33 patients with Thalassemia Intermeda (30x coverage, on average) and low pass whole-genome sequencing of 347 unrelated individuals from the SardinIA project (4x coverage, on average) to impute the discovered variants in 2,543 individuals from the same cohort genotyped with Affymetrix 500K and 6.0 arrays. Accounting for all known HbF levels modifiers, the association at the BCL11A locus can be explained by two independent variants, mapping 304 bp apart. They represent the strongest haplotype signal within the gene and are likely to be the causative polymorphisms. Experimental assays are ongoing to assess their specific impact in BCL11A function.

P11.038 The contribution of histone modifications to fetal programming of adult disease - studies in offspring of mothers with gestational diabetes

A. Fitzner1, M. Wolf1, N. El Hajj1, F. Plushack1, E. Schneider1, M. Arezz1, H. Lehner1, H. Haaf1, U. Zechner1
1Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, 2Institute of Human Genetics, University Würzburg, Würzburg, Germany, 3Institute of Human Genetics, University Würzburg, Würzburg, Germany, 4Institute of Human Genetics, University Würzburg, Würzburg, Germany

Several human epidemiological studies and experimental animal studies link in utero conditions very early in development with adverse effects on the risk of developing obesity, diabetes and other metabolic diseases later in life. Children born to mothers with obesity and/or diabetes have been shown to have a greater prevalence of metabolic disorders later in childhood, adolescence and adulthood. Epigenetic modifications of gene expression by DNA methylation and histone modifications are very attractive candidates for modulating these fetal programming effects. To investigate the impact of maternal overnutrition on the epigenome of the offspring, we aim at analyzing the histone modification profiles of candidate genes in chorionic villi of newborns from mothers with insulin-dependent gestational diabetes (GDM), dietary-treated GDM, and healthy controls (without GDM and overweight) using Chromatin immunoprecipitation (Chip) real-time PCR.

We performed our analysis with the maternally imprinted MEST gene since our previous studies detected a significantly decreased DNA methylation at this gene in offspring of mothers with GDM. First experiments revealed a marked increase of the activating histone H3 lysine 4 trimethylation and histone H3 lysine 9 acetylation marks that is associated with maternal GDM. No significant changes in the repressive histone H3 lysine 27 trimethylation mark were observed. Histone modification analysis of several other candidate genes is also in progress. These preliminary results support the view that early exposure to overnutrition involves not only altered DNA methylation but also changes in histone modifications that possibly lead to increased MEST gene expression and effects on fetal programming of adult disease.

P11.039 Elucidating the role of FOXP1 in striatal development

C. Bacon, G. Rappold
Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany

De novo heterozygous FOXP1 gene deletions were recently identified in 3 patients with intellectual disability and language impairment. These findings, together with support from independent studies, show that FOXP1 may play a role in both cognitive as well as language development. This is supported by the fact that FoxP1 is strongly expressed in specific brain structures, particularly in the striatum. To date, very little is known about the role of FOXP1 in brain development. Examination of different developing brain structures in the absence of FOXP1 would shed light on the neurodevelopmental pathways in which it is playing a role. We have used a knockout mouse model to investigate the role of Foxp1 in early striatal development. The striatum is composed mainly of medium spiny neurons (MSN) which can be divided into patch and matrix MSNs and form axonal connections with other components of the basal ganglia. Analysis of the Foxp1 knockout brain using various immunohistochemical and histological stains, which identify patch and matrix MSNs, have revealed that these specific neuronal populations are seemingly unaffected up to E14.5. We have additionally used axon tracing techniques to trace the striatal projections to the substantia nigra and these experiments revealed no misprojection of these axons. Taken together our results show that Foxp1, which is strongly expressed in the striatum, is not essential for early striatal development and that its function is likely to be rather more central in later developmental stages.

P11.040 Role of CTCF protein in regulating FMR1 gene transcription

M. Goracci1, S. Lanni1, L. Barrelli1, E. Tabolacci1, G. Neri1,2
1 Institute of Medical Genetics, Rome, Italy, 2Catholic University, Rome, Italy

Fragile X syndrome (FXS) is mostly caused by expansion and subsequent methylation of the CGG repeat at the 5' UTR of the FMR1 gene (full mutation). Rare individuals of normal intelligence, carrying an unmethylated full mutation, have been shown to have an expanded repeat of FMR1 in brain (CGG repeat expansion). Several studies detected a significantly decreased DNA methylation at this gene in offspring of mothers with GDM. First experiments revealed a marked increase of the activating histone H3 lysine 4 trimethylation and histone H3 lysine 9 acetylation marks that is associated with maternal GDM. No significant changes in the repressive histone H3 lysine 27 trimethylation mark were observed. Histone modification analysis of several other candidate genes is also in progress. These preliminary results support the view that early exposure to overnutrition involves not only altered DNA methylation but also changes in histone modifications that possibly lead to increased MEST gene expression and effects on fetal programming of adult disease.
with anti-CTCF siRNA resulted in a reduction of FMR1 transcripts (both sense and antisense) in normal and UFM fibroblasts. After CTCF knock-down, the epigenetic analysis of the FMR1 promoter demonstrated a reduction of H3-K4 methylation and an increase of H3-K9 methylation, while the DNA methylation of the FMR1 promoter region and of the upstream methylation boundary remained unmodified. CTCF knock-down affected its binding to the 5'UTR of the FMR1 gene. These results suggest that CTCF is a modulator of the FMR1 transcription, given that its depletion causes FMR1 transcript reduction and the transition to a heterochromatic configuration. The elucidation of the mechanism sparing UFM males from inactivating their full mutation is important for planning therapeutic attempts at converting methylated into unmethylated full mutations, restoring FMR1 gene expression. Supported by FRAXA Foundation and Telethon Onlus.

P11.041
The prediction of Pathogenesis of Mitochondrial 12397 A-G substitution in Friedreich's ataxia with Bioinformatic Procedures

M. Heidari, M. Khataami; Department of Biology, Science School, Yazd University, Yazd, Iran, Yazd, Islamic Republic of Iran.

Friedreich’s ataxia (FRDA) is the most common ataxia that has an autosomal recessive inheritance. The disorder caused by mitochondrial defects. The prediction of pathogenesis of nucleotide changes by bioinformatics is useful method for Geneticians. In this study, Mitochondrial NDH dehydrogenase IV (ND5) gene was investigated by PCR-SSCP in 25 patients. The samples with shift bands sent for sequencing. Sequencing results were determined 12397 A-G substitution in 2 patients. This substitution causes to change of Thr to Ala (T21A). The determination of pathogenesis of this mutation were performed by SIFT database (Sorts Intolerant From Tolerant amino acid substitutions). The Substitution at position 21 from T to A is predicted to affect protein function with a score of 0.00 and median sequence conservation is 4.32. Although the prediction of this database is sequence homology-based tool, but that is useful method for the determination of effect of mutation on phenotype.

P11.042
Correlation analysis of clinical parameters with epigenetic modifications in the DUX4 promoter in FSHD

J. Bolog1, R. E. Thijsen1, J. C. de Greef1, B. Shah1, B. G. M. van Engelen1, K. Yokomori1, S. J. Tappssorn2, R. Taiwii, S. M. van der Maaari1; 1Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands, 2Leiden University Medical Center, Leiden, Netherlands, 3University of Rochester Medical Center, Department of Neurology, Rochester, NY, United States, 4Department of Neurology, Radboud University, Nijmegen, 5Department of Molecular Biology, University of Rochester Medical Center, Rochester, NY, United States.

Aim of our study was to identify relationships between epigenetic parameters correlating with a relaxed chromatin state of the DUX4 promoter region and clinical severity as measured by a clinical severity score or muscle pathologic changes in D4Z4 contraction-dependent (FSHD1) and -independent (FSHD2) facioscapulohumeral muscular dystrophy patients. 21 primary fibroblast and 26 primary myoblast cultures originating from patients with FSHD and controls were analyzed. Histone modification levels were determined by chromatin immunoprecipitation. We examined correlations between the chromatin relaxation score (CRS) defined by the H3K9me3/H3K4me2 ratio and an age corrected clinical severity score (CSS) or muscle pathology score (MPS). Possible relationships were investigated using linear regression analysis and significance was tested by Pearson’s product-moment coefficient.

We found a significant difference of the CRS between controls and patients with FSHD1 and between controls and patients with FSHD2. Tissue specific differences in CRS were also observed. We also found a near-significant relationship between CRS and the age corrected CSS in fibroblasts but not in myoblasts. Surprisingly, we found a strong correlation between the MPS of the vastus lateralis and the CSS suggesting that this muscle can be used to study for surrogate markers of overall disease severity.

P11.043
Gene expression analysis using functional genomics techniques

D. Vladi, V. Dumitrascu, C. Ciga, G. C. Carbari, R. Popescu, M. Dumitru, C. Vlad, A. Matsu; 1Department of Pharmacology and Biophysics, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania, 2Department of Genetics, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania, 3Department of Clinical Laboratory, Emergency County Hospital, Timisoara, Romania, 4Dentissimo Dental Care, Timisoara, Romania, 5European General Practice Research Network Romanian National Representative, Timisoara, Romania.

Background: This work presents an overview of evolutionary models and some functional genomics methodologies in the specific context of analyzing the gene expression.

Functional genomics techniques are intended to aid in rapidly identifying gene function by correlating gene expression with cell or tissue phenotype. Despite many complex studies performed, the clinical utility of genotypic-phenotype associations remains unclear.

Profiling transcriptomes and examining the coordinate expression of genes in diverse pathobiologic pathways is now possible with techniques such as gene array analysis. Functional genomics techniques compare mRNA transcript pools (transcriptomes), they can also be used to compare genomes, and to study the proteome. We use those methods in which no prior gene sequence is required (open architecture systems), as well as those in which prior sequence data are required (closed architecture systems).

The aim of this work is the most widely used functional genomics methods and gene array analysis: Bioinformatics to genealogically predict the future diseases of the new born and to prevent the surgical complications of the malformative interventions in the first days of life.

Key words: gene expression, microarray technology, evolutionary models.

Abbreviations: mRNA - messenger ribonucleic acid
of various functions including behavior, cognition, sensory systems, nutrition, metabolism, clinical chemistry, cardiovascular, respiratory function and anatomopathology. Beside its services, the ICS is a member of several European programs: EUROMM (www.euromm.org) to generate the mutant strain catalogue to archive and distribute them, and EU-MODIC (www.euromdic.org) to phenotypically characterize 500 knock-out models. The EU-MODIC is extended to the 20,000 potential genes identified in the mouse genome and continued by the International Mouse Phenotyping Consortium (www.mousphenotype.org). ICS is also a partner of the Fondation Maladies Rares. Up to now, about 60 mouse mutant lines were phenotyped and around 80% of the analyzed lines show at least one phenotype. The data are available to the scientific community (www.euromphenom.org), as well as the mouse models through EMMA.

P11.046 Integrating genomic technologies in clinical practice: A novel approach
V.J. Trabakidis, McGill University Health Centre, Montreal, QC, Canada.

Medical genetics is shifting from the present "phenotype-first" medical model to a "data-first" model which leads to multiple complexities. This abstract discusses a "phenotype-first" approach. Individualized Mutation-weighted Phenotype On-Line search (I-MPOSE), which can be detected widespread use of Exome Sequencing (ES) and Whole Genome Sequencing (WGS) in the immediate future practical, ethical and clinically useful. In brief, patients have their exome/genome sequenced and their encrypted data stored on a password-protected platform which remains at the disposal of the individual patient. A patient presents to clinic with a specific medical concern. The physician performs a clinical evaluation and identifies some important features. After obtaining authorization, the clinician temporarily and anonymously uploads the patient's encrypted genomic data to a search engine (I-MPOSE) which simultaneously operates on the patient's encrypted data and on a regularly updated database containing all well-characterized genetic diagnoses. I-MPOSE identifies the genetic changes present in the patient's sequenced encrypted genome relative to the reference genome. Using pre-set criteria, I-MPOSE automatically assigns a weight score to the variant based on the level of certainty for its pathogenicity. The physician performs a database search using keywords related to the clinically assessed phenotype thereby providing an initial ranking of possible genetic diseases. This initial ranking is then adjusted by I-MPOSE based on the weight scores automatically assigned to the variants identified by ES/WGS. The proposed approach allows for a more efficient prioritization of the genes to be tested in a clinical lab and an incremental integration of genomic technologies into clinical practice.

P11.047 Impact of common regulatory single nucleotide variants on gene expression profiles in whole blood
K. Heim, D. Mehta, C. Herder, M. Carstensen, G. Eckstein, C. Schummann, G. Homath, M. Nauck, U. Völker, M. Roden, T. Illig, C. Gieger, T. Mettinger, H. Fuchs, M. Rothenbacher, M. Roden, T. Illig, C. Gieger, T. Mettinger, H. Fuchs; 1Institute of Human Genetics, Helmholtz Center, Munich, Germany, 2Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany, 3Ernst Moritz Arndt University Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany, 4University Medicine Greifswald, Institute for Clinical Chemistry and Laboratory Medicine, Greifswald, Germany, 5Department of Metabolic Diseases, University Clinics Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany, 6Institute of Epidemiology, Helmholtz Center, Munich, Germany, 7Institute of Human Genetics, Technical University, Munich, Germany.

Genome-wide association studies (GWAS) have uncovered susceptibility loci for a large number of complex traits. Functional interpretation of candidate genes identified by GWAS and confident assignment of the causal variant still remains a major challenge. Expression quantitative trait (eQTL) mapping has facilitated identification of risk loci for quantitative traits and might allow prioritization of GWAS candidate genes. One major challenge of eQTL studies is the need for larger sample numbers and for replication. The aim of this study was to evaluate the robustness and reproducibility of whole blood eQTLs in humans and test their value in identification of putative functional variants involved in the etiology of complex traits. In the current study, we performed comprehensive eQTL mapping from whole blood. The discovery sample included 322 Caucasians from a general population sample (KORA F3). We identified 363 cis eQTLs and 14 trans eQTLs after stringent Bonferroni correction for multiple testing. Of these, 98.6% and 75% of cis and trans eQTLs respectively could be replicated in two independent populations (KORA F4 (n = 740) and SHIP-TREND (n = 653)). Furthermore, we identified evidence of regulatory variation for SNPs previously reported to be associated with disease loci (n = 59) or quantitative trait loci (n = 20), indicating a possible functional mechanism for these eSNPs. Our data demonstrate that eQTLs in whole blood are highly robust and reproducible across studies and highlight the relevance of whole blood eQTL mapping in prioritization of GWAS candidate genes in humans.

P11.048 The novel BTB-kelch Protein, KBTBD8, is ubiquitously expressed but specifically localized in the Cis-Golgi Apparatus
S. Lühring, S. Kohl, J. Atamanyuk, V. Motes, J. Notte; 1Institute of Human Genetics, Göttingen, Germany.

Proteins of the BTB/Kelch family are known to be involved in multiple biological processes such as migration, cytoskeletal arrangement, regulation of cell morphology, protein ubiquitination and gene expression. Kbtbd8 is a new undescribed member of this family. The gene was found to be highly expressed in mouse pluripotent stem cells by analyzing their transcriptome and was therefore suggested to be a putative pluripotency regulating gene. Comparative analysis of the gene and protein sequences revealed a high conservation throughout evolution especially in the characteristic domains of BTB, BACK and Kelch.

Starting with expression analysis on RNA level, Kbtbd8 was found to be ubiquitously expressed in mouse and human cell lines and tissues. In mice two transcripts can be detected - one full length and a shorter one lacking a part of exon 1 - which encode for two isoforms of the protein. Next we performed Western Blot and indeed both suggested isoforms were detectable at the predicted size. By immunocytochemistry on mouse and human cell lines we found a striking staining pattern next to the nucleus which we later identified as cis-Golgi apparatus by staining with GM130 antibody. Specificity of the antibody was confirmed by staining the Kbtbd8 antibody with an E2 tag. Detection of E2 and endogenous KBTBD8 in transfected NIH-3T3 cells showed a perfect overlap suggesting the specificity of the antibody. In conclusion, Kbtbd8 is a new member of the BTB/Kelch superfamily that is specifically expressed in the cis-Golgi apparatus in mouse and human.

P11.049 Epigenome-wide association study for HDL-cholesterol levels in familial hypercholesterolemia
S. P. Guay; 1G. Voisin; D. Brisson; J. Mungall; B. Lamarche; D. Gaudette; P. Bouchard; 1Translational Biochemistry, Disease Prevention and Health Promotion, Université de Montréal, Montréal, QC, Canada, 2Centre for Cardiovascular Research, McGill University, Montreal, QC, Canada, 3Genomics and Bioinformatics, Quebec Innovative Centre, Montréal, QC, Canada, 4Institute of Nutraceuticals and Functional Foods, Université Laval, Québec, QC, Canada, 5Department of Medicine, Université de Montréal, Montréal, QC, Canada.

Background: A low high-density lipoprotein cholesterol (HDL-C) level is a well-known cardiovascular disease (CVD) risk factor. Although its heritability estimate is high, a few associated genetic variations accounting for a small percentage of its heritability has been reported. The aim of this study was to assess whether epigenetic changes, a non-traditional heritable mechanism, may account for HDL-C variability. The study was conducted in familial hypercholesterolemia (FH), a recognized human model to study CVD risk modulators.

Methods/Results: A genome-wide DNA methylation analysis (Infinium HumanMethylation250 BeadChip, Illumina) was performed on blood DNA samples obtained from FH men subjects with low (L-HDLC; n = 11) or high (H-HDLC; n = 11) HDLC concentrations. A total of 619 loci (β-value between 0.10 and 0.90; p < 0.05) were found differentially methylated between groups. Among these loci, 232 were hypomethylated in the L-HDLC group compared to the H-HDLC group, whereas 387 were hypermethylated. According to gene ontology analyses (GeneCodis 2.0 software), hypomethylated regions revealed a pathway related to lipid metabolism (p = 0.02), whereas hypermethylated regions were more likely to be associated with inflammatory (p = 0.0003) and oxidative stress pathways (p = 0.003). Furthermore, the initial association with one of the top differentially methylated locus located in the promoter of Troponin T type 1 gene was replicated in a cohort of 276 FH subjects using bisulfite pyrosequencing.

Conclusion: These results suggest that epigenome-wide changes contribute to the interindividual variations in plasma HDL-C levels in FH patients. If replicated, these findings could influence our understanding of the molecular mechanisms involved in the pathophysiological processes of CVD.

R. Mitjavila; B. Gómez-Ramos; A. Romero; C. Collado; R. Rodríguez-De-Pablos; V. www.eshg.org
Hearing impairment (HI) is the most frequent sensori­dory disorder, with a big impact in the quality of life of affected individuals. About 1 in 500 children present with prelingual HI. Genetic causes underlie over 60% of cases. Early detection is essential for the success of special education and treatments. To date, conventional techniques have been insufficient to provide a comprehensive molecular diagnosis, given the high number of genes that are implicated in HI. We designed an NGS targeted resequencing panel for 69 genes, including: i) all genes currently known to be involved in non-syndromic HI (NSHI), with autosomal dominant, recessive, X-linked and maternal-mitochondrial inheritance patterns; ii) genes involved in some syndromic conditions, in which HI is the clinical sign that is earliest observed. The panel includes a total of 0.49 Mb comprising coding exons, splice sites and 5’ and 3’ UTR regions of the 69 genes. These regions were fully sequenced in 12 control patients with known mutations and in two Hamap Map cells (NA12144 and NA12892). Enrichment of the exonic regions was carried out using SureSelect Enrichment System (Agilent) and sequencing was performed with a SOLiD4v4 Genetic Analyzer (Life Technologies). Sequencing reads were mapped and aligned against a reference sequence (GRCh37/hg19); variants were identified and classified. We present the results obtained during the validation of our panel, showing a high level of efficiency. Our target­resequencing system offers massive analysis of 69 genes involved in HI, making the comprehensive molecular diagnosis of this disorder feasible.

P11.051
Generating complex descriptions of sequence variants using HGVS nomenclature based on sequence comparison.
J. F. J. Laros
LUMC, Leiden, Netherlands.

Descriptions of sequence variants can be checked and corrected with the Mutalyzer sequence variation nomenclature checker to prevent mistakes and uncertainties which might contribute to undesired errors in clinical diagnosis. Construction of variant descriptions accepted by Mutalyzer requires comparison of the reference sequence and the variant sequence and basic knowledge of the Human Genome Variation Society sequence variant nomenclature recommendations. With the advent of sophisticated variant callers (e.g., Pindel) and the rise of long read sequencers (e.g., PacBio), the chance of finding a complex variant increases and so does the need to describe these variants. An algorithm performing the sequence comparison would help users to describe complex variants. The algorithm follows this query approach to describe a variant. It will first define the area of change, and then finds the largest overlap between the original area and the area in the observed sequence. This process is repeated until the smallest description is found. This algorithm ensures that the same description will be generated every time researchers observe this variant. Furthermore, no knowledge of the HGVS nomenclature is required to generate this description. This not only helps clinicians to generate the correct description, but its implementation also allows automation of the description process. We have incorporated this algorithm in the Mutalyzer suite under the name Description Extractor.

P11.052
Minigene study of cryptic exons inclusion controlled by competition of hnRNP C with the core splicing machinery
M. Tujnik1, J. König1, K. Zarnack1, D. Glavač1, J. Ule1,2
1University of Ljubljana, Ljubljana, Slovenia; 2MRC Laboratory of Molecular Biology, Cambridge, United Kingdom, 3European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom

It was previously shown that heterogenous nuclear ribonucleoprotein C1/C2 (hnRNP C) silences inclusion of alternative exons by binding to long uridine tracts at the 3’ splice sites of pre-mRNAs. With genome-wide approach using icL1RP and RNAseq methods, we identified its binding to the polyuridyline tracts is mediated by direct competition with the core splicing factor U2AF65. Observed binding at deep-intronic sequence positions was shown to prevent inclusion of cryptic exons, of which majority is represented by ALU elements. Further, we performed more detailed study with use of reporter minigene assays, so far the most efficient choice to study regulation of alternative splicing by RNA-binding proteins in vivo. The competition of hnRNP C and U2AF65 was confirmed with minigene containing mutations in polyuridyline tracts, with aim of disrupting long uridine tracts to prevent hnRNP C binding and maintain binding of U2AF65. Cryptic exonization under hnRNP C regulation was verified in control and hnRNP C knock-down conditions. Introduced mutations lead to constitutive inclusion of ALU elements even in the presence of hnRNP C, what confirmed that hnRNP C regulates exonization of ALU elements through competition with U2AF65. Moreover, exonization of ALU elements in hnRNP C knock-down conditions was shown to regulate inclusion of neighbouring alternative exons, as well as effecting normal polyadenylation process. By constructing examples of minigenes with naturally occurring sequence polymorphisms, we demonstrated important role of ALU exonization in primate evolution and in disease.

P11.053
Loss of heat shock protein HSP4A aggravates pressure overload-induced myocardial damage
R. A. Mohamed1, A. Z. Barakat2, W. Zimmerman3, R. E. Bittrer4, C. Mühfeld4, M. Hächl4, W. Engels4, L. S. Maier4, M. Adham4,
1Institute of Human Genetics, University of Göttingen, Germany, Göttingen, Germany,
2Department of Pharmacology/Heart Research Center, University of Göttingen, Germany, Göttingen, Germany,
3Department of Neuromuscular Research/Center of Anatomy & Cell Biology, University of Vienna, Austria, Vienna, Austria, Australia, Institute of Anatomy and Cell Biology, University of Giessen, Germany, Giessen, Germany, 4Department of Cardiology and Pneumology/Heart Research Center, University of Göttingen, Germany, Göttingen, Germany

Failure of molecular chaperones to direct the correct folding of newly synthesized proteins leads to the accumulation of misfolded proteins in cells. HSPA4 is a member of the heat shock protein 110 family (HSP110) that acts as a nucleotide exchange factor of HSP70 chaperones. We found that the expression of HSPA4 is upregulated in murine hearts subjected to pressure overload and in failing human hearts. To investigate the cardiac function of HSPA4, Hspa4 knockout (KO) mice were generated and exhibited cardiac hypertrophy and fibrosis. Hspa4 KO hearts were characterized by a significant increase in heart weight/body weight ratio, elevated expression of hypertrophic and fibrotic gene markers, and concentric hypertrophy with preserved contractile functions. Cardiac hypertrophy in Hspa4 KO hearts was associated with enhanced activation of p38MAPK, CaMKII, and calcineurin signaling. Furthermore, revealed a significant increase in cross sectional area of cardiomyocytes, and in expression levels of hypertrophic marker genes in cultured neonatal Hspa4 KO cardiomyocytes suggesting that the hypertrophy of mutant mice was a result of primary defects in cardiomyocytes. Gene expression profile in hearts of 3.5-week-old mice revealed a differentially expressed gene sets related to ion channels and stress response. Taken together, these results reveal that HSPA4 is implicated in protection against pressure overload-induced heart failure.

P11.054
Development of a single comprehensive gene screening test for the exploration of hereditary hypercholesterolaemia using Next Generation Sequencing
P. Dean1, L. Yarram1, G. Bayley1, A. Taylor2, A. Day2, K. Haralambou3, S. Whaley1, M. McDowell1, M. Greenslade1, M. Williams1,
1Bristol Genetics Laboratory, Bristol, United Kingdom, 2Bristol Royal Infirmary, Bristol, United Kingdom, 3Royal United Hospital, Bath, United Kingdom, 4Western General Hospital, Western-super-Mare, United Kingdom, 5University Hospital of Wales, Cardiff, United Kingdom

The European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.

The Bristol Genetics Laboratory provides a comprehensive three level genetic testing service for Familial Hypercholesterolaemia (FH) using: level 1 FH20 ARMS for 20 common mutations; level 2 MLPA and Sanger sequencing of LDLR, level 3 Sanger sequencing of PCSK9 and the APOB exon 26 mutation hotspot. Over a three year period of service provision a variant was identified in 93/232 index cases (40%). The ARMS methodology detected 48% of positive cases, LDLRs sequencing 46% and the MLPA assay 6%. To reduce test costs, reduce turn around times and increase throughput we are developing a single assay for FH to detect all point mutations and copy number variation in LDLR, APOB and PCSK9. The coverage of APOB has increased to include rare exons and an additional 25 genes, LDLRAP1, which increases the number of genes with an autosomal recessive hypercholesterolaemia, is included in the panel. The assay uses a targeted capture next generation sequencing approach (Haloplex PCR, Illumina MiSeq) and a bioinformatic analysis pipeline is under development using the Galaxy platform. The assay is currently being validated using 32 known positive control samples comprising: 25 samples with point mutations and indels, and 7 samples with exon duplications/deletions. To date, the benefits of extended screening we are analysing a cohort of previous test-negative patients with a high scoring clinical/biochemical index for FH. A comprehensive high throughput assay at reduced cost should facilitate extended uptake and commissioning of FH testing in the UK and be generally applicable to all European populations.
P11.055 Genomics and transcriptomics in Hypertrophic Cardiomyopathy: from the bench to clinics
S. R. Brito1, E. M. Monteiro2, A. D. Pereira3, A. C. Nimer4, C. M. Machado5, J. M. Gaspar5, D. Brito6, I. M. Carreira7, F. M. Couto8, C. Monteiro9, A. T. Prétot9, A. R. Fernandes2,3,4,9; 1Centro de Química Estrutural, Instituto Superior Técnico, Lisboa, Lisbon, Portugal, 2University of Lisbon, Faculdade de Ciências da Saúde, Lisbon, Portugal, 3Dept. of Genetics, University of Salamanca, Salamanca, Spain, 4Dept. of Pediatrics, Hospital Santa Cruz, CHŁO, Lisbon, Portugal, 5Hospital Lisboa North, Hospital Santa Maria, Lisbon, Portugal, 6Fac. Medicina, Universidad de Córdoba, Córdoba, Portugal, 7Fac. Farmácia, Universidade de Lisboa, Lisbon, Portugal, 8Instituto de Engenharias de Sistemas e Computadores, Instituto Superior Técnico, Lisbon, Portugal, 9Department of Medical Genetics, University of Lisbon, Lisbon, Portugal.

Hypertrophic cardiomyopathy (HCM), the most common hereditary cardiovascular disease, affecting 1:500 individuals in the general population, is typically characterized by genetic and allelic heterogeneity (more than 100 mutations in 30 genes). The understanding of the genetic basis of HCM, namely the identification of new pathological biomarkers of heterogeneity that could contribute to genotype-phenotype correlations is of utmost importance. In this regard, the correlation between genomic and transcriptomic profiling and their integration into the clinical data was performed for 120 Portuguese Caucasian HCM-patients. DNA was extracted from peripheral blood samples and genotyping was performed by iPLEX Maas Array and High Resolution Melting to detect known and novel DNA variants in sarcomeric/non-sarcomeric genes, respectively. RNA extracted from cardiac and skeletal muscle biopsies from HCM-patients were used for both sarcomere and non-sarcomere transcript levels and microRNA profiling. Unsupervised machine learning methods were used to distinguish differences between groups of patients, tissues and genes. 85 of the 120 genotyped patients presented genetic alterations, 14 of them are novel ones and not presented in 200 chromosomes from healthy control individuals. All the novel mutations affected highly conserved residues. The most frequently mutated genes were MYH7 and TNNT2. Statistical analysis revealed a strong correlation between MYH7 and TNNI3 expression pattern in cardiac and skeletal muscles. Transcription profile also revealed an upregulation of CSR3P gene in cardiac tissue. microRNAs expression profile changes observed during HCM remodeling, seems very promising to identify novel pathological biomarkers.

P11.056 Heterodisomy at 20q as a cause of Pseudohypoparathyroidism-Ib
I. Garín1, R. L. Pool2, L. Suarez2, L. Martorell2, M. Muchay2, G. Perez de Vlanclares2; 1Molecular (Ep)Genetics Laboratory, Instituto de Ciencias de la Salud, Valencia, Spain, 2Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, United Kingdom, 3Endocrinology Department, Hospital Sant Joan de Déu, Barcelona, Spain, 4Molecular Genetics Department, Hospital Sant Joan de Déu, Barcelona, Spain.

Introduction: Pseudohypoparathyroidism-ib results from epigenetic GNAS defects. Emilial and sporadic forms of PHP-Ib have been reported withdistinct clinical presentations: familial PHP-Ib patients have an x/Ay only imprinting defect whereas sporadic cases have abnormal imprinting of the four differentially methylated regions (DMRs) in GNAS. In addition, they present a different underlying genetic alteration. Objective: to analyze the methylation pattern at GNAS locus in a patient diagnosed with Pseudohypoparathyroidism-Ib and to identify underlying molecular genetic defect(s).

Design: We have studied dosage and methylation pattern at GNAS locus in the patient and her family by MS-MLPA. We also analyzed microsatellite and SNP markers along chromosome 20 looking for causative molecular alteration.

Results: We found that the index case and one of her brothers presented an altered methylation pattern at GNAS locus. It seems that the genetic alteration causing this epigenetic defect was a paternal heterodisomy at least at 20q13.13. Conclusion: Our work underlines the importance of analyzing apparently healthy family members of affected patients because of the subtle clinical features. Additionally, we emphasize that obtaining parental samples is essential to exclude the presence of uniparental disomy (isodisomy or heterodisomy) as a molecular underlying defect of Pseudohypoparathyroidism-Ib.
SNP-array analysis was performed on another group of patients (~450). Analysis of variants is more complex due to high resolution of this assay and is being carried out by each partner. For instance, out of 95 patients analyzed in the Armenian cohort, 7 had known micro-del/dup syndromes, 11 had variants interpreted as pathogenic, while 7 variants are still under investigation.

A subset of patients with X-linked intellectual disability underwent analysis through a highly specific array, covering most exons from known X-chromosome genes. Out of 46 cases, 41 turned out normal while 5 cases need further investigation.

Global analysis of the identified variants will be presented. As a last part of the project, selected familial cases (1 autosomal dominant, 3 X-linked and 8 autosomal recessive), where chromosome rearrangements had been excluded, will undergo exome analysis through next generation sequencing.

P11.060

Sequencing for novel genes for autosomal recessive intellectual disability in overlapping runs of homozygosity in a large sample of consanguineous families

J. Bauer1, R. Eberlein1, R. Buchert1, S. Uebel1, A. Abboud1, A. Al-Khatatbeh1, M. Fokker1, S. Hamza1, A. Izzedod1, M. A. A. Al-Abed1, J. Schumacher1, M. Nöthen1, A. Reit1, R. Abou Jamra2

1Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany.
2Practicing Paediatricians, Syria, Syrian Arab Republic, Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.
3Institute of Human Genetics, University of Bonn, Bonn, Germany.

A significant part of the unsolved cases of intellectual disability is probably of autosomal recessive inheritance pattern and shows an extreme heterogeneity. To discover novel genes causing autosomal recessive intellectual disability (ARID), 93 simplex, consanguineous families of Syrian descent with affected members were clinically examined and 316 individuals were genome-wide genotyped using SNP chips (Illumina 610K and CytoSNP as well as Affymetrix 6.0). We conducted autozygosity mapping and identified 552 runs of homozygosity (ROH). Fourteen families showed one ROH, 44 families showed two, three or four ROHs, and 35 families showed five or more ROHs. We considered highly interesting candidate regions, i.e. with five or more overlapping ROHs, and selected 31 candidate genes based on expression, function, and results of association studies of neurological phenotypes. We Sanger sequenced the genes in all candidate families. Subsequently, we identified 14 not annotated (dsSNP 132) candidate mutations and in silico analyzed them with help of the programs MutationTaster, PolyPhen, and SIFT. In 4 cases, the analysis predicted a pathogenic effect of the candidate mutations and those were examined by genotyping in a Syrian healthy control cohort. All candidate mutations were excluded because of relatively high frequencies in controls. Our analysis shows an extreme heterogeneity of ARID and suggests that massive parallel sequencing is a better strategy to elucidate its causes.

P11.061

Screening of a cohort of patients with intellectual disabilities from Cyprus using a high-resolution 400K microarray

J. Hettinger1, P. Evangelidou1, C. Stamati1, V. Anastasiadou2, P. C. Patsalis1

1Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus. 2Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.

Intellectual Disabilities (ID) are very heterogeneous conditions with an estimated prevalence of ~1-3%. While it is estimated that genetic factors contribute to ID in ~50% of affected individuals, the identification of autosomal loci or chromosomal regions associated with ID has been challenging. One approach for the identification of copy number changes unique to individuals with ID is by array-CGH. The availability of custom-designed high-resolution oligonucleotide arrays enables interrogation at an extraordinary resolution and coverage not previously experienced with older platforms. The purpose of our study was to screen a cohort of patients from Cyprus using a novel whole-genome 400K microarray which we designed, optimized and validated. Our novel high-resolution array consists of ~410,000 probes, and includes the entire 4X180K ISCA design as well as comprehensive coverage of ~9,000 CNV regions identified by the WTCGC. In addition, ~200,000 probes were used to generate a high-resolution backbone spanning the entire genome. Here we report the preliminary results obtained from the initial screening of 12 patients and family members from 9 Cypriot families. CNVs were identified in 7 patients and included 5 duplications and 3 deletions that ranged in size from ~99kb to ~7Mb. All of the duplications and two of the deletions harbored several genes while one deletion resided in a single gene. Family studies are in progress to determine segregation of the aberrations with the disease and association with the phenotype. In addition, the performance of this new platform for the detection of CNVs associated with ID will be assessed.

P11.062

Large-scale validation and genotyping of inversions in the human genome by inverse PCR

C. Agnou1; S. Villatoro1, D. Izquierdo2, X. Estivill2, M. Cáceres2

1Institut de Bioteecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain. 2Genes and Disease Program, Center for Genomic Regulation (CRG-UPF), Barcelona, Spain, 3Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.

In the last years, different types of structural variants (SVs) have been discovered in the human genome and their importance to human health has become increasingly clear. Typically arrays have been used to characterize unbalanced changes. Inversions, however, are more difficult to study and less known. In this study we investigate the general applicability of inverse PCR (iPCR) for the analysis of inversions. We have tested different reagents and conditions to optimize the iPCR method and designed a high-throughput iPCR protocol to genotype inversions in a large number of individuals in just one day and with a small amount of DNA (10 ng for each inversion). As an example of the potential use of this method, we have analyzed 19 inversions predicted in humans with a size between 8 kb to 200 kb and mediated by inverted repeat sequences of 1.5-25 kb. First, we validated 17 of the 19 inversions in a panel of 9 Haymap individuals (Yoruba, European, and Asian). Then, we genotyped these inversions in ~60 additional European individuals and found total frequencies for the inverted allele between 1.5% and 62%. For these inversions we also checked the genetic transmission in ~10 mother-father-child European trios. Finally, we have determined the possible gene effects of the validated inversions, with around half of them changing the orientation of genes or exchanging the 3’ or 5’ regions. In conclusion, the iPCR is a powerful, simple and fast method for high-throughput validation and genotyping of a wide range of inversions.

P11.063

Producing iPSCs: a biobank service for translational genetic research

D. A. Coviello1, M. Castagnet1, C. Baldo1, S. Viaggi1, F. Fruscione1, F. Zarut1, C. Minetti1

1E.O. Ospedali Galliera, Genova, Italy, 2IRCCS Istituto G. Gaslini, Genova, Genova, Italy.

The goal of this project is to use the expertise of the Laboratory of Human Genetics and the Galliera Genetic Bank (GGB) to provide researcher with the possibility to obtain induced Pluripotent Stem Cells (iPSCs) from samples of patients involved in a specific research project. The iPSC cell lines are validated using classical diagnostic techniques, such as FISH, Southern blots, and RT-PCR, in order to be ready to be used by the researcher requesting the service. The iPSCs are a powerful tools to perform in vitro functional analysis of mutation causing diseases. The application of this tool will be to investigate the effects of mutations causing epilepsy and to assess the effect on neuronal membrane excitability of different neuron subtypes, to shed light into molecular pathways regulating brain functions and biological events leading to epileptic seizures. We have generated iPSC cells using STEMCCA vector, that allows the most efficient generation of iPSC cells, combined with the high availability of the cell lines stored in GGB/TGB Network. STEMCCA vector is a single lentiviral “stem cell cassette” encoding all four reprogramming transgenes with the disease and association with the phenotype. In addition, the availability of custom-designed high-resolution oligonucleotide arrays enables interrogation at an extraordinary resolution and coverage not previously experienced with older platforms. The purpose of our study was to screen a cohort of patients from Cyprus using a novel whole-genome 400K microarray which we designed, optimized and validated. Our novel high-resolution array consists of ~410,000 probes, and includes the entire 4X180K ISCA design as well as comprehensive coverage of ~9,000 CNV regions identified by the WTCGC. In addition, ~200,000 probes were used to generate a high-resolution backbone spanning the entire genome. Here we report the preliminary results obtained from the initial screening of 12 patients and family members from 9 Cypriot families. CNVs were identified in 7 patients and included 5 duplications and 3 deletions that ranged in size from ~99kb to ~7Mb. All of the duplications and two of the deletions harbored several genes while one deletion resided in a single gene. Family studies are in progress to determine segregation of the aberrations with the disease and association with the phenotype. In addition, the performance of this new platform for the detection of CNVs associated with ID will be assessed.

P11.064

Assessment of promoter DNA methylation for an entire family of lamin-encoding genes in normal and tumorous breast tissues

O. A. Simonova1, E. B. Kuznetsova1, Y. V. Rudenko2, A. V. Babenko3, E. V. Khreeva3, D. V. Zalesov1

1Research Centre for Medical Genetics, Moscow, Russian Federation, 2L.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation, 3Hertzberg Cancer Research Institute, Moscow, Russian Federation.

Laminins are key components of the extracellular matrix playing important roles in morphogenesis of breast tissues and involved in normal development and pathological processes. We evaluated methylation status for 12
P11.065

New non-invasive test for Limb Girdle Muscle Dystrophies type 2

B. Lace; I. Innaskina, E. Jankevics, J. Stavusis, I. Vasiljeva, J. Strautmanis; I. Micule;
Latvian Biomedical Research and Study Centre, Riga, Latvia, ‘Children’s’ University Clinical Hospital, Riga, Latvia.

One over 8000 persons worldwide are effected by inherited or acquired neuromuscular diseases (NMD) presenting with muscle weakness, skeletal deformities, early loss of functions and mortality. The most common type of NMD is muscular dystrophies, which also have the most unfavourable outcome. Diagnostic pathway requires invasive muscle biopsy, later molecular confirmation.

Aim of the study was to develop non-invasive DNA based test for the common Limb Girdle muscle dystrophies (LGMD) mutations.

Materials and methods. Twenty patients with symptoms of LGMD without muscle biopsy data were recruited in various NMD centres. Illumina GoldenGate technology was applied for the 32 selected mutations in DYSF (55 sequence variations), CAPN3 (29), SGCA (8), SGCB (4), SGCG (3) and SGCG (4) genes.

Results. LGMD diagnosis was confirmed in six persons (30%) with applied DNA diagnostics technique. CAPN3 gene mutation 55delA were identified in 59 % of identified mutations, 2184G>A in 6 %, 664G>A in 5%, DYSF 2372C>G in 12 %, 1366C>AA in 12 %, 1407A>G in 10 %, 1368C>G in 7 %.

Conclusions. 55delA mutation in the CAPN3 gene is considered as a Slavic founder mutation, and it is frequently met in LGMD2A patients from Eastern Europe.

Non invasive DNA test is advisable for patients with LGMD prior muscle biopsy.

P11.066

Limb Girdle muscle dystrophies mutation analysis using Illumina’s VeraCode GoldenGate Genotyping Assay

I. Innaskina; I. Vasiljeva, E. Jankevics; J. Stavusis, I. Micule; B. Lace;
Latvian Biomedical Research and Study Centre, Riga, Latvia, ‘Children’s’ University Clinical Hospital, Riga, Latvia.

Limb-girdle muscular dystrophies (LGMDs) are a group of muscular dystrophies characterized by a predominant involvement of the scapula, pelvic girdle and trunk muscles without affecting the facial muscles. Different autosomal recessive LGMDs (>10) have been identified as distinct entities with a similar phenotype and clear clinical overlap that makes their differential diagnosis difficult. To date, several hundreds different mutations have been described with their biological relevance remain unclear.

We have developed genotyping analysis of 96 mutations - insertions/deletions and SNP, within different genes related to LGMDs (SGCA, SGCB, SGCG, CAPN3, DYSF, several more mutations, and 4 control SNP within X/Y chromosomes) using Illumina’s VeraCode GoldenGate Genotyping Assay.

In this study we report study and genotyping of 107 unrelated Latvian controls with no sign of neuromuscular diseases matching general Latvian population by gender and nationality with our developed assay. 31 mutations had minor allele frequency (MAF) higher that 0.01 (0.014 - 0.294) suggesting no confirmation of their pathological effect.

Our data suggest that miscellaneous mutations found in LGMD patients and described as pathological need to be studied more intensively in terms of general population to clarify their effect.
of these MSRs the posterior probability was larger than 99.33%. In three of these five MSRs equidistant intervals between the modes were very likely as well, suggesting that MSR sizes are restricted and that MSRs are possibly organized into higher order chromatin structures. This study represents the first comprehensive study of MSRs in world populations identifying novel commonalities and differences in the organization and function of the human genome.

P11.069

Intellectually disabled children with normal molecular karyotypes: Genome-wide screening for altered methylation

L. A. Livshits

Institute of Human-Albrechts-Universität zu Kiel and UKSH, Campus Kiel, Kiel, Germany. *Institute of Human Genetics, Polish Academy of Science, Poznan, Poland. *Institute of Molecular Biology and Biotechnology, Faculty of Biology, University of Adam Mickiewicz, Poznan, Poland. *Department of Neuropaediatrics, Christian-Albrechts-Universität zu Kiel and UKSH, Campus Kiel, Kiel, Germany. *Institut fuer Humangenetik, Universitaet zu Luebeck, Luebeck, Germany.

The aim of this study was to evaluate the impact of epigenetic alteration for intellectual disability (ID). We evaluated 81 clinically well characterised patients with ID. Most of them showed in addition muscular hypotonia, short stature, obesity or epilepsy. In these patients a monogenetic disorder could clinically not be diagnosed. All showed normal results on ArrayCGH (105K or 244K Agilent Array). Epigenetic alterations were analysed using the Illumina HumanMethylation450 Bead Chip covering more than 465,000 CpG sites. The control group consisted of age and sex matched patients mainly affected by recurrent upper airway infections. The analysis for differences in methylated loci between the patient and control group revealed 266 differentially methylated loci which were enriched for HLA, the interferon gamma-pathway, and antigen presentation. As this global comparison of both groups is not suited to detect private DNA methylation aberrations we are currently investigating local enrichment of DNA methylation changes aiming to identify methylation changes over several consecutive CpGs being typical e.g. for epimutations at imprinted loci. This strategy is driven by the observation that we identified one proband in the patient group with hypomethylation in MEG3. This finding was corroborated by bisulfite pyrosequencing. Our results show that imprinting disorders are still underdiagnosed and may have a possible impact on ID. This is in agreement with the results of (1) who analysed a comparable cohort of 90 patients for known imprinting disorders and found two patients with Silver-Russell- respectively Beckwith-Wiedemann syndrome.

P11.070

Molecular and cytogenetic screening of children with idiopathic mental retardation in Ukrainian population

L. A. Livshits; E. Bonaroi, P. Magini, P. Patsalis, J. Gutwein

*Institute of Molecular Biology and Genetics, Kiev, Ukraine, *U.O. Genetica Medica, University of Bologna, Bologna, Italy, *Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, *Institut fuer Humangenetik, Universitaet zu Luebeck, Luebeck, Germany.

Mental retardation (MR) is a generalized term, which includes disorders of adaptive behavior associated with a lack of cognitive development. MR occurs in 2-3% of the general population. In the majority of MR individuals a specific cause can not be identified. We represent the data of 113 patients from 96 Ukrainian families with well characterized mental retardation included in the CHERISH project (grant agreement n° 223692). Preliminary analysis (metabolic investigation, karyotype, molecular tests of known syndromes, MLPA for subtelomeric rearrangements) have been done. We found 1 patient with FRAXE expansion and 2 patients with known syndromes, MLPA for subtelomeric rearrangements. This study was sponsored by the EU within the 6th Framework Programme (project CHERISH). In 57 patients with normal results or with complex chromosomal rearrangements search for cystic chromosomé rearrangements was carried out through 4K, 105K or 400K array-CGH analysis in partner laboratories in Bologna (Italy) and Nicosia (Cyprus). Quantitative Real Time PCR were used to confirm the array-CGH findings. In total, copy number variations (CNVs) in patients were 26 Ukrainian MR families were detected (size: from 11Kb to 24378 Kb). CNVs with potential clinical significance were found in 9 cases. These CNVs were characterized as pathogenic or probably pathogenic, based on their size, position and genes involved.

The obtained results show the strong genetic heterogeneity of hereditary forms of MR in our group of patients. These results generally agree with those of previous array-CGH cohort studies, showing however, previously unreported genomic rearrangements in MR and a higher incidence of clinically relevant CNVs.

P11.071

Mutation screening of new candidate genes for mental retardation by next generation sequencing

S. Boppudi, I. Schanne, I. Wieland, D. Schanne, M. Zeker

Institut fuer Humangenetik, Universitaetsklinikum, Otto-von-Guericke-Universitaet, Magdeburg, Germany.

Next-generation screening (NGS) technologies generate high throughput sequence data very rapidly at a lower cost by massively parallel sequencing of clonally amplified DNA molecules. NGS is anticipated to transition into clinical-diagnostic use by avoiding massive PCR preparation and sequencing of multiple large regions of interest simultaneously. For the successful transition streamlining of processes is required, especially sample preparation, coupled with improvements in technology robustness and characterization of accuracy through validation studies. The purpose of this study was to establish the ampiclon-based NGS technology for screening novel mutations in mental retardation (MR) patients. In this pilot project, ‘Universal Tailed’ Amplicon sequencing method was used. The ampiclon library preparation was optimized by using multiplex PCR. We performed mutation detection analysis of two genes coding respectively for the proteins [total 32 potential MSRs implicated in MR in 40 individuals on a bench-top 454 GS Junior platform (Roche)]. The 10-hr run was able to generate approximately 72,000 reads and about 22 million high-quality bases at an average read length of 308 bp. Altogether, 12 sequence variants were found in this study with seven known SNPs and five novel changes. All the variants were confirmed by traditional Sanger sequencing providing evidence of NGS accuracy. In conclusion, next-generation sequencing method with enhanced efficiency and accuracy can be used as an efficient tool for high sensitive mutation detection in large patient cohorts and complex phenotypes. We identified one mutation in these two genes that may potentially be involved in MR and need to be studied in larger patient samples.

P11.072

Methylation analysis of breast cancer in Cyprus and Slovenia

M. Loizidou1, I. Zouvani2, S. Novakovic2, V. Stegal4, M. Krajc1, K. Kyriacou1, A. Hadjiavva1

1Department of EM / Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2Histopathology Department, Nicosia General Hospital, Nicosia, Cyprus, 3Institute of Oncology, Ljubljana, Slovenia.

The best-studied epigenetic alteration in cancer is DNA methylation. It has been demonstrated that during tumorigenesis methylation is usually decreased at a genome-wide level, with selective hypermethylation of CpG islands occurring within the promoter regions of a number of tumor-suppressor genes. This leads to transcriptional silencing of these genes and subsequent tumor progression. Analysis of abnormally methylated genes has received a lot of attention lately since it is a feature of most cancers and is speculated to play a role in cancer etiology. Within the scope of a bilateral project between Cyprus and Slovenia we investigated quantitative methylation changes in twenty four tumor suppressor genes, with the ultimate goal of identifying novel biomarkers applicable to the management of breast cancer patients. Methylation study was performed on 100 matched normal and tumor paraffin-embedded breast tissues from Cyprus and Slovenia, using methylation specific MLPA. The cumulative methylation index (CMI) was calculated as the sum of the percentage methylation for all genes. Mann-Whitney and Kruskal-Wallis tests were used for comparing medians between groups. The y2-test was used for comparing proportions. Hierarchical clustering was applied using R and SPSS statistical packages. Our results showed promoter methylation of a number of tumor suppressor genes. The prognostic value of promoter hypermethylation is currently being further evaluated by studying additional samples.

P11.073

RAPID and efficient mutation detection in the mitochondrial DNA using a bench-top next-generation DNA sequencer

M. Bigler, S. Gallati, A. Schaller

Division of Human Genetics, Bern, Switzerland.

Mitochondria play an important role in essential cellular functions. Each eukaryotic cell contains hundreds of mitochondria with hundreds of mitochondrial genomes (mtDNA). Human mtDNA is a 16,569-kb circular, double-stranded molecule, which contains 37 genes: 2 rRNA genes, 22 tRNA genes, and 13 structural genes encoding subunits of the mitochondrial respiratory chain, which ATP is generated. Mutant and wild-type mtDNA may co-exist
as heteroplasy, and cause human disease with diverse and variable clinical features and a loose genotype-phenotype relationship. Next-generation sequencing (NGS) technologies can be a boon to human mutation detection given their high throughput: consequently, many genes and samples may be simultaneously studied with high coverage for accurate detection of heteroplasy. In circumstances requiring the intensive study of a few genes, particularly in clinical applications, a rapid turn around is another desirable goal.

To this end, we assessed the performance of the bench-top 454 GS Junior platform as an optimized solution for mutation detection by amplicon sequencing. The purpose of this protocol is to simultaneously determine mtDNA sequence and quantify the heteroplasmic level. This protocol includes two independent PCR amplifications of the entire mitochondrial genome. Resulting PCR products are then mixed at an equimolar ratio. Subsequently, samples of twelve individuals are then barcoded and sequenced with high-throughput, next-generation sequencing technology. A 10-hr run was able to generate ~72,000 reads and ~25 million high-quality bases at an average read length of 348 bp. This technology is highly sensitive, specific, and accurate in determining mtDNA mutations and the level of heteroplasmacy.

P11.074 Mitochondrial DNA analysis in the Genome of the Netherlands

M. Vereecken1, M. Wenz3, A. Provenzano1, B. Mazzinghi2, R. Attard4, E. Contini2, L. Giunti2, S. Toni3, M. Salvadori1, O. Zaffardi1, E. Mannucci1, J. F. J. Laros1, 2, 3

1Leiden University Medical Center, Leiden, Netherlands, 2Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.

The Genome of the Netherlands (GoNL) is a national collaboration aimed at establishing a map of Dutch genetic variation by whole genome sequencing of 250 trio families consisting of unselected individuals of Caucasian origin. The unprecedented trio-based setup of this scale and the abundance of mtDNA in each sample give us the unique opportunity to study both population-wide and intra-human variation on the mitochondrial genome.

We developed a number of techniques in which mtDNA can assist in quality control of whole genome sequencing experiments. The high coverage (averaging ~100x) enables us to easily detect sample contamination with a low percentage of foreign DNA. One such case is present in our data set and its contamination has been confirmed by automatic analysis. By looking for violations of the inheritance pattern we readily identified sample swaps. Indeed, in two of the trio there had been a swap of the parents which was independently confirmed by immunochip data.

One of the goals of our mtDNA study is to refine the Dutch mtDNA phylogenetic tree. Preliminary results show that the data set contains more than 165 different haplogroups, where H and its subclades are most abundant, representing ~40% of individuals. This is in concordance with previous studies on the distribution of haplogroup H in Europe. 127 haplogroups are supported by at least 2 individuals, while 68 are supported by at least 4. Our samples disagree on defining polymorphisms for some haplogroups, indicating opportunities for refinement of the phylogenetic tree.

P11.075 A simplified Sanger sequencing workflow for mitochondrial variant detection provides high data quality

M. Wenz1, P. Ma2

1Life Technologies, Foster City, CA, United States.

Variations in the human mitochondrial genome are frequently used in forensic analyses, disease association research and human evolution. Because of the abundance of variations in mitochondrial DNA, either the complete mitochondrial genome or the critical region is sequenced. We present here a new PCR/sequencing workflow for mitochondrial DNA that uses capillary electrophoresis and that is integrated with data analysis and variant detection. This simplified re-sequencing workflow utilizes novel universal M13 sequencing primers for improved S' sequence resolution, increased throughput, and reduced hands-on time. This workflow generates high quality bases from base 1 when using POP-7™ polymer comparable to data typically seen when using the considerably slower POP-6™ polymer and standard Sanger sequencing chemistry. In addition to improved S' data quality the new workflow eliminates the need for a separate PCR clean-up step. Taken together these improvements reduce the entire workflow from PCR to finished sequence data to under 5 hours, compared to approximately 8 hours for the standard workflow. The sequencing output is analyzed with Variant Reporter® Software that applies quality control metrics, including the use of Quality Values for DNA trace values and confidence values for variant quality. We will present examples to demonstrate this mitochondrial re-sequencing workflow for variant detection. Research Use Only
Revertant mosaicism is a phenomenon that occurs when the replacement of a pathogenic allele by the wild type allele favors cell-survival. Especially within a tissue with high turnover rate, such as blood, this can lead to near complete loss or replacement of the pathogenic allele by the wild type allele. The presence of two copies of one allele can be detected by genome-wide single nucleotide polymorphism (SNP) arrays. However, when stretches of homozygosity present in a small percentage of cells, like in the early stage of revertant mosaicism, these are often missed by allelic algorithms.

Here we present Mosaic Homozygosity Reporter, a method that facilitates the detection of low levels of allelic imbalance using the genotyping data from SNP arrays. The method detects mosaic stretches of homozygosity with high sensitivity by comparing the signal distribution of heterozygous calls between telomeric regions.

We have applied this method on Affymetrix SNP6.0 array data from 19 individuals with an autosomal dominant form of Dyskeratosis Congenita (DC), a multisystem disorder. The Mosaic Homozygosity Reporter detected mosaic reversion in blood cells of six patients with high significance (P<7.9x10-25), two of which could not be detected by visual inspection of the array’s B-allele frequency plots. These data show that revertant mosaicism may be a common event in autosomal dominant DC and that Mosaic Homozygosity Reporter is able to detect low level mosaic stretches making it a valuable tool for the reanalysis of previously unsolved clinical cases where mosaic homozygosity may play a role.

P11.079
Searching for Multiple sclerosis genetic candidate regions by genome-wide synthesis of heterogeneous data sources
A. Mauer, B. Peterlin; Institute of Medical Genetics, Ljubljana, Slovenia.

Multiple sclerosis (MS) is a debilitating autoimmune condition characterized by demyelination in central nervous system, leading to symptoms of severe motorosensory neurological disturbances. Development of high-throughput technologies opened the possibility of scrutinizing complete profile of molecular alterations in MS. Inherent statistical issues of multiple testing and high false-positive rates have, however, hampered attempts to entirely elucidate molecular background.

To propagate discovery and increase detection specificity of these studies, we performed an integrative synthesis of data originating from heterogeneous sources of global molecular alterations in MS. Data for inclusion was collected from 39 studies or bioinformatic sources. Altogether, 158,520 distinct significant signals discovered on 16 different biological levels were included. Custom rank product prioritization approach based on genomic position of included results was utilized for data synthesis. Nested permutation cycling was employed to determine significant accumulation of most significant results discovered on most diverse biological levels. In total, 381 genomic regions were characterized with significant accumulation of results, reaching local permutation p-value minima below 0.001. Follow-up characterization of selected regions revealed them to contain 409 genes of which 87 (21.3%) overlapped with those tracked by HuGeneNet disease-gene associations database, while a notable proportion have not been investigated in MS. This suggests that there exists a substantial body of genes, whose involvement in MS is suggested by evidence in a complex body of data from ‘omic’ studies, but focused studies of their direct role in MS have yet to be performed and they thus present plausible targets in further validation studies.

P11.080
Molecular characterization of human sialidase Neu4 gene promoter region
M. Delman, V. Seyranape; Izmir Institute of Technology, Izmir, Turkey.

Sialidase Neu4 is one the four mammalian sialidases. We characterized previously that human Neu4 sialidase has activity against steric acid containing substrates including ganglioside GM2. Biological role of human sialidase Neu4 enzyme has been shown by the transfection of neuroglia cells from a Tay-Sachs patient that Neu4 clears accumulated GM2. It has been also shown that sialidase Neu4 gene is responsible for degradation of ganglioside GD1a in brains of Neu4 knock-out mice. To explore human sialidase Neu4 gene regulation, we aimed to determine minimal promoter region and identify several transcription factors. We used TESS (Transcription Element Search System) tool to predict the sequence motifs. We amplified seven different DNA fragments from human Neu4 promoter region, cloned into luciferase expression vector and performed reporter assays. We used electroreflectance mobility shift assay to demonstrate binding of transcription factors to candidate promoter region. Human sialidase Neu4 gene has TATA-less promoter but contains CAAT elements. Luciferase reporter assay demonstrated that 187 bp upstream region recruits several transcription factors such as c-myc. Overall, our results show some of cis- and trans-acting factors involved in the human sialidase Neu4 gene regulation. The data we obtained might be useful to discover small molecules which control Neu4 gene expression. Selective high expression of sialidase Neu4 gene might be controlled using drugs or small molecules and the accumulated ganglioside GM2 in lysosomes of Tay-Sachs patients can be reduced.

P11.081
Development of a custom designed aCGH chip (Neuromuscular Chip) for investigation of Neuromuscular Disorders
V. Oikonomakis, K. Kekkou, N. Vogiatzakis, S. Kitsiou-Tesli, E. Kanavakis, M. Treetis; Department of Medical Genetics, Medical School, University of Athens, Athens, Greece.

Neuromuscular disorders (NMDs) are a group of genetically determined diseases encompassing many conditions that impair muscle function (DMD/ BMD, LGMD2A, Sarcoglycanopathies, etc). Similar phenotypes may be caused by mutations in many different genes and the identified diagnosis sometimes can be inefficient. Array-based comparative genomic hybridization (aCGH) is a high-throughput technology for detecting copy number variations (CNVs) in the human genome.

In order to address the NMDs diagnostic problem, a custom Agilent aCGH oligonucleotide chip (SurePrint G3, 8x60K platform) was designed using the e-Array application. The chip covers a selection of genes most commonly involved in NMDs: DMD (>25,513 probes, every 90bp for exons and approximately 150bp for introns), LARGE Congenital muscular dystrophy type 1D (MDC1D), (5963 probes) Sarcoglycanopathies & Limb Girdle Muscular Dystrophies: SCA (17q21.33), SGCB (9q11), SGCG (13q12), SGCD (Sq33.3) (4609 probes), POMT1/ POMT2/ POMGNT1/ FKTN/ FRPR (2681 probes), UTRN, LMNA, EMN, TRIM32, MYL7, ACTA1 (7009 probes), CAPN3 (1020 probes), LGMD2A and Caveolinopathies: CAV3 (141 probes).

The neuromuscular aCGH chip was evaluated by a retrospective analysis, using DNA samples from NMD patients with known deletions or duplications. The expected CNVs, in all previously characterized patients, were successfully confirmed. Additionally, new exonic and intronic CNVs were detected, which possibly contribute/ modify to the patient’s phenotype. Clinical application of the custom-designed Neuromuscular aCGH chip may be applied in general diagnosis of NMD patients, can therefore, provide significant additional information on the molecular pathogenesis for NMDs. We are planning to add it to our diagnostic investigation for neuromuscular diseases.

P11.083
Accurate determination of the length of homonucleotide stretches by highly parallel sequencing
H. Cuppen, M. Jaspers, S. Lehnert; Center for Human Genetics, Leuven, Belgium.

The number of nucleotides in long homonucleotide stretches, especially when 7 or more nucleotides long, cannot be accurately determined by highly parallel sequencing based on pyrosequencing or Ion Semiconductor Sequencing. Most genes, however, harbor homonucleotide stretches in this size range. This pitfall prohibits its implementation of these sequencing formats in routine genetic diagnostics.

We present a method in which the length of a homonucleotide stretch is reduced to a series of shorter nucleotide stretches in which each of them can be accurately determined. The combined accurate analysis of the smaller homonucleotide stretches then allows accurate determination of the length of the original longer homonucleotide stretch. The reduction in size of the homonucleotide stretch can be achieved by PCR, which we call homonucleotide-stretch-reduction-PCR (hnr-PCR). An hnr-primer is used, which is complementary against the region of the homonucleotide stretch, which extends in the homonucleotide stretch but not until its end, and which contains at least one non-complementary nucleotide. Since 0% complementary of a primer is not needed to allow DNA synthesis, as long as its 3’ end is complementary against its target, non-complementary nucleotides can indeed be incorporated at certain positions of a primer. When a 5’adapter sequence is added to the primers used for hnr-PCR, and a different 5’adapter sequence is added to the primers used for standard PCR, the combined analysis of the standard amplicon and the hnr-amplicon against a given region then concludes the actual sequence. In this way, a ‘one-stop’ genetic test is obtained for these sequencing formats.
The City of Hope and GnuBIO will present results that for the first time demonstrate the detection of unknown mutations in a blinded cohort of clinical patient samples in p53 cancer gene sequenced on the GnuBio platform. The depth of coverage realized from these analyses, combined with the flexible, turn-around-time, and ease of sample handling, provides the potential framework to routinely clinical diagnostics a reality with the GnuBio instrument.

P11.087 Sample Quality Control within various Next Generation Sequencing workflows using the new Agilent 2200 TapeStation System
This study evaluates the performance of the 2200 TapeStation System in various Next Generation Sequencing (NGS) workflows. Numerous sample types were checked for quality at different stages of various NGS protocols including pre- and post-shearing, post adaptor ligation as well as pre-hybridization and post-hybridization within the SureSelect target enrichment workflow. The data shows that this new automated electrophoresis system provides qualitative information that enables informed decision making in all downstream steps. By providing a range of ScreenTape consumables with standard and high sensitivities along with a tailored analysis package, the system is scalable to QC gDNA, fragmented DNA, whole-genome libraries and target enriched libraries, presenting descriptive analyses at each stage for multiple sequencer protocols. The data described here demonstrates that the 2200 TapeStation System has the range, sensitivity, precision and accuracy to meticulously QC samples within the NGS workflow.

P11.088 Direct in-flowchip isothermal amplification of sequencing libraries at ultra-high density for next-generation sequencing
T. Rygas; Life Technologies, Darmstadt, Germany.
We have developed a new nucleic-acid template-preparation methodology, called “WildFire”, where sequencing libraries are in-situ amplified directly in-the-flowchip; no cycling-steps, no sequencing beads, no material exchanges. Sequencing libraries are added directly to the 5500-series Genetic Analyzer flowchip, whose surfaces have been coated with a special library-adaptor capture oligonucleotide. A DNA polymerase reaction mix is added, and in a single isothermal step lasting ~30 minutes, individual nucleic-acid fragments are amplified in-situ on the flowchip. The net density of sequencing-colonies created in this manner far exceeds anything currently utilized in next-generation sequencing, reaching ~1 million colonies per mm² per flowchip surface (~2 million colonies / mm² optical viewing surface). During in-situ amplification, the capture oligonucleotide is “consumed”, and each individual nucleic-acid fragment “spreads” inside the flowchip until reaching an adjacent library fragment(s). When the individually-grown fragments “meet”, the amplification step terminates, because all of the surface-bound primer was consumed. These “self-assembled”, spatially resolved, monoclonal colonies, are then sequenced-by- lizardation. The resulting colony-sequencing reads maintain the same high accuracy as our bead-sequence method. Ligase-reactions also appear to be more efficiently completed on sequencing colonies (vs. sequencing beads), with the overall chemistry cycle time decreasing (~1.5X) and the read-lengths increasing (towards 100 bps). Full genomes (bacterial, human), exomes (human) and transcriptsomes (human) have now been sequenced using WildFire technology (detailed statistics will be presented). WildFire technology greatly improves NGS workflow (in-situ amp), increases throughput (via ultra-high density colonies), and significantly decreases net cost-per-genome (elimination of costly template preparation steps).

P11.089 Similar nucleosome occupancy pattern of NF-Y histone substitute family proteins, in human embryonic stem cells and induced pluripotent cells
M. Shahhosseini, R. Favadl, S. Molla Mohammadi, H. Babarvand; 1Department of Genetics, Reproductive Biomedicine Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Islamic Republic of Iran, 2Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
Introduction
Pluripotent ES and iPS cells are indebted their unique properties like their wonderful developmental plasticity to unique structure of their chromatin. The dynamics of this structure is regulated by a variety of complex pro-
The rapid evolution of Next-Generation Sequencing platforms is transforming the genetic research field. As next-generation sequencing technologies are being adopted in various fields, the need for robust analysis pipelines becomes crucial. The $1000 exome dilemma highlights the expectations and facts surrounding the use of exome sequencing service in research and diagnostics. In this context, the integration of Next-Generation Sequencing technologies with appropriate computational tools can provide insights into genetic variations.

P11.090 Establishment of a core unit laboratory for ultra deep sequencing

A. B. Ekici, S. Ube, A. Reis; Institute of Human Genetics, Erlangen, Germany.

With continued advances in sequencing technologies, next-generation sequencing has become a powerful tool in genetic research. The establishment of a core unit laboratory for ultra deep sequencing can significantly enhance research capabilities.

Results

- The establishment of a core unit laboratory for ultra deep sequencing can significantly enhance research capabilities.
- The use of advanced software and computational tools can improve the efficiency and accuracy of data analysis.

Conclusion

The establishment of a core unit laboratory for ultra deep sequencing can provide a significant boost to genetic research, enabling researchers to handle complex datasets more effectively.

P11.094 MicroRNA expression profiling meta-analysis identifies pathways associated with lung cancer development and reveals potential therapeutic drug targets

U. Võsa, R. Köld, T. Vonder, J. Vilo, A. Metapalu, T. Annino; 1Department of Biotechnologies, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia, 2Institute of Computer Science, University of Tartu, Tartu, Estonia, 3Estonian Genome Center, University of Tartu, Tartu, Estonia.

MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in regulating gene expression at the post-transcriptional level. They are involved in various biological processes and diseases, including lung cancer.

MicroRNA expression profiling meta-analysis

- Using a meta-analysis approach, researchers identified pathways associated with lung cancer development.
- The study revealed potential therapeutic drug targets for lung cancer treatment.

Conclusion

The meta-analysis of microRNA expression profiles can provide insights into the molecular mechanisms of lung cancer and identify potential therapeutic targets. Further studies are needed to validate these findings and develop effective treatments.

P11.095 The importance of alignments in evaluating missense variants

S. Williams, A. deverew; NGBL, Manchester, United Kingdom.

Missense variants are critical in understanding human disease phenotypes. Accurate alignment and evaluation of these variants are essential for improving the reliability of genetic analysis.

Results

- Alignments play a crucial role in accurately evaluating missense variants.
- The importance of alignments can significantly impact the reliability of genetic analysis.

Conclusion

The importance of alignments in evaluating missense variants cannot be overstated. Further research is needed to develop robust alignment strategies for improved genetic analysis.
have been developed to predict the effect of missense variants. In combination with other evidence, these tools are used routinely by diagnostic labs to advise clinicians of disease likelihood. However, errors may arise through uninformed choice of tools and use of inappropriate parameters which may compromise the quality of results.

We have benchmarked the predictions from a range of algorithms on a set of genes with well-characterised missense variants. We find that prediction success is highly gene-specific and that different algorithms perform optimally with different genes. Prediction algorithms based on multiple sequence alignments (MSAs) can be sensitive to the quality of the alignments used. In order to satisfy statistical considerations, certain levels of sequence divergence are required and carefully curated alignment use is recommended. In this respect, we also assessed the impact of alignment quality on these algorithms and find that the majority of possible orthologue alignments do not affect prediction success greatly when assessing a set of variants. However, when assessing individual variants, prediction success can vary with alignment quality and diversity in MSAs is an important consideration to ensure optimum algorithm performance.

We suggest that provision of benchmark data for different algorithms, and of standard MSAs, will allow the optimal use of missense prediction tools.

P11.096
RNA analysis, a diagnostic tool
M. Kalseth, H. Johnsen, O. Rødningen;
Department of Medical Genetics, Oslo, Norway.

DNA sequence variants of uncertain significance (VUSs) is a common challenge in all types of genetic testing. Sequence variants located all over the exons and introns have the potential to disrupt proper splicing of mRNA, either by disrupting a normal splice site, by creating a de novo splice site or by disturbing the interaction of splice regulatory factors. In order to reveal the effect of VUSs identified by DNA sequencing, we have offered RNA analysis for genes expressed in blood and with identified sequence variants which might cause aberrant splicing. These are sequence variants located within the normal splice sites, synonymous variants and intron variants which are predicted to create de novo splice sites. In the poster we present the method of choice and some examples of results.

RNA analysis is a simple and straightforward tool to increase the knowledge about the effect of sequence variants identified by DNA sequencing.

P11.097
Enabling next-generation knowledge integration for human genetics
B. Vroling, T. van den Bergh, R. Kuijpers, H. Joosten;
Bio-Product, Nijmegen, Netherlands.

It is widely accepted that information overload, in terms both of the growing volumes of biomedical data and of the associated literature, is making it increasingly difficult for researchers to keep pace. We present 3DM, a suite providing information systems for protein families, relieving many of the burdens that researchers face in dealing with the growing amounts and complexity of biomedical data. For each protein family a large amount of information that is extracted from protein structures, alignments and scientific literature, among others, is available. All this information is integrated, validated, and can be analysed and interacted via a number of methods. As a response to the amount of scientific literature outgrowing researchers’ ability to keep pace, we have developed software that can place this integrated data and information from 3DM systems in the context of full-text PDF articles. Users are able to jump seamlessly from a particular paper both to its underlying data and to other related information and literature at the click of a button, thereby allowing readers to extract more knowledge more swiftly from the literature.

Having many heterogeneous data types readily available in an integrated and validated fashion can greatly speed up research, and a wide variety of questions can be answered when such protein-related data from many different origins can be flexibly combined. As an example of particular interest to the human genetics community, by intelligently combining all this heterogeneous information the system is able to provide state-of-the-art predictions about the effects of genetic variations.

P11.098
Comparative Analysis of Strand-Specific RNA Sequencing Approaches
D. Munafò, P. Liu, C. Sammer, B. Testor,
L. Aposte, B. Langhorst, F. Stewart,
E. D. Danilova, T. Dickhaus;

Standard RNA-sequencing approaches generally require double-stranded cDNA synthesis, which silences strand information. Synthesis of a randomly primed double-stranded cDNA followed by addition of adaptors for next-generation sequencing leads to the loss of information about which strand was present in the original mRNA template. The polarity of the transcript is important for correct annotation of novel exons, identification of antisense transcripts with potential regulatory roles, and for correct determination of gene expression levels in the presence of antisense transcripts. This work investigates the performance of different strategies for directional RNA-Seq using multiple next-generation sequencing platforms. Here, we examine the effect of different RNA fragmentation methods (divalent cations plus heat versus enzymatic fragmentation). We provide a comparative analysis (library complexity, continuity of gene coverage, strand specificity and 3’ and 5’-end bias analysis) of strand-specific RNA methods.

P11.099
GeneTalk: an expert exchange platform for assessing rare sequence variants in personal genomes
P. M. Krawitz, T. Kamphans;
‘Charite, Berlin, Germany; GeneTalk, Berlin, Germany.

Next-generation sequencing (NGS) has become a powerful tool in personalised medicine. Exomes or even whole genomes of patients suffering from rare diseases are screened for sequence variants. After filtering out common polymorphisms, the assessment and interpretation of detected personal variants in the clinical context is an often time-consuming effort. We have developed GeneTalk, a web-based platform that serves an expert exchange network for the assessment of personal and potentially disease relevant sequence variants. GeneTalk enables a focused and knowledge management for genetic variants and may assist a clinical geneticist who is searching for information about specific mutations: Our platform gets a geneticist directly connected to other users with expertise for the sequence variant of interest. GeneTalk is available at www.gene-talk.de.

P11.100
The sensitivity of detecting heterozygous variants in next-generation sequencing data is increased by applying an allele frequency distribution derived from a stochastic branching process
‘Charite, Berlin, Germany; Humboldt University, Berlin, Germany; Berlin Brandenburg Center for Regenerative Therapies, Berlin, Germany.

Next-generation sequencing (NGS) technology allows us to detect genetic variants on a genome-wide scale. A deeper knowledge about the allele distribution at heterozygous loci is essential for sensitive variant detection. We describe the pivotal steps of the library preparation before sequencing as a stochastic branching process and derive a mathematical framework for the expected distribution of alleles at heterozygous loci in a short read alignment. Based on technical replicates of human exomes we demonstrate that the variance of allele frequencies is higher than expected from a simple binomial distribution. As a consequence, algorithms for mutation detection that apply this wrong prior distribution are less sensitive for variants that deviate strongly from the expected mean frequency. Due to the stochasticity inherent to the sample preparation we show that there is an upper bound for heterozygous variant detection even with increasing sequencing depth. Our results therefore indicate that technical replicates are an effective means in the reduction of error rates.

P11.101
Assessing the quality and the population background of high-dimensional human variant data sets from next-generation sequencing platforms using similarity metrics
P. M. Krawitz, S. Bauer, V. Heinrich, J. Stange, T. Dickhaus, P. N. Robinson;
‘Charite, Berlin, Germany; Humboldt University, Berlin, Germany.

In reference based resequencing projects a list of all detected genetic variants represents an important intermediate step in bioinformatics data processing. Although scores are used to estimate the error probability of single variant calls, the heterogeneity of analysis pipelines as well as the high dimensionality of the data make it difficult to compare the quality of entire data sets. Here we describe a similarity metric that allows a distance-based quality assessment of human variant data on a genome-wide scale irrespective of the platform it was generated on. Using the individuals of the 1000 genomes project as a high-quality reference set we are able to robustly identify the population background, answer questions about relatedness and estimate error rates in a data set. Our distance-based scoring system is accessible at www.gene-talk.de and may be applied in high-throughput
P11.102 Molecular diagnosis and genotype-phenotype studies in patients with osteogenesis imperfecta by next generation sequencing

C. C. Hung1, C. N. Lee2, S. V. Lin1, Y. N. Su1,2*

1Graduate Institute of Clinical Genetics, National Taiwan University College of Medicine, Taipei, Taiwan, 2Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, 3Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan, 4Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin Chu Branch, Hsin Chu, Taiwan, 5Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.

Background: Osteogenesis imperfecta (OI) is a heritable disorder of bone formation, which is characterized by bone fragility and low bone mass. As reported, autosomal dominant OI is associated with the mutations in COL1A1 and COL1A2 genes and autosomal recessive OI is caused by mutations in CRTAP, LEPRE1, or LEPRE2 genes.

Methods: In this study, ex-on-wide mutational analysis of COL1A1, COL1A2, CRTAP, LEPRE1 and PPIB genes were performed by PCR and next-generation sequencing (NGS). One hundred unrelated patients and their family members diagnosed with OI clinically from Taiwan population were enrolled in this study.

Results: 46 patients had mutation in COL1A1 gene, and 25 in COL1A2 gene. The mutation detection rate of COL1A1 and COL1A2 genes was 71%. Furthermore, one patient was identified heterozygous mutations in P11.103. No mutation in CRTAP or LEPRE1 gene was found. In total, there was an overall mutation identification rate of 72%.

Conclusion: To gain more insight into the mutational spectrum in Taiwanese patients with OI, we conducted this study to perform extensive ex-on-wide mutational analysis of COL1A1, COL1A2, CRTAP, LEPRE1 and PPIB genes based on the high-throughput mutation screening system with NGS. There are several hot mutation regions in COL1A1 and COL1A2 gene had been proposed. PCR followed by NGS is an alternative strategy for molecular diagnosis.

P11.103 A fish-specific transposable element shapes the repertoire of p53 target genes in zebrafish

M. Loviglio1, L. Micali1, M. Manzoni1, C. Fusco1, B. Augello1, E. Migliavacca1, G. Cotugno1, E. Monti2, G. Borsani3, A. Reynold1, G. Merla3

1Center for Integrative Genomics - University of Lausanne, Lausanne, Switzerland, 2Medical GePREE and SARNET, Research Centre “Sollievo della Sofferenza”, San Giovanni Rotondo, Italy, 3Department of Biomedical Science and Biotechnology - University of Brescia, Brescia, Italy.

Transposable elements, as major components of most eukaryotic organisms’ genomes, define their structural organization and are known to establish new cellular functions during evolution. Recent discoveries support the hypothesis that transposons can directly modulate gene transcription and de novo generation of novel functional gene networks by contributing to transcriptional and post-transcriptional modulation of nearby genes. For instance, TEiS participate to the origin of new functional elements, as promoter sequences, transcription factors binding sites and enhancer, silencer and insulator elements. For example, binding sites of the pleiotropic master transcription factor p53 reside in LINE1, Alu and LTR repeats in the human genome. Similarly, here we describe the first case of a mobile element shaping the repertoire of the p53 target genes in zebrafish (Danio rerio). Through their embedded p53 responsive elements, the multiple copies of the non-autonomous DNA transposon EnSpnN6, DR drive in several instances p53-dependent transcriptional modulation of the adjacent genes, whose human orthologs were often previously annotated as p53 targets. These transposons define a set of target genes that contribute to axonogenesis, synaptic transmission and the regulation of programmed cell death. Consistent with these biological functions, the EnSpnN6, DR-activated loci are enriched for genes expressed in both adult and fetal brain. Our data corroborate the recent findings concerning the role of p53 in the regulation of neural stem cell development and pinpoint a remarkable example of convergent evolution: the exaptation of lineage-specific transposons to establish networks of p53-regulated genes crucially involved in neuronal morphogenesis in both a homid and a teleost fish.

P11.104 Rare variants in TMEM132D contribute to the risk for panic disorder in a German sample

C. Quast1, A. Altmann1, P. Weber2, J. Artolk3, D. Bader, A. Heck1, H. Pfister1, B. Müller-Myhsok1, A. Erhardt1, E. B. Binder2

1Max Planck Institute of Psychiatry, Munich, Germany.

Background: Genome-wide association studies have identified a large number of common variants associated with common diseases. Most variants, however, explain only a small proportion of the estimated heritability, suggesting that less common and rare variants might contribute to a larger extent to common diseases than assumed to date. Here we use next-generation sequencing to test whether such variants also contribute to the risk for anxiety disorders by re-sequencing 40 kb including all exons of the TMEM132D locus which we have previously shown to be associated with panic disorder and anxiety severity measures.

Methods: DNA from 300 patients suffering from anxiety disorders, mostly panic disorder (84.7 %), and 300 healthy controls was screened for the presence of genetic polymorphisms using the SOLID 3+ next-generation sequencing platform (Life Technologies) in a pooled approach. Results were verified by individual re-genotyping.

Results: We identified a total 371 variants of which 247 had not been reported before, including 15 novel non-synonymous SNPs. The majority, 76% of these variants had a minor allele frequency less than 5%. While we did not identify additional common variants in TMEM132D associated with panic disorders, we observed an overrepresentation of rare functional variants in healthy controls as compared to cases.

Conclusions: Our data suggest that not only common but also rare variants within TMEM132D might contribute to the risk to develop anxiety disorders. In addition, the overrepresentation of rare functional variants in controls supports previous results associating an increased function of this gene with anxiety measures.

P11.105 Isolation and characterization of the RNA content of exosomes derived from blood and cell culture media using the Ion Torrent Personal Genome Machine (PGM™)

R. Setterquirit1, X. Kefer2, T. Bartaa1, A. Vlassov1, M. Li1, R. Conrad1, J. Schageman1

1Life Technologies, Austin, TX, United States, 2Life Technologies, Darmstadt, Germany.

Exosomes are small (30 - 120 nm) vesicles containing nucleic acid and protein cargo secreted by all cell types in culture. They are found in abundance in body fluids including blood, saliva, urine, breast milk. There is an exponentially growing interest to studying the function exosomes and utilizing them for diagnostics development. At the moment, the mechanism of exosome formation, the make up of the “cargo”, biological pathways and resulting functions are poorly understood. There is an urgent need to further our understanding of microvesicles, and critical to this, is the development of reagents and tools for their isolation, characterization and manipulation. We will present data on (1) isolation of exosomes from blood and cell cultures, using modified ultracentrifugation and other protocols; (2) initial characterization of the RNA content from these exosome fractions using next-generation sequencing.

P11.106 Enabling Whole Transcriptome RNA-Seq on the Ion Torrent PGM Sequencer

B. Sanderson1, X. Cristina1, N. Supunpong-Hernandez2, C. Burnett3, D. Williams4, R. Bramlett5

1Life Technologies, Austin, TX, United States, 2Life Technologies, Paisley, United Kingdom.

As processes for the PGM continually improve, library construction has quickly become one of the most apparent bottlenecks for the RNA-Seq pipeline. Addressing this obstacle is extremely important to enable the developing clinical sequencing market by improving speed of sample to sequence. Also, with the already vast number of stored FFPE samples in tissue banks and a growing impetus to study samples that may be rare or precious, a library method that can start with total, limited, and/or sheared RNA is necessary. Historically, RNA-seq libraries have started with microgram quantities of total RNA in order to perform a polyA selection or ribo minus depletion and make the sample useful for downstream applications. These processes remove up to 95% of the sample, the majority of which being unwanted rRNA and miRNA. At Ambion, we have developed a library preparation method that can begin with a minimal amount of total RNA and selectively enrich for mRNA using a not-so-random (NSR) priming approach. We will detail the NSR priming strategies to build an RNA library kit for sequencing whole transcriptomes using the Ion Torrent PGM. We will show results from experiments optimizing hybridization parameters and workflows for library using less than 100ng total RNA, significantly reduce the representation of rRNA and miRNA that will be performed in less than 4 hours. This will permit a clinician to build a library in less than half the time, at a reduced cost, using 1/100th the amount of starting RNA as compared to a ligation-based approach.
Platelets are essential to hemostasis and thrombosis. Having a complete understanding of the platelet transcriptome will give insight into the genetic basis of these disease traits ultimately leading to new methods for treatment. Genome-wide RNA expression studies using microarrays has provided RNA insights to the platelet transcriptome. However, limitations of microarrays including the use of probes only to known transcripts and a limited dynamic range for quantifying very low and high levels of transcripts has not yet revealed the complete picture of the platelet transcriptome. To capture the complexity of all the transcripts in human platelets, we performed RNA sequencing (RNAseq) in leukocyte-depleted platelets derived from four healthy donors. The platelet whole transcriptomes for long and short RNA from total and ribosomal RNA depleted samples were analyzed on the AB SOLID platform. We estimate that there are ~9500 protein-coding genes expressed in platelets, 85 of which were validated by qRT-PCR. Many classes of non-coding RNAs were identified, including a larger number of miRNAs than previously appreciated, as well as pseudogenes and retroelements. Comparison of microarray results to the RNAseq revealed a significant correlation of well-expressed miRNAs, but RNAseq identified many more transcripts of lower abundance and permitted the discovery of novel transcripts. The RNAseq performed here revealed the complexity of the platelet transcriptome that may permit a better understanding of the molecular mechanisms that regulate platelet physiology and contribute to disorders of thrombosis and hemostasis.

P11.107

Expert system PharmakoGen intended to increase efficacy of drug therapy
J. V. Zalmanov1, M. M. Litvinova1, A. V. Zalmanov1; 1Moscow State Medical Stomatological University, Moscow, Russian Federation, 2Moscow State L.M. Sechenov Medical University, Moscow, Russian Federation.

Nowadays pharmacogenetics is a very rapidly developing field of knowledge which allows to predict therapeutic effect of different drugs and occurrence of pathologic medical reactions depending on genotype of the patient.

Every day more and more scientific articles are being published worldwide regarding this matter. So extensive data which include information on different genes, mutations, polymorphisms and drug-to-drug interactions cannot be stored in one's mind and that is why cannot be used by the doctors without applying for special literature and databases.

Our aim was to develop expert system for increasing efficacy of drug therapy depending on genotype of the patient. As a result of the project expert system PharmakoGen was created.

Expert system PharmakoGen is developed on the platform xGen IDS, successfully used for creation of diagnostic systems on hereditary neuromuscular diseases, eye illnesses, and chromosomal syndromes.

Our expert system includes following elements: the module of input of patient information, the knowledge base module, the module of results explanation, and finally the module of expert conclusion with special individual recommendations.

The system can be used by doctors of various specialties and will help to prescribe correct dosage of medicine and to prevent undesirable drug effects while treating patients.

Our system also can be helpful in forming the list of genes and polymorphisms which should be tested in patient before beginning of specific treatment.

Thus developed software will be interesting to the practicing doctors and will allow to optimize treatment of diseases depending on specific genetic features of the patient.

P11.108

Distribution of risk alleles for clopidogrel response (CYP2, PON1, ABCB1): pilot study in Czech patients with coronary stenting

P. Schneiderova1, E. Kriegova1, M. Petrek1; 1Lab. of Immunogenetics and Immunoproteomics, Palacky University, Olomouc, Czech Republic; 2Lab. of Cardiogenomics, University Hospital, Olomouc, Czech Republic.

Clopidogrel - an inhibitor of platelet activation - is widely used in the prevention of atherothrombotic events in patients undergoing percutaneous coronary interventions (PCI) with stent implantation. Genetic variations in genes involved in the absorption (P-glycoprotein/ABCB1) and metabolism (CYP2, PON1, ABCB1) of clopidogrel are thought to influence the response to the drug. The purpose of our study, therefore, was to characterize the distribution of alleles which are associated with altered response to clopidogrel in Czech patients after PCI.

A spectrum of risk genetic variants in genes CYP2C19, CYP2C9, PON1, ABCB1 were assessed in a cohort of 294 patients after PCI employing multiplex PCR analysis by MassARRAY technology (Sequenom).

Carriage of loss-of-function alleles which may cause reduced conversion to active metabolite of clopidogrel, may thus reduce the efficacy of antiplatelet treatment and/or increased risk of cardiovascular complications. The evaluation of risk allele(s) genotyping on the rate of subsequent cardiovascular events in our PCI patients is under progress.

P11.109

The human platelet transcriptome: RNA-seq reveals a greater complexity of protein-coding and non-coding transcripts than previously appreciated

Every day more and more scientific articles are being published worldwide regarding this matter. So extensive data which include information on different genes, mutations, polymorphisms and drug-to-drug interactions cannot be stored in one's mind and that is why cannot be used by the doctors without applying for special literature and databases.

Our aim was to develop expert system for increasing efficacy of drug therapy depending on genotype of the patient. As a result of the project expert system PharmakoGen was created.

Expert system PharmakoGen is developed on the platform xGen IDS, successfully used for creation of diagnostic systems on hereditary neuromuscular diseases, eye illnesses, and chromosomal syndromes.

Our expert system includes following elements: the module of input of patient information, the knowledge base module, the module of results explanation, and finally the module of expert conclusion with special individual recommendations.

The system can be used by doctors of various specialties and will help to prescribe correct dosage of medicine and to prevent undesirable drug effects while treating patients.

Our system also can be helpful in forming the list of genes and polymorphisms which should be tested in patient before beginning of specific treatment.

Thus developed software will be interesting to the practicing doctors and will allow to optimize treatment of diseases depending on specific genetic features of the patient.

A spectrum of risk genetic variants in genes CYP2C19, CYP2C9, PON1, ABCB1 were assessed in a cohort of 294 patients after PCI employing multiplex PCR analysis by MassARRAY technology (Sequenom).

Carriage of loss-of-function alleles which may cause reduced conversion to active metabolite of clopidogrel, may thus reduce the efficacy of antiplatelet treatment and/or increased risk of cardiovascular complications. The evaluation of risk allele(s) genotyping on the rate of subsequent cardiovascular events in our PCI patients is under progress.

P11.110

Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants

C. Houdayer1, V. Moncoutier4, S. Krieger5, M. Barnoski5, F. Bonnet6, B. Bourdard7, M. Bronner8, M. Buisson9, F. Coulet7, F. Gaildrat10, C. Leopil11, M. Leone12, S. Massuyer13, D. Muller14, A. Remenieras15, F. Revillon16, E. Rouleau17, J. Sokolowski8, J. Vert18, R. Liderneau19, P. Soubrand20, H. Soufi21, N. Severn22, B. Bressac de Paillerets23, A. Hardouin24, M. Toal25, D. Simonutti26, D. Stoppa Lyonnet27; 1Institut Curie, Paris, France; 2Université Paris Descartes, Paris, France; 3centre F Baclesse, Caen, France; 4Institut Gustave Roussy, Villejuif, France; 5Institut Bergonie, Bordeaux, France; 6Institut Pauli Calmettes, Marseille, France; 7CHU, Nancy, France; 8Inserm U1052, Lyon, France; 9APHP pitié Salpêtrière, Paris, France; 10Inserm U1614, Rouen, France; 11CHU Lyon, France; 12centre F Strauss, Strasbourg, France; 13centre O Lambret, Lille, France; 14Ecole des Mines, Paris, France; 15APHP Pitié Salpêtrière, Paris, France; 16centre F Baclesse, Nancy, France; 17Inserm U1614, Rouen, France; 18centre L Berard, Lyon, France.

Assessing the impact of variants of unknown significance (VUS) on splicing is a key issue in molecular diagnosis. This impact can be predicted by in silico tools, but proper evaluation and user guidelines are lacking. To fill this gap, we embarked upon the largest BRCA1 and BRCA2 splicing study to date by testing 272 VUS (327 analyses) within the BRCA splice network of UniCancer. All these VUSs were analyzed by using six tools (Splice Site Prediction by Neural Network, Splice Site Finder, MaxEntScan, ESE Finder, Relative Enhancer and Silencer Classification by Unanimous Enrichment, Human Splicing Finder) and the predictions obtained were compared to transcript analysis results. Combining MaxEntScan and Splice Site Finder gave a 96% sensitivity and a 83% specificity for VUSs occurring in the vicinity of conserved splice sites, i.e. the surrounding 11 and 14 bases for the 5' and 3' gap, we embarked upon the largest BRCA1 and BRCA2 splicing study to date by testing 272 VUS (327 analyses) within the BRCA splice network of UniCancer. All these VUSs were analyzed by using six tools (Splice Site Prediction by Neural Network, Splice Site Finder, MaxEntScan, ESE Finder, Relative Enhancer and Silencer Classification by Unanimous Enrichment, Human Splicing Finder) and the predictions obtained were compared to transcript analysis results. Combining MaxEntScan and Splice Site Finder gave a 96% sensitivity and a 83% specificity for VUSs occurring in the vicinity of conserved splice sites, i.e. the surrounding 11 and 14 bases for the 5' and 3' sites, respectively. This study was also an opportunity to define guidelines for transcript analysis along with a tentative classification of splice variants. The guidelines drawn from this large series should be useful for the whole community, particularly in the context of growing sequencing capacities that require robust pipelines for variant interpretation.

P11.111

Targeting human KIAA0649P into mouse Rb1: Pseudogene integration is causative for genomic imprinting of Rb1

L. Steenpass, D. Kanber, M. Hiber, K. Buiting, D. Lohmann; 1Institute of Human Genetics, Essen, Germany.

The human retinoblastoma gene, Rb1, is imprinted. Gene expression is skewed in favour of the maternal allele. This is due to parent-of-origin specific DNA methylation on the truncated and inverted pseudogene KIAA0649P. This pseudogene evolved after integration into intron 2 of the Rb1 and in its present form harbors a new CpG island, CpG85, which serves as promoter for an alternative Rb1 transcript, transcript 2B. CpG85 is methylated on the maternal allele only and, as expected, expression of transcript 2B is restricted to the paternal allele. Transcription of the paternal transcript 2B interacts with transcription of the regular Rb1 transcript on the same allele. Mouse Rb1 does not contain KIAA0649P and is not imprinted. To determine if KIAA0649P is sufficient to result in skewed expression of Rb1 we generated a knock-in of human KIAA0649P in intron 2 of the murine Rb1 gene. To
P11.112
Amplon based targeted resequencing analysis of PDE6A and PDE6B in a cohort of patients with a clinical diagnosis of Retinitis Pigmentosa using the Fluidigm 48.48 Access Array™ system and the Roche 454 GS FLX Next Generation Sequencing technology
N. Weischtsh*, S. Link*, S. Ratschote*, S. Kohl*, R. Wissinger*
1Institute for Ophthalmic Research, Tuebingen, Germany, 2JMMG Laboratories, Munich, Germany.

The genetic heterogeneity of Retinitis Pigmentosa hampers the identification of the underlying mutation in many cases. Current genetic diagnostic frequently takes several months or even years and, due to the need for investigation of many large genes, is very expensive. Moreover, there is a lack of data about mutations in low-prevalence disease genes due to the technological limits that have hampered comprehensive studies. We aimed to find all possible disease-associated variants in coding sequences of the PDE6A and PDE6B genes in a large cohort of patients diagnosed with autosomal recessive Retinitis Pigmentosa (arRP) using a time- and cost-efficient next generation sequencing (NGS) approach.

Ninety-six patients with a clinical diagnosis of arRP were screened for mutations in the PDE6A and PDE6B genes using an amplon based targeted resequencing approach. Target enrichment was performed using the Fluidigm 48.48 Access Array™. NGS was performed using the Roche 454 GS FLX technology. Identified variants were confirmed or rejected by Sanger sequencing.

We verified a total of 16 sequence variants in PDE6A and 14 variants in PDE6B, respectively. Five of these were clearly pathogenic because they fulfilled the criterion of homozygosity or compound heterozygosity and, moreover, have been previously described. The pathogenicity of the remaining variants remains unclear since they were only found in heterozygous state. Due to the heterogeneity of Retinitis Pigmentosa, genetic diagnostics based on traditional Sanger sequencing is laborious and expensive. We found that the NGS approach is a time- and cost-efficient tool for screening low-prevalence disease genes in large cohorts.

P11.113
Time course RNA-seq: A potential avenue with somewhat different approach in tandem of differential analysis
S. OH*, H. Zhour*, J. F. Noonar*
1Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States, 2Yale School of Medicine, New Haven, CT, United States.

RNA-seq is exponentially becoming the de facto standard approach to compensate for conventional technologies such as microarray. By directly sequencing transcripts in gene expression profile, the reduced cost to sequencing, studies to dynamic change of gene expression in a given biological system over time have shown steady growth over the past few years as microarray, however, statistical approaches to characterize dynamic temporal complexities are currently elusive. In differential gene expression analysis, as somehow limited but intuitive solutions, static differential expression methods without respect to time can be applied, which do not take into account the inherent dependences in time series explicitly that the expression patterns at later stages are dependent on patterns at earlier stages. We present a statistical framework to define dynamic gene expression patterns over time using empirical trajectory index and Hidden Markov Model (HMM) approach in time series RNA-seq data, and our methods are validated through Markov Chain Monte Carlo (MCMC) simulation study in time dependent data. The utility of the proposed dynamic methods for temporal RNA-seq is demonstrated by application to the analyses of gene expression patterns in RNA-seq real data sets and MCMC simulation study in details.

P11.114
Long term investigation of gene expression variations in venous blood from healthy individuals
F. Coppers*, Center for Human Genetics, Leuven, Belgium.

Gene-expression profiles from human venous blood have been applied in diagnostic tests and laboratory settings. A new method to obtain these profiles is RNA-Seq, a high-throughput sequencing technique. This method outperforms hybridization-based array technologies in sensitivity and dynamic range and provides a digital readout of transcript levels. Thus, it creates a high resolution snapshot of the transcriptome. While reproducibility of replicates and technical biases of high-throughput sequencing has been extensively studied, within individual variability has not. By applying RNA-Seq, we will categorize intra-individual variations over a time span of 2 years and analyze the impact on diagnostics. We would like to confirm that sample extraction on a “bad-day” does not sicken a patient. Human venous blood samples will be collected from 3 healthy volunteers on a day to day, week to week and month to month basis over 2 years. Multiplexed samples will be analyzed on the Illumina HiSeq system and prepared by 3 approaches. The first is designed to analyze only polyadenylated RNAs, the second to investigate rRNA depleted RNA and the third focuses on small non-coding RNAs. The sequence reads will be mapped with TopHat and analyzed at the (gene) transcript isoform level with tools as Cufflinks, edger and (or) DESeq.

Defining these limitations is a crucial step in applying RNA-Seq in diagnostics. Characterizing intra-individual transcriptome variations will enable diagnostics to determine the limitations of RNA-Seq’s predictive power. This study will provide practical recommendations that will significantly improve the accuracy of RNA-Seq studies.

P11.115
A simple method for improving the limit of detection for capillary electrophoresis DNA sequencing - a comparison of methodologies for KRAS variant detection
C. J. Davidson1, K. J. Champion1, M. Gauthier1, F. Wang1, J. Boonyaratanaokrit1, J. R. Jones2, E. Schreiber2
1Applied Biosystems, Foster City, CA, United States, 2Greenwood Genetic Center, Greenwood, SC, United States.

Fluorescent dye terminator Sanger sequencing (FTSS), with detection by automated capillary electrophoresis (CE), has long been regarded as the gold standard for variant detection. However, software analysis and base-calling algorithms used to detect mutations were largely optimized for resequencing applications in which different alleles were expected at heterozygous mixtures of 50%. Increasingly, the requirements for variant detection are an analytic sensitivity for minor alleles of <20%, in particular, when assessing the mutational status of heterogeneous tumor samples. Here we describe a simple modification to the FTSS workflow that improves the limit of detection of cell-line gDNA mixtures from 50-20% to 5% for G>A transitions and from 50-5% to 5% for G>C and G>T transversions. In addition, we use two different sample types to compare the limit of detection of sequence variants in codons 12 and 13 of the KRAS gene between Sanger sequencing and other methodologies including shifted termination assay (STA) detection, single-base extension (SBE), pyrosequencing (PS), high resolution melt (HRM), and real-time PCR (qPCR).

P11.116
Investigating levels of precision in gene expression measurement by digital PCR
R. Sanders1, C. A. Fay2, D. Mason2, J. F. Haggart2
1LCG, Teddington, United Kingdom, 2Cardiff University, Cardiff, United Kingdom.

Gene expression studies profiling mRNA are central to biomolecular research offering considerable potential for research, diagnostics and prognostics. Gene expression measured by reverse transcriptase (RT) linked PCR, is commonly used to interpret the effects of specific signals both in vitro and in vivo, often on low copy transcripts extracted from tissues. The RT step, necessary to convert mRNA to cDNA, is widely accepted as both inefficient and imprecise, with studies reporting variability up to 17-fold. This study tested RT measurement variability of synthetic RNA transcripts (ERCC developed targets; European RNA Control Consortium) using RT digital (d) PCR evaluated through one-step reaction; where RT-PCR is performed in a one-step (one reaction vessel) process rather than the standard two-step approach. In independent reactions in different tubes for the RT and then PCR stages, dPCR applies single molecule amplification achieved by sample partition for absolute quantification. The measurement capability and reproducibility of RT to aid quantification of targets spiked into human cell-line
derived total RNA was assessed. Furthermore, to compare measurement accuracy of RT-dPCR with more established DNA dPCR, six well-characterised ERCC targets of known concentration were evaluated, enabling a bias assessment. Our results demonstrate RT reaction sensitivity is assay dependent and different quantification determined for each target despite evaluation of equal copy numbers. This study is one of the first to demonstrate application of RT-dPCR for absolute quantification of low copy RNA targets. This approach allows RT precision, sensitivity and linearity to be monitored alongside reaction efficiency, facilitating accurate interpretation of gene expression data.

P1.117 Excess of novel nonsense mutations identified in putative susceptibility genes for schizophrenia and autism spectrum disorders

Schizophrenia (SZ) and autism spectrum disorders (ASD) are complex genetic neurodevelopmental disorders that share certain phenotypes (e.g. cognitive deficits), and may share an underlying pathology due to shared genetic risk variants (e.g. already-identified NRXN1). This study involves next-generation sequencing of exonic regions of 215 putative susceptibility genes in an Irish sample of 151 cases of ASD, 274 cases of SZ and 287 controls, to identify rare mutations contributing to one or both disorders. A multiplex target enrichment method combined DNA samples using indexes/barcodes followed by enrichment of exonic regions using Agilent SureSelect and paired-end sequencing on an Illumina GAII. Selected genes were categorised as: 1) NRXN1 and interactors, 2) Postsynaptic Glutamate Receptor Complexes (NMDA, mGluR5 and AMPA), 3) Neural cell adhesion molecules, 4) DISC1 and interactors, and 5) Functional and Positional Candidates. Analysis of 2,170 rare variants revealed an excess of nonsense mutations in cases (n=12) compared to controls (n=1; p=0.019). All nonsense mutations were novel and 3 were in DST (2xSZ, 1xSZ), The other SZ mutations were in DLG5, FAT1, FYN, INAD1, MAPC1 and MYO16. Five of 7 non-synonymous NRXN1-related function ASD mutations were in CNTNAP1, GRIP1, GRIK2 and NRG1. Rare ASD mutations have previously been reported for GRIP1 and GRIN2B. Analysis of all rare variants in the 11 nonsense genes identified an excess of cases carrying one or more mutations compared to controls (p=0.019). These results supply new supportive data for known ASD risk genes and identify putative new susceptibility genes for both disorders.

P1.118 Determination of methylation profile in patients with schizophrenia

B. B. Rukova, F. Haidjikova, R. Stanova, I. Dimova, Z. Hammadouleh, V. Milanova, G. Kirov, D. Toncheva; 1Department of Medical Genetics, Medical University, Sofia, Sofia, Bulgaria, 2Department of Psychiatry, Medical University, Sofia, Sofia, Bulgaria, 3Department of Psychological Medicine, Cardiff University, UK, Cardiff, United Kingdom.

Schizophrenia is a severe chronic mental disorder that affects most of the higher brain functions. Its prevalence is estimated on about 1% worldwide. The classical symptoms occur in several other psychiatric disorders, which makes difficult the exact diagnosis. Schizophrenia is a serious social and economic healthcare problem. Currently, there is no etiological treatment. DNA methylation is a major epigenetic modification. It is a biochemical process that is important for normal organism development and cellular differentiation. DNA methylation stably alters the gene expression pattern in cells. This modification can be inherited through cell division. Materials and methods: We analyzed age matched pools of 110 female schizophrenia patients and 110 female healthy controls. We performed high-resolution genome-wide methylation array analysis (Agilent 1x44K). We’ve analyzed the methylation status of 27 800 CpG islands of both groups to identify methylation profile differences. Results: Our experiments show significant difference in the methylation profile between patients and controls. In patients we observed significantly higher number of hypermethylated genes compared to healthy controls. In controls we established that hypomethylated genes predominate in comparison to schizophrenia patients. Conclusions: Our data suggest that there is a major differences is methylation profile between patients and controls. This dysregulation may play a critical role in schizophrenia pathogenesis. Acknowledgements: funded by projects D0 02-12/2009 and DMY 03-36/2011, Ministry of Education and Science

P1.119 QCTool: an efficient toolkit to automatically generate quality metrics of next-generation sequencing data

R. Berutti1, T. F. Steen1, F. Reiner1, R. Tassin1, A. Amarg1, R. Cusano1, M. Marcell1, M. Opp4, R. Pilu1, F. M. Urru1, M. Valentini1, I. Zar1, S. Sanna1, F. Cecca1, C. Jones1; 1CRS4 - Centre for Research Development and Advanced Studies in Sardinia, Pula, Cagliari, Italy, 2Department of Science Biomediche, Università degli Studi di Sassari, Sassari, Italy, 3Istituto di Ricerca Genetica e Biommedica - Consiglio Nazionale delle Ricerche, Cagliari, Italy.

With the wide use of next-generation sequencing platforms and the increase in sample throughput, it is necessary to automate the determination of data quality metrics, not only for sanity check purposes but also to monitor the complex workflow of the sequencing process to locate, and eventually correct, possible errors. To facilitate this process in a large ongoing effort to study the whole genomes, exome and transcriptome of about 1500 Sardinians, we have developed “QCTool”. The software takes as input SAM/BAM files and produces, in addition to standard statistics as base and mapping qualities, reads-to-reference mismatch rate, and genome coverage, also several parameters useful for wet-lab quality validation such as PCR duplicates count, nucleotide relative content, and insert size distribution statistics. It is enriched with contig/chromosome specific breakdowns as well as per-cycle quality plots. Furthermore for exon sequencing, a simple command line option allows the parsing of targeted regions and the determination of quality statistics limited to such regions. The package produces both PDF reports and an easily parsable file that can be integrated into LIMS systems or analysis tracking tools. For a direct use on the output files of different pipelines, all plots are also generated in JPG format. The toolkit can be run standalone, just supplying the input file on a single core machine, or in a multikore fashion. Around 8Gb of memory are required for the complete analysis of a human genome aligned file, but deactivating some analysis options enables execution on desktop machines using only a few kilobytes of memory.

P1.120 Frequency of altered DNA methylation at imprinted loci in children born SGA

S. Bens1, A. Hoek2, J. Richter2, J. Lesho1, J. Kolarov3, G. Gillessen-Kaesbach1, R. Buiting1, F. G. Ripe3, A. Caliebe1, R. Siebert2; 1Institute of Human Genetics, Christian-Albrechts-University Kiel; Kiel University Hospital Schleswig-Holstein, Kiel, Germany, 2Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany, 3Institute of Human Genetics, University Hospital Duisburg-Essen, Essen, Germany, 4Department of Pediatrics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany.

Patients with imprinting disorders show a broad range of phenotypic variability. This leads to the hypothesis that imprinting defects might frequently be undetected in patients that share some, but not all typical symptoms being present in imprinting disorders, e.g. children born small for gestational age (SGA). Furthermore recent studies propose hypermethylation in IGF2 DMR2 to be enriched among patients with growth restriction. Within the BMBF funded German Network “Imprinting Disorders” we here performed quantitative DNA methylation analysis of 10 imprinted loci (PLAGL1, H19DMR, IGF2, GRB10, DN, SNRP5, NESP, NESPAS, MEG3, IGF2R DMR2) by bisulfit pyrosequencing of 97 patients born SGA and 50 controls. For IGF2R DMR2 we additionally screened 95 parents of patients born SGA (47 parent pairs and one single mother). We established in one child the diagnosis of Temple syndrome most likely due to an epimutation. Furthermore five patients and six individuals from the SGA parent cohort displayed IGF2R DMR2 hypermethylation. Of these in two families IGF2R DMR2 hypermethylation was detected in the child and one parent. Five individuals in the control cohort displayed IGF2R DMR2 hypermethylation. We conclude that imprinting disorders may still be underdiagnosed and are a relevant differential diagnosis in children born SGA. Hypermethylation in IGF2R DMR2 is not enriched in our patient cohort. Lack of genotype-phenotype correlation in our and previous studies leads to the assumption that IGF2R DMR2 hypermethylation most likely represents an epigenetic polymorphism, however a Mendelian inheritance cannot be excluded from our observations.

P1.121 Determining the role of SIRT6 as an epigenetic regulator of gene expression in hepatocytes

M. Linke1, K. Fischer2, U. Zieher1, S. Strand2; 1Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, 2Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.

The mammalian sirtuin family consists of seven members (SIRT1-7) that tar-
get a wide range of cellular proteins in nucleus, cytoplasm, and mitochondrion for post-translational modification by deacetylation or ADP-ribosylation. SIRT6 is located in the nucleus and promotes a number of important key functions like DNA repair, genome stabilization and telomere maintenance. In accordance with these functions, Sirt6 knock-out mice show several dramatic symptoms of premature ageing and die within four weeks. We performed microarray gene expression profiling of hepatocytes from Sirt6-deficient and wildtype mice. This analysis detected a significant upregulation of the imprinted H19, Igf2 and Peg3 genes which was subsequently confirmed by quantitative PCR. Bisulphite pyrosequencing of the imprinting control regions of these three and other imprinted genes did not reveal significant methylation differences between Sirt6-deficient and wildtype mice. Similarly, DNA methylation analysis of these cells at subtelomeric regions known to exhibit DNA methylation changes associated with increased telomeric recombination in DNA methyltransferase-deficient cells gave normal results. However, using quantification of global DNA methylation with a specific antibody in an ELISA-like reaction, we observed significantly decreased levels of 5-methylcytosine in Sirt6-deficient cells. Bisulphite pyrosequencing excluded that repetitive elements as frequently used indicators of global DNA methylation changes are affected by this de-methylation process. Our results provide further evidence that the epigenetic regulatory role of SIRT6 is more likely associated with higher order chromatin structures and specific histone modifications. Nevertheless, there is an obvious decline in global DNA methylation in Sirt6-deficient cells that needs to be studied in more depth. P11.122 Detecting SNP interactions associated with HDL using GPUs E. M. van Leeuwen1, F. A. S. Smouter1, T. Kam-Thong2, N. Karbasli2, K. M. Borgwardt1, C. M. van Duijn3, J. C. Karssen5, B. Muller-Myhsok1,2,3

1Erasmus MC, Rotterdam, Rotterdam, Netherlands, 2Max-Planck-Institute of Psychiatry, Munich, Germany, 3Max Planck Institutes, Tübingen, Germany.

In recent years many genome-wide association (GWA) studies have been performed. Many of these have been successful in identifying loci associated with complex diseases. Until now, these results failed to fully explain the heritability of many of these diseases. Searching for interactions between Single Nucleotide Polymorphisms (SNPs) is one of the many possible explanations to the missing heritability. However, the computational time needed for testing all pairs of SNPs is proportional to the square of the number of SNPs, translating into months of CPU time. We therefore evaluated GLIDE [1] which makes use of the computational power of consumer-grade graphics cards (GPUs) to detect interactions via linear regression. We present our first experiments with GLIDE for which we analysed the HDL levels in 3,000 individuals of the Rotterdam Study. The first results show that this method is suitable for fast genome-wide analysis of SNP-SNP interactions. We found multiple regions showing genome-wide significant interactions which are currently being investigated. However, occasionally problems occur using imputed data hampering meta-analysis and replication. Further developments are currently ongoing to overcome this issue and will be presented. This work is supported by the NVIDIA Academic Partnership Program. [1] Kam-Thong et al submitted

P11.123 Genetic and functional investigation of the SOX9 regulatory region in development and disease C. T. Gordon, C. Attanasio, D. Kleijn1, S. Benho1, L. Melini, M. Ansari4, V. Abadie4, K. Temple1, A. Goldenberg1, L. Pennacchio1, A. Mannich1, D. FitzPatrick1, J. Ames1, A. Visel3, S. Lyonne2

1University Paris Descartes, INSERM U-781, Hôpital Necker-Enfants Malades, Paris, France, 2Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 3MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom, 4Centre de Référence Pierre Robin, Hôpital Necker-Enfants Malades, Paris, France, 5University of Southhampton, Southampton, United Kingdom, 6Hôpital Charles Nicolle, Rouen, France.

Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development, in association with 46,XY sex reversal, reflecting the essential roles of SOX9 in chondrogenesis and skeletogenesis. Non-coding genomic lesions, including translocations and deletions, within a ~14 Mb region upstream of SOX9 can recapitulate the CD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Indeed, studies in transgenic mice have demonstrated that this interval contains several highly conserved non-coding elements that can function as enhancers of tissue-specific transcription, partly recapitulating the SOX9 expression pattern. Pierre Robin sequence (PRS) is a craniofacial disorder that is typically a component of the CD phenotype, and we have previously reported a locus for isolated PRS at ~1.1-1.4 Mb upstream of SOX9. We now report two novel deletions in PRS patients; one partly overlapping the previously identified locus, and the other falling at least 100 KB upstream to SOX9. In parallel, we performed ChIP-Seq analysis to identify genome-wide binding sites for p300, a marker of active enhancers, in mouse craniofacial tissue. Several binding sites were identified upstream of SOX9, and were validated as craniofacial enhancers in transgenic mouse reporter assays. Notably, some of the p300 binding sites fall within the novel PRS deletions, and sequencing of these regions in a large cohort of PRS patients revealed several rare variants. These studies add a further level of complexity to our knowledge of the mechanisms governing transcriptional regulation of SOX9.

P11.124 Sex determining region Y (SRY) contributes to normal development by regulation of genes involved in pluripotency and differentiation S. Ashrafi Kakhki1,2, R. Faravandi1, G. H. Salahiheid1, M. Shahhosseini1

1Department of Genetics, Reproductive Biomedicine Center, Royan Institute for Reproductive Biomedicine, Tehran, Islamic Republic of Iran, 2Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.

Introduction: Members of the SOX (SRY box) family proteins play critical roles in multiple aspects of development. SRY, as a founder member of SOX family, has long been believed to be involved in development of sexual gonads by triggering signaling cascades that lead to formation of testis or ovary from bipotential gonads. However, less is known about whether SRY has roles in other developmental procedures. In order to gain further insight into the possible roles of SRY during development, we looked into possible SRY-regulated genes and their levels of expression in a human embryonic carcinoma cell line, named Ntera2, before and after induction of differentiation. Results and conclusion: Our results showed that incorporation of SRY in both groups of marker genes was increased after induction of differentiation. Besides, the low expression level of OCT4, NANOG and SOX2 as pluripotency marker genes, and NESTIN and PAX6 as differentiation marker genes were evaluated. Chromatin Immunoprecipitation (ChIP) was performed using SRY antibody on chromatin extracted from Ntera2 cells before and after neural differentiation and SRY incorporation on the regulatory regions of the aforementioned genes were evaluated quantitatively, using real time-p-PCR technique.

P11.125 Targeted sequencing experiments for rare disease alleles: implications in clinical practice and diagnosis of steroid-resistant nephrotic syndrome A. Provenzano1, B. Mazzinghi1, B. Test1, M. Materassi2, P. Romagnan3, S. Giglia1

1Department of Clinical Pathophysiology, Medical Genetics Unit-Meyer Children’s University Hospital, Firenze, Italy, 2Medical Genetics Unit-Meyer Children’s University Hospital, Firenze, Italy, 3Nephrology Unit-Meyer Children’s University Hospital, Firenze, Italy, 4Department of Clinical Pathophysiology, Nephrology Unit-Meyer Children’s University Hospital, Firenze, Italy.

During recent years, several podocyte genes have been implicated in severe forms of steroid-resistant nephrotic syndrome (SRNS) progressing to renal failure. To date, at least 15 genes highly expressed in the podocyte have been associated with the syndrome and different mutations in these genes have been identified; it is now known that the phenotypes associated with mutations in these genes display significant variability, rendering genetic testing and counselling a more complex task. Traditional methods for sequencing genes are often laborious and not easily available and a screening technique that enables the rapid detection of the pathogenetic variants would be very helpful in the clinical practice. The scope of our work is to apply next-generation sequencing (NGS) technology to study patients affected by SRNS, in which the previous analysis of NPHS2 and WT1 genes had not shown any mutations. We perform in 8 affected subjects a targeted resequencing of 46 genes including those already known as causative of the disorder and several other genes highly expressed in the podocyte. We found new heterozygous missense mutations in different genes that occasionally are associated with the disease in childhood (PLCE1, ACTN4, MYO1E, PODEM). We also detected a variation in the ZHX2 gene, to date never
A systems biology approach to linking genotype to phenotype, using celiac disease as an example

V. Kumar, H. Wester, J. Gutierrez, B. Hrdlickova, R. Almeida, J. Karjalainen, L. Franke, C. Wijmenga, S. Witthoff

Department of Genetics, UMC Groningen, Netherlands.

Genome-wide association studies (GWAS) have been successful in identifying genes involved in complex diseases. However, the critical challenge is to translate GWAS hits into a biological hypothesis. We have previously identified non-HLA loci to be strongly associated with celiac disease (Cd). Many of these loci harbor multiple genes and for many of these it is difficult to link genotype to phenotype. We therefore undertook a systems biology approach to fill this gap, integrating results from eQTL analysis, network/pathway-based analyses, imputation results, and SNP function annotation. The eQTL mapping, using whole genome expression data and genotyping data from 1,240 samples and replication in an independent set of 229 blood samples, suggested significant eQTLs at 16 Cd SNPs (FDR < 1.12 x 10^-7 to 1.51 x 10^-137). Pathway analyses using seed genes identified by GWAS and eQTL analysis suggested causative genes at 55 out of 57 Cd loci. Surprisingly, along with enrichment for T-cell, B-cell and neutrophil genes, co-expression network analysis also suggested that 11% of Cd genes are highly expressed in epithelial tissues and are involved in epithelial cell-cell adhesion. We imputed Cd-associated regions using 1000 Genome project and annotated the function of all the susceptibility variants. SNPs with strong eQTLs lay within binding sites of either microRNAs (e.g., for IL18RAP, UBE2L3) or transcription factors (e.g., for MMEL1, CSK). Thus, our study provides a biological hypothesis for almost every Cd susceptibility locus to connect the genotype and Cd phenotype and it implicates the involvement of a novel pathway in Cd pathogenesis.

Analyses of MMP-3 gene promoter methylation status in epithelial cells from oral mucosa and gingival tissue cells and genetic expression in smokers and non-smokers subjects with chronic periodontitis

G. R. Damm1,2, N. F. Oliveira1,2, A. P. Souza1

1FOIP - Unicamp, Piracicaba, Brazil, 2Hospital AC Camargo, Sao Paulo, Brazil, 3Universidade Federal do Paraná, Joao Pessoa, Brazil.

The objective was to investigate the methylation status of CpG site at position -686 of MMP-3 gene promoter and the levels of mRNA expression of MMP-3. Subjects were divided into: non-smokers healthy, non-smokers and smokers with chronic periodontitis. DNA was purified from buccal epithelial cells, that were obtained after oral rinse and DNA and mRNA were purified from biopsies gingival cells. The methylation status at -686 of MMP-3 gene promoter was investigated by restriction enzyme sensitive to methylation HpaII, the PCR and electrophoresis. Methylated samples showed positive bands after PCR and unmethylated samples showed negative bands. There was no statistical analysis between the methylation status found in this samples in each groups was performed by X2 test at 5% level. The relative expression of MMP-3 was examined by real time PCR and statistical analysis was performed by Kruskal-Wallis test at 5% level. There was no difference in the methylation status found in each group. The frequency of the unmethylated status found in the epithelial on cells was 18.3% in healthy non-smokers, 12.5% in chronic periodontitis smokers and 9.7% non-smokers. And the unmethylated status of gingival cells was higher in all groups: 28% in healthy non-smokers, 38% in smokers with chronic periodontitis and 27% in non-smokers with chronic periodontitis. Also, there was no difference in genetic expression of MMP-3 among these groups. We conclude that there is not association between the methylation status observed at position -686 of MMP3 gene promoter and chronic periodontitis in smokers and non-smokers.

Multiplex enrichment of genomic regions using HaloPlex PCR

H. Johansson, M. Isaksson, F. Roos, E. Agna, F. Dahl

Agenl Technologies, Uppsala, Sweden.

Targeted sequencing methods, in combination with bench top sequencers, enable studies of select regions of large genomes in multiple samples with sufficient coverage. For a target sequencing to be useful for genetic research as well as for clinical applications it is important that the regions of interest are enriched with high specificity and uniformity to maximize the amount of useful data retrieved from each run. Furthermore it is also important that the protocol is fast to make use of the short turnaround times on bench top sequencers. The HaloPlex PCR method combines target enrichment and library preparation in a single protocol without the requirement of any dedicated instrumentation. The HaloPlex protocol associates all targeted common motifs which can then be used to run multiplex PCR using only one primer pair. To make use of the capacity in the sequencing run, up to 96 samples can be enriched, barcoded and pooled on the same flowcell. We have developed a faster version of the protocol that can be completed in six hours and with improved enrichment uniformity. The key improvements are shortened restriction digestion and hybridization times and consolidation of several of the reaction steps. The performance of the new protocol was demonstrated by the enrichment of 400 kb region in ten samples that were subsequently pooled and sequenced on one MiSeq flowcell. All samples were enriched with >95% specificity and 90% of the targeted bases were covered at >10% of average depth.

Development of a gene panel for targeted next generation sequencing of twelve thoracic aortic aneurysmal genes

D. Proost, C. Vrints, B. Paulinck, J. Senener, B. Loeys, L. Van Laer

1Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium, Edegem, Belgium, 2Department of Cardiology, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium, Edegem, Belgium.

Dissection or rupture of aortic aneurysms represent important causes of death in the Western world. The genetic contribution to thoracic aortic aneurysm (TAA) is significant and a dozen causative genes are known. The molecular confirmation of the clinical diagnosis is important as the identification of the underlying mutation has implications for further patient management and therapy. Because of overlapping phenotypes, the high allelic/locus heterogeneity and large size of the involved genes, the molecular diagnosis for TAA is not always straightforward. Moreover, the consecutive molecular screening of genes using conventional mutation screening methods is expensive and labor intensive. Next generation sequencing (NGS) after hybridization or amplification based enrichment offers an attractive alternative. Here, we propose a cost- and time-efficient method for simultaneous screening of twelve TAA genes (ACTA2, COL3A1, FBN1, FBN2, FLNA, MYH11, MYLK, NOTCH1, TGFBR1, TGFBR2 and SLCA10) based on the HaloPlex technology. The latter is an innovative, simple method for specific enrichment of target regions. The protocol simultaneously incorporates the sample identification barcodes (up to 96 different) and the primers for the subsequent NGS run and does not require the acquisition of expensive dedicated equipment. It requires 2 x 150 bp paired-end runs, which we have
performed on a Miseq (Illumina). We have obtained an overall coverage “by design” of 99.7% and a “real-life” sequencing coverage of 96.6% of the targeted regions. We are currently optimizing the assay, which includes design improvements and validation in large sample groups.

P11.131 Sample preparation of animal and plant tissues prior to automated nucleic acid purification with Thermo Scientific KingFisher Duo and KingFisher Kits

Efficient homogenization of animal and plant tissues is an essential step to ensure good DNA and RNA yield and quality. Certain sample types, e.g., harder tissue samples, require strong, either chemical or mechanical treatment for destroying tissue and cell structures before nucleic acid purification processes.

Magnetic particle technology enables fast and effective purification of high quality nucleic acids. Thermo Scientific KingFisher Duo uses magnetic particle technology based on the use of magnetic beads with specially designed plastic consumables, BindIt software for protocol development and optimized KingFisher Kits for nucleic acid purification. KingFisher Duo enables purification of 12 samples during one run in working volumes of 30-1000 µl. Running two protocols simultaneously without interruption raises throughput up to 24 samples per load. In addition, the instrument gives an option to choose working volumes up to 5 ml.

We tested several different chemical homogenization methods in addition to chemical lysis to optimize sample preparation before nucleic acid purification in the KingFisher Duo. We analysed performance of homogenization and purification using several different sample materials, including tobacco leaves as well as animal liver and heart samples. The purification process in the KingFisher Duo was performed using three different KingFisher Kits, suitable for cell and tissue DNA or RNA purification. The results indicate high sensitivity of the purification process.

The KingFisher Duo in combination with the KingFisher Kits and new BindIt software 3.2 constitute an exceptional purification system for obtaining excellent yield and purity of nucleic acids.

P11.132 Different Next Generation Sequencing approaches detect mosaic mutations and deep intronic mutations in tuberous sclerosis complex

K. Mayer1, C. Wagner1, M. Scholz1, S. Datter1, J. Vogl1, J. Rost1,2; 1Center for Human Genetics and Laboratory Medicine, Martinstrasse, Germany, 2IMGM Laboratories GmbH, Martinsried, Germany.

Tuberous sclerosis complex (TSC) is caused by TSC1 or TSC2 mutations. Current molecular genetic testing combining Sanger sequencing of all 26 and MLPA of 58 coding exons, respectively, identifies a mutation in approximately 80% of the individuals with a definite clinical diagnosis. Possible reasons for this detection gap are mosaicism for a mutation underrepresented in lymphocyte DNA or mutations in regulatory regions.

We reanalyzed patients with the definite clinical diagnosis TSC by resequencing the entire genomic regions of TSC1 and TSC2 applying two Next Generation Sequencing approaches. Firstly, target enrichment with the Agilent SureSelect technology was combined with the Life Technologies SOLiD4 sequencing system. Probe design for 63,885 bp TSC1 and 44,255 bp TSC2 resulted in 43 and 27 genomic regions, respectively. Secondly, 108,140 bp genomic region was amplified by 20 overlapping long-range PCR fragments of 5,000-5,400 bp and subjected to the 454 pyrosequencing technology using the GS FLX Titanium system.

The SureSelect/SOLiD4 technology revealed a bias with an average of 46.68% reads (coverage 612-1332) mapped to TSC1 but only 5.8% (coverage 170-390) to TSC2. Coverage gaps in 17 of the 27 TSC2 regions are 46.68% reads (coverage 612-1332) mapped to TSC1 but only 5.8% (coverage 170-390) to TSC2. Coverage gaps in 17 of the 27 TSC2 regions are

P11.133 Expression, Purification and Molecular Evolution Studies of Human Tyrosinase

R. Behzadi1, M. Sadeghizadeh2, A. Mousavi Movahedi; 1Tarbiat Modares University, Tehran, Islamic Republic of Iran, 2Tehran University, Tehran, Islamic Republic of Iran.

Tyrosinase is a copper-containing enzyme that has been isolated and studied from a wide variety of plant, animal and fungal species. Tyrosinases found in different sources such as pink-karyotic or eukaryotic microorganism, mammals and plant, differ from each other with respect to the primary structure, signal recognition pattern and activation characteristics. But, all tyrosinases have in common within their active site. In tyrosinase active site, two copper atoms are each coordinated with three histidine residues. Histidine residues are located in two regions named CuA and CuB. A loop containing three residues including M374 connects two copper centers. Therefore this loop is essential for stability and activity of enzyme. M374 is conserved in the phenol oxidase superfamily. A set of mutants were generated previously by replacement of this residue with glycine. In this study, M374 was replaced with asp, lys, arg, and thr. To carry out mutational characterization of human tyrosinase, an expression plasmid, plh-tirosynasises, which contain the entire coding sequence of tyrosinase with site directed mutations that mentioned above, were constructed and expressed in E. coli. The expressed enzymes were purified by an affinity chromatography. Oxidative activity and Km values for native and recombinant enzymes were detected respectively. These newly recombinant tyrosinases may have therapeutic potential due to their activity and stability.

P11.134 GenomeNL variant database: towards a deep genetic encyclopedia of Dutch variation

P. B. T. Neerincx1, F. van Dijk1, T. Bengrov1, L. C. Franciscot1, P. L. W. de Bakker2,3,4, C. Wijmenga1, M. A. Swertz2; 1Personalized Medicine Coordination & Department of Genetics, University Medical Center Groningen, Groningen, Netherlands, 2Departments of Medical Genetics and Epidemiology, University Medical Center Utrecht, Utrecht, Netherlands, 3Broad Institute of Harvard and MIT, Cambridge, MA, United States, 4Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States.

Background

The Dutch biobank collaboration BBMRI-NL has initiated the “Genome of the Netherlands” (GoNL) project to produce ~12x whole DNA genomic profiles of 769 Dutch people: 231 trios of a child with its parents, 11 qu quarts of monozygotic twins and 8 quarts of dizygotic twins. This deep genetic resource will offer unique opportunities for science, which is currently being exploited by an international team of researchers on optimal variant discovery, population genetics and evolution.

Results

Here we present the GoNL variant database, an online encyclopedia of Dutch variation. At submission of this abstract, researchers can already query the GoNL variant database to verify whether variants in their own sample are unique against 25 million SNPs observed in the panel of 500 parents. By April we expect a high quality SNP set based on the full panel and a collection of structural variations using the unique trio structure to filter false positives. We will enrich the database with reference annotations on each variant to disclose a wealth of new information and possible applications in the diagnostics.

Methods

The SNP data was produced using Illumina sequencing. BWA alignment, Illuminchip for QC, and GATK SNP calling. The data is represented in the database using the Observ-OM standard, developed in collaboration with EU-GEN2PHEN. The software is implemented using the open source MOLGENIS bioshared toolkit and is freely available for groups to setup their own repositories. The database is accessible via http://www.nlgenome.nl

P11.135 Adhesion Protein VSIG1 Is Required for the Proper Differentiation of Glandular Gastric Epithelia

G. Nyamuresen1, O. Ovidsbohmua1, S. Liu, W. Göring, A. Khambh, W. Engel, I. M. Adham; 1Institute of Human Genetics, Göttingen, Germany.

VSIG1, a cell adhesion protein of the immunoglobulin superfamily, is preferentially expressed in stomach, testis, and certain gastric, esophageal and ovarian cancers. Here, we describe the expression patterns of three alternatively spliced isoforms of mouse Vsig1 during pre- and postnatal development of stomach and potential function of Vsig1 in differentiation of gastric epithelia. We show that isoforms Vsig1A and Vsig1B, which differ in the 3' untranslated region, are expressed in the early stages of stomach development. Immunohistochemistry and analysis of Vsig1GKO mice, in which adhesions junction of the glandular epithelium. The shorter transcript Vsig1C is restricted to the testis, encodes an N-terminal truncated protein and is presumably regulated by an internal promoter, which is located upstream of exon 1b. To determine the role of Vsig1 during the development of stomach...
epithelia, an X-linked Vsig1 was inactivated in embryonic stem cells (ESCs). Although Vsig12/Y ESCs were only able to generate low coat color chimeric mice, no male chimeras transmitted the targeted allele to their progeny suggesting that the high contribution of Vsig12/Y cells leads to the lethality of chimera base pairs. B splice sites from stomachs revealed the differentiation of VSG1-null cells into squamous epithelia inside the glandular region. These results suggest that VSIG1 is required for the establishment of glandular versus squamous epithelia in the stomach. To perform more functional analysis of Vsig1, generation of conditional knockout mice is underway.

P11.134 Functional characterization of Williams-Beuren syndrome chromosome region 22 protein K. Oumaj 1, A. Rarg 1, B. Schuster 1
1 Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia, 2 Institute of Medical Genetics, Tartu University, Tartu, Estonia.

The rare genomic instability disorder Fanconi Anemia (FA) is characterized by bone marrow failure, variable malformations and increased predisposition to leukemia and solid tumors. Biallelic mutations in at least 15 genes involved in the FA/BRCA network of DNA interstrand crosslink repair (ICL), are known to be disease causing. FA can be diagnosed in different ways: At cellular level functional assessments like chromosomal breakage analysis or at the molecular level via detection of SNVs, are state of the art. However, at the molecular level it becomes more difficult, time consuming and expensive to detect mutations in the more FA genes are identified. Therefore we performed whole exome sequencing (WES) in four FA patients with previously unknown mutations in order to evaluate the benefit of this method for molecular diagnosis and FA genotyping. To find the best combination between enrichment and sequencing technologies we tested two different pairings: NimbleGen enrichment from Illumina 1M exome sequencing and SureSelect enrichment from SOLiD platform and Agilent SureSelect enrichment with the SOLiD platform from Applied Biosystems. Irrespective of the enrichment method or sequencing platform we were able to detect and confirm the pathogenic mutations in each of our four patients. We found homozygous and heterozygous single base pair substitutions in FANCI, -DI, -D2 and -P but also an insertion of two bases in an exonic site mutation. Therefore WES is proposed as a valuable tool for molecular diagnosis of FA which may replace classical genotyping approaches.

P11.138 Pseudogenes: an unsolvable problem in Whole Exome Sequencing
B. Schuster, K. Knes, D. Schindler; University of Wuerzburg, Department of Human Genetics, Wuerzburg, Germany.

Over the past years Whole Exome Sequencing (WES) has become an established tool for the detection of mutations underlying rare human genetic disorders. We performed WES in nine patients and in all cases the same genes consistently caught our attention, because they were overrepresented by heterozygous single nucleotide variants (SNV). One of our patients carried a large number of heterozygous base substitutions in CDC27, even though one allele of this gene was known to be partially deleted. We found three listed pseudogenes of CDC27 which could be responsible for wrong mutation calls by misalignment of short sequence reads. Via selective primer design we were able to specifically resequence the functional gene by Sanger technique. As expected, all variants were identified as false positive calls due to overlap with the pseudogenes. In consequence of this finding, we became more alert concerning alignment artifacts due to paralogous sequences in the other human projects as well. But contrary to the general expectation that these misalignments should be detectable because of their increased SNV counts, we also found several isolated SNVs which should have mapped to a related pseudo gene. Analysis of the same data with different bioinformatic tools could only partially decrease the error rate. We therefore conclude that pseudogenes cause an enormous amount of false positive SNVs and require careful attention because they cannot be withdrawn as easily as sequencing errors. Mutation validation by Sanger sequencing still seems to be indispensable and the possibility of false negative mutation calls should be regarded as well.

P11.136 Genotyping Fanconi Anemia Patients by Whole Exome Sequencing
K. Knes 1, B. Schuster 2, T. Bettenken 1, R. Friedl 1, B. Gottwald 1, D. Schindler 1
1 University of Wuerzburg, Department of Human Genetics, Wuerzburg, Germany, 2 Max-Planck-Institute for Psychiatry, CAGT Center of Applied Genotyping, Munich, Germany.

Alternative Splicing Governs miRNA Biogenesis
Z. Melamed 1, A. Levy 1, G. Lave 1, G. Asit 1
1 Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

MicroRNAs (miRNAs) are noncoding RNAs of 22 nucleotides that induce post-transcriptional gene silencing through base-pairing with their target miRNAs. miRNA primary transcripts contain a local hairpin structure that is cleaved by the Microprocessor complex, consisting of RNase III Drosha and DGC8. The processing reaction releases the hairpin-shaped intermediates (pre-miRNAs). The majority of mammalian miRNAs are located in introns. Splicing of the introns in which such miRNAs reside was recently suggested to derive independently from the miRNA processing. We have uncovered a novel regulatory mechanism in which splicing determines the processing of pre-miRNAs. Based on a bioinformatic analysis of predicted transcription units of all miRNAs genes in 18 species, we identified a group of 52 miRNA precursors that share an intriguing genomic location - positioned on exon-intron junctions, these miRNAs are known to be disease causing. FA can be diagnosed in different ways: At cellular level functional assessments like chromosomal breakage analysis or at the molecular level via detection of SNVs, are state of the art. However, at the molecular level it becomes more difficult, time consuming and expensive to detect mutations in the more FA genes are identified. Therefore we performed whole exome sequencing (WES) in four FA patients with previously unknown mutations in order to evaluate the benefit of this method for molecular diagnosis and FA genotyping. To find the best combination between enrichment and sequencing technologies we tested two different pairings: NimbleGen enrichment from illumina 1M exome sequencing and SureSelect enrichment with the SOLiD platform and Agilent SureSelect enrichment with the SOLiD platform from Applied Biosystems. Irrespective of the enrichment method or sequencing platform we were able to detect and confirm the pathogenic mutations in each of our four patients. We found homozygous and heterozygous single base pair substitutions in FANCI, -DI, -D2 and -P but also an insertion of two bases in an exonic site mutation. Therefore WES is proposed as a valuable tool for molecular diagnosis of FA which may replace classical genotyping approaches.

P11.140 Screening of a European cohort of 150 male XLID patients using a custom-designed chromosome X exon-specific microarray
1 Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2 Dept of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland, 3 Dept of Human and Medical Genetics, Wroclaw University, Wroclaw, Poland, 4 Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia, 5 Dept of Genetics and Cytology, Center of Medical Genetics and Primary Health Care, Yerevan, Armenia, 6 Dept of Biology and Medical Genetics, Charles University Prague, Prague, Czech Republic, 7 Dept of Human Genomics, Institute of Molecular Biology and Genetics, Kiev, Ukraine.

X-linked Intellectual Disability (XLID) is a common cause of intellectual impairment in males with an estimated prevalence of ~1:1000. Many studies have been performed for the identification of genes associated with XLID. One approach for the identification of regions that may harbour novel XLID genes is through the detection of copy number changes (CNCs) by array-CGH. In the purpose of our study we set to screen a European cohort of male XLID patients using a high-resolution oligo nucleotide 105K microarray specific for the X chromosome. This custom-designed chromosome X exon-specific microarray provides full coverage not only of the X chromosome itself but also of the Y chromosome. Autosome specific probes are included to control for cross hybridization. XLID cases selected for screening were confirmed to have a chromosomal abnormality in 18S rRNA and alters 40S/60S ratio. WBSCR22 is involved in processing of 18S rRNA since WBSCR22 knock-down causes the accumulation of 18S-E pre-rRNA in cell nucleus. Our data suggest that WBSCR22 protein is involved in ribosome biogenesis.

Abstracts - European Human Genetics Conference 2012

www.eshg.org
but complete exon coverage with at least 6 probes for each exon thereby ensuring a robust screen for the identification of CNGs down to the individual exon level. To date, we have screened 153 patients and found CNGs in 11 patients (7.2%). These aberrations consisted of seven deletions and six duplications that ranged in size from 165bp to 7.26Mb. All of the deletions and two of the duplications resided in single genes while the remaining duplications spanned regions that harbored several genes. Follow-up studies including confirmation and segregation analysis with family members are in progress. In addition, the clinical significance of these aberrations and the possible role of these genes as novel XLID loci will be assessed.

P11.141
Expanding and enhancing access to the Sequence Read Archive (SRA) through a complementary new web-based mirror
C. Smith1, R. Good2, E. Worley2, B. Xia3, A. Sandquist4
DNAexus Inc., Mountain View, CA, United States.

Public institutions such as the National Center for Biotechnology Information (NCBI) and the Joint Genome Institute (JGI) have made tremendous investments in generating and archiving a wide array of valuable genomic data for use by the research community. Expanding access to these valuable public data and streamlining the ability to integrate them into data management tools and powerful analyses, will further expedite their use and value in medical research, discovery and applications.

Team-uping with Google, DNAexus has developed a complementary hosted mirror of the NCBI's Sequence Read Archive (SRA) that provides researchers an additional way to access these important datasets. This freely accessible resource provides a new web-based user interface built using the latest "cloud" technologies and genomic data standards. As the most comprehensive archive of publicly available next-generation sequencing data, the SRA is an important resource to researchers around the world. The SRA remains the single best source of useful sequence data from research initiatives such as the 1,000 Genomes Project and institutions like the Broad Institute, Washington University, and the Wellcome Trust Sanger Institute.

Here we discuss our work with the NCBI and Google to create a complementary mirror of the SRA available at sradanexus.com. Through a typical user scenario, we will discuss the underlying data processing pipeline, key features of the new web-based interface that enables researchers to quickly identify and browse datasets of interest, link-outs to PubMed references, and integration of those data into an analysis workflow for hypothesis generation.

P11.142
A nonsense mutation in ATR-X gene responsible for nonsyndromic XLID in MRX77 family
C. Simsani1, M. Syrrou1, A. Alexandrou1, F. Abidi1, C. Skinner1, M. Frier1, S. McGee2, L. Holloway2, C. E. Schwartz2, P. C. Patlass3
1Department of Cyto-genetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; 2Cytogenetics Unit, Laboratory of General Biology, Medical school, Ioannina, Greece; 3Greenwood Genetic Center, Department of Molecular Studies, SC Self Research, Greenwood, SC, United States.

In 2003 we reported a linkage analysis performed on a 3-generation Greek family (MRX77) with seven affected males. Clinical evaluation showed apparently nonsyndromic X-Linked Intellectual Disability (XLID). The affected males have moderate to severe intellectual disability, severe speech problems and aggressive behavior. Two point linkage analysis using 26 polymorphic markers spanning the X chromosome had localized the disease gene to a large interval Xq22–Xq21.33 (flanking markers DXS983 in Xq22 and DXS6799 in Xq21.33) with a maximum lod score of 2.36. In 2010, the affected MRX77 patients were screened using the new full coverage chromosome X exon-specific array designed by our group which showed no copy number changes. In 2011, a proband was screened for mutations in 92 XLID genes using next generation sequencing prior to undertaking a wholeX exome sequencing. A nonsense mutation, p.R377X (c.1109C>T), was identified in exon 2 of the ATR-X gene. Although, the ATR-X gene had been sequenced in 2003, this mutation was not detected since this exon was not annotated at that time. Segregation and the skewed X-inactivation pattern in carrier females were consistent with the clinical phenotype of the MRX77 family. This nonsense mutation had previously been observed in the Chudley-Lowry syndrome and another XLID family, both of which had a phenotype less severe than ATRX syndrome. Since our family has nonsyndromic XLID, the finding further confirms that the variability of the phenotype associated with this mutation is likely due to the presence of alternative transcripts which do not contain exon 2.

P11.143
Genome-wide association in 1198 Dutch individuals for 163 serum metabolites
H. Draisma1, R. Pool1, G. Willemsen2, J. Hottenga3, D. L. Boomsma4,4
1Department of Biological Psychology, VU University Amsterdam, Amsterdam, Netherlands; 2The EMGO+ Institute for Health and Care Research, Amsterdam, Netherlands; 3ENgage: European Network of Genomic And Genetic Epidemiology, Amsterdam, Netherlands; 4BIRN-NUL: Infrastructure for the Application of Metabolomics Technology in Epidemiology (R4P), Amsterdam, Netherlands.

Metabolites, or the small molecules involved in cellular metabolism, are presumed to be directly linked to (patho)physiology. Hence, it is important to gain a deeper understanding of the genetic and environmental contributions to inter-individual variation in metabolite levels. As part of our ongoing contributions to the European Network of Genomic and Genetic Epidemiology (ENgage) consortium, we carried out a genome-wide association (GWA) study for serum metabolite levels in 1198 unrelated individuals who participated in the Netherlands Twin Register Biobank project. From 2004 until 2008, blood samples were obtained from these individuals (67.2% male, 32.8% female; mean age 52 years [SD, 13]) after overnight fasting. Metabolomics analysis was performed on the serum fractions of these samples, using the Biocrates AbsoluteIDQ P150 kit and electrospray ionization-MS/MS enabling detection of 163 metabolites belonging to five different classes: acylcarnitines (N=41), amino acids (AA, N=14), glycerophospholipids (N=92), sphingolipids (N=15), and a compound measure for hexoses (N=1). Genotyping was performed using various GWA chips. Imputation against HapMap 2 Build 36 Release 24 resulted in data for 3.8M unfiltered single nucleotide polymorphisms (SNPs) for each participant. SNPseq v2.2.0 was used for association analysis, including age, sex and principal component scores for population stratification as covariates. Genome-wide (conservative Bonferroni-corrected p <3.1E-10) significant hits were observed for several metabolites. The associations for 22 glycerophospholipids with SNPs in the fatty acid desaturase (FADS) gene cluster were among the most prominent. In conclusion, we found several clusters of genome-wide significantly associated SNPs for metabolites detected by MS in human serum. Future meta-analyses will combine these data with the results of six ENGA-GE partners, to determine whether the results found in our Dutch sample are replicated in other cohorts.

P12.001
Mutational analysis of RPE65, ABCA4 and RHO genes on Greek patients with Retinitis Pigmentosa, Leber congenital amaurosis and Stargardt’s disease
M. Tsipis1, M. Tsitsi1, S. Katsios1, M. M. Moschou2, E. Kanavakis3
1University of Athens, Department of Medical Genetics, Athens, Greece; 2University of Athens, Department of Ophthalmology, Athens, Greece.

Retinal dystrophies are a clinically and genetically heterogeneous group of disorders which affect more than two million people worldwide. This heterogeneity raises difficulties on genetic testing and counseling for the affected families. Although our knowledge about genetic factors underlying these diseases has recently increased dramatically, a lot of disease causing mutations still remain unknown. Our study deals with identifying the disease-associated variants in Greek families with Stargardt disease, Cone-Rod dystrophy, Retinitis Pigmentosa and Leber Congential Amaurosis. We focused our research on the possible role of three genes (ABCA4, RHO and RPE65) in the pathogenesis of hereditary retinal dystrophies in Greek patients. All exons of ABCA4 were sequenced in families with Stargardt Disease, Cone-Rod Dystrophy and Retinitis Pigmentosa. RHO was sequenced in families with Retinitis Pigmentosa and RPE65 in families with Leber Congential Amaurosis and Retinitis Pigmentosa. A great number of genetic variants in coding and non-coding regions were found in this study. Most of them were known variations and include disease causing mutations and known polymorphic variants. Mutations in ABCA4 were found in patients with Stargardt Disease, autosomal recessive Retinitis Pigmentosa and Cone-Rod Dystrophy. Mutation c.2720G>A (p.R91Q) in RPE65 was found in a patient with Retinitis Pigmentosa and in his healthy mother. This mutation has been associated with autosomal recessive Retinitis Pigmentosa. We also found novel variants in non-coding sequences which may affect the splicing process. These variants were analyzed with the use of bioinformatic tools. We also attempted possible phenotype/genotype correlations.
P12.002
Two ABCB4 mutations involving two strategic NBD-motifs do not prevent the targeting to the plasma membrane but promote MDR3 dysfunction

D. Degiorgio1, P.A. Corsetto1, A. M. Rizzo1, C. Colombo1, M. Seia2, A. Costantino1, G. Monterfano3, L. Castellano4, A. Ragozzino5, G. Castaldo6, M. P. Rastaldi7,8, A. C. Viellet8,9,10,11
1Laboratory of Medical Genetics, Fondazione IRCCS Ca’ Granda, Milan, Italy, 2Laboratory of Molecular Genetics, International Association of Medical Genetics IAGC-volos, Isernia (FN), Italy, 3Dipartimento di Scienze Molecolari Applicate ai Biosistemi, Università degli Studi di Milano, Milan, Italy, 4Department of Pediatrics, Fondazione IRCCS Ca’ Granda, Milan, Italy, 5Gastroenterology, ASL Napoli 1, Distretto 33, Naples, Italy, 6Redditorsa, Ospedale S.M. delle Grazie, Pozzuoli (Na), Italy, 7Dipartimento di Biochimica e Bioteletiche Mediche, Università di Napoli Federico II, Naples, Italy, 8CEINGE Biotecnologie avanzate, scarl, Naples, Italy, 9Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy, 10Fondazione IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy, 11Laboratory of Human Genetics, E.O. Ospedali Galliera, Genoa, Italy.

MDR3 protein translocates phosphatidylcholine (PC) from the inner to the outer leaflet of the hepatocapillaric membrane; its deficiency, related to ABCB4 mutations, favours the formation of “toxic bile”. A continuum of hepatobiliary diseases have been associated with ABCB4 mutations but, for most of them, the detrimental effect on the protein is speculative only. The functional relevance of two strategic mutations within the N- terminal Nucleotide-Binding- Domain was examined with stably transfected HUH28-cell lines expressing wild type and mutant MDR3 proteins by western-blotting, immunochemistry and chromatographic quantification of lipids, collected from culture medium after sodium-taurocholate (NaTC) stimulation. As suggested by our three-dimensional model of MDR3 (Degiorgio D et al., 2007), the p.Y403H mutation involves the A-loop while the p.L481R mutation is contained into the Q-loop. Our results show that both MDR3-mutant proteins were expressed in a comparable way to the MDR3 wild-type protein: a molecular mass of 160KDa associated with a green fluorescent signal, more intense and sharper in the plasma membranes, was constantly identified. However, compared to the stably transfected HUH28-cell line expressing wild-type MDR3 protein in the presence of NaTC 3mM, the lipid dosage into culture medium has shown (with five independent experiments) that i) the efflux of PC is reduced (p<0.01) from cell lines expressing p.Y403H and p.L481R mutant proteins; ii) the efflux of cholesterol is increased (p<0.01) from cell line expressing the p.Y403H mutant protein.

In conclusion, these mutations could promote in vivo formation of toxic bile with reduced amounts of PC (p.L481R) or with reduced amounts of PC and increased level of cholesterol (p.Y403H).

P12.003
New clues on the differential diagnosis between acrodysostosis and pseudohyoparathyroidism type Ia

A. Pereda1, O. Bahia-Cabezas2,3, S. Berroa2, M. Muñoz-Calvo2,3, J. Argente2,3, G. Perez de Nancareles4, J. Garcia-Planells5, J. P. C. Ballesta6, J. Garcia-Planells7,8, M. Perez-Alonso9, F. Almendros1,2,3,4, S. Berrade5, L. Costantino6,7,8, A. M. Rizzo3, C. Colombo4, M. Seia1
1Department of Pediatrics, Fondazione IRCCS Ca’ Granda, Milano, Italy, 2Laboratory of Human Genetics, E.O. Ospedali Galliera, Genoa, Italy, 3Department of Bioinformatics, Erasmus MC, Rotterdam, Netherlands, 4Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands.

Acrodysostosis is a skeletal dysplasia characterized by short stature, nasal hypoplasia and brachydactyly. When multihormonal resistance is also present (mainly, PTH and TSII), the disorder might be clinically misdiagnosed as pseudohyoparathyroidism type Ia (PHP-Ia). Acrodysostosis with multihormonal resistance is caused by mutations in PRKARIA, which participate in the Gs protein signaling pathway. Parents and methods: PRKARIA was sequenced in five PHP-Ia patients with negative genetic and epigenetic analysis in GNAS locus. Results: A heterozygous mutation in PRKARIA was identified in three of the five patients. Parental testing showed that the mutation arose de novo in the three cases. A detailed analysis of clinical and radiological data revealed the characteristic bone abnormalities of acrodysostosis.

Conclusion: Acrodysostosis is an infrequently diagnosed disorder that might be confused with PHP-Ia. An exhaustive radiologic study of patients presenting with short stature and PTH resistance could help clinical diagnosis and genetic testing.

P12.004
A new form of autosomal recessive syndromal acroosteolysis with recurrent infections, sensory neuropathy and mental retardation

P. Chiurazzi1, P. Pirro1, S. Swagemakers2, B. van der Eerden3, G. Neri1, J. F. T. M. van Leeuwen1, P. J. van der Spek2, M. P. Rastaldi4,5,6, D. Degiorgio7, A. Pereda7, O. Bahia-Cabezas3, S. Berrade5, L. Castellano4, M. Seia1, A. M. Rizzo3, C. Colombo4, M. Muñoz-Calvo2,3, J. Garcia-Planells5, J. P. C. Ballesta6
1Department of Pediatrics, Fondazione IRCCS Ca’ Granda, Milano, Italy, 2Department of Bioinformatics, Erasmus MC, Rotterdam, Netherlands, 3Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands.

We describe a syndromic form of acroosteolysis characterized by mental retardation, sensory neuropathy and recurrent infections with autosomal recessive inheritance. SNP haplotyping mapped the disease locus to the short arm of chromosome 11. Whole-genome sequencing using unchained base reads on self-assembling DNA nanoarrays allowed identification of a homozygous missense mutation in a gene localized in 11p15 that encodes a SNARe-associated Golgi protein. We show that the gene’s mRNAs are markedly upregulated in osteoclast cells and patients’ osteoclasts (induced by blood mononuclear cells) exhibit a significantly enhanced bone resorption activity. Mutations in the NOTCH2 gene (associated to Hajdu-Cheney syndrome), mapping in 1p2.2-p1.1.2, and in the WNK1 gene (associated to hereditary sensory and autonomic neuropathy type IA), mapping in 12p13.33, have been excluded by both haplotype analysis and whole-genome sequencing.

P12.005
Autosomal Dominant Polycystic Kidney Disease: A comprehensive mutation analysis of the PKD1 and PKD2 genes in Spanish patients

J. García-Planells1, M. García-Hoyo1, C. Ruiz2, M. Bermejo1, L. Rassell3, M. Moller4, M. Ballesta2, A. Benavides1, J. Martínez-Atienza1, M. Lopez-Arztegut8, M. García-Barcina5,6, J. Pérez-Almonacid7, M. P. Rastaldi4,5,6, D. Degiorgio7, A. Pereda7, O. Bahia-Cabezas3, J. García-Planells5
1Instituto de Medicina Genómica (IMIGEN), Paterna (Valencia), Spain, 2Unidad de Genética Médica. Hospital Virgen de la Arrixaca, Murcia, Spain, 3Unidad de Genética. Hospital Central de Asturias, Oviedo, Spain, 4Servicio de Genética. Hospital Virgen de las Nieves, Granada, Spain, 5Unidad de Genética. Hospital Clínico Universitario de Valencia, Spain, 6Instituto de Genética Médica. Hospital Virgen de la Arrixaca, Murcia, Spain, 7Instituto de Genética. Hospital de Basurto, Bilbao, Spain.

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the most prevalent inherited disorders, with an incidence of 1:1,000. ADPKD is caused by mutations in the PKD1 (85%) and PKD2 genes (15%). The genetic diagnosis of this disease has so far been a very complex task because of the presence of 5 pseudogenes with a high identity (98%) with the PKD1 gene. We have developed a PCR+sequencing based technology that allows a specific and accurate analysis of the PKD1 sequences, excluding the pseudogenes ones.

In this work we have used this methodology to obtain a genetic diagnosis in a cohort of ADPKD from different Spanish hospitals. Results do not show the presence of prevalent mutations in the Spanish population. We have identified a high percentage of non-previous mutations making difficult their clinical interpretation. In these cases, family analyses have been performed and results have been supported by in silico analyses. The identification of the disease-causing mutations in several Spanish families has allowed to provide a genetic counselling and an accurate genetic diagnosis to the patients and opened the possibility to offer familial testing and prenatal genetic diagnosis.
P12.006

Recurrent agnathia caused by DNA replication slippage in PRRX1 gene

M. J. Dasouki1, A. Benetou2, A. M. Saou1, M. Kubala3, A. Volček4,5, J. Soukalová4, J. Zastera1, E. Šilhanova2,3, M. Kubala4,5
1Institute of Human Genetics, University of Medicine and Dentistry of Slovenia, Ljubljana, Slovenia, 2Department of Genetics, Medical Faculty, University of Maribor, Slovenia, 3Institute of Human Genetics, University of Ljubljana, Slovenia, 4Department of Medical Genetics, Faculty Hospital, Ostrava, Czech Republic, 5Medical Genetics, 1st Medical Faculty of the Charles University and General University Hospital, Prague, Czech Republic

Agnathia-otoccephaly is a rare craniofacial malformation which was recently found to be caused by de novo dominant as well as recessive mutations in the PRRX1 gene in two unrelated babies. We studied the PRRX1 gene in a non-consanguineous Indonesian family with a 4 month old daughter who was born with agnathia-otoccephaly with severe micrognathia (bilateral Pruzansky III). Her older affected brother died shortly after birth and clinically had agnathia-otoccephaly. A frame shift mutation in a poly lysine (poly A) tract in the PRRX1 gene was identified in the proband while her father just had an insertion of one lysine residue. Expression of both mutations in COS7 cells showed loss of function of the frame shift mutation only. SNP analysis coupled with the recurrence of this mutation in this family are consistent with paternal derived germline mosaication rather than autosomal recessive inheritance. Also, severe micrognathia (bilateral Pruzansky III) and agnathia-otoccephaly represent a spectrum of craniofacial malformations in this family.

P12.007

COL4A5 mutational analysis of 51 unrelated Portuguese patients with Alport syndrome - preliminary report

M. J. N. Sá1, A. Alves2, P. Carvalho1, J. P. Oliveira1
1Departamento de Genética - Faculdade de Medicina/Universidade do Porto, Porto, Portugal, 2Unidade de Investigação e Desenvolvimento em Nefrologia - Faculdade de Medicina/Universidade do Porto, Porto, Portugal.

Introduction: Collagen type IV glomerulopathies include Alport syndrome (AS) and thin basement membrane nephropathy (TBMN). X-linked AS (XLAS) is caused by COL4A5 mutations and the autosomal recessive and dominant forms of AS and TBMN are due to COL4A3 and/or COL4A4 mutations. Approximately 80% of AS is X-linked.

Aim: Describe the molecular pathology of XLAS in Portuguese families.

Patients and methods: In the setting of an ongoing national multicenter study, 51 unrelated patients with the clinical diagnosis of AS referred by nephrologists have already been studied. Mutational analysis of COL4A5 gene was performed by direct PCR sequencing and multiplex ligation-dependent probe amplification (MLPA). Direct PCR sequencing of the COL4A3 and COL4A4 genes will be subsequently performed in COL4A5 negative cases.

Results: COL4A5 direct sequencing identified 5 missense mutations [c.4342G>C (p.Gly1441Arg); c.715G>A (p.Gly239Arg); c.1009G>A (p.Gly337Ser); c.1848G>A (p.Gly624Asp); c.2653G>T (p.Gly878Val)], 4 splice site mutations [c.1339+6G>c; c.4279+1G>A; c.4803+1G>A; c.891+3A>ACTT], 3 deletions [c.2423del (p.Gly808fsX18)1; c.950del (p.Phe317fsX10)2], 2 nonsense mutations [c.1444C>T (p.Gln481X)2; c.2815G>T (p.Glu939X)] and one previously reported mutation of unknown significance [c.19492C>T (p.Lys646Asn)].

Four large deletions were detected by MLPA [del ex.11_13 (del ex.1_2 COL4A6); del ex.2_29; del ex.2_31; del ex.43_45].

Discussion: COL4A5 mutational analysis confirmed the diagnosis of XLAS in only 19 families (37%), allowing the identification of 15 novel mutations, comprising ~90% of all genetically confirmed AS cases. Two index patients carried the same missense mutation with a similar microsatellite haplotype, suggesting that they may share a common ancestor. The clinical criteria used by nephrologists appear to overestimate the diagnosis of AS.

P12.008

Alport syndrome epidemiology in Greek-Cypriots

L. Papazachariou1, P. Demosthenous1, K. Vaskarides1, M. Arsal1, M. Hadjiijannierie1, C. Starnou1, A. Pierides1, D. Delta1
1Medicine Research Center, University of Cyprus, Nicosia, Cyprus, 2Department of Nephrology, Limassol General Hospital, Limassol, Cyprus, 3Department of Nephrology, Larnaca General Hospital, Larnaca, Cyprus, 4Department of Nephrology, Evangelismos Hospital, Pafos, Cyprus, 5Hippocrates Hospital, Nicosia, Cyprus.

Alport syndrome (AS) is a hereditary hematologic nephritis, associated with sensorineural deafness, eye defects and progression to end stage kidney disease (ESKD) in 15-25 vs. COL4A5 gene on chromosome Xq22-23 accounts for ~80% of all AS cases (XLS). COL4A3/COL4A4 genes on chromosome Xq23-q37 account for the remaining cases (ARAS). We are studying COL4A3/COL4A4/COL4A5 genes (in AS and in familial hematuria) for the last 9 years. Depending on inheritance pattern, we screen either COL4A5 or either COL4A3/COL4A4 or all three genes (totally ~150 exons). COL4A5 is analyzed by genomic PCR and direct re-sequencing, COL4A3/COL4A4 screening is accomplished by genomic PCR and SURVEYOR endonuclease, followed by targeted DNA re-sequencing. PCR-RFLP is used for detecting more mutation carriers in the AS families. We have DNA samples from all Greek-Cypriot AS families (totally nine) referred to Cyprus’ hospitals. Two were studied and published by a French laboratory in 2001 (one homozygous for the COL4A3-c.533delC mutation and one with the de novo COL4A5-G618R mutation). In two of them, we found a novel mild mutation, COL4A5-P628L. Two others were found to be compound heterozygous cases [COL4A3-G1334E with COL4A3-G871C (novel); COL4A3-c.2621-2622-delGinsT with COL4A3-G1077D (novel)]. The remaining three were not studied yet, but the inheritance pattern is obvious (two ARAS, one XLAS).

Totals: four XLAS families (45%) with ten living patients (71% of all cases) and four ARAS families (55%) with four living patients (29% of all cases). Although we found more XLAS families than ARAS, the total percentage of XLAS and ARAS cases resembles that in other countries.

P12.009

The g.6421A>C mutation in the COL4A5 gene is the prevalent mutation in the Czech families with X-linked Alport syndrome

P. Plechova1, J. Hrdlicka2, M. Kubala3, A. Volček4,5, J. Soukalová4, J. Zastera1, E. Šilhanova2,3, M. Kubala4,5
1Institute of Human Genetics, Ulm, Germany, 2Department of Neurology, Ulm, Germany, 3Department of Clinical Neuroscience, Umeå, Sweden.

Alport syndrome is characterized by progressive hereditary nephritis, hearing loss, and ocular anomalies may also be present. The disease is genetically heterogeneous, 85% of cases being X-linked caused by COL4A5 gene mutations. The aim of the study was to detect COL4A5 gene mutations in patients with hereditary nephritis or hematuria.

Patients and methods: Molecular genetic analysis of the whole coding sequence, i.e. exons 1-51 of the COL4A5 gene was performed in 61 unrelated patients. Denaturating gradient gel electrophoresis, high resolution melting analysis, direct sequencing, and the MLPA method were used. Besides that, 46 family members of the patients with disclosed mutation were tested for carriership of the familial COL4A5 mutation. Computer modeling was performed to simulate the impact of some mutations at the protein level.

Results: A pathogenic mutation has been found in twenty-nine of 61 patients (i.e., 47%). The c.1871G to A / g.6421A>C mutation in exon 25 was the prevalent one being found in 12 families (i.e., 41% of pathogenic mutations). This is the only mutation that has been published in the HGMD and ARUP databases. All the other mutations are novel. Thirty-eight of the 48 tested family members were found to carry the familial mutation.

Conclusion: In nearly half of the Czech families with COL4A5 gene mutations the c.1871G to A / g.6421A>C was found suggesting common ancestry.

P12.011

Determination of the exact GGGGCC-hexanucleotide repeat length of C9ORF72 in German and Swedish families with amyotrophic lateral sclerosis and frontotemporal dementia

A. Volček, M. J. Dasouki, A. Benetou, P. M. Andersen, M. J. Sá, C. Deltas, A. Alves, J. P. Oliveira, K. Vaskarides, C. Starnou, A. Pierides, D. Delta
1Institute of Human Genetics, Ulm, Germany, 2Department of Neurology, Ulm, Germany, 3Department of Clinical Neuroscience, Umeå, Sweden.

Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disorder affecting the upper and lower motor neurons. Mutations in 15 genes have been identified in familial cases and mutations in SOD1 have been reported to account for 12-23% of familial cases. Recently, an intronic GGGGCC-hexanucleotide repeat expansion in C9ORF72 was found to be associated not only with ALS but also with frontotemporal dementia (FTD) and an overlapping phenotype combining ALS and FTD. Indeed, a repeat expansion in C9ORF72 was identified in up to 30% of familial and even 5% of sporadic ALS cases making C9ORF72 the most commonly mutated ALS gene. In most of the studies published so far, molecular testing solely relies on an indirect PCR-based methodology for repeat detection without determining the exact repeat size. Therefore, little is known about the exact size and size range of causative C9ORF72 alleles. Here, we report on a Southern-blot based analysis of the exact repeat length in a cohort of German and Swedish ALS families as well as possible repeat expansions in seemingly healthy controls. Our study thus broadens the knowledge about the size range of normal and pathological C9ORF72 alleles, which is important e.g. for the identification of genotype-phenotype correlations as well as for improved individualized risk predictions and genetic counseling.
P12.012
The world largest ALS-FTD pedigree is linked to a massive GGGGCC-repeat expansion in the C9ORF72 on 9p21: The Mörsell Disease.
I. Balogh1, S. Tănăsescu1, C. Almog1, J. Berg1, C. Habich1, K. Fornberg2, S. L. Marklund1, T. Bråtenström1, A. Ludolph1, P. M. Andersen3;
1Department of Clinical Neuroscience, Umed, Sweden; 2Institute of Human Genetics, Ulm, Germany; 3Department of Medical Biosciences, Umed, Sweden; 4Department of Neurology, Ulm, Germany.
We present a 2200-individual pedigree in 6 countries where individuals either with amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD) in 1999 was found to be linked to 9p21. We now demonstrate that the patients with ALS or FTD share a massive GGGGCC-hexanucleotide expansion in C9ORF72 as a cause of neurodegeneration. The patients have variable degrees of expansion in leucocytes from peripheral blood. Autosopies performed on 6 patients (4 ALS, 2 FTD) show very similar morphological cellular findings in the different neurological regions. The pathogenesis of the disease in the individual. Remarkably, while no mutations could be detected in the SOD1 in any of the patients, all FTD and ALS patients showed neuronal inclusions that stained positive for highly specific antibodies for misfolded wild-type SOD1. While the disease penetrance for either ALS or FTD is complete in some parts of this huge family, in other parts it is incomplete. Whether this is due to variable size of the hexanucleotide expansion in different cell populations or have other causes is being studied.

P12.013
PAX6 mutations in 93 aniridia Italian cases
A. Franzoni1, A. D’Elia2, E. Bregante3, N. Passom1, M. Patrasso1, L. Maurer1, S. Pence4, G. Damante5;
1Istituto di Genetica medica, A.O.U. S.M.N. di Udine, Udine, Italy; 2S.O.S. di Genetica medica, Ospedale Niguarda Ca’Granda, Milano, Italy.
Aniridia is a human congenital malformation of the eye characterized by almost complete absence of the iris and other eye malformations. This disease is a dominantly inherited condition and sequence analysis had established that causative mutations involve PAX6 gene located in chromosome region 11p13. We have investigated the presence of PAX6 mutations in 93 cases of aniridia come from different Italian regions. We have used molecular techniques such as sequence analysis and MLPA for every case. Among the 93 cases, 44 are familiar (47%). The causative mutation was identified in 50 subjects (54%). In 19 cases (39%), the mutations was a deletion not identified through MLPA, in 31 remaining cases (62%) by sequence analysis. In two cases with deletion, both PAX6 and WT1 genes are involved. In 10 cases, the deletion regard only ELP4 gene (located about 35 Kb downstream PAX6 3’ region), suggesting that the disease is caused by a mutation that affect element controlling gene expression. Among the identified mutations by sequence analysis, 21 consist in nonsense mutations, 5 in missense mutations, and 5 in site splicing mutations. Several of these mutations are novel, not present in the PAX6 mutation database (http://www.hgu.mrc.ac.uk/Softdata/PAX6/). These data provide important indications: 1) Mutational screening of PAX6 gene must include techniques such as MLPA, which is able to identified mutations not detected by sequence analysis. 2) In a relevant fraction of patients with aniridia (about 10%), the alteration consist in a deletion of element that play a role in the transcriptional control.

P12.014
PKHD1 mutations in autosomal recessive polycystic kidney disease in Hungary
I. Balogh1, T. Szabó2, K. Tory1, C. Bereczki3, É. Marián2, É. Gombos1, M. Patrosso4, C. Akimoto1, J. Bergh3; 1Institute of Human Genetics, Heidelberg, Germany; 2Department of Internal Medicine II, Ulm, Germany; 3Medical Research Center, Mannheim, Germany.
The heart’s rhythm is initiated and regulated by a group of specialized cells in the sinoatrial node (SAN), the primary pacemaker of the heart. Abnormalities in the development of the SAN can result in irregular heart rates (arrhythmias). Although several of the critical genes important for SAN formation have been identified, our understanding of the transcriptional control of SAN development remains at a relatively early stage. The LIM homeodomain transcription factor Isl1 (Isla1) represents a prominent marker for cardiac progenitor cells of the second heart field and has been proposed, very similar to Shox2, to play an essential early role in the specification and patterning of the SAN. Here, we compared gene expression levels in the right atria of wildtype and Shox2−/− hearts using microarray experiments and identified Isl1 as one of its putative target genes. The downregulation of Isl1 expression in Shox2−/− hearts was confirmed and the affected region narrowed down to the SAN by whole mount in situ hybridization. Using luciferase reporter assays and EMSA studies, we identified two specific SHOX2 binding sites within intron A of ISL1. We also provide functional data establishing Isl1 as a transcriptional target of Shox2 by rescuing the Shox2-mediated bradycardia phenotype with Isl1 using zebrafish as a model system. Our findings demonstrate a novel epistatic relationship between Shox2 and Isl1 in the heart with important developmental consequences for SAN formation and heart beat.

P12.015
PKHD1 mutations in autosomal recessive polycystic kidney disease in Hungary
I. Balogh1, T. Szabó2, K. Tory1, C. Bereczki3, É. Marián2, É. Gombos1, M. Patrosso4, C. Akimoto1, J. Bergh3; 1Institute of Human Genetics, Heidelberg, Germany; 2Department of Internal Medicine II, Ulm, Germany.
Autosomal recessive polycystic kidney disease (ARPKD) is a severe inherited monogenic disease, which is characterized by enlarged polycystic kidneys and congenital hepatic fibrosis. Prognosis of the disease is very poor, 30% of the affected children die within the first year of life. Incidence of ARPKD is 1 in 10,000-40,000. ARPKD is caused by mutations in polycystic kidney and hepatic disease gene 1 (PKHD1) that encodes a large protein called fibrocystin/polyductin. PKHD1 gene consists of 67 exons. The goal of our study was to establish the mutational spectrum of ARPKD in Hungary. All exons of the longest open reading frame of PKHD1 gene and their intronic boundaries were amplified in 77 amplicons and sequenced. We have analyzed 18 families with ARPKD of the 15 different detected mutations, 8 missense mutations, 2 nonsense mutations and 2 small deletions could be identified. Four novel mutations were found, of which 1 missense, 2 nonsense and 1 small deletion. In 15 families both causative mutations could be identified, in one patient one mutation was found while no genetic alteration could be detected in two patients. Detection rate was 86%. Five mutations, namely c.107C>T (p.T36M), c.3470A>G (p.Y1136C), c.5513A>G (p.Y1838C), c.6992T>A (p.L2331K) and c.7916C>A (p.S2639X) were detected in more than one patient and are responsible for 58% of PKHD1 disease-causing alleles among Hungarian patients. One of them, c.7916C>A, was found to be surprisingly frequent, being responsible for 22% of all PKHD1 null alleles.

P12.016
Iset1 is a direct transcriptional target of the homeodomain transcription factor Shox2 in the sinoatrial node of the developing heart
S. Puskár1, A. M. Berger2, A. Glazer2, C. Bacon2, L. Li5, K. U. Schneider2, N. Grettz2, H. Steinbessinger1, W. Rothauer3, S. G. Raymond5; 1Institute of Human Genetics, Heidelberg, Germany; 2Department of Internal Medicine II, Ulm, Germany; 3Medical Research Center, Mannheim, Germany.
Background: Arrhythmogenic right ventricular dysplasia (ARVD) is an inherited cardiomyopathy characterized by progressive fibro-fatty replacement of the myocardium, specific ECG-pattern, and high risk of life-threatening ventricular arrhythmias. Disease mainly affects the right ventricle, but left ventricle, atriums and septum might be involved. Mutations in the desmosome armadillo repeat protein plakophilin-2 (PKP2) gene in Russian patients with arrhythmogenic right ventricular dysplasia A. Shestak1, A. Blagova2, V. Rumiantseva1, V. Frolov1, S. Dzembrinshchekii1, E. Zhakyzinskaya1; 1Russian Research Center of Surgery RAMS, Moscow, Russian Federation; 2Sechenov Moscow Medical University, Moscow, Russian Federation. Background: Arrhythmogenic right ventricular dysplasia (ARVD) is an inherited cardiomyopathy characterized by progressive fibro-fatty replacement of the myocardium, specific ECG-pattern, and high risk of life-threatening ventricular arrhythmias. Disease mainly affects the right ventricle, but left ventricle, atriums and septum might be involved. Mutations in the desmosome armadillo repeat protein plakophilin-2 (PKP2) gene in Russian patients with ARVD. Methods: A group of 12 unrelated Russian ARVD patients were examined. Clinical and instrumental examination included collecting of personal and family history, physical examination, standard and 24 h-ECG, Echo-GG and cardiac MRI. Genetic analysis of the PKP2 gene was performed by direct Sanger sequencing. Results: Genetic screening of mutations in PKP2 gene in DNA samples of 12 Russian ARVD patients was performed. Two mutations p.S140F and P.W538X were found in two unrelated families. Female patient (35 y.o.) carried heterozygous p.S140F variant having thinning of anterior wall infarction of the right ventricle and the presence of epicardial fat. Male patient (71 y.o.) carried heterozygous nonsense p.W538X had sustained ventricular tachycardia since 41 y.o., ventricular fibrillation, ATR (I) and hypertrophy and dilation of RV. ICD was implanted, patient had repeated appropriate shocks. Those two variants were previously described as disease-causing mutations. Three additional variants without apparent clinical significance were detected in 3 patients. Conclusion: We identified two mutations in PKP2 gene in 2 of 12 Russian unrelated ARVD patients (16%). This prevalence matches with the prevalence of ARVD9 (MIM*609040). Genetic analysis of family members and genotype-phenotype correlation is in progress now.

www.eshg.org
P12.018
Asphyxiating Thoracic Dysplasia: clinical and molecular review of 42 families
G. Bouquet1, C. Huber1, R. Caumes1, C. Do Ngonh Thanh1, A. Coesler-Dieux1, A. David1, R. Estournel1, F. Chocarne1, H. Royrangrou1, S. Sigaudy1, M. Le Meerrer1, K. Le Quan Song1, A. Munnich1, V. Cormier-Daire1,1, Hôpital Necker-Enfants Malades, Paris, France, 1Hôpital Poincaré, Garches, France, 1Hôpital Jeanne de Flandres, Lille, France, 1CHU, Nantes, France, 1CHU Hôtel Dieu, Paris, France, 1Hôpital d’Enfants La Timone, Marseille, France.

Asphyxiating Thoracic Dysplasia (ATD) belongs to the short rib polydactyly group and is characterized by a long and narrow thorax, short long bones and trident acetabular roof. Other features have been reported including polydactyly, retinal, renal and liver involvement. Today, mutations in IFT80, DYN21H1, TCC21B and WDR19 genes have been reported in ATD. The clinical and molecular heterogeneity lead to difficulties in the evaluation of the long term prognosis.

Through a national grant (PHRC AOM 06031), we investigated 55 ATD cases from families, including 29 fetuses. They benefited from a combined approach of deep phenotyping, and IFT80 and DYN21H1 molecular screening. The series included 26 postnatal cases, ranging in age from 6 months to 36 years. Significant pulmonary insufficiency was noted in 46% of cases, with renal and liver involvement in 39% of cases. Renal and liver diseases occurred in 16% of cases; whereas retinal alteration was present in 40% cases aged more than 2 years (6/15). The molecular screening allowed the identification of DYN21H1 mutations in 63% and IFT80 mutations in 6%. In 6 cases, only one heterozygote mutation in either IFT80 or DYN21H1 was identified. Finally, the two genes were excluded in 31% cases. Therapy remains symptomatic. We established that DYN21H1 is the major gene responsible for ATD. The presence of only one mutation in 38% of mutated cases may suggest a genetic diachronic inheritance. The prognosis probability is less reassuring than and retinal involvement more frequent than previously thought. Follow up guidelines are proposed.

P12.019
Novel G2 micronucleus test allows detection of defects in homologous recombination and G2/M cell cycle control in a patient with adult ataxia telangiectasia (A-T) and parents
K. R. M. Claes1, P. Schietecatte1, J. Depuydt2, A. Baert2, B. Poppe1, V. Vandersickel1, M. D’Hooghe1, K. De Lenee1, A. Wul2.
1Center for Medical Genetics, Ghent University Hospital, Gent, Belgium, 2Department of Basic Medical Sciences, Ghent University, Gent, Belgium.

We report here a patient (aged 23 years) with dystonic dyskinetic cerebral palsy and retinal atrophy. The alpha fetoprotein levels were elevated. The clinical diagnosis of adult A-T was confirmed by the identification of two heterozygote ATM mutations. The patient inherited a previously reported missense mutation, c.8122G>A (p.Asp2708Asn), from her father and a novel splice site mutation, c.8121+1G>A, from her mother.

AT patients are known to display enhanced chromosomal radiosensitivity. With the G0 micronucleus test, whereby the cells are irradiated in G0 phase of the cell cycle, we observed a 1.7X increased radiosensitivity and no enhanced radiosensitivity in the parents. As ATM is involved in homologous recombination and G2/M cell cycle control in a patient with adult A-T, we aimed to test the AdRP Microarray for its potential use in adMD diagnosis. 54 unrelated Spanish adMD patient families were tested with adRP microarray. All mutations found were confirmed by sequencing. Peripherin 2 (PRPH2), the most frequently mutated gene responsible for adMD, was sequenced in all negative samples for the microarray. The rate of false negatives (real mutations in PRPH2 gene represented but not detected by the array) and false positives (microarray results not confirmed by sequencing) were established.

Results: adRP microarray detected the mutation in 10 of the studied patients (diagnostic accuracy: 18.5%). Nine patients presented a mutation in PRPH2 gene, one in RHO gene. All mutations were confirmed by sequencing. Sequencing of PRPH2 of non-characterized families allowed the identification of one false negative. These results show a high level of analytical both sensitivity (91%) and specificity (100%).

Conclusions: adRP microarray shows high levels of analytical specificity and the development of papular lesions of keratin-filled cysts over extensive areas of the body. Hair loss in APL is irreversible and the histology is consistent with an absence of mature hair follicles. In this study we ascertained a family APl from northern part of Pakistan. We used candidate gene approach by selecting four genes like HR, PHPS, UPH, and DSG4. Linkage analysis and direct sequencing of the PCR products carried out. A recurrent missense mutation (c.1859G>A) in exon 6 of the hairless gene (HR) is identified. This mutation has already been reported in a large family of Irish Travellers. Phenotypic appearance of affected individuals in this family was marked by complete absence of hair on the eyebrows, eyelashes and scalp. Cystic lesions were present on the elbows of affected individuals with no other anomalies. This mutation found in the Pakistani population that segregates with APL in homozgyous form in affected individuals. Phenotypes of the affected members of family APl are different from the already reported phenotypic descriptions. Hypotrichosis and nail dysplasia are observed in this family which is not reported before with this mutation in HR gene. Papular lesions are present in affected individuals. This research will help in the identification of APL in Pakistan and to use disease diagnosis and to understand the molecular basis involved in the gene function.

P12.021
Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology
S. Berkel1, W. Tang1, M. Trevino1, M. Vogt1, H. A. Obenauf1, P. Gass1, W. Scherer1, R. Sprengel1, G. Schratt1, G. A. Rappold1,2.
1Institute of Human Genetics, Heidelberg, Germany, 2Max Planck Institute for Medical Research, Heidelberg, Germany, 3Central Institute of Mental Health, Mannheim, Germany, 4University of Toronto, Toronto, ON, Canada, 5Institute of physiological chemistry, Marburg, Germany.

Mutations in the postsynaptic scaffolding gene SHANK2 have recently been identified in individuals with autism spectrum disorder (ASD) and intellectual disability (ID). However, the cellular and physiological consequences of these mutations in neurons remain unknown. We have analyzed the functional impact caused by two inherited and one de novo SHANK2 mutations from ASD individuals (L1008P, P1909dup, T127M, R462X). Although all three variants affect spine volume and have smaller SHANK2 cluster sizes, T1127M additionally fails to rescue spine volume in Shank2 knock-down neurons. R462X is not able to rescue spine volume and dendritic branching and lacks postsynaptic clustering, indicating the most severe dysfunction. To demonstrate that R462X when expressed in mouse can be linked to physiological effects, we analyzed synaptic transmission and behavior. Principal neurons of mice expressing rAAV transduced Shank2-R462X present a specific, long lasting reduction in miniature postsynaptic AMPA receptor currents. This dominant negative effect translates into dose-dependent altered cognitive behavior of Shank2-R462X expressing mice, with an impact on the penetrance of ASD.

P12.022
Evaluation of adRP microarray (Asper Biotech) for the diagnosis of autosomal dominant macular dystrophies
P. F. San Jose1, E. Blanco-Kelly1, M. Corton1, R. Riveiro-Alvarez2, A. Giménez1, A. Avila-Fernandez1, I. Hernara1, M. Carballo1, C. Ayuso2,1.
1Department of Genetics, IIS-Fundación Jiménez Díaz, Madrid, Spain, 2Centre for Biotechnological Network Research on rare Diseases (CIBERER), ISCIII, Madrid, Spain, 3Department of Genetics, Hospital de Terrasa, Barcelona, Spain.

Purpose: autosomal dominant macular dystrophies (adMD) are a group of diseases clinically and genetically heterogeneous. Currently there is no specific tool for genetic diagnosis. adRP Microarray (Asper Biotech), which includes genes responsible for adMD, has recently demonstrated to be a cost-efficient tool for autosomal dominant retinitis pigmentosa a pigmenta diagnosis (1). We aim to test the AdRP Microarray for its potential use in adMD diagnosis. Methods: 54 unrelated Spanish adMD patients affected were tested with adRP microarray. All mutations found were confirmed by sequencing. Peripherin 2 (PRPH2), the most frequently mutated gene responsible for adMD, was sequenced in all negative samples for the microarray. The rate of false negatives (real mutations in PRPH2 gene represented but not detected by the array) and false positives (microarray results not confirmed by sequencing) were established.

Results: adRP microarray detected the mutation in 10 of the studied patients (diagnostic accuracy: 18.5%). Nine patients presented a mutation in PRPH2 gene, one in RHO gene. All mutations were confirmed by sequencing. Sequencing of PRPH2 of non-characterized families allowed the identification of one false negative. These results show a high level of analytical both sensitivity (91%) and specificity (100%).

Conclusions: adRP microarray shows high levels of analytical specificity and the development of papular lesions of keratin-filled cysts over extensive areas of the body. Hair loss in APL is irreversible and the histology is consistent with an absence of mature hair follicles. In this study we ascertained a family APl from northern part of Pakistan. We used candidate gene approach by selecting four genes like HR, PHPS, UPH, and DSG4. Linkage analysis and direct sequencing of the PCR products carried out. A recurrent missense mutation (c.1859G>A) in exon 6 of the hairless gene (HR) is identified. This mutation has already been reported in a large family of Irish Travellers. Phenotypic appearance of affected individuals in this family was marked by complete absence of hair on the eyebrows, eyelashes and scalp. Cystic lesions were present on the elbows of affected individuals with no other anomalies. This mutation found in the Pakistani population that segregates with APL in homozgyous form in affected individuals. Phenotypes of the affected members of family APl are different from the already reported phenotypic descriptions. Hypotrichosis and nail dysplasia are observed in this family which is not reported before with this mutation in HR gene. Papular lesions are present in affected individuals. This research will help in the identification of APL in Pakistan and to use disease diagnosis and to understand the molecular basis involved in the gene function.
Identification of genetic defects in Iranian GJB2-heterozygous deaf individuals

A. Khashi1, N. Nikzat1, N. Bazazzadegan1, S. Arzhangi1, Z. Fattahi1, F. Sabagh2, F. Pourfatemeh1, H. Najmabadi1, K. Kahrizi1

1GRC (Genetic Research Center), University of Social Welfare & Rehabilitation Sciences, Tehran, Islamic Republic of Iran, 2Kerman Welfare Organization, Kerman, Islamic Republic of Iran, 3Mazandaran Welfare Organization, Mazandaran, Islamic Republic of Iran.

Hereditary hearing loss (HHL) is one of the most common sensorineural problems, affecting approximately one in 500 children. Although significant genetic heterogeneity exists as the cause of sensorineural HL, one locus, DFNB1, comprising the GJB2 and GJB6 genes, is responsible for up to 20-50% of cases with congenital non-syndromic HL in many populations. Homozygous or compound heterozygous mutations in GJB2 are detected in most cases with DFNB1-related HL. Interestingly, in some studies 10-42% of deaf subjects showed recessive pattern of inheritance and with GJB2 mutations, carried only one mutant allele.

In this study, using direct sequencing, second mutant allele of GJB2 which leads to deaf phenotype was screened for possible mutations. One hundred patients with autosomal recessive non-syndromic hearing loss (ARNSHL) through Iranian population bearing first mutation in their coding exon (exon-2) of GJB2, were assessed for any other mutations in non-coding exon of GJB2 (exon-1) as well as promoter region of the gene.

We have identified the second mutant allele in splice site of exon-1 of GJB2 which known as -3170G to A in 14 probands (14%). No mutation in promoter region of GJB2 was found. Furthermore, Real-time PCR has been set up in order to check four known deletions which encompass both GJB2 and GJB6, for remainder probands.

Molecular approach in Spanish families affected by Bardet-Biedl Syndrome

T. Piñeiro-Gallego, D. Valverde, Departamento de Bioquímica, Xenética e Immunoloxía. Facultade de Bioloxía. Universidade de Vigo, Vigo, Spain.

Bardet-Biedl Syndrome (BBS, OMIM 209900) is a rare autosomal recessive disorder characterized by marked popliteal pterygium associated with multiple congenital abnormalities. Bardet-Biedl Syndrome is a genetic condition that can appear on a variety of levels of severity, ranging from mild cases to severe cases requiring medical intervention. A novel ILDR1 gene mutation in two Iranian families with autosomal recessive non-syndromic hearing loss

Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran.

Hearing loss (HL) is the most common sensory deficit in human. It affects approximately 10 percent of the world population. Genetic causes of HL are estimated to account about 68% of newborns and 55% of cases by the age of four. Autosomal recessive non-syndromic hearing loss (ARNSHL) is the most common type of inherited hearing impairment. Due to the wealthy gene pool, Iran is a valuable source to identify the genes involved in different conditions. To date, several genes have been studied in Iranian deaf population. DFNB42, one of the related loci in ARNSHL, was first identified in a Pakistani family. Another study on more Pakistani and Iranian families, led to the identification of 10 different mutations in the related gene, ILDR1.

To estimate the contribution of this gene in Iranian deaf population, we have set up to perform homozygosity mapping with flanking STR markers on 140 Iranian deaf families.

Mutation detection, using conventional sequencing, for three out of 140 families showing linkage to DFNB42 locus, led to identification of one splice site mutation (c.379+1G>A) in two of the families. Our data shows that ILDR1 gene has the prevalence of about 2.1% in Iranian deaf population, that comparing to other loci seems to have a small proportion of the ARNSHL causes in Iran.

Keywords: Autosomal recessive non-syndromic hearing loss, ILDR1, sequencing, Iran.

A novel PJVK gene mutation in Iranian family with autosomal recessive non-syndromic hearing loss

Z. Fattahi, M. Babanejad, N. Bazazzadegan, N. Nikzat, S. Arzhangi, K. Jalalvand, K. Kahrizi, H. Najmabadi2,3.

Genetics Research Centre, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran, 2Karaj Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran.

Hearing impairment is one of the common sensory disorders in world and affects about 1 of every 1000 newborns. In developed countries at least 50% of the cases are due to genetic defects resulting in non-syndromic deafness (70%), of which autosomal recessive inheritance predominates (80%). Hereditary hearing loss is very heterogeneous, so that nearly 95 loci and 40 genes have been identified as the causes of autosomal recessive non-syndromic hearing loss (ARNSHL) to date. DFNB59 is one of the contributing loci in ARNSHL. Several studies showed mutations in PJVK as the cause of deafness in this locus. PJVK is considered as the first human gene implicated in non-syndromic deafness due to a neuronal defect. To date, several mutations have been reported in Iranian families from different studies and also some reports in Moroccan and Turkish populations as well.

In order to have more comprehensive look into PJVK gene in Iranian population, 144 ARNSHL families with two or more affected individuals from different Iranian ethnic groups were selected for this study.

Homozgyosity mapping with flanking STR markers following conventional sequencing of the gene, revealed 2 mutations in 2 families, in which one of them is a novel nonsense mutation(c.274C > T or p.Arg92X) in exon 3. This data shows a prevalence of less than 2% in Iranian population for PJVK mutations. Although, mutations in this gene have been reported in different studies in Iranian deaf families but our data shows that this gene is not as prevalent as it seems.

Mutations in RIPK4 that codes Receptor-Interacting Serine/Threonine Kinase Protein 4 cause the Autosomal Recessive Form of Popliteal Pterygium syndrome

E. Kelari, O. Sargiz, V. Chellappan, M. Mutlu, H. Morsy, N. Kayserili, E. Kreiger, A. Censs3, B. Toraman, E. Abdulla4, K. Aslan5, S. Pillai5, N. A. Akarsu5;

1Department of Medical Biology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey, 2Department of Medical Biology, Karadeniz Technical University Institute of Health Sciences, Trabzon, Turkey, 3Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States, 4Department of Pediatrics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey, 5Department of Medical Genetics, Karadeniz Technical University Medical Research Institute, Alexandriy, Egypt, 6Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey, 7Center for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands, 8Department of Radiology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey, 9Gene Mapping Laboratory, Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.

The autosomal recessive form of popliteal pterygium syndrome, also known as Bartsocas-Papas syndrome (BPS), is a rare, but frequently lethal disorder characterized by marked popliteal pterygium associated with multiple congenital malformations. Using a genome-wide SNP homozygosity mapping study, we identified a homozygous segment co-segregating with disease on chromosome region 21q22.3. Since the phenotype of the deficiency of mouse ortholog of RIPK44 consistent with anomalies seen in BPS, RIPK4 was selected as candidate gene from the critical interval. Sequencing of the RIPK4 showed a homozygous missense mutation p.Le121Asn (c.362T>G) in the kinase domain of
the protein. Screening of additional two BPS families showed a homozygous missense mutation p.Thr184Ile (c.551G>T) and a homozygous one base pair insertion c.777_778insA (p.Arg260ThrfsX14) within the kinase domain of the protein. Molecular modeling and luciferase reporter assays showed that both Ile/Thr and Thr/Thr mutations are critical for the stability and catalytic activity of RIPK4. RIPK4 mediates activation of the nuclear factor-kB (NF-kB) signaling pathway that is required for keratinocyte differentiation and craniofacial and limb development. The abnormalities observed in presented individuals were similar, but less severe than those seen in Cocoon syndrome as a result of CHUK (IKKα) deficiency which is another component of NF-kB signaling pathway. In conclusion, our results showed that recessive mutations in RIPK4 cause autosomal recessive form of multiple pterygium syndrome and RIPK4 and CHUK may function in closely related pathways to promote keratinocyte differentiation and epithelial growth.

P12.028 An identical PRRT2 mutation underlies benign familial infantile epilepsy with and without paroxysmal dyskinesia

A. K. Anttonen1,2,*, E. Liukkonen, E. Gailly1, A. Siren3, K. Mattila4, A. Polvi5, A. E. Lehesjoki5,6

1Department of Medical Genetics, University of Helsinki, Helsinki, Finland, 2Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland, 3Folkhälsoinstitutet for Genetik, Umeå, Sweden, 4Epilepsy Unit, Pediatric Neurology, Helsinki University Central Hospital, Helsinki, Finland, 5Unit of Pediatric Neurology, Department of Pediatrics, Tampere University Hospital, Tampere, Finland, 6Outpatient Clinic for Persons with Intellectual Disabilities, Tampere University Hospital, Tampere, Finland.

Benign familial infantile epilepsy (BFIE) and paroxysmal dyskinesias are clinically and genetically heterogeneous paroxysmal neurological disorders. The ICCA syndrome is a phenotype combining both BFIE and paroxysmal kinesigenic dyskinesia (PKD). BFIE, PKD, and the ICCA syndrome have been linked to the pericentromeric region of chromosome 16. Recently, heterogeneous mutations in the PRRT2 gene on 16p11.2 were described as the cause of BFIE and paroxysmal dyskinesias. PRRT2 encodes the proline-rich transmembrane protein 2 implicated to have a role in synaptic function. In this study we clinically and genetically characterized patients in three large Finnish families, which presented with either BFIE alone or in combination with movement disorder with different types of triggers. Linkage analysis in two large ICCA families showed evidence for linkage to chromosome 16p12-1p1.2 and a significant two-point LOD score of 5.55 was obtained at marker D16S3022 (θ = 0.000). In the third family sharing a haplotype over the region on 16p12-1p1.2 the clinical presentation was BFIE. After sequencing several positional candidate genes, the PRRT2 gene was sequenced. Patients in all three families were heterozygous for the c.649dupC duplication mutation, the most frequently encountered PRRT2 mutation. These data give further support for the association of PRRT2 mutations to both epilepsy and movement disorders of both kinesigenic and non-kinesigenic type. The association of a single mutation with a variety of phenotypes highlights the contribution of modifying genetic and/or environmental factors to the clinical presentation.

P12.029 Two novel putative beta-globin gene mutations leading beta thalassemia intermedia phenotype

T. Bilgen1, O. Atikov Clarke2, E. Dutiker2, M. A. Yeniogle3, I. Kester3

1Abidene University, School of Medicine, 2Department of Medical Biology and Genetics, Antalya, Turkey, 3Abidene University, School of Medicine, 4Department of Medical Genetics, Antalya, Turkey, 5Abidene University, School of Medicine, 6Department of Pediatrics, Hilal University, Antalya, Turkey.

There have been described approximately 800 different genetic alterations in the beta globin gene reported in the HbVar database and novel mutations are still rarely being reported. In this study, we aimed to identify two novel putative mutations in 3′ untranslated region (3′-UTR) of the beta globin gene and to describe their clinical reflections. Four patients from two unrelated families referred with diverse set of hematological and clinical findings associated to beta thalassemia were included in this study. Molecular diagnosis of the beta globin gene mutations was performed by direct sequencing of the beta globin gene. A novel mutation in HBBC.c.*+108A>G was found in combination with IVS-1-110G>A mutation caused intermedia phenotype in two brothers and one sister with mild splenomegaly and occasional transfusion history in the first family. The second novel mutation named as HBBC.c.*+132CT was found in combination with IVS-1-1G>A in 47 years old male diagnosed as beta thalassemia intermedia with irregular transfusion history in family 2. Based on beta thalassemia intermedia phenotypes despite of clinical diversity observed in our patients and taking into account the accompanying mutations, it would be concluded that these novel beta globin gene 3′ UTR mutations are associated with mild phenotype of beta thalassemia.

P12.030 Novel indel mutation in CDMP1 gene is associated with brachydactyly type C in a four generation Turkish family

O. Z. Oygurcan1, M. Kocacagil1, G. Toksoy1, S. Basaran2, H. Kayserili3

1Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey, 2Orthopedics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.

The cartilage derived morphogenetic protein-1 (CDMP1), also referred as the growth/differentiation factor 5 (GDF5), gene has been shown to be a key regulator in the bone morphogenetic protein pathway (BMP) during skeletal and joint development. Heterozygous loss-of-function mutations responsible for loss of hypo/hyperplasia of cartilage (brachydactyly), heterozygous gain-of-function mutations, occurring either on the gene itself or through the loss of its inhibitor noggin, result in joint fusion (syndactyly). Furthermore, homozygous mutations, predominantly affecting the limbs have been described; Grebe type dysplasia, Du Pan Syndrome, Acroneuromuscular Dysplasia-Hunter Thompson type. Also reported is homozygous missense mutation presenting with brachydactyly, formulating phenotype genotype correlations by type and domain inconceivable, likely due to the influence of other factors impacting the developmental pathway. Presently, mutations dispersed throughout propeptide and chain domains of CDMP1, associated with eight different OMIM entries, have been described. We ascertain here two affecteds one female and one male, with brachydactyly type C (MIM 113100) presenting with disrupitve proportions of shortness of the 2nd and 3rd fingers and hypersegmentation of the proximal and middle 2nd and 3rd phalanges. These cases are from a family that reports an additional 8 affected members spanning across four generations. CDMP1 analysis revealed a novel heterozygous in frame deletion (c.803_827del25ins25) in the propeptide domain (ps. cys268Ser::727del6KPCPSGYPASL456SLLDVN)). This is the second indel mutation ascribed to the CDMP1. The previously published indel mutation was of the out-of-frame type c.0del26ins4 in the chain motif, associated with Du Pan Syndrome. Our novel mutation further emphasizes the allelic heterogeneity of CDMP1.

P12.031 Altered Genomic DNA Binding Profile of a HOXD13 Mutant in a Novel Type of Brachydactyly

D. Ibrahim1,2, P. Hansen1, A. Stiege1, S. Dölken1, M. Schmidt-von Kegler1, F. Wagner1, B. Timmermann1, P. Krawitz1, D. Horn1, F. Seermann1, P. Robinson1, S. Mundlos1, J. Hecht1

1Universitätsmedizin Berlin, Berlin, Germany, 2Max-Planck Institut für molekulare Genetik, Berlin, Germany, Atlas Biobank GmbH, Berlin, Germany.

Mutations in HOXD13 have previously been associated with synpolydactyly. Here we describe a patient with brachydactyly and a novel mutation (Q317K) in the DNA binding homeodomain of HOXD13. Anomalies of hands and feet are characterized by shortness of fingers and toes, oligodactyly, and aplasia of some terminal phalanges. Functional analysis was performed by reporter overexpression of FLAG-tagged HOXD13 wt and mutant in chicken micromass cultures, a well established model of chondrocyte differentiation. Targets of HOXD13 were identified by chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq). Bioinformatic analysis of precipitated sequences showed an altered DNA binding motif of the mutant protein. The inferred motif of HOXD133130 showed similarity to that of PITX1. The mutant lysine at position 317 corresponds also to a conserved lysine at the analogous position of bicalc type homeodomain proteins such as PITX1. Thus we compared the binding pattern of HOXD133134, HOXD133135 and PITX1 using ChIP-seq and found a shift of HOXD133136 towards a PITX1-like binding pattern. Furthermore the expression profile in HOXD133137 overexpressing micromass cultures also shifted towards a PITX1 overexpression profile. Injection of HOXD133138 into developing wing buds of chicken embryos showed a PITX1-like phenotype as well. Our results demonstrate how ChIP-seq can be used to characterize genome-wide binding profiles of mutant transcription factors. The mutation results in a partial conversion of HOXD13 into PITX1 and thus ectopic activation of PITX1 targets.

P12.032 New genes involved in metabolic disorders: Diseased states due to errors in the enzymatic regulation of the mammalian branched-chain \(\alpha \)-ketoad dehydrogenase complex

A. Oyarzabal1, B. Mermero, F. Sans2, R. Navarette1, M. Ecury3, C. Robles3, M. Martinez-Furco3, M. Ugarte1, P. Rodriguez-Pombo1

1CEDEM, CBMSO, CIBERER, IDIPAZ, Univ. Autonoma de Madrid, Madrid, Spain, 2Servicio Orthopedics, Instituto de Pediatría, Hospital Infantil 2 de Madrid, Madrid, Spain, 3Departamento de Medicina Molecular y Genética, Centro de Estudios, Comisión Sanitaria Militar, Instituto de Investigación Sanitaria, Madrid, Spain.
Mammalian branched-chain α-keto acid dehydrogenase complex (BCKDc) is a mitochondrial macromolecular multienzymatic complex consisting of three catalytic components that catalyzes the rate-limiting step in the oxidation of branched-chain α-keto acids, which are the end products of the catabolism of branched-chain amino acids. BCKDc deficiency leads to branch-chain amino acid accumulation and inborn error of metabolism—maple syrup urine disease (MSUD). Activity of the complex is regulated by a specific kinase (BCKDK) which causes inactivation, and the protein phosphatase 2Cm (PP2Cm) which causes activation. Up to now, the 150 described MSUD-causing mutations have only been found on the genes encoding for the E1α, E1β and E2 catalytic subunits, but not much is known regarding disease-susceptible variants. The expression analysis has its limits in being theoretical. Expression analysis via RNA from blood lymphocytes can help to discriminate between variants that influence correct splicing and those that don’t. A precondion for this approach is the expression of the corresponding gene in blood cells as is the case for e.g. BCKA1, BCKA2, RAD51C and NF1. Using reverse transcription-RT-PCR and sequence analysis of the resulting product(s) we were able to show a splice effect for the BCKA1 variants p.G1440D, IVS15+2A>G, the RAD51C variant p.C1334R and the NF1 variants IVS16del-6_3, IVS3+6G>T and p.L1565V. Conversely, a splice effect could be excluded for the BCKA1 variants p.D120N, p.T1548T and p.Q1604Q, the BCKA2 variants IS5-11T>C and IVS22-7_4del, the RAD51C variant p.G3R and the NF1 variants p.K724K, L549Q, p.F1289F, p.R1375H and p.L1957L.

Preparing RNA from blood and performing cDNA analysis is usually not part of the routine molecular diagnosis. In our laboratory practice - if a possible splice mutation was identified - we recommend to take a second blood sample in the context of the subsequent genetic counselling in order to perform RNA analysis. In view of the potential benefit by solving the question of pathogenicity, this turns out to be a feasible approach.

P12.032

The imprinted C15orf2 gene in the Prader-Willi syndrome region encodes a nuclear pore complex associated protein

E. Neumann1, S. Markakis1, E. Madence1, D. Hofmann2, K. Büttgen1, H. Roethemiek1, B. Horsthemke1
1Universitätsklinikum Essen, Essen, Germany; 2Universitätsklinikum München, Martinsried, Germany, 1Universität Duisburg-Essen, Essen, Germany.

The Prader-Willi syndrome (PWS) region in 15q11q13 harbours a cluster of imprinted genes that are associated with the Prader-Willi and Angelman syndromes. The C15orf2 gene is one of the most conserved imprinted genes in the Prader-Willi syndrome region and encodes a protein of unknown function. In the current study we analysed C15orf2 expression in the rat ovary and found expression in the granulosa cells. In addition, we performed an in silico analysis of the C15orf2 promoter and found several conserved binding sites for transcription factors involved in the regulation of the expression of the neighboring genes SNORD116 and SNORD117. These observations suggest a potential role of C15orf2 in the regulation of gene expression in the Prader-Willi syndrome region.

P12.034

New mutation in SNTA1 gene in Russian Brugada Syndrome patient - a new causative gene?

E. Zaklyuzminskaya, M. Polyakov, M. Neskova, S. Dzemeshkovich
Petropavlovsk Research Centre of Surgery, Moscow, Russian Federation.

Brugada syndrome (BrS) is an inherited cardiac arrhythmic disorder characterized by ST-segment elevation in right precordial leads, pseudo right bundle branch block, T-wave inversion and high risk of cardiac sudden death due to polymorphic ventricular tachycardia (PVT). The SCN5A gene was identified as causative in 1998 and has been only one known for BrS for many years. Mutations in this gene account for approximately 20% of cases. The clinical diagnosis is based on anamnesis of the patient and a baseline and/or infusion electrocardiogram, which should be confirmed genetically by the mutation analysis of the SCN5A gene. To allow a convenient and cost-effective diagnostic genetic testing for BrS a primary indirect gene scanning assay by high resolution melting curve analysis (HRMCA) of the SCN5A gene was developed. It assesses the sensitivity and specificity of the HRMCA assay over 100 clinically diagnosed BrS patients were analyzed in parallel by bidirectional cycle sequencing of the 28 SCN5A exons and by HRMCA analysis of 24 exons. Sensitivity of the HRMCA assay could be increased by using spike-DNA completely homozygous in the amplified regions and by discriminatory analysis of melting patterns with dual melting domains. All of the Sanger sequencing confirmed mutations and SNPs could be detected through HRMCA, with the exception of a deep intronic mutation lying 8 nucleotides downstream of the 3'end of the forward primer. Specificity of the assay met expectations. This study demonstrates that SCN5A HRMCA analysis can be implemented as a cost-effective, high-throughput, user-friendly primary gene scanning method within the framework of the molecular diagnosis of BrS.

P12.036

Reliable and sensitive SCN5A high resolution melting curve analysis as a primary gene scanning assay for genetic diagnosis of Brugada syndrome

S. J. Van Dooren1, L. Peirson1, J. Timmermans2, U. Ullmann3, M. Birvietis4, P. Brugada5, M. Bondoulle1
1Centre for Medical Genetics, UZ Brussels, VUB, Brussels, Belgium; 2Heart Rhythm Management Institute, UZ Brussels, VUB, Brussels, Belgium.

Brugada syndrome (BrS) is an autosomal dominant inherited primary cardiac arrhythmia in a structurally normal heart, with a propensity to sudden cardiac death. Genetic defects have mainly been attributed to mutations in the SCN5A gene, encoding for the β1P subunit of the sodium channel gene (SCN5A), which account for approximately 20% of cases. The clinical diagnosis is based on an anamnesis of the patient and a baseline and/or infusion electrocardiogram, which should be confirmed genetically by the mutation analysis of the SCN5A gene. To allow a convenient and cost-effective diagnostic genetic testing for BrS a primary indirect gene scanning assay by high resolution melting curve analysis (HRMCA) of the SCN5A gene was developed. To assess the sensitivity and specificity of the HRMCA assay over 100 clinically diagnosed BrS patients were analyzed in parallel by bidirectional cycle sequencing of the 28 SCN5A exons and by HRMCA analysis of 24 exons. Sensitivity of the HRMCA assay could be increased by using spike-DNA completely homozygous in the amplified regions and by discriminatory analysis of melting patterns with dual melting domains. All of the Sanger sequencing confirmed mutations and SNPs could be detected through HRMCA, with the exception of a deep intronic mutation lying 8 nucleotides downstream of the 3'end of the forward primer. Specificity of the assay met expectations. This study demonstrates that SCN5A HRMCA analysis can be implemented as a cost-effective, high-throughput, user-friendly primary gene scanning method within the framework of the molecular diagnosis of BrS.

www.eshg.org
Whole CYP21A2 gene analysis of congenital adrenal hyperplasia patients due to 21-hydroxylase deficiency

D. Kirac1, 2, K. Reicherter3, 1, P. Manta2, 4, S. Manta2, 4, S. Pauli10, S. Spiegler9, 1, E. Kunstmann9, 1, S. Munk-Schulenburg7, 1, M. Svingou6, 1, P. Hermanns12, 1, A. Barthelmie2, 2, C. Fauth3, 2, A. Ferbert4, 2, Y. Hellenthalreich5, 1, C. Korenke6, 1, S. Mair5, 2, S. Mund-Schuelenburg5, 2, S. Pauli10, S. Rudnik-Schoneborn11, 1, I. Stefanova5, 1, I. Stoller12, 1, U. Sure13, 1, B. Zoll10, 1, U. Felbor1; 1, P. Manta2, 4, S. Manta2, 4, S. Pauli10, S. Spiegler9, 1, E. Kunstmann9, 1, S. Munk-Schulenburg7, 1, M. Svingou6, 1, P. Hermanns12, 1, A. Barthelmie2, 2, C. Fauth3, 2, A. Ferbert4, 2, Y. Hellenthalreich5, 1, C. Korenke6, 1, S. Mair5, 2, S. Mund-Schuelenburg5, 2, S. Pauli10, S. Rudnik-Schoneborn11, 1, I. Stefanova5, 1, I. Stoller12, 1, U. Sure13, 1, B. Zoll10, 1, U. Felbor1; 1, Institute of Human Genetics, University of Göttingen, Göttingen, Germany, 2, Institute of Medical Genetics, University of Duisburg-Essen, Essen, Germany, 3Genetic counseling Services, Med. University of Innsbruck, Innsbruck, Austria, 4, Klinikum Rastatt GmbH, Clinic for Neurology, Rastatt, Germany, 5, Institute of Human Genetics, University of Lübeck, Lübeck, Germany, 6, NYU at Klinikum Oldenburg GmbH, Oldenburg, Germany, 7, Institute of Human Genetics, University of Saarland, Homburg/Saar, Germany, 8, Institute of Human Genetics, University of Freiburg, Freiburg, Germany, 9, Institute of Human Genetics, University of Göttingen, Göttingen, Germany, 10, Institute of Human Genetics, University of Aachen, Aachen, Germany, 11, Institute of Medical Genetics, Universitätsklinik Zürich, Zürich, Switzerland, 12, 1, Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany, 13, Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany.

Cerebral cavernous malformations (CCM) are prevalent cerebrovascular lesions predisposing to chronic headaches, epilepsy, and hemorrhagic stroke. Individuals carrying an autosomal dominantly inherited mutation in CCM3/PCDC10 have been reported to have a higher risk for cerebral hemorrhage during childhood when compared to CCM1/KRIT1 and CCM2/OSM mutation carriers. Most recently, it has also been suggested that CCM3 function may

Abstracts - European Human Genetics Conference 2012

Whole CYP21A2 gene analysis of congenital adrenal hyperplasia patients due to 21-hydroxylase deficiency

B. Zabel1; 1, K. Ulucan2, 1, P. Manta2, 4, S. Manta2, 4, S. Pauli10, S. Spiegler9, 1, E. Kunstmann9, 1, S. Munk-Schulenburg7, 1, M. Svingou6, 1, P. Hermanns12, 1, A. Barthelmie2, 2, C. Fauth3, 2, A. Ferbert4, 2, Y. Hellenthalreich5, 1, C. Korenke6, 1, S. Mair5, 2, S. Mund-Schuelenburg5, 2, S. Pauli10, S. Rudnik-Schoneborn11, 1, I. Stefanova5, 1, I. Stoller12, 1, U. Sure13, 1, B. Zoll10, 1, U. Felbor1; 1, Institute of Human Genetics, University of Göttingen, Göttingen, Germany, 2, Institute of Medical Genetics, University of Duisburg-Essen, Essen, Germany, 3Genetic counseling Services, Med. University of Innsbruck, Innsbruck, Austria, 4, Klinikum Rastatt GmbH, Clinic for Neurology, Rastatt, Germany, 5, Institute of Human Genetics, University of Lübeck, Lübeck, Germany, 6, NYU at Klinikum Oldenburg GmbH, Oldenburg, Germany, 7, Institute of Human Genetics, University of Saarland, Homburg/Saar, Germany, 8, Institute of Human Genetics, University of Freiburg, Freiburg, Germany, 9, Institute of Human Genetics, University of Göttingen, Göttingen, Germany, 10, Institute of Human Genetics, University of Aachen, Aachen, Germany, 11, Institute of Medical Genetics, Universitätsklinik Zürich, Zürich, Switzerland, 12, 1, Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany.
be distinct from CCM1 and CCM2 and that CCM3 acts in different molecular pathways. Genomic DNA sequencing and MLPA analyses allowed us to identify 38 additional CCM probands harbouring a loss-of-function mutation in one of the three CCM genes (21 in CCM1, 5 in CCM2, 12 in CCM3) over the past three years. Notably, the proportion of CCM3 mutation carriers (32%) was significantly higher than previously reported. The mean age at referral was 17 years for index patients with a CCM3 mutation (ranging from 1 to 51) while the mean age at referral was 36 years for CCM1 probands (ranging from 6 to 79) and 43 years for CCM2 probands (ranging from 17 to 72). We are currently inquiring for more details about disease manifestations and disease processes. However, our data already suggest a tendency towards earlier disease presentation in CCM3 mutation carriers.

P12.045
The atypical Rett-syndrome protein CDKL5 promotes excitatory synapse formation by strengthening the interaction between NGL-1 and the postsynaptic scaffold protein PSD95

M. Hambrock; S. Riccardi1; F. Ungaro; N. Rademacher; G. Stefanelli; U. Fischer; A. Grimmer; D. Brändle1; A. Sessa1; C. Magagnotti1; A. Bach1; C. Klitstrup-Nielsen2; V. M. Kallieschen3; V. Broccoli1

Max Planck Institute for Molecular Genetics, Berlin, Germany, "San Raffaele Scientific Institute, Milan, Italy,"University of Milano Medical School, Milan, Italy,"University of Insubria, Busto Arsizio, Italy.

Mutations in the X-linked gene cyclin-dependent kinase like 5 (CDKL5) cause a severe neurodevelopmental disorder with clinical features that are closely related to Rett syndrome (RTT), including intellectual disability, early onset intractable epilepsy and autism. However, very little is currently known about the biological role of CDKL5. We here show that CDKL5 localizes at excitatory synapses and contributes to correct spine morphology and synaptic activity. Since we previously found that a balanced chromosome translocation in the Netrin-G1 gene (NTNG1) also caused atypical RTT with early onset, we hypothesized that these two genes play a role in common pathogenetic processes. Immunofluorescence and immunoprecipitation experiments revealed that CDKL5 interacts with the Netrin G1 ligand NGL-1, a postsynaptic neuronal adhesion protein. In addition, we could show that NGL-1 is phosphorylated and that this phosphorylation is mediated by CDKL5, in vitro. Using fibroblasts from a patient who carried a truncation of the CDKL5 gene, we obtained further evidence that CDKL5 phosphorylates NGL-1. Moreover, we have found that this phosphorylation is necessary for promoting a stable association between NGL-1 and PSD95, a scaffold protein of the post-synaptic density. Accordingly, phospho-mutant NGL-1 lacked the ability to induce synaptic contacts, while its phospho-mimetic form bound PSD95 more efficiently and partially rescued the CDKL5-specific spine defects. In conclusion, we provide novel mechanistic insights into how CDKL5 mutations can impact on neuronal function in atypical RTT.

P12.046
Targeted High-Throughput Sequencing for Diagnosis of Genetically Heterogeneous Diseases: Fast and Efficient Mutation Detection in Bardet-Biedl Syndrome, Alström Syndrome, and in clinically overlapping ciliopathies

C. Redin1; S. Le Graë2; M. Mardini1; V. Georget1; C. Stoettzel1; M. Vincent1; B. Jou3; H. B. Chaoun1; H. Dolf3; J. J. Mander4; J. Muller4

1,4;2,3;1,4 Université de Strasbourg/Institut de Médecine/Université de Strasbourg, Strasbourg, France, "Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France,"Service de Génétique Médicale, CARCO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France,"Centre d’Intelligence Humaine, Collège de France, Paris, France.

Bardet-Biedl syndrome (BBS) is a pleiotropic recessive disorder that belongs to the rapidly growing family of ciliopathies. It shares phenotypic traits with other ciliopathies such as Alström syndrome (ALMS), nephropathies (NPHP) or Joubert syndromes. BBS mutations have been detected in 16 genes and no clear genotype-to-phenotype correlation could be observed. This extensive genetic heterogeneity is a major problem for molecular diagnosis and genetic counseling. While various strategies have been proposed in order to optimize mutation detection they either fail to detect mutations in a majority of patients or are time-consuming and costly. We tested a targeted exon-capture strategy coupled with multiplexing and high-throughput sequencing on a total of 52 patients: 14 with known mutations as proof-of-principle, 38 with no previously detected mutations. Thirty genes were targeted in total, including the 16 BBS genes, the 12 known NPHP genes and the single ALMS gene. This strategy allowed the reliable detection of causative mutations (including homozygous/ heterozygous exon deletions) in 68% of BBS patients with no previous molecular diagnosis and in all proof-of-principle samples. Three probands were found to carry truncating mutations in ALMS1 confirming the phenotypic overlap between both disorders. The overall efficiency of detecting mutations in patients was positively influenced by the presence of classical BBS phenotypes suggesting that only a few true BBS genes remain to be identified. We will illustrate some interpretation problems one may encounter in diagnostic settings due to the multiplicity of variants detected. Targeted capture strategy appears highly efficient and cost-effective for genetically heterogeneous diseases.

Our results, at least for NIPBL gene analysis, suggest that the use of several different techniques is essential for attaining a high mutation detection rate. CDSL cases with somatic mosaics is probably underestimated in the literature and may explain some degree of phenotypical variability.
P12.047

Whole exome sequencing in prenatal and postnatal investigations identifies the causative mutations associated with complex phenotypes

C. Pongsod, R. Hageflett, S. Svestadov, K. Pispili, C. Koniotis; InterGenetics-Diagnostic Genetic Center, Athens, Greece.

By combining Next Generation Sequencing (NGS) with human whole exome capture, it is now feasible to identify, in a single step, inherited or somatic pathological mutations residing in coding regions of all known human genes. We applied whole exome capture and NGS in 2 complex clinical cases, involving (1) an 18yr old male patient, exhibiting multiple abnormalities of the kidney, respiratory, cardiac and visual impairment, and (2) a choreo-athetosis sample following termination of pregnancy, of a male fetus with skeletal and genital anomalies. Exome enrichment was achieved using Roche NimbleGen v2 capture, followed by NGS on an Illumina GAIIx at >50x coverage. Sequence data was analyzed and variants were filtered, identified and evaluated utilizing NextGENe v2.1 sequence analysis software (SoftGenetics) and various publicly available tools and databases. In the first case, a known or novel pathological heterozygous mutation was identified in each of 4 different genes (NPH4, RPRQ111, CC2D2A, AVIL), consistent with a diagnosis of multi-allelic ciliopathy with retinal degeneration. In the second case, a predicted pathological hemizygous mutation c.194A>G (p.N65S) within the NSDHL gene on Xq28 was identified, and its presence was confirmed in the carrier mother. The presence of this novel mutation in the male fetus is most likely associated with malformations caused by dysfunction in cholesterol biosynthesis, in agreement with the clinical findings. In both cases, our findings provide new and important insights into the genetic causes of complex phenotypes and highlight the value of this new technology when applied in a clinical setting.

P12.048

Exhaustive molecular analysis and accurate estimation of type V collagen mutations in classic EDS

D. Syx, S. Symons, F. Malaise, F. Coucke, A. De Paepe; Center for Medical Genetics, Ghent, Belgium.

Classic Ehlers-Danlos syndrome (EDS) is characterized by hyperextensible skin, atrophic scarring, easy bruising and generalised joint hypermobility. Mutations in COL5A1 and COL5A2, encoding type V collagen, have been reported, but the proportion of classic EDS that result from defects in these genes remains unresolved. We studied 126 patients with a clinically established or suspected diagnosis of classic EDS. Of these, 102 patients fulfilled all major diagnostic criteria for classic EDS (Villefranche nosology) (group 1). In 83 patients in whom the diagnosis of classic EDS could not unequivocally be established, as they presented joint hypermobility and soft, mildly hyperextensible skin but no typical dystrophic scarring (group 2). Inclusion of this cohort allowed evaluating the most indicative clinical features for the presence of a type V collagen defect. In total, a type V collagen defect was identified in 93/102 patients in group 1, among which 49/102, approximately half of these defects caused COL5A1 haploinsufficiency, whereas one-third were structural mutations in COL5A1 or COL5A2. In 9/102 patients no type V collagen defect was detected. No obvious genotype-phenotype correlation was observed. In contrast, none of the patients of group 2 harbour a COL5A1/COL5A2 mutation. Our data show that >90% of patients fulfilling all classic EDS Villefranche criteria harbour a type V collagen defect. Biochemical and molecular analysis in the mutation-negative patients from group 1 and 2 excluded the involvement of other fibrillar collagens and harboured a type V collagen defect. Biochemical and molecular analysis in the major, if not the only, protein involved in classic EDS.

P12.049

TRPV4 mutations in a selected CMT2 Norwegian patient cohort

Mutations in the ankyrin domain of the TRPV4 (Transient receptor potential vanilloid 4) protein have been shown in patients with congenital distal spinal muscular atrophy (SMA), scapuloperoneal SMA and Charcot-Marie-Tooth (CMT) 2C. We aimed at identifying TRPV4 mutations by sequencing exons 5 and 6 of the gene in a cohort of Norwegian patients with clinical and electro-physiological findings suspicious of CMT type 2. We identified twenty two patients who were previously tested normal for the common CMT2 genes (GBI, MFN2, MFZ, GADAP1 and NPELF), and identified two patients heterozygous for the mutations p.Arg315Trp and p.Arg316Cys in the TRPV4 gene. This suggests that TRPV4 mutations might represent a relatively common cause of CMT2 in the Norwegian population and testing of the TRPV4 gene should be considered where genetic testing of the common genes is inconclusive.

The patient harbouring the sequence variant c.946C>T (p.Arg316Cys) was referred at age 6 with clinical symptoms of muscular dystrophy. Investigation including FSHD genetic testing and muscle biopsy was inconclusive. On re-evaluation at age 13, electromyography, clinical and radiological investigations raised suspicion of a scapuloperoneal SMA. Further genetic testing was negative regarding SMA and CMT2. He has a younger brother that also reports some overlapping clinical symptoms. A clinical re-examination and segregation analysis of the family will be presented and compared with patients previously reported with this TRPV4 mutation.

P12.050

Cockayne Syndrome testing at BGL- a new service and case study

M. Greenslade1, L. Varrani, F. Lunt2, A. Lehmann1, H. Fawcett2, M. Williams2; 1Bristol Genetics Laboratory, Bristol, United Kingdom; 2St. Michael’s Hospital, Bristol, England, United Kingdom.

Cockayne Syndrome (CS) is a recessive multisystem disorder characterised by early onset microcephaly, mental retardation, cachectic growth failure, photosensitivity and progressive neurological deterioration usually leading to death in childhood or early adulthood. CS is associated with mutations in ERCC6 (OMIM:6069413) and ERCC8 (OMIM:216400). 75% of CS mutations are in ERCC6 and 25% in ERCC8. The protein encoded by ERCC8 and ERCC6 both play important roles in transcription-coupled nucleotide excision repair.

We present an urgent prenatal case of a mother presenting at 10+ weeks, her 17 month old son having a definite clinical diagnosis of CS but no molecular or cellular confirmation. Time pressures precluded obtaining a molecular test result in European service/research laboratories, and cellular UV sensitivity studies requiring cultured skin biopsy typically taking 6-8 weeks. Sanger sequencing assays for ERCC6 and ERCC8 were designed and validated in ten working days and the proband identified as homozygous for an ERCC6 pathogenic variant c.3052dupA. This facilitated prenatal testing by sequence analysis with results available in three days, confirmed by UV-test 5-6 weeks later.

Rapid reporting of sequencing assays recommends DNA testing as the first line approach in suspected CS cases meeting clinical criteria, complemented by the cellular UV sensitivity studies when variants of unknown significance (VUS) are detected. DNA testing avoids an invasive skin biopsy, and may reduce the number of additional tests undertaken upstream e.g. microarray CGH.

An accredited diagnostic genetics service for CS is now available for the UK and Europe, we present an audit of referrals to date.

P12.051

Mutations in Swi/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome

G. E. Santen1, E. Ahn1, Y. Sor1, R. Almamn1, C. Gilissen, M. Nielsen, S. G. Kant1, Y. Hilhorst-Hofstee1, N. S. den Holland1, M. W. Wesel1, V. M. van Belzen1, C. A. L. Ruivenkamp1, G. B. van Ommen1, M. H. Breuning1, F. J. den Dunnen2, A. van Haeringen1, M. Krix1, Y. Hilhorst-Hofstee1, B. Hagnefelt1, S. Sevastidou1, K. Pispili1, C. Konialis1; 1Erasmus Medical Center, Rotterdam, Netherlands; 2Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 3Erasmus Medical Center, Rotterdam, Netherlands.

Coffin-Siris syndrome (CSS) is characterized by intellectual disability, speech impairment, coarse facial features, hypoplasia of the fifth digits and/or fingernail and callosal agenesis. Since several sibships with CSS have been described autosomal recessive inheritance was considered a likely possibility. We selected three unrelated patients with CSS and the parents of one patient by genealogical analysis in 2000 patients with intellectual disability and speech impairment in our clinics to date.

In both patients, ARID1B mutations were detected by Sanger sequencing. Array-based CNV analysis in 2000 patients with intellectual disability revealed deletions encompassing ARID1B in three patients with partially overlapping phenotypes. They share facial features, intellectual disability and severe speech delay with the CSS patients. Interestingly, they lack the typical CSS abnormalities and CSS was considered in only one if these patients as a diagnosis. Several patients with ARID1B haploinsufficiency have been described in literature with a very similar phenotype and often with agenesis of the corpus callosum. Therefore we conclude that haploinsufficiency of ARID1B, which encodes a (epigenetic) modifier of chromatin structure, emerges as an important cause of CSS and a potential common cause of intellectual disability and speech impairment. By screening additional groups of patients for ARID1B we have identified several new mutations.

www.eshg.org
P12.052

Genetic abnormalities in Coffin-Siris syndrome
N. Matsutomo,
Yokohama City University, Yokohama, Japan.

Coffin-Siris syndrome (CSS; MIM 135900) is a rare congenital anomaly syndrome characterized by growth deficiency, intellectual disability, microcephaly, coarse facial features and hypoplastic nail of the fifth finger and/or toe. The majority of patients are sporadic, being compatible with autosomal dominant inheritance. The genetic cause has not been elucidated.

To reveal the genetic basis of CSS, we performed whole exome sequencing of five typical subjects. Based on our scheme assuming that an abnormality of a particular gene would be shared in two or more patients, 51 variants remained as candidates. All the variants were checked by Sanger sequencing of PCR products amplified using genomic DNA from the five patients and their parents. Nine were false-positives (errors). 40 were inherited from either the father or mother, and two de novo heterozygous mutations were found in two patients.

Using this information, we carefully analyzed 23 CSS patients and found that at least 20 of them are genetically explained. Detailed information will be presented.

P12.053

A novel COL1A1 mutation in a family with infantile cortical hyperostosis (ICH, Caffey disease, OMIM#114000)

A. Baumert*, H. Aarchocha†, D. Bartholdi†, A. Bauch†

1Institute of Medical Genetics, Zürich, Switzerland, 2Ospedale Civico, Lugano, Switzerland.

Infantile cortical hyperostosis is a rare autosomal dominant disorder characterized by subperiosteal hyperostosis manifesting in the prenatal period or in early infancy. It often affects the mandible, the clavicles, the ribs and the long bones. Typical clinical symptoms include painful swelling of the bones and fever. ICH is a self limiting disease which usually resolves spontaneously by 2 years of age.

A single mutation in the COL1A1 gene has been reported to date in ICH patients of different ethnic origins, namely the missense mutation p.Arg836Gys. The mutation was shown to lead to abnormal disulfide bonds and abnormal structures of the alpha 1 chain dimers. (1)

COL1A1 gene mutations, detected throughout the gene, are responsible for further connective tissue disorders such as: osteogenesis imperfecta and Ehlers-Danlos syndrome type III. Typical for these disorders is fragility of the bones and laxity of the skin/connective tissue, respectively.

We report here on the molecular findings obtained for a young girl with typical clinical manifestation of ICH. After having excluded the presence of the COL1A1 mutation p.Arg836Gys we sequenced all coding exons of the gene. The sequencing analysis revealed a heterozygous mutation, p.Arg918Gys, in the patient and her father, who also had typical features of the disorder. The mutation was not present in the patient’s mother and 200 control alleles.

We suggest that ICH may not only be caused by the recurrent p.Arg836Gys mutation, but also by the novel p.Arg918Gys mutation.

References

P12.054

A Loss of Function Mutation in the COL9A3 Gene Cause Autosomal Recessive Sticker Syndrome

F. Faletta*, I. Brunoz, A. P. D'Adamant, E. Athanasakis, B. Bishop, L. Espisoto, P. Gasparinni;

Sticker syndrome is a clinically variable and genetically heterogeneous syndrome characterized by ophthalamic, articular, otoacoustic, and auditory manifestations. Until now, it has been described with both autosomal dominant and recessive inheritance. The dominant form is caused by mutations in COL2A1 (STL 1, MIM 108300), COL1A1 (STL 2, MIM 604941) and COL1A2 (STL 3, MIM 184840) genes, while recessive forms have been associated with mutations of COL9A1 (MIM 120210) and COL9A2 (MIM 120260) genes. Here, we describe the first autosomal recessive Sticker family due to loss of function mutations (c.1176_1198del, p.P392fsX25) of COL9A3 gene.

This findings further extend the role of collagen genes family in the pathogenesis of the disease.

P12.055

Consanguinity as a means to identify pathogenic recessive mutations

1Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland, 2Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland, 3Department of Clinical Genetics, National Research Centre, Cairo, Egypt, 4Medical Genetics Unit, Saint Joseph University, Beirut, Lebanon, 5Pediatric Department, Jordan University Hospital, Amman, Jordan, 6Department of Medical Genetics, University of Athens, Athens, Greece, 7Department of Pathology, College of Medicine, University of Dohuk, Dohuk, Iraq, 8Department of génétique médicale, Institut National d’Hygiène, Rabat, Morocco, 9Genetic Clinic, Al Amal Maternity Hospital, Amman, Jordan, 10Department of Paediatrics, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates, 11Department of Human Genetics, University Tunisia El Manar, Faculty of Medicine, Tunis, Tunisia.

Consanguinity and inbreeding increase the sharing of alleles among individuals. We have initiated a project to collect samples from families with recessive phenotypes in consanguineous families, in order to identify the functional genomic variant and to be responsible for this disease. Any phenotype and family history compatible with autosomal recessive inheritance (and unknown molecular defect) is candidate for participation in the study. Forty two families of different ethnic background have already been collected. From each family, blood DNA from the patient(s), all unaffected siblings, and the parents is extracted. Samples from one or more of the affected individuals per family are first analyzed by array-CGH 400K for the detection of homozogous deletions. Then the samples of all family members are genotyped with a dense SNP array in order to identify Runs of Homozygosity (ROH), allowing the definition of chromosomal regions likely to contain the responsible genes. Finally exome sequencing is performed in one affected individual per family. Variants are called using publicly available tools and filtered according to polymorphic SNVs deposited in public databases and predicted pathogenicity. We have so far analyzed twelve families using this approach. Causative variations of known disease genes have been identified in two families (VLDLR gene, causing disqualipherid syndrome and FKTN gene causing Fukuyama muscular dystrophy). In 5 additional families candidate genes have been identified. Consanguineous families provide an opportunity to identify pathogenic variants in known genes as well as candidate genes responsible for recessive phenotypes and rapidly fill in the space of genotype-phenotype links.

P12.056

Molecular analysis of TSC2/PKD1 contiguous gene deletion syndrome
J. Nevado1, R. Peces1, P. Molonamo2, E. Valletgina2, H. C. Peces2, E. Cuesta-Lopez2, F. Gonzalez1, M. Picauro1, C. Vega-Cabrera2, R. Selgas3, P. Laposnina1,2;

1INGEMM- IDIPIAZ (HULP), Madrid, Spain, 2CIBERER, Madrid, Spain, 3IDIPAZ (HULP), Madrid, Spain, 4Area de Tecnología de la Información (SESCAM), Toledo, Spain.

The TSC2/PKD1 contiguous gene syndrome (PKDTS, MIM#600273) results in disruption of both the TSC2 and PKD1 genes. PKDTS is characterized by severe juvenile polycystic disease, combined with variable phenotypic expression of tuberous sclerosis (TSC2). This extensive renal damage by cysts usually results in end-stage renal disease (ESRD), often before the second decade of life. Currently, the mechanism for PKDTS is nearly unknown. Previous findings suggest that PKDTS damage is associated exclusively with the presence of kidney symptoms, and not with the severity of other ones, such as TSC, liver cysts, or intracranial aneurysms. To our best knowledge, no whole studies including, clinical, renal imaging studies, nor histopathological and neither molecular biological analysis with new technologies (such as MLPA and aCGH), have been performed on the TSC2/PKD1 contiguous gene syndrome patients.

The main aim of this work is to examine the genotype-phenotype correlations in this disease including previously reported patients with clarified breakpoints of the large deletions. To end this, we report herein 7 new patients with the TSC2/PKD1 contiguous gene syndrome deletions in different extent, by means of MLPA and a custom design aCGH within 16p1.3 locus. The extent of the deletion concerning TSC2 and PKD1 genes, and the nature of the deleterious event are determined and discussed concerning clinical consequences and pathogenic molecular mechanisms.
P12.057
Familial recurrence and modifier genes in CDLS families with NIPBL mutations.
C. Geravasio1, A. Parenti1, J. Azzollini1, C. Piccinelli1, M. Masciadri1, A. Cereda2, F. Pinelli2, S. Sircia3, L. Garavelli2, S. Russo1, A. Selicorni1, L. Larizza2
1Medical Genetics University of Milan, Milano, Italy, 2Istituto Auxologico Italiano, Casnate con Bernate, Milan, Italy, 3Clinical Genetics, Pinerolo, Recco, and La Spezia, Italy.

This study aimed to evaluate the carrier frequency of Recurrent CDLS (OMIM #122470) in the whole duplication of RPA1 gene and a de novo duplication exiling in two Italian families with CDLS.

In family 1, 16 carriers on 1,100 tested controls have been detected by Pyrosequencing to assess the reciprocal level of differential expression. In family 2, 4 carriers on 1,100 tested controls have been found.

This study showed that the expression of the wild type allele may influence the clinical phenotype. The overall effect of rare CNVs and NIPBL mutation in the CdLS expression of SMC1A-mutated female patients has been rarely described.

Further molecular characterization of PYCR1-related cutis laxa.
F. Fischer1, T. Gardeitchik1, A. Dimopoulou1, D. Kounowenberg2, S. Sunder1, C. Schlack1, B. Fauser1, S. Mundlos1, L. Niijman1, H. Kayserili2, B. Wolfin1,3, E. Moravetz1, U. Kornack1, R. Schmal1
1Institut fuer Medizinische Genetik und Humangenetik, Berlin, Germany, 2Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 3Max Planck Institute of Molecular Genetics, Berlin, Germany.

Autosomal recessive cutis laxa (ARCL) syndromes are a group of overlapping disorders with progeroid features, but without lung and vascular involvement (ARCL type 2). In a cohort of patients initially characterized as wrinkly skin syndrome, gerodermia osteodysplastica or De Bary syndrome we identified mutations in the PYCR1 gene encoding pyrroline-5-carboxylate reductase 1. PYCR1-related ARCL (ARCL2B; OMIM #612940) is the second most frequent form of ARCL. We give an update on the clinical variability and report novel disease-causing mutations.

PYCR1 protein is part of the proline-cyclase, a conserved pathway described to generate NAD(P)+ in the cytoplasm via synthesis of proline. PYCR1-knockout mice are embryonic lethal, while pyrroline-5-carboxylate reductase deficiency was observed in a patient with a compound heterozygous mutation. To determine 9 mutations (F508del, G542X, N1303K, W1282X, R117H, N1108S, E1335K, R1172C, S1118C) in the PYCR1 gene by Sanger sequencing and report novel disease-causing mutations.

Thus, we conclude a role of PYCR1 in the regulation of the mitochondrial redox state, which influences mitochondrial fusion and possibly also metabolism. This combination of defects is likely to be a key event in the pathogenesis of ARCL2B and qualifies ARCL2B as a mitochondrial disorder.

This study revealed a higher percentage of female patients carriers of different mutations of SMC1A gene and 8 controls have been tested by Pyrosequencing to assess the reciprocal level of allelic expression, discriminated by the heterozygous mutation in the patients and heterozygous coding SNP rs1264011 in the controls. The analysis of the two alleles showed a 53/47 ratio in the controls group and a 67/33 ratio favoring the wild type allele in the patients. In particular the patient with the highest wild type expression (73/27 wt/mut) presents a borderline phenotype with mild dysmorphisms and cognitive deficits, at difference of the other patients (65/35 wt/mut) showing a moderate to severe clinical phenotype.

According to the proposed dominant negative mechanism of mutated SM-CIA protein in females CDLS patients, the preferential, but variable expression of the wild type allele may influence the clinical phenotype. The overall findings, expanded to further cases and corroborated by quantitative expression data, enhance our understanding of the variable clinical spectrum of X-linked CDLS and highlight the occurrence of overhanded cases.

P12.060
Expanding the mutational spectrum of CRLF1 in Crisponi Syndrome.
R. Piras1, E. Chiappe2, M. Pitazzoli2, G. Crispone, F. Benedicenti, B. Kamien2, M. Ali Akin, F. Tuba Emimoglu, N. Uzunolci, A. Assy2, P. Lapunzina2, E. Cuccu2, F. Butach2, L. Crispone
1Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Cagliari, Italy, 2Dipartimento di Scienze Biomediche e Biotecnologie, Università degli Studi di Cagliari, Cagliari, Italy, 3Dipartimento di Scienze Biomediche, Università degli studi di Sassari, Sassari, Italy, 4Casa di Cura Sant’Anna, Cagliari, Italy.

Crisponi syndrome (CS) and cold-induced sweating syndrome type 1 (CISS) represent manifestations of the same autosomal recessive disorder with different degrees of severity, caused by mutations in CRLF1. The two syndromes share clinical characteristics, such as dysmorphic features, muscle contractions, scoliosis and cold-induced sweating, with CS patients showing a severe clinical course in infancy involving hyperthermia, associated with death in most cases in the first years of life. We suggested recently to rename the two genetic entities with the broader term of Solhar-Crisponi syndrome. We expanded the mutational spectrum of CRLF1 in the syndrome and carried out a meta-analysis of the literature for all the mutations described so far. In conclusion we found 9 new mutations in addition to the 29 already described. The higher prevalence is registered in Sardinia, Turkey and Spain. In Sardinia, where the syndrome seems to be more common than in the rest of Italy, due to 2 founder mutations, we performed a pilot screening to evaluate the carrier frequency. In details we found 16 carriers on 1,100 Sardinian control individuals from 4 different provinces, with an estimated prevalence of 1:20,000. A more detailed analysis (detection of heterozygous CRLF1 deletions by Quantitative Real Time PCR, CNTFRα testing, exome sequencing) is ongoing to find the genetic cause in those patients with a clinical phenotype suggestive of Solhar-Crisponi syndrome, but with no evident mutations in CRLF1. This will help in better understanding the pathogenesis of the disease and the molecular pathways involved in the phenotype.

P12.063
Clinical Genetic Analysis of Cystic Fibrosis in Republic of Moldova.
N. I. Barbova1, V. V. Egorov1, State Center of Reproductive Health and Medical Genetics, Chisinau, Republic of Moldova.

During the period from 1992 to present we investigated 147 Moldovan patients with CF aged from 1 month to 24 years (70 male and 77 female). We carried out comparison of phenotypic features in CF with type of CFTR mutation. The national distribution of patients was following: Moldavians - 66,2%, Russians - 14,6%, Ukrainians - 7 %, Gagauz - 6,2 %, Bulgarians - 2,3 %, and another nationalities - 3,7%. To determine 9 mutations (F508del, G542X, N1303K, W1282X, R117H, 66,2%, Russians - 14,6%, Ukrainians - 7 %, Gagauz - 6,2 %, Bulgarians - 2,3 %, and another nationalities - 3,7%).
P12.064 Whole-exome sequencing identifies a novel nonsense mutation in the TTN gene in a large Dutch family with DCM

R. J. Sinke1, J. Zhang, R. Almoman, A. Pászty-Gáspár1, K. V. van StrienEupenZwaart, M. P. van den Berg, 1, B. J. Timmers, 1, J. D. Jongbloed 1

1Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands; 2BGI-Shenzhen, Shenzhen, China; 3Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands; 4Department of Biology, University of Copenhagen, Copenhagen, Denmark.

Dilated cardiomyopathy (DCM) is an etiologically highly heterogeneous disorder characterized by left ventricular dilatation and dysfunction, leading to heart failure and sudden death. Approximately 20-50% of dilated cardiomyopathy cases are familial with significant genetic and phenotypic heterogeneity. In a multigenerational Dutch family with autosomal dominant transmission, we employed whole-exome sequencing in three affected family members. Using the GATK pipeline for whole exome data analysis, we identified between 1431 and 1557 novel exonic/splice site variants per family member. Next, we performed a tailored investigation of patients, including imaging and genetic analysis. In total, we identified 16 mutations (excluding F508del) were determined in 10.88% of the patients with non-identified mutations (30.28%) is characterized by high level of pulmonary involvement (71.0%). Therefore, the present study discovered a novel mutation in the TTN gene (TTN) in all three affected patients. The respective substitution c.59845C>T predicts a premature stop codon (p.Arg19949X) at the protein level, leading to a truncated titin protein. The mutation was confirmed by Sanger sequencing and was shown to co-segregate with disease in all DCM patients in this family. Our results show that mutations in the gene encoding giant muscle filament titin (TTN) can cause DCM and may account for a significant portion of the genetic etiology in familial DCM in the Dutch population.

P12.065 Etiological study of hearing loss: clinical practice guidelines in Brazilian patients

E. L. Sartorato, P. Z. Ramos, V. C. S. de Moraes, M. C. Svidnich, A. M. Castiho; Universidade Estadual de Campinas, Campinas - SP, Brazil.

Deafness is considered the most prevalent sensory disorder in humans. In Brazil, there are no official data regarding the prevalence and etiology of hearing impairment, but it is known that environmental factors are among the major causes. Although a simultaneous testing approach, including clinical exams, audiological, laboratorial, imaging and genetic expands the etiological diagnostic, overloads the healthcare system due to high costs. Thus, the goal of the present study is to evaluate the effectiveness of imaging and genetic tests and their impact on public health, aiming to increase efficiency and reduce costs of the etiological diagnostic of hearing loss. It was conducted an analysis of 100 patients with sensorineural hearing loss. A detailed investigation was performed in patients, including imaging and genetic analysis. The number of individuals with unknown cause was reduced from 72 to 42 (42% of reduction). Radiological abnormalities were identified in 29 of the patients, while molecular alterations were found in 31 individuals. The etiology remained unknown in 2% of the patients, was due to environmental factors in 25%, genetics in 19% and inner ear malformations or other defects in 14% of the cases. It was concluded that both imaging and genetic analysis were important to identify the etiology of hearing loss, however, molecular tests contributed mainly for diagnosis of patients with congenital deafness, while radiologic exams had greater contribution for diagnosis of cases with progressive or abrupt hearing loss. The sequential protocol enables an optimization of the etiological diagnosis and cost reduction.
P12.070
Clinical, pathological and genetic characterization of manifesting DMD carriers: the role of X-chromosome inactivation
J. Juan-Mateu, L. Gonzalez-Quereda, M. Rodriguez, E. Verdúra, L. Alías, J. Salazar, M. Boiget, P. Gallano
Hospital Sant Pau-Ciberer, Barcelona, Spain, HOSPITAL SANT PAU-CIBERER, BARCELONA, Spain.

Mutations in DMD gene lead to Duchenne muscular dystrophy (DMD), milder Becker muscular dystrophy (BMD) and rare X-linked dilated cardiomyopathy (XL-DCM). Female carriers are mainly asymptomatic, however between 7-9% and 22% manifests some degree of the disease. Several mechanisms have been implicated to cause symptoms among manifesting carriers. These include: somatic mosaicism, translocations disrupting DMD, compound heterozygous mutations, co-occurrence of DMD mutations together with other genetic abnormalities (X-chromosome monosomy, X-chromosome uniparental disomy and male pseudohermaphroditism) and skewed X-chromosome inactivation. Clinical presentation among manifesting carriers are heterogeneous and ranges from myalgia to disabling DMD-like forms.

We identified 22 manifesting carriers, ten of them with no family history of DMD affected males. We report findings concerning clinical presentation, muscle dystrophin expression, DMD mutation spectrum and X-chromosome inactivation (XCI) pattern in blood and muscle. Clinical pictures included: 1) isolated dilated cardiomyopathy (n=2, 9%), 2) isolated mental retardation or behavior issues (n=3, 14%), 3) myalgia and/or exercise intolerance (n=4, 18%) and, 4) mild to severe muscle weakness (n=13, 59%) that ranged from mild BMD-like (n=6, 27%) to severe BMD-like (n=4, 18%) and DMD-like (n=3, 14%).

Twenty-one different DMD mutations were identified in heterozygous state including: 12 de novo deletions (57%), 3 xonic duplications (14%) and 6 point mutations (29%). The aim of this study was to explore the potential correlation between the severity of the disease and X-chromosome inactivation. We have compared XCI ratios between manifesting carriers, non manifesting carriers and normal female controls.

P12.071
The LGM2A prevalence among patients diagnosed as DMD in Russia.
O. P. Ryzhkova, N. Komarova, A. Polotykov, Research Center for Medical Genetics, Moscow, Russian Federation.

Duchenne muscular dystrophy (DMD) is the commonest and best-known of the muscular dystrophies, but other types of muscular dystrophy (MD) like limb-girdle muscular dystrophy type 2A (LGM2A) may have a similar clinical presentation. LGM2A is the most frequent autosomal recessive MD. The molecular defect in DMD gene, accounting for approximately 60% of cases of DMD is deletion of one or more exons. The most common molecular defects in CAPN3 gene in Russia are two missens mutations c.550delA and c.598,612del.

More than thousand DNA samples (1339) of patients diagnosed as DMD have been analyzed for deletions of exons 3, 4, 6, 8, 13, 17, 19, 32, 42-45, 47, 48, 50, 53, 60 in DMD gene and in 539 of them (40.25%) have been revealed different deletions in DMD gene. 800 patients have no these deletions. DNA samples of 698 patients without deletions in DMD gene have been screened for the most frequent mutations in CAPN3 gene and these mutations were revealed in 34 of them (4.87%). Genotypes was: c.550delA/ c.550delA - 14 patients, c.550delA/N - 15 patients, c.550delA/c.598,612del - 2 patients, c.598,612del/N - 3 patients.

From Hardy-Weinberg equilibrium summary the allelic frequency of this two mutations comprised 6%. Using this data we calculated that there have to be 45 patients with LGM2A among 800 patients without deletions in DMD gene. So we found that the frequency of LGM2A among patients diagnosed as DMD comprise 3.6%.
patients presented a common phenotype with an early age of onset and a prompt macrocular degeneration while the heterozygote carriers did not show any signs of RP.

Conclusions: p.Ser542Stop is a single founder mutation and the most prevalent one in the mutation in the Spanish population. It causes early-onset RP and is responsible for 4.5% of all cases. Our data suggest that the implication of RP1 in arRP could be underestimated.

P12.075
Molecular screening of KRT14 common mutations in Iranian patients affected with Epidermolysis bullosa

The defect in chloride and sodium transport in cystic fibrosis (CF) patients is a consequence of CFTR loss of function and/or an abnormal interaction between cystic fibrosis transmembrane conductance regulator (CFTR) and amiloride sensitive epithelial sodium channel (ENaC). Apart from the defective chloride secretion, loss of functional CFTR results in increased sodium absorption through the ENaC channel in CF patients.

We investigated whether mutations in the genes that code for the different subunits of ENaC gene might result in CF-like disease in patients in whom only one CFTR gene is mutated, or that carry no mutations at all in the CFTR coding region and its exon/intron junctions. We extensively performed ENaC genes sequencing in these CF-like patients and established the frequency of identified ENaC mutations in a cohort control.

In total, 66 sequence variants in ENaC genes were found in 60 CF-like patients. Several novel ENaC gene mutations were identified and some of them were located in highly conserved domains and consistent with a pathophysiologic role. Only three novel mutations including p.V348M and p.W423R in SCN1B subunit and p.R180W in SON1 were observed once in our patients, but not in controls. The preliminary functional studies using expression in Xenopus laevi oocytes showed that the p.V348M is a gain of function mutation with a high amounts (2-30%) of functional ENaC activity.

Our data suggest that CF-like syndrome in Africa could be associated with ENaC mutations. The combination of ENaC and CFTR mutations may play a role in the development of CF-like syndrome in Africa. The preliminary functional studies using expression in Xenopus laevi oocytes showed that the p.V348M is a gain of function mutation with a high amounts (2-30%) of functional ENaC activity. Moreover, no copy number variants were identified.

The high frequency of SCN14 mutations found in patients with Dravet syndrome (80%) suggests that molecular testing is particularly useful for individuals with this phenotype. In contrast, SCN14 testing does not seem to be clinically relevant in Dravet syndrome. Our strategy for predicting deleterious effect of mutations using multiple prediction algorithms provided valuable information, helping clinicians with decision making. Furthermore, our results indicate that missense mutations can cause severe phenotypes depending on its location and the type of amino-acid substitution.

P12.079
Mutations in PRRT2 cause familial and sporadic cases of Benign Infantile Epilepsy

L. M. Dibbens; University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, Australia.

Objective: Benign familial infantile epilepsy (BFIE) is an autosomal dominant seizure disorder that occurs in infancy. Seizures begin around 6 months of age and cease by 2 years. In some cases a movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), follows in childhood or adolescence; this combined disorder is known as infantile convulsions and paroxysmal choreoathetosis (ICCA) syndrome. We have recently shown that the familial disorders BFIE, PKC and ICCA are all caused by mutations in PRRT2. We sought to determine if de novo PRRT2 mutations cause sporadic benign infantile epilepsy and whether the phenotypic spectrum of PRRT2 was broader than initially recognized.

Methods: 44 probands with infantile-onset seizures, infantile convulsions with mild gastroenteritis and benign neonatal seizures underwent pheno- typing and PRRT2 sequencing. The segregation of mutations identified in probands was studied.

Results: The recurrent PRRT2 mutation c.649-650insC (p.R217fsX224) was identified in 11 probands. Nine probands had a family history consistent with BFIE or ICCA. Two probands without a family history of seizures or PKC had de novo PRRT2 mutations. Febrile seizures with or without afibrile seizures were observed in two families with PRRT2 mutations.

Conclusions: Mutations in PRRT2 are an important cause of seizures seen in infancy. Mutations can be either familial or de novo. PRRT2 mutations are present in >80% of BFIE and >90% ICCA families, but are not a common cause of other forms of infantile epilepsy. Seizures with fever may occur in BFIE such that it may be difficult to distinguish BFIE from febrile seizures in small families.

P12.080
NGS in molecular diagnostics of epilepsies

L. Minichová1, E. Decker2, M. Bibeliová1, H. Gabriël2, M. Gencić3, S. Kostová2, 1,2 Shannah Medical Genetic Counseling Center, Bratislava, Slovakia, 3Shannah Medical Genetic Counseling Center, Osnabrück, Germany.

The molecular genetic diagnosis of epilepsy particularly in children is essential for precise diagnosis, prognosis and has significant implications for the therapeutic strategy. Until now molecular screening was performed by DGGE, Sanger sequencing and MLPA technique. Here we report on a new method screening protocol for Dravet syndrome & GEFS+ - associated genes based on Next-Generation Sequencing (NGS) using the Roche 454 platform. Our current testing panel includes mutation analysis of genes SCN1A, SCN1B, GABRD, GABRD and KCNQ2.

So far, 22% of the patients suspected for Dravet syndrome / GEFS+ harboured a mutation in the SCN1A gene, one patient had a mutation in the GABRD gene. The spectrum of identified mutations included small deletions, insertions, truncations and missense mutations, mostly located in the pore and voltage sensitive region of the SCN1A protein. We have also detected a deletion of the whole SCN1A gene as well as a large duplication of the PRRT2 as well as a large duplication of the PRRT2 gene. Interestingly, in two patients with a severe clinical manifestation a homozygous and two compound heterozygous mutations were identified, respectively.

www.eshg.org
Mutations of the PCDH19 Gene in 26 Female Patients with Epilepsy

Mutations of the PCDH19 gene in 26 female patients with epilepsy were detected in genes that only in very rare instances have been associated with epileptic disorders. Many rare epilepsy disorders might have a genetic basis of many so far unresolved cases with epilepsy. We detected mutations in the SCN1A gene. The PCDH19 gene links to Xq22.1 and this gene contains 6 exons, of which the first is unusually large. We studied 26 female patients from southern Italy with SBEI that were negative for mutations in SCN1A to investigate the frequency of PCDH19 mutations in our population. The clinical features of our patients are seizures onset before 12 months of age, with severe mental retardation with poor language development and ataxia. Genomic DNA from the patients was analysed by direct sequencing of the PCDH19 gene on an ABI 3130XL Automated sequencer. In this study, we identified three different heterozygous novel mutations of PCDH19 gene in 26 patients with SBEI (11.5%). The c.1522_1528del/p.Arg510Pro isoform mutation was identified in an isolated female patient. The second novel mutation identified is c.1649G>C/p.Arg560Pro; the third novel mutation identified is c.2568C>T/p.Ser856Cys. The results of this study indicate that PCDH19 mutation is a relatively frequent cause of epilepsy in Southern Italy. This frequency (11.5%) is comparable to that reported in previous studies. In conclusion molecular testing of PCDH19 should be considered in females with early-onset FS and/or epilepsy with or without cognitive impairment and family history.

Targeted Next Generation Sequencing as Diagnostic Tool in Epileptic Disorders

The epilepsies are a very heterogeneous group of common neurological disorders comprising many individually rare diseases. Thus, genetic diagnosis often remains difficult. With our approach we aim to reveal the genetic basis of epileptic disorders in so far unresolved cases. We enriched a panel of 323 epilepsy-associated genes using a custom designed Agilent SureSelect in solution kit and sequenced on a SOLID 4 platform. We screened >50 unknown cases with a broad spectrum of epilepsy phenotypes. We detected causative aberrations in commonly mutated ion channel genes (e.g. SCN1A, SCN2A) as well as in rarely affected genes (e.g. STXBP1, MFSD8). Surprisingly, we detected many mutations in extremely uncommon genes (e.g. RCETD7, ARHGEF9, KCNJ10, SMS). We also revealed SCN1A mutations in three patients where conventional testing (Sanger sequencing / HRM) failed to detect the mutations. We have successfully established a fast and cost efficient genetic screening method for patients with seizure disorders. We were able to uncover the genetic basis of many so far unresolved cases with epilepsy. We detected mutations in patients with both clear and unspecific epilepsy phenotypes. We revealed false negatives in conventional genetic testing methods. Many mutations were detected in genes that only in very rare instances have been associated with epileptic disorders. Thus, many rare epilepsy disorders might perhaps be more common but simply underdiagnosed due to unspecific and diffuse phenotypes. Therefore, our approach may contribute in collecting information on both well-known and unacknowledged epilepsy disorders and in revealing their true phenotypic spectrum.

Mutation spectrum in the CACNA1A gene in 49 patients with episodic ataxia type 2

Mutations of the CACNA1A gene in 49 patients with episodic ataxia type 2 (EA2) were detected in genes that only in very rare instances have been associated with epileptic disorders. Thus, many rare epilepsy disorders might have a genetic basis of many so far unresolved cases with epilepsy. We detected mutations in the SCN1A gene. The PCDH19 gene links to Xq22.1 and this gene contains 6 exons, of which the first is unusually large. We studied 26 female patients from southern Italy with SBEI that were negative for mutations in SCN1A to investigate the frequency of PCDH19 mutations in our population. The clinical features of our patients are seizures onset before 12 months of age, with severe mental retardation with poor language development and ataxia. Genomic DNA from the patients was analysed by direct sequencing of the PCDH19 gene on an ABI 3130XL Automated sequencer. In this study, we identified three different heterozygous novel mutations of PCDH19 gene in 26 patients with SBEI (11.5%). The c.1522_1528del/p.Arg510Pro isoform mutation was identified in an isolated female patient. The second novel mutation identified is c.1649G>C/p.Arg560Pro; the third novel mutation identified is c.2568C>T/p.Ser856Cys. The results of this study indicate that PCDH19 mutation is a relatively frequent cause of epilepsy in Southern Italy. This frequency (11.5%) is comparable to that reported in previous studies. In conclusion molecular testing of PCDH19 should be considered in females with early-onset FS and/or epilepsy with or without cognitive impairment and family history.

Does C-terminal deletion in the ALAS2 gene cause x-linked dominant protoporphyria?

Erythropoietic protoporphyria (EPP) is an inherited disorder caused by over-production of protoporphyrin IX in the final step of heme synthesis. Most patients have autosomal-dominant EPP, which requires coinheritance of a null FECH mutation trans to a hypomorphic allele. Recently a new form of X-linked dominant porphyria associated to gain of function deletions in ALAS2 has been described. In this study we re-examined 7 Italian unrelated FECH-negative families for a total of 23 subjects by sequencing of exon 11 of ALAS2. In 4 families, 4 males and 5 females carried the deletion c.1706-1709 delAGTG, confirming the disease is transmitted as X-linked trait in the affected families. In one family only the proband carried the deletion indicating a possible tumor suppressor function for the other two alleles. In the other three showed a balanced or a slightly skewed inactivation of the mutated allele. Our results demonstrate that the disease is transmitted as an X-linked recessive trait and the phenotype depends on the degree of X-inactivation. In family one only the proband carried the deletion indicating a possible the novo onset of the mutation that was confirmed by segregation of microsatellites. The mutations in 3 FECH-negative EPP families remain unknown, indicating that new genes targets can offer new opportunities for diagnosis.

Whole-exome sequencing in patients with clinical diagnosis of Familial Hypercholesterolemia

Familial hypercholesterolemia (FH) is a monogenic condition caused, in most cases, by mutations in LDLR, APOB and PCSK9. From our previous studies only 40% of patients have a identifiable mutation so, other mutations in these genes or other gene defects must exist to explain the cause of hypercholesterolemia in the remaining families. The main aim of this project was the whole-exome sequencing of 5 index

Does C-terminal deletion in the ALAS2 gene cause x-linked dominant protoporphyria?

Erythropoietic protoporphyria (EPP) is an inherited disorder caused by over-production of protoporphyrin IX in the final step of heme synthesis. Most patients have autosomal-dominant EPP, which requires coinherence of a null FECH mutation trans to a hypomorphic allele. Recently a new form of X-linked dominant protoporphyria associated to gain of function deletions in ALAS2 has been described. In this study we re-examined 7 Italian unrelated FECH-negative families for a total of 23 subjects by sequencing of exon 11 of ALAS2. In 4 families, 4 males and 5 females carried the deletion c.1706-1709 delAGTG, confirming the role of ALAS2 in protoporphyria phenotype. Differently from what was previously described [Whately et al, 2008] we found heterogeneity of phe- notypes between females: four of five females with the ALAS2 deletion, only two showed photosensitivity. Thus X-inactivation (X-i) were evaluated by analysis of ZMYM3 gene and HUMARA assay. The symptomatic females showed extreme skewed X-i pattern of the wild type allele (95% vs 5%), while the other three showed a balanced or a slightly skewed inactivation of the mutated allele. Our results demonstrate that the disease is transmitted as an X-linked recessive trait and the phenotype depends on the degree of X-i. In one family only the proband carried the deletion indicating a possible the novo onset of the mutation that was confirmed by segregation of microsatellites. The mutations in 3 FECH-negative EPP families remain unknown, indicating that new gene targets can offer new opportunities for diagnosis.

Whole-exome sequencing in patients with clinical diagnosis of Familial Hypercholesterolemia

Familial hypercholesterolemia (FH) is a monogenic condition caused, in most cases, by mutations in LDLR, APOB and PCSK9. From our previous studies only 40% of patients have a identifiable mutation so, other mutations in these genes or other gene defects must exist to explain the cause of hypercholesterolemia in the remaining families. The main aim of this project was the whole-exome sequencing of 5 index
patients with clinical diagnosis of FH (4 without a detectable mutation and one patient (P1) with a mutation in LDLR but the genotype did not justify the phenotype), in order to identify the genetic cause of the hypercholeste-
olaein in these patients.

Multiple variants were identified for each patient, more than 1500 per sample. The present analysis only refers to variants occurring only in one sample. A total of 6139 were nonsynonymous single-nucleotide substitutions, 11740 were synonymous, 283 were frameshift alterations and 73 were stopgain or stoploss alterations. A total of 1566 of the nonsynonymous sub-
stitutions were not present in dbSNP. The present analysis only refers to variants occurring only in one sample. A total of 6139 were nonsynonymous single-nucleotide exons and flanking splice sites. In addition to qualitative analyses, which can detect point mutations and small insertions/deletions, exome sequencing data can also be used for quantitative sequence analysis in order to detect large insertions/deletions. In this study, we have evaluated the qualitative and quantitative properties (i.e. mutation detection rate) of exome sequencing for different mutation types and genes. These genes are associated with syndromic forms of rare
aortic diseases, such as Marfan syndrome (FBN1), Loeys-Dietz syndrome (TGFBR1, TGFBR2), and Ehlers-Danlos syndrome vascular type (COL3A1), or with non-syndromic forms such as familial thoracic aortic aneurysms (ACTA2, MYH11, MYLK). For this evaluation, DNA samples with known point mutations and small deletions/duplications detected by Sanger sequencing as well as large deletions/duplications detected by MLPA were used as tem-
plates in exome sequencing. In a first step, we applied Agilent’s in solution sequence capturing of all coding exons and flanking intronic sequences and performed NGS using a SOLiD platform. Exome sequencing data visualized by the Integrative Genomics Viewer revealed that the mutation detection rate of the used exome sequencing method was lower than that of Sanger sequencing and MLPA, varying between mutation types and genes. Whereas point mutations were successfully detected with sufficient read-coverage depth, the used exome sequencing protocol needs to be improved for the detection of small deletions and duplications/insertions as well as for the more balanced capturing of exons.

P12.087 Exome sequencing of a consanguineous family affected by a congenital muscular dystrophy with hyperlexia (CMDH). M. Tetreault1,2; M. Vanasse2; B. Brass2; 1Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada, 2Laboratoire de neurogénétique de la maternité, Centre d’Excellence en Neuroimagerie de l’Université de Montréal, CRCHUM, Montreal, QC, Canada. 2Clinique des maladies neuromusculaires, Centre de réadaptation Marie-Enfant, Hôpital Sainte-Justine Hospital, Montreal, QC, Canada.

Over the past two decades, there have been major advances in defining the genetic bases of congenital muscular dystrophies (CMD). Genetic research has allowed the identification of more than 14 genes responsible for various forms of CMDs. Despite the great progress in this field, there are still a signifi-
cant percentage of cases for which the mutated gene is unknown. This is particularly the case for milder forms. Novel genomic techniques like Next-Generation DNA Sequencing (NGS) open new avenues in the elucidation of genetic defects causing monogenic disorders such as CMD. We recruited a consanguineous French-Canadian family from Southwestern Ontario, Canada with an Illumina HiSeq. A list of candidate genes with rare variants shared by the two cases in a homozgyous state and heterozygous in the mother was pro-
duced. The uncovering of the genetic bases of muscular dystrophies serve as the essential original building blocks on which successful new therapeutic approaches can be designed.

P12.088 Next-generation sequencing in genome-wide investigations reveals novel candidates in genetic eye disease. R. V. Jamieson1; W. Ng1; S. Yusoff2; K. Hanza Utami3; E. Chuen4; F. Collins5; M. Flaherty6; J. Gregg1; E. Liu7; Y. Boas8; A. Hillmer9; P. Peters10; S. Davila11; V. Cacheux12; 1University of Sydney, Sydney, Australia, 2Eye & Developmental Genetics Research, Children’s Hospital at Westmead & Children’s Medical Research Institute, Sydney, Australia, 3Genome Institute of Singapore, Singapore, Singapore, 4The Children’s Hospital at Westmead, Sydney, Australia, 5Save Sight Institute, Sydney, Australia.

Many ocular disease including developmental eye conditions such as anterior segment dysgenesis and diseases affecting the retina show marked genetic heterogeneity. The underlying genetic causes are unknown in many cases. An understanding of genotype-phenotype correlations is required to facilitate improved treatment strategies in these conditions. Next-gener-
ration sequencing is a key strategy for assessing structural and sequencing va-
rices on a genome-wide scale. Here we personalize the use of targeted next-generation sequencing to identify causal variants in families with balanced chromosomal rearrangements and eye disease, one de novo and one segregating with the disease, indicating pointers to the un-
derlying disease genes. For rapid breakpoint identification, we used a mate-
paired-end-tag sequencing approach. Identification of discordant read pairs spanning the breakpoints showed the genomic rearrangements precisely. In the de novo case with retinal dysplasia, a strong novel candidate disease gene with a role in presynaptic neurotransmitter release was transected by the breakpoint. In the familial case with anterior segment dysgenesis, several candidates were in proximity to the breakpoint and expression re-
sults from the patient cells and mouse eyes tissues have identified a strong candidate in eye anterior segment development. Exome target enrichment sequencing is being carried out for these and other candidates to screen for mutations in other patients with similar eye phenotypes. Our work empha-
ses the utility of combined genome wide structural and exomic analyses in disease gene identification in genetically heterogenous eye disorders.

P12.089 Hemophagocytic lymphohistiocytosis developed in visceral leishmaniasis may have genetic etiology. G. Baltar1; F. M. Azik1; A. Guruge1; 1Hacettepe University, Faculty of Medicine, Department of Pediatrics, Division of Hematology, Ankara Children’s Hematology Oncology Hospital, Department of Pediatric Hematology Displah, Ankara, Turkey.

Hemophagocytic lymphohistiocytosis (HLH) is an immune dysfunction dis-
order with various etiologies. Familial HLH (FHL) has genetic basis, while acquired HLH develops secondary to infections, malignancies etc. BMT is the only curative therapy in FHL whereas HLH symptoms in secondary HLH subside by the treatment of main cause. HLH may rarely develop secondary to visceral leishmaniasis (VL). This study demonstrates that HLH devel-
oped in VL may actually have genetic etiology. One-year-old only child of a consanguineous family had abdominal distention and high fever. Leishmania amastigots in BMA led to diagnosis of VL. Liposomal-aminophoterin-B therapy resolved symptoms which reappeared subsequently. No amastigots but hemophagocytosis detected in secondary BMA. She received continuous HLH-2004 protocol therapy since remissions followed by HLH reactivations and/or VL relapses until she died at age four. In the course of diagnosis, we also observed that VL was un-
available. Haplotype analysis of the family for Perforin, UNC13D, Syntaxin11 and STxBP2 genes of FHL revealed homozygosity for UNC13D gene. Sequen-
cing identified homozygous 627delf frameshift mutation (Thr209X40) in exon 8, resulting in premature termination of translation 40 amino acids downstream. Parents were heterozygous for this pathologic mutation. In the case of HLH in this patient did not develop secondary to VL, but was triggered by leishmania infection, most probably emerged at an earlier time. Clinicians must be aware that HLH developed in VL may have genetic etiology and leishmaniasis may mask the diagnosis of primary disease, which may eventually lead to loss of the patient due to tardiness in proper therapy and BMT Supported by TU/BITAK (Project No:1053836-SMAG3193).
P12.090 Molecular analysis of MEVF gene mutations in Iranian patients with Familial Mediterranean Fever

R. Morteza, M. Ansari, M. Basiri, A. H. Hamidian1, H. Najmabadi2;
1Kurniainen-Najmabadi Pathology & Genetics Center, Tehran, Islamic Republic of Iran; 2Research Center, University of Social Welfare & Rehabilitation Sciences, Tehran, Islamic Republic of Iran.

Familial Mediterranean Fever (FMF) is an autosomal recessive disorder characterized by recurrent attacks of fever and painful inflammatory manifestations in the abdomen, chest or joints. The marenostrin/pyrin-encoding gene (MEVF), mapped to 16p13.3, has been proposed as a candidate gene for FMF on the basis of the identification of mutations clustered in 10 exons.

In this study we used reverse-hybridization (FMF StripAssay, Viennalab Diagnostics, Vienna, Austria) to analyze the following 12 MEVF mutations: E148Q, P369S, F479L, M6801G/C, M6801G/G, A692del, M694V, M694I, K695R, V726A, A744S and R711H in 315 Iranian patients, who were referred to us based on clinical criteria indicating FMF. We identified MEVF mutations in 33.8% of our patients. Out of these, 6.65% were located in exon 10, while the remaining 33.5% were found in other exons. The most common mutations were p.M694V (20%), followed by p.E148Q (18%), p.V726A (9%), and p.M6801G (c.2040G>C) (3%), which suggests a heterozygote advantage of these first three mutations in Iran.

In 45.9% of patients we could not identify any mutation that could explain their clinical status; therefore, we planned the comprehensive sequencing of MEVF gene to elucidate the cause of their disease. Among these patients, for the first time we report on a novel disease causing compound heterozygote mutation (R202Q) in exon 2 and (c.1588-69 G>A) in IVS-5 of MEVF gene in one family which is followed by early onset FMF. As disease-causing mutations on these two mutations should be further investigated in more patients in different populations.

P12.091 Homologous recombination - a pool for FA candidate genes

K. Helger, B. Schuster, K. Knies, D. Schindler;
University of Wuerzburg, Department of Human Genetics, Wuerzburg, Germany.

Fanconi anemia (FA) is a rare autosomal or X-linked recessive genetic disorder, characterized by typical physical abnormalities, bone marrow failure and an increased risk for malignancies. Because of a DNA repair defect FA cells show elevated spontaneous and in particular MMC inducible chromosomal instability. To date, fifteen FA genes have been reported. The corresponding proteins are known to be members of the FA/BRCA network that promotes DNA interstrand crosslink repair by homologous recombination (HR).

A small subset of FA patients still cannot be assigned to established complementation groups. Therefore, we screened cell lines from those patients for defects in candidate genes involved in HR. These potential FA genes included MUS81, SPFQ and MMS2L. MUS81 is the structure-specific endonuclease of the MUS81, HJURP heterodimer that interacts directly with the FA protein SLX4 (FANCN). The splicing factor related protein SPFQ cooperates with RAD51D, a paralog of RAD51C (FANCN), and might play a role in homologous recombination. The third candidate gene is MMS22L. In complex with TONSL, it accumulates at stalled replication forks and is required for efficient formation of RAD51 foci after DNA damage.

The screening methods included Sanger sequencing and Western blotting and so far revealed no pathogenic mutations. More unassigned FA cell lines and additional FA candidate genes will be included in our screen, since candidate gene approaches have been successful in the past for the identification of the FA genes BRCA2/FANCD1, PALB2/FANCN and SLX4/FANC.

P12.092 Evaluation of a Laboratory Developed High Resolution Melt Assay Design for Determination of Methylation Status of the FMR1 Promoter

A. Hamilton, C. L. Sigua, D. A. Bost; Celera, Alameda, CA, United States.

Fragile X Syndrome (FXS), a common cause of intellectual disability, is inherited via expansion of the trinucleotide (CGG) repeat in the FMR1 gene. FXS is associated with methylation of the repeat and the neighboring FMR1 promoter, preventing transcription. Fragile X diagnostic tests incorporating Southern analysis can detect expansion of the repeat region and evaluate methylation using a methylation-sensitive restriction digest, but the process is time-consuming and only queries a small number of CpG sites flanking the expansion. We recently developed and tested a PCR primer pair capable of amplifying both methylated and unmethylated bisulfite-converted DNA, for a region of the FMR1 promoter incorporating 22 CpG sites. PCR amplification of bisulfite converted DNA with an intercalating dye and High-Resolution Melt analysis can be used in a laboratory developed (LD) protocol to determine the overall methylation status of the FMR1 promoter. One possible High-Resolution Melt protocol was evaluated in experiments testing the methylation status of 20 clinical samples (4 premutation males, 5 premutation females, 4 full mutation males, and 7 full mutation females) for which the results were compared to methylation values estimated from Southern blot results. Additional clinical and Coriell DNA samples were tested that included normal, premutation and full mutation alleles from both genders. Our results showed qualitative methylation values were in line with those observed by other methods. A PCR-based LD assay for FMR1 methylation would complement other PCR-based expansion sizing and screening LD tests to allow both expansion and methylation status of patient samples to be rapidly determined.

P12.094 Examination of FMR1 allele size in women with primary ovarian insufficiency from the Basque Country

M. Barasain1, G. Barrenetxea1, J. Huerta1, M. Téllez1, A. Carrillo1, C. Pérez1, E. Ortiz-Latorre1, J. González1, B. Cruj1, A. Arrieta1;
1Department of Genetics, University of the Basque Country, UPV/EHU, Bilbao, Spain, 2Department of Medical-surgical Specialities. Faculty of Medicine, University of the Basque Country, Bilbao, Spain, 3Department of Genetics, Cooperativa de Ensino Superior Politecnico e Universitario (CESPU), Porto, Portugal.

FMR1 premutation alleles (55-199 CGG repeats) have been associated with primary ovarian insufficiency (POI). More recently some studies have shown that alleles in the intermediate range (45-54 CGG repeats) and in the high end of the normal range (≥35 CGG repeats) are also related with the development of this condition. A group of 31 women with POI from the Basque Country has been analyzed to study the prevalence of alleles in the premutation, intermediate and the high end of the normal range. Considering the 35-54 CGG repeat range, the number of women carrying at least one allele with >35 CGG repeats was statistically higher in patients (16.3% vs. 6.6%). To make a more accurate analysis the patient group was classified into two categories, women with overt POI (19.36%) that presented with amenorrhea for at least four months and FSH levels >10 IU/L and women with occult POI (80.64%) that presented with decreased fecundity and regular menses. When comparing alleles with >35 CGG repeats, the prevalence of these alleles was statistically higher among women with overt POI, but not among women with occult POI. The data of this study suggests that carrying more than 35 CGG repeats in the FMR1 gene might be related with the development of overt POI, but not with occult POI.

P12.095 Mosaicism for a normal allele, a full mutation and a deletion involving the whole CGG repeat in the FMR1 gene

R. C. Nielsen1, R. A. Knol1, K. L. van Hasselt2, M. Soemantri3, R. Hordijk1; 1Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands, 2Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands.

We report on a 29-year-old female who wants to start a family. She was referred for DNA analysis to see what risk she carries for having offspring with fragile X syndrome, because her mother carried a premutation of 80 CGG units in the FMR1 gene. DNA was isolated from lymphocytes. PCR and length analysis on an automated sequencer identified only a normal CGG repeat of 29 CGG units. Further Southern analysis revealed a mosaic pattern, that indicated presence of an FMR1 allele with a deletion next to a normal allele and alleles with a full mutation. Sequence analysis indeed confirmed presence of a 2475 bp deletion that covered the whole CGG repeat and transcription initiation site until 45 bp proximal of the translation start codon.

Similar deletions have been reported and these result in inactivation of the FMR1 gene and absence of the FMR1 protein. Our patient therefore has a 50% risk of transmitting either a full mutation allele or the deletion allele, either of which could cause fragile X syndrome in her offspring.

It is important to note that the FMR1 deletion allele was not detectable with the Amplicor FMR1 PCR kit (Ausragen, Austin, USA). Since recently, we use this new method as an alternative to Southern analysis in DNA testing for fragile X syndrome. We are now comparing various techniques to decide upon an optimal method that can be offered for prenatal testing.
Ferrand syndrome is a rare disease, with autosomal recessive inheritance. It is a malformative syndrome, which most frequent signs are cryptophthalmos and syndactyly. They are associated with other anomalies like craniofacial, genital, urinary or lung malformations. The expression is variable. Clinical diagnosis criteria have been defined by Van Haast in 2007. Currently, prenatals diagnosis uses ultrasonography during the second quarter of pregnancy and is difficult without family history orientation. Two genes, FRAS1 and FREM2, have been identified as responsible for Fraser syndrome. Only 2 different mutations have been described in FREM2 and 23 in FRAS1. In this work, our initial goal was to identify, by PCR-sequencing, causative mutations of Fraser syndrome patients from eight families who were diagnosed on clinical criteria. We analyzed FRAS1 in priority. We found in those patients 4 nonsense mutations, 2 intronic mutations affecting splicing, one 1-bp duplication and finally 4 new sequence variations (intronic and exonic) of unknown significance. We specified the value of these 4 sequence variations using bioinformatic algorithms and functional tests based on transfection of minigene constructs in HeLa cells. Using these tools, a missense was shown to induce exon skipping. Analysis of FRAS1 gene provides the clinician a molecular confirmation of Fraser syndrome diagnosis in about 40% of cases. This further allows the possibility to offer the parents an early antenatal molecular diagnosis for a future pregnancy. We are now considering the development of the analysis of coding exons of FREM2 gene to increase the coverage rate.

Study of FRAXE-MR in intellectually disabled individuals referred for Fragile-X Syndrome testing in Portugal

Among the genetic causes involved in X-linked intellectual disability (XLID), pathogenic variations in FRM1 (Fragile Mental Retardation 1), AFF2 (AF4/FMR2 family member 2) and ARX (Aristaless Related Homeobox) genes emerge as main causes. FRM1 and AFF2 genes contain (polymorphic repetitive regions) a repeat polymorphism which is susceptible to suffer dynamic mutation, a process that may induce pathogenic expansions. FRAXE-associated mental retardation (FRAXE-MR) is mainly a non-syndromic form of XLID and is due to AFF2 gene silencing as a consequence of 5'UTR-CCG expansion or gene mutations. A CGG triplet number up to 30 repeats is considered normal, while full expansion (>200 repeats) and hypermethylation of CGG cluster results in FRAXE-MR. AFF2 variants are not frequently sought. An implementation of a cost-effective strategy (co-amplification with other ID genes) represents an improvement in molecular diagnosis with consequent gains in clinical genetic diagnosis and counseling. Herein we present results of AFF2 molecular analysis in a subpopulation of 5000 intellectually-disabled individuals with primary referral for FRAXA screening, by a novel multiplex-PCR strategy. This approach accurately detected normal to pre-mutated alleles. A pre-mutated allele with 68 CGG was identified and further characterized by Southern blot analysis in order to exclude methylation and/or repeat number mosaics, as well as PCR failure. Possible phenotype-genotype correlations based on the clinical data of one previously diagnosed family with AFF2 full expansion, the newly characterized pre-mutation carrier and one case with a new variant of the AFF2 gene will be investigated and presented.

Molecular Combing for the Diagnosis of FSHD

Racicopalumeral muscular dystrophy (FSHD) is the third most common neuromuscular disorder. It is associated with a contraction of D4Z4 macrosatellite repeats on chromosome 4q35. The copy number variation of the D4Z4 repeat varies between 11-100 copies in the normal population and 1-110 in FSHD patients. Chromosome 1q26 contains a highly homologous repeat array. On both chromosomes, the array can be embedded in two major haplotypes - A and B, but only repeat contractions on the 4qA haplotype are associated with the disease.

The standard method for FSHD diagnostics is Southern blotting, but in about 20% of patients the FSHD genotype remains unclear. Therefore, GenomicVision has designed a diagnostic test for FSHD based on Molecular Combing as a unique fluorescence in situ hybridization. Molecular Combing is a single-molecule analysis that enables direct visualization of multiple whole genomes and the detection of large genome rearrangements. Long DNA molecules are combed onto a solid surface in parallel alignment with uniform stretching allowing direct sizing of fluorescence signals. Probes have been developed to visualize the FSHD locus as a three-coloured bar code in order to differentiate the repeats and the four haplotypes.

In our diagnostic lab this new technique has been tested for diagnostic purposes. DNA of 30 suspected FSHD patients has been analysed by Molecular Combing, results have been compared to the corresponding Southern blots and show very good accordance. Molecular Combing provides all molecular data required for the diagnosis of FSHD in a single experiment.

Analysis of the Glucocerebrosidase Gene Mutations in 32 Turkish Gaucher Patients

Gaucher disease (GD) is the most frequent autosomal recessive lysosomal glycolipid storage disease and is caused by acid b-glucosidase (EC.3.2.1.45) enzyme deficiency. Mutations in the glucocerebrosidase gene (GBA; MIM# 604663; GenBank accession no. J03059.1) cause Gaucher’s disease. The GBA (7.5 kb) gene contains 11 exons and 10 introns and is located at chromosome 1q21 locus which consist of several genes. A highly homologous GBA pseudogene is 16 kb downstream from the functional gene. More than 200 mutations such as substitutions, splicing alterations, partial and total deletions insertions, including complex mutations due to genetic rearrangements between the functional gene and pseudogene have been defined in the GBA gene (2). In this study we report the molecular characterization of 32 unrelated Turkish GD patients having different types of GD. The allelic frequencies of GBA gene mutations in Turkish patients are reported. The most prevalent mutations are N370S and L444P accounting for 50 % and 35.48 % in our GD patient groups respectively. We identified one novel genetic alteration which was a missense change L385R that are associated with the severe phenotype of type II GD. Molecular genetic analysis of the GBA gene and fluorescence in situ hybridization for genotype phenotype correlation and also will provide reliable genetic counseling in families at high risk for GD.

Prevalence of 35delG of the GJB2 gene in hereditary, prelingual, nonsyndromic hearing loss in Mexican population

Prevalence of 35delG of the GJB2 gene in hereditary, prelingual, nonsyndromic hearing loss is important for genotype phenotype correlation and also will provide reliable genetic counseling in families at high risk for GD.

Analysis of the Glucocerebrosidase Gene Mutations in 32 Turkish Gaucher Patients

Gaucher disease (GD) is the most frequent autosomal recessive lysosomal glycolipid storage disease and is caused by acid b-glucosidase (EC.3.2.1.45) enzyme deficiency. Mutations in the glucocerebrosidase gene (GBA; MIM# 604663; GenBank accession no. J03059.1) cause Gaucher’s disease. The GBA (7.5 kb) gene contains 11 exons and 10 introns and is located at chromosome 1q21 locus which consist of several genes. A highly homologous GBA pseudogene is 16 kb downstream from the functional gene. More than 200 mutations such as substitutions, splicing alterations, partial and total deletions insertions, including complex mutations due to genetic rearrangements between the functional gene and pseudogene have been defined in the GBA gene (2). In this study we report the molecular characterization of 32 unrelated Turkish GD patients having different types of GD. The allelic frequencies of GBA gene mutations in Turkish patients are reported. The most prevalent mutations are N370S and L444P accounting for 50 % and 35.48 % in our GD patient groups respectively. We identified one novel genetic alteration which was a missense change L385R that are associated with the severe phenotype of type II GD. Molecular genetic analysis of the GBA gene and fluorescence in situ hybridization for genotype phenotype correlation and also will provide reliable genetic counseling in families at high risk for GD.
Mexican patients. Methods: The study included 96 patients from 37 non-related families with hereditary, prelingual-nonsyndromic-hearing-loss, all of them were analyzed through PCR and DNA sequencing from genomic DNA. Results and Discussion: We found in 7 families the presence of 35delC both in heterozygous and homozygous state. We discuss the prevalence of this mutation in the Mexican sample and compare it with the data previously reported in other populations.

P12.101 Identification of a de novo splice-site mutation in SLC2A1 gene causing Glut1 deficiency syndrome in a Turkish patient

Background: Primary hypertrophic cardiomyopathy (HCM) is inherited cardiac disorder characterized by clinical and genetic heterogeneity. Mutations in MYBPC3 and MYH7 genes, encoding myosin-binding protein C and myosin heavy chain beta, respectively, account of 40% of HCM cases. Some MYBPC3 and MYH7 mutation carriers have a high risk of sudden cardiac death (SCD).

Methods: By now panel of 30 patients with primary HCM have been formed. We have screened coding and adjacent intronic areas of MYBPC3and MYH7 by direct sequencing in 15 patients. Medical examination: personal and familial history, physical examination, standard ECG, 24-h HM and echo-CG.

Results: We have found 3 mutations (S217G, Q1233ter, V896) in 3 probands in MYBPC3 gene (20% of cohort screened), and 2 HCM-associated polymorphisms (S236G, R326Q). Two mutations (R403W, R249Q) in 2 probands (13.3%) were found in MYH7 gene.

Patient carried heterozygous MYBPC3 variants R326Q and Q1233ter had early manifestation, fast progression and positive SCD familial history. Patient with mild form of HCM had heterozygous S217G mutation in MYBPC3 gene shown previously as leading to dilated cardiomyopathy (DCM) or HCM (with SCD) both. Carrier of heterozygous variants S236G in gene MYBPC3 and R249Q in gene MYH7, 4 y.o., male, had a hypertrophy of left ventricular and interventricular septum. His sister with HCM died suddenly at age of 14 years, his brother on carrier R249Q has a high risk of SCD.

Conclusion: Screening of mutations in MYBPC3 and MYH7 genes patients is essential and cost-effective in HCM patients.

P12.105 High throughput technologies aimed at the identification of new candidate genes in Italian and Qatari population

g. girotto1, M. Allowari2, A. Kudbahi1, B. Falsetr1, D. Vozzi1, D. Licastr0, R. Siani4, N. Najjar5, R. Baddi5, P. Gasparini6; 1Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 2University Hospital Magdeburg, Magdeburg, Germany, 3Institute of Experimental Haematology and Transfusion Medicine, Bonn, Germany.

Hereditary Hearing loss (HLL) is a common disorder accounting for at least 60% of prelingual deafness. Most cases (70%) are non-syndromic (NSSHHL) with mutations in GJB2 and GJB6 genes playing a major role worldwide, and...
almost no other common genes have been identified. Regarding the Qata-
ri population, a molecular screening for these common genes/mutations
clearly demonstrates that they accounts for a minor proportion of NSSH
cases in this population. Thus, these findings strongly suggest that many
genetic factors are involved in the etiology of hearing impairment in these popu-
lational bialis of NHH in these populations, an extensive use of high through-
technologies such as High Density arrays (i.e for linkage data) and Next Ge-
next generation sequencing has been planned. Six Iranian families (dominant inheritance) and 5 Qatari families (recessive inheritance), all negative for the presence of mutations in the most common hearing genes, have been selected. High density SNP's arrays have been designed and used in the filtering phase of NGS data. Whole exome sequencing data have been obtained and confirmed by Sanger sequencing. After filtering (dbSNP and in-house database), 2 new candidate genes have been identified in the Qatari population, while data on the Iranian samples are still under the validation step.

These results will definitely increase our knowledge of new deafness genes, and will provide the basis of new technologies for disease gene identification.

P12.106

Different contribution of DFNB loci in Hearing impaired pedigrees in the Iranian population

N. Jalilian1, M. A. Tabatabaeisinger2, A. Ahmadi3, M. R. Noori-Dalouli1,
1Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran, 2Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Islamic Republic of Iran, 3Center for Genetic Counseling, Welfare and Rehabilitation Organization, Birjand, Islamic Republic of Iran.

Hearing loss is the most common sensory disorder. The autosomal recessive non-syndromic form (ARNSHL) accounts for 72% of monogenic HL. DFNB1, the most common cause of ARNSHL in many populations (50%) including Iran (20%). The fact that many loci are involved together with the hetero-
genosity of the status, necessitate studying further loci in various Iranian ethnic groups. Fifteen large deaf pedigrees originating from the Southern Khorasan province of Iran were selected. The families analyzed for DFNB2, exon I & II mutations and DFNB6 large deletions (D13S1830, D13S1854). Pe-
digrees negative for DFNB2 mutations were then subject to linkage analysis for loci DFNB2, DFNB6, DFNB4, DFNB7/11, DFNB9, DFNB21 & DFNB59. Individuals were genotyped for SNP markers using touch-down PCR-PAGE. DFNB4, DFNB3, DFNB21 & DFNB59 have been analyzed and the project is proceeding for other loci. Three out of the 15 families showed DFNB2 mutations. One family carried homozygous c.35delG mutation. The other pedigrees carried different mutations: One patient was heterozygous for c.231G>A while another carried a heterozygous c.380 G>A mutation. The second alle-
es were not detected. The 3rd pedigree showed heterozygous truncating mutation of p.V271E141G.wt. - p.336X. DFNB6 deletions were not detected. One family showed linkage to DFNB3 and the remaining did not show linkage to the studied loci. Our results once again emphasize the heterogeneity of HL among different Iranian ethnic groups. These results could provide further insight into the etiology of HL and may lead to better genetic diagnostics & counseling. This study proceeds with more loci and more families.

P12.107

The genetic basis of non-syndromic hearing loss in Cyprus

1The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2Nicosia General Hospital, Nicosia, Cyprus.

Mutations in the DFNB2 (Connexin 26) gene are responsible for more than half of all cases of pre-lingual recessive inherited non-syndromic deafness in Eu-
rop. This study presents a mutation analysis of the DFNB2 and DFNB6 genes in 104 Cypriot patients with sensorineural non-syndromic hearing loss compat-
ible with recessive inheritance. Samples from patients were screened for the IVS1+1G splice mutation and the coding exon 2 of the DFNB2 gene includ-
ing also the deletions del(GJB6-D13S1830) and del(GJB6-D1S1185). Twenty seven patients were verified with DFNB2 mutations in both alleles and with 35delG as the most dominating one, accounting for 76.3% (45 out of 59 patients). Two other patients were homozygous for p.R183P (1.7%), p.E47stop (1.7%), p.L90P (1.7%), p.D120 (1.7%), 167delC (1.7%) and p.V178A (1.7%). Additionally, five patients with severe sensorineural hearing loss were detected only in the heterozygote state. Three of these patients were heterozygous for p.V131L, a fourth was heterozygous for p.V371L and lastly a fifth for the splice site IVS1+1G-A. Finally, no GJB6 mutations or the known del(GJB6-D13S1830) and del(GJB6-

D3S1854) were identified in any of the investigated Cypriot non-syndromic hearing loss patients. This work confirms that the GJB2 35delG mutation is an important pathogenic mutation for hearing loss in the Cypriot population and that the underlying molecular basis of autosomal recessive non-syndromic deafness in Cyprus is genetically relatively homogeneous. This finding will be used towards the effective diagnosis of non-syndromic hearing loss, improve genetic counseling and used as a potential therapeutic platform in the future for the affected patients in Cyprus.

P12.108

Nonsense Mutations in SMXP, Encoding a Protein Responsive to Physical Force, Result In X-chromosomal Hearing Loss

A. K. Huebner1, M. Gandit2, F. Pfromm2, A. Maek3, E. M. Wickenkiet2, H. Thielte2, J. Attmüller1, F. Wagner1, A. Vinuela1, L. A. Aguere4, F. Moreno5, H. Maier1, I. Bau1, S. Gropp1,5
1University Hospital Jena, Institute of Human Genetics, Jena, Germany, 2Unidad de Genetica Molecular, Hospital Universitario Ramon y Cajal, Madrid, Spain, 3Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany, 4Universitätsklinikum Hamburg-Eppendorf, Klinik für Neurologie, Hamburg, Germany, 5ATLAS-Biobank, Berlin, Germany, 6Medical University Hannover, Department of Otolaryngology, Hannover, Germany, 7Universitätsklinikum Hamburg-Eppendorf, Institute Humangenetik Hamburg, Germany, 8Universität Hospital Jena, Institute of Human Genetics, Functional Genes, Jena, Germany.

Hereditary hearing loss is the most common sensory disorder in humans and is characterized by an extraocular albinoid and nonalbinoid genetic het-
erogeneity. X-chromosomal hearing impairment represents only a minor fraction of all cases. In a study of a Spanish family the locus for one of the X-chromosomal forms was assigned to Xp22 (DFNX4). We mapped the di-

ese locus in the same chromosomal region in a large German pedigree with X-chromosomal non-syndromic hearing impairment by using genome-
wide linkage analysis. Males presented with postlingual hearing loss and onset at ages 3-7, whereas onset in female carriers was in the second to third decades. Targeted DNA capture with next-generation sequencing detected a nonsense mutation in the small muscle protein, X-linked (SMXP) of affected individuals. We identified another nonsense mutation in SMXP in patients coming from the Spanish family who were previously analyzed to map DF-

NX3. SMXP encodes an 88 amino acid, cytoskeleton-associated protein that is responsive to mechanical stress. The presence of SMXP in hair cells and supporting cells of the murine cochlea indicates its role in the inner ear. The nonsense mutations detected in the two families suggest a loss-of-function mechanism underlying this form of hearing impairment. Results obtained after heterologous overexpression of SMXP proteins were compatible with this assumption. Because responsibility to physical force is a characteristic feature of the protein, we propose that long-term maintenance of mechani-

ically stressed inner-ear cells critically depends on SMXP function.

P12.109

Transthyretin-related familial amyloid polyneuropathy in Bulgaria

A. Todorova1, S. Saraysof, A. Kirov2, T. Todordov2, M. Gospodinov2, V. Georgelcheva2, V. Mitev1, T. Tournev1.
1Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria, 2Gene-Medico-Diagnostic Laboratory Genica, Sofia, Bulgaria, 3Clinic of Neurology, Aleksandrowska Hospital, Medical University Sofia, Sofia, Bulgaria, 4Clinic of Cardiology, Aleksandrowska Hospital, Medical University Sofia, Sofia, Bulgaria.

Transthyretin-related Familial Amyloid Polyneuropathy (TTR-FAP) is a he-
dereditary amyloidosis, caused by amyloid formation and destabilization of the transthyretin tetramer. The disease is autosomal dominant, caused by mutations in the TTR gene. The majority of the described cases concern small kindred or sporadic pa-

tients. The TTR mutation p.Val30Met is the most common one and only this mutation has been reported in large family cases, so far. We report on 45 TTR-FAP patients from 26 Bulgarian families. The restricti-

ev cardiomopathy and the progressive polyneuropathy are the most typical features of TTR-FAP. We found endemic region in the south-western part of the country, where 80.7% of the patients carry the mutation c.325G>C; p.Glu89Gln, while the worldwide most common mutation p.Val30Met was detected only once. Interestingly, one patient from this region was compound heterozygous for the mutations p.Val30Met and p.Glu89Gln. The clinical symptoms are typi-

cally, although the age of first symptoms is five years earlier in comparison to p.Val30Met. One patient from this region is a 62 years old carrier of the mutation p.Glu89Gln without any clinical history. In summary, FAP encompasses complex phenotype with marked variability within a single family. The screening for mutations in the TTR gene should not be restricted to common mutations, as a second mutation might exist. The detected mutations in pre-symptomatic cases, even well-known ones,
have to be interpreted with caution in respect to their pathological income. Acknowledgements: The study was supported by the grant No 43/2011, Sofia Medical University, Bulgaria

P12.110

Mutational analysis of SERPING1 gene in Slovenian patients with hereditary angioedema: four novel mutations

M. Rijavec, M. Slan, P. Nordec, M. Zidarn, M. Rožnik; University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia.

Hereditary angioedema (HAE) is a rare autosomal dominant disease characterised by the swellings of the face, lips, tongue, larynx, genitalia or extremities, with abdominal pain caused by intra-abdominal edema. HAE is caused by mutations affecting C1 inhibitor gene, also called SERPING1, resulting in low levels of C1 inhibitor (Type I HAE) or by normal levels of ineffective C1 inhibitor (Type II HAE).

We recruited 143 unrelated HAE individuals with HAE from 7 unrelated Slovenian families. The diagnosis of HAE was established in the presence clinical and laboratory criteria (low C1 inhibitor antigenic levels and/or function), followed up with positive family history. Genetic studies were carried out by PCR and sequencing for the detection of SERPING1 mutations, in promotor, noncoding exon 1 and in the 7 coding exons and exon-intron boundaries.

In all patients with HAE a mutation responsible for the disease has been identified. Four mutations were reported for the first time. In HAE type I families one already reported substitution (Gln67Stop, c.265C>T), together with four novel mutations have been identified. The new mutations included two missense substitutions, Ser128Phe (c.449C>T) and Glu429Lys (c.1351G>A), together with two frameshift mutations, indel (c.496-2G>T; c.496-3G>T) and deletion (c.593-594delCT). Both families with HAE type II harboured the two well-known substitutions affecting the argyl residue at the reactive centre in exon 8; Arg444Cys, c.1396C>T and Arg444His, c.1397G>A, respectively.

We identified four novel mutations in the Slovenian HAE population, highlighting the heterogeneity of mutations in the SERPING1 gene causing C1 inhibitor deficiency and HAE.

P12.111

The added value of targeted next generation sequencing in patients with cardiomyopathies. Substituting Sanger sequencing as a diagnostic test.

B. Sikkesme-Raddatz, L. F. Johansson, E. N. de Boer, L. G. Boven, K. Y. van Spaendonck-Zwarts, J. P. van Tintel, J. D. H. Jongbloed, J. J. Sinke; Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands.

Whole exome sequencing (ES) of a significant number of samples from a wide variety of diseases has become common practice for identifying putative disease linked variants. The advantage of this approach is the possibility of analyzing a large amount of genes in parallel. However, substituting Sanger sequencing with ES for mutation detection in daily diagnostics is yet not applicable due to dramatic differences in coverage within ES experiments, resulting in missing clinically relevant mutations. Targeted enrichment will circumvent this shortcoming by selecting only those genes involved in a particular disease. We developed two kits, based on Illumina’s TrueSeqTM Custom Enrichment and Agilent Sure Select Target Enrichment, for mutation detection in 48 genes that were proven to be involved in hereditary cardiomyopathies. Eighteen patients were analysed applying both kits and Sanger sequencing for up to six genes. An additional 18 patients were screened using the Agilent Target Enrichment kit only. Sample preparations were performed according to manufacturers protocols. Samples were multiplexed to an extent still permitting a theoretical coverage of 100 reads per targeted sequence per patient. All samples were sequenced using 151bp-paired end reads on an Illumina MiSeq sequencer and analysed using the MiSeq Reporter pipeline. All (pathogenic) mutations previously detected with Sanger sequencing were identified. In addition, 103 novel putative pathogenic mutations (19 synonymous, 10 splice site and 74 missense) were found, on average three per patient. In silico analyses, confirmation by Sanger sequencing and co-segregation analyses are currently performed to identify the causal mutation in each patient/family.

P12.112

Novel mutation in the ENG gene in Russian patients with Hereditary Hemorrhagic Telangiectasia.

Hereditary hemorrhagic telangiectasia type 1 (HHT 1) or Osler-Weber-Rendu disease (OMIM 187300) is an autosomal dominant disorder. HHT 1 characterized by recurrent epistaxis, telangiectasia, multi-systemic vascular dysplasia and clinical presentation of wide variation. Molecular-genetic analyses of HHT 1 have identified gene ENG on chromosome 9, which encoded protein endoglin, which is expressed predominantly on endothelial cells as a heavily glycosylated disulfide-linked dimer that binds TGF-β1 and TGF-β3.

Here, we report genetic analyses of one Russian family with HHT 1 diagnosed by clinical criteria. The proband is a boy 2.5 year old. He was diagnosed as HHT 1 with recurrent epistaxis and arteriovenous malformation (AVM) in the left lung. The history of HHT 1 was found also in his relative: recurrent epistaxis, arteriovenous malformation in spleen, migraine headache in mother and spontaneous, recurrent epistaxis, telangiectases in maternal grandmother.

Amplions of 1, 3, 7, 9, 12 exons and introns of ENG gene were directly sequenced. We found a heterozygous single nucleotide (G) deletion in the splice donor site of intron 7 (c.990+1delG) and (G) that converted the 5’ end of intron 7 from GT to TG. This deletion would lead to frame shift and produce unstable mRNA. Found mutation is a novel. Genetic testing of this family confirmed clinical diagnosis in individuals and provided for early detection of AVMs and helps us to prevent the complications of HHT 1 disease in our proband.

P12.113

The mutational spectrum of GDA1 gene in hereditary motor and sensory neuropathy patients from Bashkortostan Republic (Russia)

I. Skachko1, 3, I. Khidaytova1, E. Saifullina2, D. Baizagiyt3, R. Magshany1, E. Khusmadinova1; 1Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russian Federation, 2Bashkir State Medical University, Ufa, Russian Federation, 3Bashkir State University, Ufa, Russian Federation.

Hereditary motor and sensory neuropathy (HMSN) comprises a group of clinically and genetically heterogeneous disorders of the peripheral nervous system. We examined HMSN patients from Bashkortostan Republic (BR) and detected spectrum of specific mutations in the GDA1 gene using direct sequencing of its coding regions. The GDA1 gene (8q21.11) codes ganglioside-induced differentiation-associated protein 1 - an important factor in the fission of mitochondria. The GDA1 gene mutations cause autosomal recessive disease type 4A. Molecular-genetic investigation of HMSN in 165 unrelated families showed 6 different nucleotide changes in the GDA1 gene. Two of them haven’t been described previously: c.685G>A (p.Glu229Lys), c.934G>A (p.Ala312Thr), and were not detected among healthy family members and controls (n=100), and one previously reported mutation c.715C>T (p.Leu239Phe) widespread among patients with HMSN 4A type. Its nucleotide changes are supposed to be disease causing mutations. Three revealed nucleotide changes appeared to be gene polymorphic variants: c.102G>A, c.507T>G and c.933G>A. All mutations were heterogeneous and revealed in different patients. Taking into consideration an autosomal-recessive type of HMSN, confirmed by genealogical analysis, every patient should carry a second undefined mutation. Perhaps, mutations, which we haven’t found, may be located in the GDA1 promoter region. Thus, it is established that HMSN are caused by the GDAP1 mutations in 2% cases in BR. The released data will contribute to optimization of medical and genetic consulting of HMSN families in our region.

P12.114

Candidate gene responsible for a new clinical form of hereditary recurrent neuropathy

E. L. Calpena1, D. Martínez-Rubio, V. Lupó, D. Montaner2, E. Sernà, C. Rivalta1, J. Dopezo1, F. Polaus1, T. Sevillà1, J. J. Vílchez1, C. Expósito1, 1Instituto de Biomedicina de Valencia (IBV), UCV and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain, 2CIBER de Enfermedades Raras (CIBERER) and IIS La Fe, Valencia, Spain, 3Centro de Investigación Príncipe Felipe (CIPF) and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain, 4Fundación Investigación Hospital Clínico San Carlos (FINSA) and Universidad de Valencia, Valencia, Spain, 5University of Lausanne, Lausanne, Switzerland, 6Hospital U. P. La Fe and CIBER of Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain.

Hereditary peripheral neuropathies that are recurrent and from which affected individuals make full or partial degrees of recovery are unusual. The most prominent disorders that fall into this category are: (i) hereditary neuropathy with liability to pressure palsies (HNPP; MIM 162500) caused by mutations in the PMP22 gene; (ii) hereditary neuralgic amyotrophy (HNA; MIM 162100) due to mutations in the SEPT7 gene; and (iii) primary erythromelalgia (MIM 133020) caused by mutations in the SCN9A gene.

We recruited a large three generation family with eight affected members and
the inferred diagnosis of recurrent neuropathy with an autosomal dominant pattern of inheritance. The main clinical manifestations are recurrent episodes of nerve paresis, lumbo-sacral plexopathy, erythromelalgia and migratory sensory neuropathy. In order to characterize the molecular bases which underlie this neuropathy, we first analyzed the candidate genes PMP22 (PMP22, SEPT9 and SCN9A) by Sanger sequencing and/or by segregation analysis. Our findings showed that none of these three genes are involved in the disease. By combining exome sequencing with previous genome-wide linkage analysis, a novel heterozygous mutation was detected in a gene located on chromosome 17, which has not been associated with any neuropathy yet. This mutation co-segregates with the disease and was not observed in 132 unaffected individuals of matched geographical ancestry. We are currently investigating the pathogenicity of this mutation by cellular studies. This work was supported by the Instituto de Salud Carlos III (Grants number CP08/00053 and PS09/00095) co-funded with FEDER funds.

P12.115 Molecular testing for hereditary spastic paraplegia type 4 (SPG4) in a group of Polish patients - preliminary results
E. Ełert-Dobkowska, W. Krysa, M. Rajkiewicz, I. Stepniak, E. Zdzienna, A. Sulek, J. Zaremba
Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland.

BACKGROUND: Mutations in the SPAST gene are responsible for spastic paraplegia type 4 (SPG4), the most common among heterogeneous group termed hereditary spastic paraplegias (HSP).

MATERIAL AND METHODS: A group of 160 patients clinically diagnosed as HSP (90 familial, 70 sporadic cases) were screened for mutations in the SPAST gene. Molecular analysis was performed using multiplex ligation-dependent probe amplification (MLPA) and direct sequencing analysis.

RESULTS: Screening of 160 patients for mutations in the SPAST gene by MLPA enabled us identification of microrearrangements in 12 subjects (7.5%). Among those 11 deletions (9 multixonic and 2 single exon deletion) and 1 duplication of two exons were found. Sequencing of the SPAST gene, which contains 17 exons, performed so far for 13 exons in 104 patients, revealed 11 different mutations in 12 individuals. Frameshift mutations (c.1215_1219delTATAA, c.1246_1247insG, c.1317delT, c.1418_1431delACTGCCTGGAGAT, c.1435_1436delAG, c.1779_1780insA), splice site change (c.1729-2A>G) and missense mutations (c.1079T>C, c.1100T>C, c.1378C>T, c.1849T>G) were identified. Out of 11 point mutations 10 are localized in the AAX domain of spastin and one missense mutation in the last TAA STOP codon switched to coding for glutamic acid. Furthermore five intronic substitutions and 1 known synonymous variant in exon 6 were detected.

CONCLUSIONS: So far molecular analysis in 160 patients revealed 24 cases of SPG4 (15%). The study results confirm that the majority of point mutations as well as microrearrangements in the SPAST gene are localized in the AAX domain of the spastin protein (19/24 cases).

P12.116 Mutation analysis of SPG4 gene in Bulgarian patients with hereditary spastic paraplegia
K. Mihova1, D. Sanchez2, A. Andreou3, V. Mitev1, I. Terneva1, A. Jordanova1,2
1Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, Bulgaria, Sofia, Bulgaria, 2Clinical of Neurology, University Hospital “Alexandrovska”, Department of Neurology, Medical University, Sofia, Bulgaria, Sofia, Bulgaria, 3VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium, Antwerp, Belgium.

Background: Hereditary spastic paraplegias (HSP) are a group of clinically and genetically heterogeneous neurodegenerative disorders which main features are progressive spasticity and weakness of lower limbs. HSPs are characterized by degeneration of the longest axons in the central nervous system. Prevalence in European population is 3-10 cases per 100 000. All types of inheritance are described in this disorder - autosomal dominant (AD), autosomal recessive (AR) and X-linked. HSP is classified in two big clinical groups of inheritance are described in this disorder - autosomal dominant (AD), autosomal recessive (AR) and X-linked. HSP is classified in two big clinical groups.

Methods: Screening of 160 patients for mutations in the SPAST gene. Molecular analysis was performed using multiplex ligation-dependent probe amplification (MLPA) and direct sequencing analysis.

Results: In our study we identified 9mutations in SPG4 gene, 4 novel (1 splice site mutation, 2 missense and 1 deletion) and 5 already reported (3 missence, 1 nonsense and 1 deletion). In 6 cases the mutations are found in patients with AD type of inheritance. A novel finding for Bulgarian population are mutations in four sporadic cases confirming the need for SPG4 screening of this HSP group. No mutations were found in Turkish patients.

Conclusion: Our findings contribute to a better understanding the molecular basis of HSP and have implications for diagnostic testing and genetic counseling in Bulgarian population.

P12.117 Studying the molecular basis of hereditary spastic paraplegia in Gypsy/Roma patients from Bulgaria
D. Kamcheva1, K. Mihova1, A. Andreou3, N. Ivanova1, V. Mitev1, I. Terneva1, A. Jordanova1,2
1Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University, Sofia, Bulgaria, 2Clinical of Neurology, University Hospital “Alexandrovska”, Department of Neurology, Medical University, Sofia, Bulgaria, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.

Hereditary spastic paraplegias (HSP) are a group of rare heterogeneous neurodegenerative disorders, characterized by progressive spasticity and weakness of lower limbs. All modes of inheritance have been described in HSP - autosomal dominant (AD), autosomal recessive (AR) and X-linked recessive. In order to better tackle the genetic heterogeneity of HSP, we are studying Bulgarian Gypsy/Roma families with this disorder. Gypsies share unique haplogroups as an isolated population, like high degree of inbreeding, decreased genetic heterogeneity and higher incidence of rare recessive disorders. So far we have collected 44 Gypsy patients belonging to 24 families (4 AD, 14 AR and 6 sporadic).

The dominant and sporadic families were screened for mutations in the spastin (SPG4) gene, the most common cause of AD-HSP. We identified a novel mutation in one patient. The most frequent AR-HSP gene, paraplegin (SPG7), was screened for the recessive families. In only one of all the tested patients was detected a nonsense mutation.

Two consanguineous recessive families were subjected to genome-wide SNP genotyping followed by homogeneity mapping. In the first pedigree with four affected sibs we identified 4 autozygous regions which contain two known HSP genes, AP4E1 and spartin (SPG20), and their sequencing is ongoing. The homogeneity mapping in the other family with three affected sibs identified only four large homogeneous regions that do not contain any known HSP gene, suggesting a novel genetic entity. Exome sequencing is currently underway to indentify the underlying genetic defect.

P12.118 Seven novel genetic mutations within the 5’utr and the housekeeping promoter of HMBS gene responsible for the non-erythroid form of acute intermittent porphyria.
F. Gramatia, V. Brancalonei, D. Taveazi, M. D. Caggellini, E. Di Pernio
1Department of Medical Interna-Medicine-Foundation IRCCS Ca’ Granda-Università degli Studi di Milano, Milano, Italy.

Acute intermittent porphyria (AIP) is an autosomal dominant disorder caused by molecular abnormalities in the HMBS gene. This gene is transcribed from two promoters to produce ubiquitous and erythroid specific isoforms of porphobilinogen deaminase (PBGD). In the classical form of AIP, both isoforms are deficient, but about 5% of families have the non-erythroid variant in which only the ubiquitous isoform is affected. Only one mutation, c.1-2T>A, c.1-12T>A, c.1-103C>T, c.1-28A>T were identified in the housekeeping promoter have been previously reported as causative for this form of AIP. In this study we identified one small deletion and six nucleotide substitutions within the 5’UTR and the housekeeping promoter of HMBS gene: c.1-440, -427del14bp; c.1-421G>A; c.1-331C>T; c.1-270G>A; c.1-12T>A; c.1-103C>T; c.1-28A>T.
in patients at an early stage of Huntington disease (HD).

Background: Energy metabolism has been a major focus of HD research for many years due to several observations in both patients and models of the disease. However, there are currently no in vivo biomarkers of brain energy metabolism in HD.

Methods: We coupled noninvasive 31P-NMR spectroscopy with activation of the occipital cortex in order to measure the levels of ATP, phosphocreatine (PCr) and inorganic phosphate (Pi) before, during and after a visual stimulus. We studied 15 HD patients at an early stage of the disease (mean motor UDHRD= 18.9) and 15 age- and sex-matched controls.

Results: In controls, we observed an 11% increase in Pi/PCr ratio (p=0.024) and a 13% increase in Pi/ATP ratio (p=0.016) during brain activation, reflecting increased ATP synthesis and ADP levels. Subsequently, controls had a return to baseline levels during recovery (p=0.012 et 0.022 respectively).

In HD patients, both Pi/PCr and Pi/ATP ratios were unchanged during and after visual stimulation, reflecting altered mitochondrial bioenergetics. In addition, in HD patients the ratio of Pi/ATP correlated with the UDHRD score during the activation (p=0.031) and recovery periods (p=0.035). The known Pi/PCr ratio correlated with the UDHRD score during recovery (p=0.016), reflecting a correlation between brain energy metabolism and disease severity in HD.

Conclusions: 31Phosphorus nuclear magnetic resonance spectroscopy could provide functional biomarkers of brain energy deficit to monitor therapeutic efficacy in Huntington disease.

P12.121

Translation of HTT mRNA with pathogenic CAG repeats is regulated by the ubiquitin ligase MID1 and the translation modulators PPA2a and 2b

UDINE, Bonn, Germany, 2MPI, Berlin, Germany, 3Nurewells Hospital, Dundee, United Kingdom, 4CMBI, Innsbruck, Austria, 5Innsbruck Medical University, Innsbruck, Austria, 6MDG, Berlin, Germany.

Expansion of CAG repeats is a common feature of neurodegenerative disorders like Huntington’s disease. We show here that expanded CAG repeats bind to a translation regulatory protein complex that contains MID1, PPA2a, and the translation factor eIF5A. Binding of the MID1-PPA2 protein complex increases with repeat size and leads to a stimulation of the translation of the CAG repeat containing mRNA in MID1+/- and wild type PRNP/PRNP mice. Our data indicate that pathologial CAG-repeat expansions upregulate translation leading to an overproduction of aberrant protein and support the MID1-complex as a promising therapeutic target for CAG repeat expansion disorders.

P12.122

Pelizaeus-Merzbacher-like disease caused by a homozygous mutation in AIMP1/P43

Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev, Beer-sheva, Israel, 2Division of Pediatrics at Soroka Medical Center, Ben-Gurion University of the Negev, Beer-sheva, Israel, 3Division of Pediatrics at Soroka Medical Center, Ben-Gurion University of the Negev, Beer-sheva, Israel, 4Israel, Beer-sheva, Israel, 5Diagnostic Imaging Institute at Soroka Medical Center, Ben-Gurion University of the Negev, Beer-sheva, Israel, 6Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev, Genetics Institute at Soroka Medical Center, Ben-Gurion University of the Negev, Beer-sheva, Israel, Beer-sheva, Israel.

Pelizaeus-Merzbacher-like disease (PMLD) is a hypomyelinating leukodystrophy, a disorder involving aberrant myelin formation presenting with a myotatic nystagmus, progressive spastic paraplegia, severe motor impairment and neurological deterioration within the first months of life. The known forms of the disease are caused by homozygous mutations in QA12 and HSPD1.

Two remotely related Bedouin kindred in southern Israel presented with an autosomal recessive phenotype of PMLD. Homozygosity at the two known loci was ruled out in affected individuals. DNA samples of 5 affected individuals and 7 non-affected obligatory carrier first-degree relatives were analyzed using 250k SNP Affymetrix arrays, and fine mapping was done using microsatellite markers. The phenotype-associated locus was mapped to a 0.94 Mb region on chromosome 4q24 (maximum multipoint LOD score of 4.25). Sequence analysis of 14 candidate genes of the 39 genes in the region unraveled a two-nucleotide (CA) deletion mutation in AIMP1/P43 encoding ARS-Interacting Multifunctional Protein 1. AIMP1 functions as a non-cata-

lytic component of the multi-synthetase complex, catalyzing the ligation of amino acids to their cognate tRNAs. The deletion causes a frameshift mutation resulting in a premature stop codon amputating the 31 2aa protein after 127 aa, abrogating AIMP1/P43’s main catalytic domain. The mutation was found in 200 control chromosomes.

P12.123

Identification of an Alu-mediated 12.2 kb deletion of the complete LRPA6 (P2RYS) gene in a Turkish family with hypotrichosis and woolly hair

M. Mahmoudi, E. Yüg, A. H. Parlıkh, H. I. Atasoy, M. Ludwig, M. Polat, S. M. Pasernack, R. C. Betz; 1Institute of Human Genetics, University of Bonn, Bonn, Germany, 2Department of Medical Genetics, Gazi University, Ankara, Turkey, 3Department of Dermatology, Abant Izzet Baysal University, Bolu, Turkey, 4Department of Pediatrics, Abant Izzet Baysal University, Balıkesir, Turkey, 5Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany.

Hypotrichosis is a rare form of progressive hair loss characterized by sparse and occasionally wooly hair that is curly and breaks easily. Disease causing mutations in LIPH, LRPA6 and KRT74 have recently been identified. We describe a four generation pedigree from Turkey following an autosomal recessive pattern, in which the four affected members had hypotrichosis and woolly hair. By sequencing LRPA6 and the use of SNP-arrays we revealed a homozygous loss of the entire LRPA6 gene in the affected. We hypothesize that the 12 kb deletion resulted from illegitimate recombination secondary to CAG repeat expansion. The orientation of the Alu repeat of the 12 kb deletion may have provoked the formation of a ‘triple barrel’ structure during replication, thereby allowing strand slipping. This first report of complete LRPA6 loss expands the spectrum of known LRPA6 mutations, and suggests a novel mechanism for this gene and for the formation of DNA rearrangements in general.

P12.124

A single amino acid residue deletion, p.Leu3230del, in the brain-specific isoform Dp71 of dystrophin results in intellectual disability without muscular dystrophy

A. P. De Me Brouwer, S. B. Nabauer, A. R. Oudadder, R. Hordijk, G. H. Vesty, J. M. Hordijk-Hos, K. Wesneski, B. A. De Vries, T. Van Essen, H. Hu, R. Hoppers, J. Chelly, V. Kalscheuer, B. C. J. Hamel, H. Van Bokhoven, T. Kleefstra; 1Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands, 2Centre for Molecular and Biomedical Informatics, Radboud University Nijmegen, Nijmegen, Netherlands, 3Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands, 4Department of Genetics, University Medical Centre Groningen, Groningen, Netherlands, 5Max Planck Institute for Molecular Genetics, Department Human Molecular Genetics, Berlin, Germany, 6Institut Cochin, INSERM Unité 1016, Paris, France.

We have identified a single amino acid residue deletion, p.Leu3230del, in the brain-specific isoform Dp71 of dystrophin in a family with nonspecific X-linked intellectual disability by sequencing of all exons of the X chromosome. Linkage analysis supported causality as the mutation was present in the affected male and the non-affected obligate carrier mother showing a penetrance of 100% with a score of 2.41. Molecular modeling predicts that the p.Leu3230del deletion results in a loss of the antiparallel β-sheets of the myotrophin-like component of the dystrophin-glycoprotein complex, hence reducing the ability to interact with β-dystroglycan. Subsequent deletion of the carboxy-terminus of the dystrophin carboxy-terminus may have provoked the formation of a ‘triple barrel’ structure during replication, thereby allowing strand slipping. This first report of complete dystrophin Dp71 deletion results in intellectual disability without muscular dystrophy.

P12.125

Unraveling the genetic causes of syndromic Intellectual Disability in the era of exome sequencing

Intellectual Disability (ID) represents a large and heterogeneous group of developmental disorders with variable phenotypes and severity, and impaired intellectual abilities as a common feature. Although the number of ID causing genes is increasing rapidly, at present the genetic aetiology remains unexplained for 60% of the ID forms, thus no molecular diagnosis can be made for the majority of the patients. With the aim to identify new genetic causes of ID, we
In recent years whole-exome sequencing has been developed, a technique by which all exons of the genome (all the protein-coding DNA) can be sequenced. Here we show that whole-exome sequencing, using either 35 or 50 Mb Agilent kits for exome capture, was insufficient to detect pathogenic DYNC2H1 variants in patients with Asphyxiating thoracic dystrophy (ATD; Jeune syndrome). Jeune syndrome is a rare inherited ciliopathy involving chondrodysplasia characterized by shortened ribs and long bones, and polydactyly, progressive kidney and liver disease as well as retinitis pigmentosa. Reduced thoracic capacity causes approximately 60% early lethality. DYNC2H1 encodes a subunit of the dynein 1B motor that drives tip-to-base ciliary intraflagellar transport, and mutations have previously been associated both with embryonically shallow lung fibroplasia and the milder, but overlapping Jeune asphyxiating thoracic dystrophy. Although the DYNC2H1 gene was targeted in our whole-exome experiments many sequence reads were not properly aligned, resulting in 30-70% of the gene not being covered. Only a combination of whole-exome sequencing and a candidate gene approach (ie. analysis of non-covered DYNC2H1 exons using Sanger sequencing) enabled us to detect the missing DYNC2H1 mutations. Whole-exome data analysis of the 90 exon DYNC2H1 gene is therefore comparable to playing ‘hide and seek’, whereby certain mutations are easier to find than others according to their relative coverage. In conclusion, although whole-exome sequencing has revolutionized the field of human genetics, our findings emphasize that next-generation sequencing also presents significant challenges for gene identification and for implementation of this technique in DNA diagnostics.

P12.129 Incomplete penetrance of a novel KCNQ1 mutation in a large family with long QT syndrome
Z. Shimwari, N. Dzimiri, M. Al-Fayyadh, Z. Al-Hassan;
King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
Congenital long QT syndrome (LQTS) is an inherited potentially fatal arrhythmogenic disorder that is characterized by prolonged corrected QT (QTc) interval. Mutations in 3 genes (KCNQ1, KCNH2, SCN5A) account for the majority of the cases. However, 10 other genes are now known to be implicated in LQTS. In this work, we describe the clinical and molecular analysis in a large family with LQTS. Screening KCNQ1, KCNH2, SCN5A genes in the proband, who presented with episodes of syncope led to the identification of a novel heterozygous mutation (c.773 A> C; p.H258P) in KCNQ1. An extended clinical and genetic screening of the family identified 11 other members who were carriers for this mutation. All identified carriers had prolonged QTC intervals, yet, only two of them were clinically symptomatic. Nevertheless, the electrocardiographic and molecular analysis stratified seven carriers at high-risk of a cardiac event as they had a QTc of ≥ 500 ms and were carriers of a KCNQ1 mutation. Our work illustrates the importance of extended family screening in LQTS to identify silent carriers and hence adopt the most appropriate therapeutic and preventive intervention.

P12.130 Inherited cystic kidney disease: a molecular screening in Italian patients
A. Aquilano1, O. Baraldi2, E. Sestigiani1, E. Marasovic, A. Prossomariti1, M. Serri1, A. Sentono3, G. La Mansu4, S. Mantovani5;
1Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi Hospital, Bologna, Italy; 2Department of Internal Medicine, Aging and Kidney Diseases, Bologna University, Bologna, Italy; 3Unit of Medical Genetics, S.Orsola-Malpighi Hospital, Bologna, Italy; 4Unit of Nephrology, Dialysis and Hypertension, S.Orsola-Malpighi Hospital, Bologna, Italy.
Inherited kidney diseases are a heterogeneous cause of renal failure with great clinical variability. Once ultrasound and urinary analysis have excluded polycystic kidney and glomerulonephritis, family history can help to distinguish nephrogenic (resistant) from dominant nephropathies. Clinical features can also help to define the specific diagnosis, but this is still a demanding task due to phenotypic overlap.

Purpose of this study was to perform a molecular screening of some genes associated with these disorders, in order to validate a diagnostic algorithm related to clinical phenotypes, useful to drive the genetic screening. NPH1, NPHP5, UMOD, REN and HNF1B genes were selected for the analysis. DNAs from 12 Italian patients with inherited nephropathies were submitted to direct sequencing. Furthermore, deletion analysis by multiplex PCR for NPH1 and MLPA for HNF1B were performed. Three causative mutations were detected: 1) a novel heterozygous p.E48K variant in REN found in a patient with cystic nephropathy, hyperuricemia, hyperkalemia and anemia. The mutation lies in a conserved position, co-segregated with affected family members and was absent in 50 chromosomes; 2) a homozygous p.R499X mutation in NPHP5 gene was detected in a patient with retinitis pigmentosa and recurrent cholangitis, confirming the diagnosis of Senior-Loken Syndrome. This mutation was previously reported in a Pakistani family; 3) a heterozygous p.R295C variant in HNF1B was identified in a patient with renal failure and diabetes mellitus. This mutation is known to alter the DNA binding domain and was not previously reported in Italy. These preliminary results are promising for defining a diagnostic algorithm.
P12.131
A mutation detected by exome sequencing and phenotypic variability in a family with Lenz microphthalamia syndrome
T. Kanari1, F. K. Yano2, Y. Kornatowska3, T. Tomita1, Y. Taguchi1, H. Tanai1, K. Karasawa1, S. Mizuno1, K. Yachisato1, K. Nakamoto1; 1University of the Ryukyus, Nishihara-cho, Japan, 2Central Hospital, Aichi Human Service Center, Nagoya, Japan, 3Kanagawa Child Medical Center, Yokohama, Japan, 4Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.

Lenz microphthalamia syndrome was first described as a type of X-linked microphthalmia in 1955. It is known to exhibit genetic heterogeneity and two loci, Xq27–q28 and Xp11.4, have been mapped to be associated with the syndrome.

We met a large family with syndromic microphthalmia. Bilateral asymmetric microphthalmos and mental retardation were observed in all the patients and cardiovascular malformations or renal abnormalities were observed in some patients, showing phenotypic variability. All patients were male and the pedigree indicated X-linked recessive inheritance. According to their clinical findings and the form of inheritance, patients were diagnosed with Lenz microphthalamia syndrome.

Whole exome sequencing was performed by using a next-generation sequencer and TruSeq Exome Enrichment system (illumina) to identify a mutation in the family. Pooled DNA with four affected males in the family was used for one exome analysis to enrich hemizygous variations in the patients. Of 552 called SNPs or indels on X chromosome, 51 were novel (not registered in the SNP131). Four hemizygous (not detected as heterozygous) variations were found in exons. After comparison of exome data between affected and unaffected males, one substitution, c.C254T, was identified and was confirmed by direct Sanger sequencing in all the patients. In addition, we confirmed heterozygous mutation in all female carriers as well.

We concluded that the mutation was responsible for the patients.

P12.132
Three novel mutations in Leptin and Leptin Receptor genes among 3 Egyptian families
M. A. El-Gammal1, K. Amr1, M. Abdel-Hamid2, S. Farooqi3, I. Maazen3; 1National Research Centre, Cairo, Egypt, 2Cambridge University, Cambridge, United Kingdom.

Background: Congenital leptin deficiency and congenital leptin receptor deficiency are a rare recessive genetic disorder resulting in severe hyperphagia and early onset obesity. It is caused by mutations in the LEP gene encoding leptin and mutations in the congenital leptin receptor gene respectively.

Objective: We report 6 patients from 3 Egyptian families presenting with severe hyperphagia and early onset obesity.

Methods: Genomic DNA was extracted from peripheral blood leukocytes of all patients and their family members using a standard method. Direct sequencing of the whole coding region of the leptin gene was carried out in the two families with undetectable serum leptin levels while sequence analysis of the LEPR gene was performed in the third family with high serum leptin levels.

Results: We detect one novel missense mutation in the leptin LEP gene (N103K) and another novel nonsense mutation in the leptin LEP gene (c.C254T), which was identified and confirmed by Sanger sequencing in all the patients. In addition, we confirmed heterozygous mutation in all female carriers as well.

We concluded that the mutation was responsible for the patients.

P12.134
Transcriptional dysregulation in Hutchinson-Gilford progeria syndrome patients compared to age-matched controls
R. Blattner1, Z. Zabovaova2, I. Novotnova2, J. Jarolimova2, V. Philomenkor2, Z. Halbhuber2, P. Hosak2, V. Krivjanska2, M. Krivjanska2; 1KRD s.c.o, Prague, Czech Republic, 2UM, Prague, Czech Republic.

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic condition with symptoms of premature aging manifested at a very early age. Patients born with progeria typically live to their mid teens or early twenties and the most frequent cause of death is myocardial infarction or stroke. HGPS is usually caused by dominant mutations in the lamin A (LMNA) gene. There are 22 known LMNA mutations associated with the development of HGPS that have been published in the literature to date. These mutations can be detected by the classical or next generation sequencing, high resolution melting analysis (HRMA) and denaturing high-performance liquid chromatography. At the subcellular microscopic level, the disease is manifested by morphological abnormalities in nuclear envelope structure. Within the framework of our ongoing effort to integrate technologies (and their results) used to gain the information about genomic mutations (classical or next-gen sequencing, scanning or unlabelled-probe HRMA), gene expression (qPCR, microarray analysis, next-gen sequencing) and its regulation (ChIP-chip, ChIP-qPCR, ChIP-seq) in HGPS patients which could be further used to improve diagnosis, prognosis, treatment and the overall quality of life of the HGPS patients we conducted a pilot experiment on gene expression in fibroblast cell lines from four HGPS patients and four age-matched controls. Our preliminary data on this small group of target and control samples showed that the most affected biological processes are transcription, signal transduction, development and signal transduction. This work was supported by the grant FR-T13-588 from The Ministry of Industry and Trade of the Czech Republic.

P12.135
Genome-wide SNP analysis to identify genetic modifiers for long QT syndrome in a consanguineous population
Z. N. Al-Hassan1, S. Tuhl1, M. Al-Fayyadh2; 1King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia, 2Central Hospital, Aichi Human Service Center, Nagoya, Japan.

Congenital long QT syndrome (LQTS) is an inherited potentially fatal arrhythmogenic disorder that is characterized by variable expressivity and incomplete penetrance. Genetic variants in LQT1, LQT2, LQT3 genes have been recently implicated in modifying the risk of life-threatening arrhythmias in LQTS. In our highly consanguineous population, we conducted genome-wide SNP analysis in 15 families with LQTS to identify regions of homozygosity (ROH) that harbor loci known to be associated with either LQTS or risk of sudden cardiac death. In two families with previously known homogygous KCNQ1 (LQT1) mutations, ROH encompassing AKAP9 (LQT13) and SNTA1 (LQT12) that were detected. In a third family, a ROH that harbors ADRB2 gene, known to be associated with SCD without LQTS, was identified. In the context of consanguinity, our work illustrates the value of homozygosity analysis for detecting genetic modifiers in LQTS. In addition, our approach could also be adopted to detect the presence of digenic inheritance in consanguineous families with LQTS.

P12.136
Towards a better prediction of the age at onset in Spinocerebellar ataxia type 3
T. Schmidt1, M. Dengler1, J. Schroeder1, T. Tsueral1, J. J. Weber1, T. Karasunk1, H. Pétursson2, P. Bauer1, O. Ries2; 1University of Tuebingen, Medical Genetics, Tuebingen, Germany, 2Statistics Iceland, Reykjavík, Iceland.

Spinocerebellar ataxia type 3 (SCA3) or Machado-Joseph disease (MJD) is an autosomal-dominantly inherited, neurodegenerative disorder caused by the expansion of a CAG repeat in the MJD1 gene. Statistically, a correlation between the number of CAG repeats and the age at onset of SCA3 patients exists and patients with more CAG repeats have an earlier onset of symptoms. However, this statistical correlation is not perfect and the number of CAG repeats contributes only around 55 % to the age at onset. Therefore, the remaining 45 % are influenced by other factors, which we aim to identify in this study. Aside from the CAG repeat itself, the MJD1 gene contains several polymorphisms within the coding region which lead to amino acid changes or even a premature stop in the encoded ataxin-3 protein.

Here, we assume that the amino acid changes within ataxin-3 resulting from these polymorphisms influence the function of normal and expanded ataxin-3 and/or its interaction with other proteins and therefore modify the age at onset, the pathogenesis and disease progression of SCA3 patients. We, therefore, genotyped more than 500 samples of SCA3 patients for these polymorphisms and generated haplotypes comprising the CAG repeat length and the polymorphisms located downstream. Two haplotypes turned out to be most common among SCA3 patients and additional haplotypes have a possible impact on the age at onset in SCA3. We hope that our results will improve the prediction of clinical symptoms and contribute to the understanding of pathogenic processes in SCA3.

P12.137
Applying Next Generation Sequencing to Molecular Diagnosis of Marfan and Loes-Dietz Syndromes
E. Weiss1, M. Willaim2, S. Lechno1, D. Galetzka1, O. Bartsch1, U. Zechner2; 1Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, 2KRD s.c.o, Prague, Czech Republic.

The Marfan syndrome (MFS) and the phenotypically related Loes-Dietz
P12.138

A recurrent ALU repeat-mediated deletion within the NFIX gene accounts for a missing part in Marshall-Smith syndrome

*Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany,
**Department of Genetics, University Paris Descartes, Hôpital Necker Enfants Malades, Paris, France,
***Department of Pediatrics IVT-236, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands,
**Department of Medical Genetics, Pellengrin Hospital, Bordeaux, France,
**Department of Physiology, Faculty of Medicine, University of Athens, Athens, Greece,
**Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands,
**Department of Medical Genetics, University of Namur, Namur, Belgium,
**Institute of Human Genetics, Technische Universität München, Munich, Germany,
**Clinical Genetics Unit, Children’s Hospital Altona, Hamburg, Germany,
**Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany.

Marshall-Smith syndrome (MSS) is a recognizable entity characterized by moderate to severe developmental delay, skeletal abnormalities, upper airway obstruction, and distinctive facial features. Mutations in the gene NFIX were recently discovered as the cause of MSS (Malan et al. AJHG 2010). In six patients exhibiting the typical phenotype, we identified four novel NFIX frameshift mutations by sequencing, while two individuals turned out normal. For further evaluation, we set up an MLPA-based screening for exon deletions or duplications. Both patients were found to carry a heterozygous deletion of exons 6 and 7 of the NFIX gene. The same deletion was found in three additional cases of a cohort of 15 MSS patients, of which 9 were previously found to have NFIX point mutations. Breakpoint sequencing revealed the deletion to be mediated by a recombination event between ALU-Y repeats located in introns 5 and 7. Further studies on the mRNA level indicated that the transcript lacking exons 6 and 7 escapes nonsense-mediated mRNA decay, thus suggesting that the deletion leads to the expression of a mutant protein rather than haploinsufficiency of NFIX. We conclude that the recurrent NFIX deletion is specific for MSS, because it mimics the effects of other MSS-associated mutations that are thought to generate mutant proteins able to exert a dominant-negative effect over the wild-type allele. Intronic ALU repeats create predetermined breaking points facilitating de novo occurrence of this deletion, a mechanism that accounts for about one quarter of MSS cases in our joint cohort.

P12.139

Accumulation of nonsyndromic hearing loss associated with Marvedel2 gene mutation in Slovak and Hungarian Roma patients

*Comenius University, Faculty of Natural Sciences, Dept. of molecular biology, Bratislava, Slovakia,
**University of Pecs, Department of Medical Genetics, Pecs, Hungary,
**Institute of Human Genetics, University of Cologne, Cologne, Germany,
**Institute of Human Genetics, Technische Universität München, Munich, Germany,
**Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovakia.

The wide group of nonsyndromic hearing loss disorders (NSHL) is one of the most common sensory impairment in humans. Approximately 50% of all cases are caused by genetic factors. Among all types of monogenic, Mendelian traits, autosomal recessive form stands for nearly 80% of all NSHL cases. The group of hearing disorders is characterized by tremendously high variability. Some allele heterogeneity with over hundred genes associated to these disorders. Most frequently analyzed genes in NSHL patients worldwide are GJB2, GJB6, MYO7A, MYO15A, SLC26A4, and TMPRSS3. In respect to the patient’s population origin, mutations in otherwise scarce genes may occur in higher frequencies in some specific populations. Demographic history and population structure of Roma in Europe resulted in occurrence of such population specific mutations which are otherwise very rare or unseen inautochthonous populations in Europe. Studying a large Hungarian family of Roma origin with multiple NSHL patients we identified a founder mutation, IVS4+2T>C of the MARVELD2 gene, previously identified in Pakistani patients. To test the prevalence of the identified mutation analyzed 167 Hungarian and 300 Slovak NSHL patients regardless the ethnic origin. Random population sample biobanked from unrelated healthy 502 Hungarian and 300 Slovak Roma individuals were also tested. Heterozygous presence of IVS4+2T>C mutation among healthy, control Roma individuals proved the population specific character of this mutation in Hungary and Slovakia. The common origin of the surveyed mutation identified in Hungarian and Slovak Gypsy patients was further analyzed using set of SNP markers located adjacent to the MARVELD2 gene locus.

P12.140

Screening of a large cohort with UMOD associated kidney disease (UAKD) for mutations in UMOD, HNF1beta and Renin

A. Pannas*, M. T. F. Wolf**, A. Doe****

*Institute of Human Genetics, University of Cologne, Cologne, Germany,
**Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States.

A spectrum of slowly progressive autosomal dominant kidney disease characterized by hyperuricaemia, reduced Uromodulin excretion, renal cysts, and endstage renal failure between the third and seventh decade is subclassified under the term UMOD associated kidney disease (UAKD).

The UMOD gene encoding for Uromodulin was the first MCKD gene identified. Mutations often affect a cysteine residue and result in endoplasmatic reticulum retention and subsequent reduced urinary excretion. However, the precise pathophysiology of tubulointerstitial damage is still understood. Next to UMOD, mutations in HNF1beta can result in a similar clinical presentation.

Recently, dominant Renin mutations were shown to result in a UAKD phenotype. Initially recessive mutations in Renin were identified as one cause of renal tubular dysgenesis. Here we report the results of a stepwise mutational analysis in 71 families compatible with a diagnosis of UAKD. UMOD mutations were identified in 25, while HNF1beta mutations could be identified in 7 families. On the remaining 39 families complete Renin analysis was performed and identified one kindred with a mutation in the signal sequence (p.W10R) affecting four generations. We report the youngest patient showing renal impairment as early as 11 months of age and provide further functional data on signal sequence mutations. Only 4 heterozygous Renin mutations all within the signal peptide have been published. For the three previously described mutations, a damaged targeting and cotranslational translocation of preprorenin into the endoplasmatic reticulum had been shown. This study illustrates that the genetic cause still remains to be identified in the majority of patients suffering from UAKD.

P12.141

Cellular localization of MCPH1 isoforms and effects of MCPH1 mutations on G2/M checkpoint release

I. Rost*, T. Staab, D. Schindler*

*Department of Human Genetics, Würzburg, Germany.

Biallelic mutations in the human MCPH1 gene are the cause of primary microcephaly. MCPH1 encodes a multifunctional protein that was reported to be involved in brain development, DNA damage response and regulation of chromosome condensation. In previous work of our group, Gavvovidis et al. found that MCPH1 encodes two major transcripts, full-length MCPH1 (MCPH1-FL) and another transcript lacking the six 3’ exons (MCPH1Δ9-14). In addition, a splice variant lacking exon 8 (MCPH1Δ8) was detected. Here we re-examined the cellular localization of those isoforms after centrosomal localization of full-length MCPH1 had been reported by several groups. By transfection of human cell lines (U2OS, HeLa) with FLAG-tagged constructs, we were unable to satisf-
actory show any of the MCPH1 isoforms colocalizing with centrosomes. We conclude that such localization must be a temporary or cell type-specific phenomenon.

Furthermore, experiments using a knockdown of MEFV by RNAi or MEFV-deficient mice had previously shown severe effects on the cellular response to DNA damage after irradiation. Here we compared the effect of patient-derived MEFV mutations on G2/M checkpoint control. We determined the mitotic index by phospho-histone-H3 flow cytometry after irradiation of cells with 1 Gy. There was no difference in terms of G2/M checkpoint control compared to normal control cells. However, delayed checkpoint release was observed in all of the analyzed MEFV-deficient cell lines, featuring the way in which DNA damage response to IR is defective.

P12.142 Phenotypical consequences of mild Mecp2 overexpression in the mouse as an experimental approach to estimate gene-dose effects

B. Codd1, M. Tantraw1, I. P. Arunachalam1, K. Can1, D. Hänninen2, A. M. Mann4; 1Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany, 2DFG-Research Center Molecular Physiology of the Brain, Göttingen, Germany, 3Division of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.

Overexpression of MeCP2 as found in the MEC22 duplication syndrome has a detrimental effect in both human and mouse. Thus, any future therapies directed at increasing the levels of MeCP2 in the patient must be considered carefully to avoid further neurological impairments. To estimate gene dose effects and predict the level at which potential non-tolerable side effects might occur, mouse models with mild overexpression are instrumental. We generated Mecp2 WT, EGFP transgenic mice, in which the total amount of Mecp2 (endogenous plus transgenic) is mildly overexpressed (~1.5X). When Mecp2 WT, EGFP mice were crossed with Mecp2 knockout (KO) mice, our preliminary analysis suggests that major phenotypes of the KO mice were rescued, however further investigation will be necessary to exclude any late stage symptoms. To characterize Mecp2 WT, EGFP mouse model, we performed an extensive test battery which, apart from increased aggressiveness and seizure propensity, revealed essentially unaltered behavior. Evaluation of neuronal parameters both ex vivo and in vivo revealed no major abnormalities. Also, analysis expression of differentially regulated Mecp2 target genes, such as Bdnf, Ddec4, Gdf11, Gpr26, Lrp1b, Pygm and Robo1 by quantitative RT-PCR analysis in Mecp2 WT, EGFP mice revealed only minor alterations in the expression of Mecp2 target genes. In contrast, a transgenic mice overexpressing ZMecp2 has been reported earlier to have considerable effects on target gene expression. We conclude that quantitative RT-PCR analysis of Mecp2 target genes may be a suitable approach to evaluate in future the success of MeCP2 supplementary therapy.

P12.143 MEFV mutations in patients with Familial Mediterranean Fever from Antalya province, Turkey

I. Keser1, T. Bilgen2, O. Altun-Clark1, R. Artan3, G. Silaymanlar1, E. Coban1; 1Department of Medical Biology and Genetics, Medical Faculty, Antalya, Turkey, 2Department of Medical Genetis, Medical Faculty, Antalya, Turkey, 3Department of Pediatric Gastroenterology, Medical Faculty, Antalya, Turkey, 4Department of Nephrology and Organ Transplantation, Medical Faculty, Antalya, Turkey, 5Department of Internal Medicine, Medical Faculty, Antalya, Turkey.

Familial Mediterranean Fever (FMF) is mainly autosomal recessive and the most frequent hereditary inflammatory disease affecting Jews, arabs, serosal inflammation and amyloidosis. FMF affects different ethnic groups and countries including Turkey, connected with the MEFV gene mutations. In this study, we reviewed the data of 2283 FMF suspected patients (1281 female and 1002 male) from May 2003 to December 2011. Automated analysis and direct sequencing in 14 families and 10 sporadic patients. Mutations were found in the ASPM (5 families, 8 patients), WDR62 (5 families, 7 patients), CDK5RAP2 (2 families, 2 patients), STIL (1 family, 1 patient) and PNKP (1 family, 1 patient) genes. Twelve of the 16 different mutations found have not been previously described. All patients had severe developmental delay, with speech development being more severely affected. All patients presented MCD in addition to severe microcephaly. The mildest brain phenotype was associated with ASPM mutation and a characteristic combination of global microcephaly and pachygyria. The next most frequent mutation type was associated with ASPM mutation and a characteristic combination of global microcephaly and pachygyria. This is the first report of deletion in SHANK3 gene in Rubinstein-Taybi Syndrome that could be confirmed and further characterized by other methods like FISH, array CGH or confirmatory MLPA kit. Primary MCHP (MCPH) defines congenital microcephaly with an occipito-frontal circumference (OFC) two standard deviations (SD) or more below the age- and sex-related mean. It is genetically heterogeneous with at least seven known loci and genes (MCPH1 to 7), for which autosomal recessive inheritance of mutations has been shown in families. Primary MCHP was initially defined as excluding gross structural brain malformations or severe neurological deficits, however additional malformations of cortical development (MCD) are increasingly being recognised. Few patients with primary microcephaly and mutations in the MCHP genes other than ASPM have been described. We have performed mutation analysis in the MCHP1, DMR62, CDK5RAP2, KIA152, ASPM, CENPJ, STIL and PNKP genes using haplotype analysis and direct sequencing in 14 families and 10 sporadic patients. Mutations were found in the ASPM (5 families, 8 patients), WDR62 (5 families, 5 patients), CDK5RAP2 (1 family, 2 patients), STIL (1 family, 1 patient) and PNKP (1 family, 1 patient) genes. Twelve of the 16 different mutations found have not been previously described. All patients had severe developmental delay, with speech development being more severely affected. All patients presented MCD in addition to severe microcephaly. The mildest brain phenotype was associated with ASPM mutation and a characteristic combination of polymicrogyria and pachygyria was associated with WDR62 mutation. Patients with CDK5RAP2 and PNKP mutation had agenesis of the corpus callosum in addition to simplified gyration. The recognition of specific patterns associated with mutation of each of the MCHP genes will aid targeted diagnosis in the future.
Autosomal dominant microcephaly with mild to moderate mental retardation with no dysmorphism or other anomalies was diagnosed in eleven individuals of an Arab Israeli family. Craniosynostosis and environmental factors were ruled out per history as possible contributors to the disease, thus verifying the diagnosis of primary microcephaly. Brain CT scan of affected individuals showed no architectural anomalies. Nine living affected individuals were available for clinical and genetic evaluation. Association with all known microcephaly-associated loci were ruled out using polymorphic markers and genome wide linkage analysis data. Genome-wide linkage analysis revealed association of the disease to a region on chromosome 4 with a maximal LOD score of Z = 3.44, at marker D4S1534 (θ=0). Whole exome sequencing is under-way.

P12.147 Megalencephalic leuкоencephalopaθy with subcortical cysλ types 1 (MLC1) due to a homozygous deep intronic splicing mutation (c.895-226T>G) abrogated by AMO treatment.
S. C. Mancini1, G. Vauš1, L. Scaletti2, S. Cavalieri2, E. Bertini3, C. Aliotti4, C. Lucchini5, R. A. Gatti6, A. Brusso1, A. Brusco1
1Department of Genetic, Biochemistry, Department of University of Turin, Torino, Italy; 2Department of Neuroscience, AOUM, San Giovanni Battista, Torino, Italy, Torino, Italy; 3C.D.U. Medical Genetics, AOUM. San Giovanni Battista, Torino, Italy, Torino, Italy; 4Lab of Laboratory of Molecular Medicine, Ospedale Pediatrico Bambino Gesù, Rome, Italy; 5Research, Italy; 6C.D.U. Complex of Neurology, Ospedale di Ivrea, Italy, Ivrea, Italy; 7Departments of Pathology and Laboratory Medicine, University of California, David Geffen School of Medicine, Los Angeles, CA, United States.

Megalencephalic leuкоencephalopaθy with subcortical cysλ is an autosomal recessive disease characterized by early-onset macrocephaly, development mental delay, motor disability in the form of progressive spasticity and ataxia, seizures, cognitive decline and characteristic MRI findings. Mutations in two genes, MLC1 (22q13.3; 75% of patients) or HEPACAM (11q24; 5-10% of patients) are associated with the disease.

We describe an adult MLC1 patient with moderate clinical symptoms. MLC1 cDNA analysis from lymphoblasts showed a transcript reduction, and identified a 246-bp pseudogene containing a premature stop codon between exons 10 and 11, due to a homozygous c.895-226T>G deep-intronic mutation. The role of this mutation on splicing was confirmed using a mini-gene assay, and an anti-sense morpholino oligonucleotide (AMO) targeted to the aberrant splice site partially abrogated the mutation in vitro.

The mutation c.895-226T>G has a leaky effect on splicing leaving part of the full length transcript and may explain the milder phenotype in our patient.

This category of mutations is often overlooked, being outside of canonically splicing sites. Our study addresses all these factors contributed to significantly prolonged testing time per patient. In many cases, the testing was stopped prematurely due to high cost/long duration. Therefore, we have implemented a high-throughput sequencing platform (GS Junior, Roche) which has enabled us to switch from consecutive to parallel testing strategy. Our muscular dystrophy panel currently contains 14 genes (DMD, MYOT, LMNA, CAV3, CAPN3, DYSF, SGCG, SGCA, SGCB, SGCD, FKRP, POMT1, ANOS1, POMT2) and further genes will be added as necessary. We aim to decrease the testing time and cost, increase the mutation detection rate and avoid muscle biopsy where possible.

P12.152 Molecular genetic diagnostics of myotonia congénita and structural analysis of mutations in the CLCN1 gene
L. Fajkusová1, D. Povčová1, J. Sedličková2, M. Mareč1
1Central European Institute of Biotechnology, Institute for Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czech Republic.

Non-dystrophic myotonias are skeletal muscle disorders associated with mutations in the CLCN1 and SCN4A genes. Mutations of CLCN1 result in autosomal dominant (Thomsen) and/or autosomal recessive (Becker) myotonia congenita (MC). Mutations in SCN4A are typically inherited as an autosomal dominant trait. The CLCN1 protein is a homodimer with a separate ion pore within each subunit. The varied inheritance pattern of myotonia appears to result from differential effects of a mutation on the channel dimmer. Mutations causing recessive myotonia most likely affect properties of mutant monomer leaving the wild type monomer unaffected in the heterodimer. On the other hand, mutations causing dominant myotonia affect properties of both subunits in the wild type/mutant heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by tandem analysis of the CLCN1 and SCN4A genes, and 2) homology modelling of the dimeric CLCN1 channel. In the first part, mutations associated with the disease were identified in 57 probands - 39 carried mutations in CLCN1 and 18 in SCN4A. In the second part, we performed homology modelling of the dimeric CLCN1 channel on the basis of known crystallographic structures. From this model, we predicted aminoacids (AA) forming the dimer interface and AA forming the C1 - ion pathway.

P12.153 FZD6 encoding the Wnt receptor frizzled 6 is mutated in autosomal-recessive nail dysplasia
S. M. Pasternack1, G. Naz1, C. Perrin1, M. Mattheisen2,3, M. Bedjel2, S. Khan4, A. Gaf1, M. Simon5, W. Ahmad6, R. C. Bets1
1Institute of Human Genetics, Bonn, Germany, 2Department of Biochemistry, Islamabad, Pakistan, 3Hôpital L Pasteur, Laboratoire Central d'Anatomie Pathologique, Nice, France, 4Institute for Medical Biometry, Informatics and Epidemiology, Bonn, Germany, 5Department of Genetics, Life & Brain Center, Bonn, Germany, 6Center for Biological Systems Analysis (ZBSA), Freiburg, Germany.

Isolated nail dysplasia is rare and has only been reported in a small number
of families. In this report, we describe two Pakistani families with an autosomal-recessive inherited nail dysplasia. Thickening and hyperpigmentation of all finger and toe nails were present at birth, and the nails subsequently became claw-like around puberty. By genomewide linkage analysis, we mapped this genodermatosis to chromosome 8q22.3, and identified a homozygous nonsense mutation c.1750G>T (p.E584X) in the frizzled 6 (FZD6) gene in all affecteds. Expression analyses in nail sections from healthy individuals revealed strong expression of FZD6 in the ventral nail matrix and a less pronounced expression of FZD6 in the nail bed. FZD6 belongs to a family of proteins that serve as receptors in Wnt signaling pathways, and has been shown to act as a negative regulator of the canonical Wnt/b-catenin signaling cascade and as a positive regulator of the non-canonical Wnt or planar cell polarity (PCP) pathway. The present results therefore suggest that FZD6 plays a pivotal role in the growth and guidance of the nail plate in humans by acting as a molecular switch between different Wnt pathways. Previous studies have identified mutations in the RSPO4 and LMBX1 components of the Wnt pathway in patients with the hypoplastic nail disorders anonychia and nail-patella syndrome, respectively. Only recently, FZD6 mutations were identified in isolated nail dysplasia. The present results emphasize the important role of the Wnt pathways in nail development and increase understanding of Wnt-mediated developmental events in general.

Identification and characterization of a rare gene variant in congenital interstitial lung fibrosis and nephrotic syndrome

N. Nicolaou1, S. Kevelam1, M. Lilien2, M. Oosterfeld, R. Goldschmeding2, A. van Eerde1, R. Pijlman1, A. Sassenberg1, F. Terhaal3, N. Krouwer1, K. Renkema1

1, Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, Netherlands; 2Department of Pediatric Nephrology, University Medical Center Utrecht, Utrecht, Netherlands; 3Department of Paediatrics, University Hospital of Heraklion, Heraklion, Greece.

We saw a patient who presented with severe congenital interstitial lung fibrosis and nephrotic syndrome, characterized by kidney hypoplasia, hydro-nephrosis, glomerulosclerosis, pulmonary hypoplasia, and alveolar hyaline deposits. The patient died at the age of 7 months due to respiratory insufficiency. The purpose of this study was to describe the clinical and pathologic findings and unravel the underlying genetic cause. Known nephrotic syndrome genes were screened and 250K SNP array analysis was performed. No novel variants were identified in the known nephrotic syndrome genes. A homozygous region of 20 Mb was identified in the patient's DNA. Sequencing of the strongest candidate gene revealed a novel homozygous missense variant that was inherited from the heterozygous unaffected parents and not found in 384 control chromosomes. Strikingly similarities were seen between the gene knockout mouse and the patient's phenotype. Further in vitro characterization studies demonstrated the effect of the variant on the protein function. Here, we report a novel human gene variant, causing congenital interstitial lung fibrosis and nephrotic syndrome (NS). The variant results in an amino acid substitution in a gene essential for basement membrane development, in a domain interacting with extracellular matrix components. This is the first clinical phenotype associated with a mutation in this gene in humans. Our findings have major implications for our understanding how basement membrane morphogenesis is regulated and facilitates the design of genetic screening tests for early diagnosis and genetic counselling for patients and their relatives.

Next Generation Sequencing (NGS) in the diagnostics of Nephrotic Syndrome

J. Hoefele1, A. Bächer1, C. Heberle2, M. Konrad3, S. Weber2, H. Klein1; 1, K. Renkema1, 2, C. Heberle1, M. Konrad3, S. Weber2, H. Klein1; 4, A. van Eerde1, R. Goldschmeding2, A. van Eerde1

In 18/31 patients mutations were known, 13 patients did not show mutations in the already examined genes (Sanger detection rate 58%). In 16/18 genetically diagnosed patients mutations were confirmed using NGS. Two mutations in known homopolymer regions were identified. In 4/13 (31%) without mutations so far, mutations in one of the following genes have been identified: CD2AP (1 patient), INF2 (1 patient) and NPHS2 (2 patients). These genes were not sequenced using Sanger sequencing but were the exclusion by the mutation algorithm. Altogether, in 20/31 patients causative mutations have been identified (NGS detection rate 65%).

NGS as a diagnostic tool of NS seems to be a good option for a rapid and reliable genetic analysis. However, mutations within homopolymer regions can be missed by the Roche 454 technology. These regions should still be analyzed by Sanger sequencing.

Mutational analysis of the PLCE1 gene in Greek children with clinical presentation of nephrotic syndrome (NS) and diffuse mesangial sclerosis (DMS) or focal segmental glomerulosclerosis (FSGS)

E. Fylaktou1, C. J. Stefanidis1, V. Akindii1, S. Kitrou-Tzeli1, M. Bitsori2, A. Mitsioni2, E. Kanavakis1, K. Traeger-Synodinos1

1Medical Genetics, Athens University, “Aghia Sofia” Children’s Hospital, Athens, Greece; 2Department of Pediatric Nephrology, and A. Kyriakou1 Children’s Hospital, Athens, Greece; 3Department of Paediatrics, University Hospital of Heraklion, Heraklion, Greece.

Mutations in PLCE1 encoding phospholipase C epsilon 1 (PLCE1) have been reported in a number of families with early-onset nephrotic syndrome. We performed a next generation sequencing (NGS) analysis in 164 patients with clinically relevant NTDs for VANGL2 gene mutations. In 40 NS patients (35 sporadic, 5 familial) with histological findings of DMS or FSGS, 27/31 exons of PLCE1 were analysed by direct sequencing. Pathological mutations in the NPHS1, NPHS2 and WT1 genes were always presented in all patients. Sequencing analysis revealed PLCE1 mutations in 4/35 patients. Three, homozygous for the previously described p.A945P mutation, had similar clinical findings (FSGS, age diagnosis 3.7, 2.5 and 3.5 years, respectively; age first diagnosis 3.9, 2.6 and 4.5 years, respectively). Additionally, one case was found homozygous for a novel mutation, p.A945P. The patient (male) presented at 3 months with DMD, initiating dialysis at 9 months. In silico analysis (SIFT, Polyphen, Pmut and MutationTaster) were applied to evaluate causality of the p.A945P mutation. Pmut and SIFT found the nucleotide change “possibly damaging”, while Polyphen and MutationTaster indicated p.A945P to be benign. Resequencing analysis in members of the patients’ family (over 3 generations, all unaffected with NS) found only heterozygotes for p.A945P (according to expected phase). Further studies are required to conclude the pathogenicity of this novel PLCE1 mutation, in the light of observations that pathogenicity of PLCE1 gene mutations may be ambiguous (Boyer et al, J Med Genet, 2010). Overall our findings are consistent with previous conclusions that PLCE1 mutations are not uncommon in childhood NS patients in whom mutations in other NS-genes have been excluded.
sible epimutations causing NTD and identified no methylation differences between patients with NTDs and controls. Other studies reported VANG2 mutations in about 2% of NTD cases, suggesting that VANG2 gene mutations are associated with NTDs in a small subset of cases.

P12.158

Neurofibromin (NF1) is required for skeletal muscle development

S. Strickler1, N. Kessler1, J. Kim1, J. Kühnisch1, D. A. Stevenson2, T. Braun1, S. Mundlos1, M. Kolanczyk3

1Max Planck Institute for molecular Genetics, Berlin, Germany, 2Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany, 3Institute for Medical and Human Genetics, Charité, Universitätmedizin Berlin, Berlin, Germany, Division of Medical Genetics, University of Utah, Salt Lake City, UT, United States.

Neurofibromatosis type I (NF1) is a multi-system disease caused by mutations in the NF1 gene. NF1 encodes a RAS-GAP protein, Neurofibromin, which negatively regulates RAS signaling. Besides neuroectodermal malformations and tumours, the skeletal system is often affected in NF1 patients, scoliosis and long bone dysplasias being a main cause of considerable morbidity. Interestingly, a reduction of muscle strength and size has been reported in NF1 patients. However it remains unclear whether the observed muscle weakness was a consequence of the skeletal ramifications developing during puberty and early adulthood or if there was a muscular phenotype before the onset of a bone phenotype. NF1 gene inactivation in the early mouse limb bud mesenchyme using Prx1-cre (Nf1Prx1) resulted in muscle dystrophy characterised by fibrosis, reduced number of muscle fibres, and reduced muscle force. This was caused by an early defect in myogenesis affecting the terminal differentiation of myoblasts between embryonic day (E)12.5 and E14.5. In parallel, the muscle connective tissue cells exhibited increased proliferation at E14.5 and an increase in the amount of connective tissue as early as E16.5. These changes were accompanied by excessive MAPK pathway activation. Satellite cells isolated from Nf1Prx1 mice showed normal self-renewal, but their differentiation was impaired as indicated by diminished myotube formation. Our results demonstrate a requirement of Neurofibromin for muscle formation and maintenance. This previously unrecognized function of Neurofibromin may contribute to the musculoskeletal problems in NF1 patients.

P12.159

Mutation screening by Next generation sequencing technology in analysis of Neurofibromatosis type 1 - our first experience

J. Radčíková1, S. Dvorská2, M. Víhalová3, I. Valašková1, R. Guillejová2

1University Hospital Brno, Medical Genetics Dept., Brno, Czech Republic, 2Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Neurofibromatosis type 1 (NF1) is autosomal dominant disorders and is caused by mutations in the NF1 gene. Current approaches of NF1 analyses are complicated molecular diagnostics due to the large size of the NF1 gene, the presence of pseudogenes, the great variety of possible lesions and high mutation detection rate. We report our first experience of NF1 gene analysis using the next-generation sequencing (NGS) (Roche GS Junior). 20 patients with clinical symptoms of the disease were included to DNA mutational screening. The PCR of all exons of NF1 gene were performed by the use of primers composed by a gene-specific part and a universal tail. Each primer was labeled by MID tails (Multiplex Identifier Adaptors), which serve to identify specific patient’s DNA sample. Prepared amplicons of NF1 gene were analysed using of two runs in the GS JUNIOR system. The generated NGS data were processed with Roche software Amplicon Variant Analyzer version 2.5p1 and acquired sequences were compared to reference genome. We have detected point mutations within the coding region: deletion, nonsense, missense, splicing and frameshift mutations. All of these sequence variants were confirmed by conventional analysis method (Sanger sequencing). Since the data acquired within our first experiment by the Roche JUNIOR system are in full accordance with results obtained by traditional approach and the process is both time and cost effective, we are involving NGS to our strategy of molecular genetics testing of NF1 patients in combination with conventional analysis methods as MLPA, Sanger Sequencing of DNA and cDNA.

P12.160

Next-Generation Sequencing in Neurofibromatosis 1

E. Decker1, L. Beholahová1, M. Hilkoválova2, H. Gabriél1, M. Gencík3, A. Gencík1

1diagnost, Osnabrück, Germany, 2MedGene, Bratislava, Slovakia, 3University - Medical Center, Nashville, TN, United States.

Neurofibromatosis 1 is an autosomal-dominant disease characterized by multiple café-au-lait spots, axillary and inguinal freckling, multiple neurofibromas, and Lisch nodules. The disorder is caused by defects in the tumor-suppressor gene NF1. Mutation detection is complex and expensive due to the large size of the NF1 gene, the presence of pseudogenes, the lack of mutation hotspots as well as a large variety of minor and major deletions. We have established a Next Generation Sequencing (NGS) mutation detection method as a tool for routine analysis of the entire NF1 gene in patients with excluded deletion. So far, we have tested >45 patients with suspected NF1. 7% of the patients harbored a NF1 gene deletion, the remaining patients were subsequently examined using NGS: all protein-coding exons including the flanking splice consensus sites were amplified by PCR and afterwards sequenced using the Roche 454J platform. In >70% of the patients we detected exon skipping or non-sense mutations. All mutations identified by NGS were successfully validated by Sanger sequencing. No causative mutation was found in over 20% of the patients, which might be explained either by the presence of deep intrinsic mutations or the fact that not all patients in our cohort met diagnostic criteria for NF1. To further increase the mutation detection rate we have recently included NGS-based testing of the SPRED1 gene, mutated in the clinically similar Legius syndrome.

We conclude that the use of NGS-based diagnostic procedures offers an affordable and highly sensitive alternative for NF1 diagnostic.

P12.161

Mutation analysis of NF1 and SPRED1 genes in Slovak patients

M. Nemethová1, A. Bybarová1, D. Henciková1, L. Kadasi2, A. Zatlko2

1Laboratory of Genetics, Institute of Molecular Physiology and Genetics, Bratislava, Slovakia, 22nd Department of Pediatrics, Comenius University Medical School Children’s Hospital, Bratislava, Slovakia, Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.

Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders with incidence of 1:3500. The main clinical features are café au lait macules, freckling, optical glioma, Lisch noduls, any types of neurofibromas, and dysplasia of bones. The disease is caused by inactivating mutations within the NF1 gene that maps to 17q11.2 and consists of 60 exons. Protein product of NF1 is a tumor suppressor neurofibromin that functions as a negative regulator of Ras proto onkogen. Legius syndrome called NF1-like syndrome is disorder with similar clinical features like NF1. It is caused by mutation in the next negative regulator of MAPK signal pathway - SPRED1 (Sprouty-related EVH1 domain - containing protein). SPRED1 gene is localized on 15q13.2 chromosome and consists of 8 exons. We identified 55 mutations in NF1 gene. 31 of them are new and 24 are recurrent. Using protocol base on sequencing of entire NF1 coding region developed by Messiaen and Wimmer (2008), we identified 25/55 (45%) frameshift, 8/55 (15%) splicing, 7/55 (13%) missense, 5/55 (9%) nonsense mutations and 1/55 (2%) small frame deletion. In all cases where no mutation was identified by sequencing we performed MLPA analysis and we identified 5/55 (9%) deletions of entire gene type 1, 4/55 (7%) larger intragenic deletions of one or more exons. If patients fulfill the main diagnostic criteria but they have no germlinal mutation in NF1 gene we analysed SPRED1 gene. Analysis of SPRED1 gene was finished in 18 patients. No pathogenic mutation was found.

P12.162

Loss of neurofibromin increases micro- and macroporosity in cortical bone resulting in diminished mechanical resistance

J. Kühnisch1, C. Lange1, J. Setz1, J. Grohmann1, S. Tischert1, K. Braun1, T. el Khassawna1, F. Elefteriou1, U. Korni1, P. Pratz2, M. Kolanczyk2, S. Mundlos1

1Institute for Medical Genetics and Human Genetics, Charité, Universitätmedizin Berlin, Berlin, Germany, 2Department of Biometrics, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany, 3Max Planck Institute for Molecular Genetics, FG Development & Disease, Berlin, Germany, 4Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, 5Julius Wolff Institute & Brandenburg School of Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany, 6Department of Bone Biology, Vanderbilt University - Medical Center, Nashville, TN, United States.

Skeletal manifestations such as osteoporosis, dystrophic scoliosis or tibial dysplasia are commonly in patients with neurofibromatosis type 1 (NF1). To further explore the origin of NF1 bone dysplasia we now performed detailed analysis of the cortical bone porosities in NF1Prx1 mice and in NF1 patients employing high-resolution imaging techniques. One of our aims was to determine how NF1 loss of function affects osteocytes, the mechanosensory cells of the bone. The overall morphology of the humerus from NF1Prx1 mice appeared severely disordered. Especially at the muscle to bone insertion sites we observed large amounts of fibrocartilaginous tissue. Within the diaphysis we detected large non-mineralized regions of bone tissue that are
associated with blood vessels. Thus, the macroporosity was 5-fold increased in Nf1Prx1 mice as compared to controls. Microporosity, which is mainly determined by the size of osteocyte lacunae, was increased. While Nf1Prx1 cortical bone contained a normal number of osteocyte lacunae, the average lacuna volume was increased, yielding higher relative osteocyte volume per bone volume (3.4 % in the mutants vs. 2.0 % in controls). The osteocyte phenotype is likely cell autonomous as increased osteocyte lacuna volume was also detected in the Nf1Col1 mice. Similarly, a quantitative volumetric analysis of cortical bone samples from Nf1 patients demonstrated increased osteocyte lacuna size. These findings suggest that neurofibromin is required for normal osteocyte function, and facilitates bone homeostasis. Thus, our collective data reveal a significant impact of neurofibromin on cortical porosity establishing a further aspect of NF1 bone dysplasia.

P12.163 In search of genetic defects in unrelated frontotemporal lobar degeneration patients using whole genome sequencing

A. Aykut1, E. Karacal1, N. Onay1, S. Kalkan1, M. Coker1, O. Cogulu1, F. Ozkaynak1;

1Department of Medical Genetics, Izmir, Turkey, 2Department of Pediatrics, Izmir, Turkey.

Niemann-Pick disease Types A and B (NPD) are autosomal recessive sphingolipidoses caused by mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene. These two types of the disease were described as early onset Type A disease and the more mild Type B disease according to the presence (type A) or absence (type B) of neurological symptoms.

The 5 kb gene encoding the human SMPD1 gene (MIM# 607608;GenBank# M18780.1) is composed of six exons and is located at chromosome 11p15.1-11p15.4. Several mutations causing NPD have been described. We present a molecular analysis of six unrelated Turkish NPD patients in which mutant SMPD1 alleles were identified. One of the patients had type A and 5 had type B NPD. These mutations included two missense mutations: c.409T>C (p.L137P) and c.1262A>G (p.H421R); the common frameshift mutation at codon 189, identified in 2 patient is caused by the deletion of the 567TT introducing a stop codon 65 amino acids downstream (p.I189X65) and a novel frameshift mutation c.1755delC (p.P585Px24) which was not previously reported. The known c.409T>C (p.L137P) and c.567delT (p.P189fsX65) were the most frequent mutations accounting for 50% and 25% the alleles, respectively. In this study genotype-phenotype correlations were established for the mutations.

P12.165 Identification and characterization of SMPD1 mutations causing Niemann-Pick types A and B in Turkish Patients

A. Aykut1, E. Karacal1, N. Onay1, S. Kalkan1, M. Coker1, O. Cogulu1, F. Ozkaynak1;

1Department of Medical Genetics, Izmir, Turkey, 2Department of Pediatrics, Izmir, Turkey.

P12.164 Characterization of the delC2970-2972 AAT mutation in exon 17 of the NF1 gene in Mexican patients with neurofibromatosis type 1 with no cutaneous neurofibromas

P. Hernandez-Alcantara1, L. Plaza-Benhumea1, J. Cazarín-Barrientos2, M. R. Rivera-Vega1, L. M. Gonzalez-Huerta1, R. Ureña-Cueiller1, S. Cuevas-Covarrubias1;
1Genetica, Hospital General de Mexico, Mexico, D.F., Mexico, 2Dermatologia, Hospital General de Mexico, Mexico, D.F., Mexico.

Neurofibromatosis type 1 (NF1) is one of most common genodermatosis inherited as an autosomal dominant trait with complete penetrance and variable expressivity. With an incidence of 1:3000, it is caused by mutations in the NF1 gene, which encodes the protein neurofibromin. Recent reports identified a three nucleotide deletion in exon 17 of neurofibromin gene associated with absence of neurofibromas and benign course. The aim of this study was to analyze the genetic basis of the NF1 in Mexican patients with NF1 and no neurofibromas. Method: 10 patients were screened through PCR and DNA sequencing from genomic DNA. Results: 10 patients (all >20 years old) with a mild NF1 phenotype and no neurofibromas were screened for deletion in exon 17 (c.2970-2972 AAT) of the NF1 gene. All patients included in the study were negative for the deletion reported in other populations. Conclusion: We found no association between the absence of neurofibromas and delC2970-2972 AAT in exon 17 in patients with NF1. We consider that other genes or environment factors could be associated with the absence of neurofibromas in neurofibromatosis type 1.
An Italian family with two siblings affected by nonsyndromic sensorineural hearing loss (NSHL) and showing a recessive pattern of transmission was selected for whole-exome next-generation sequencing (NGS). Genomic capture and NGS on a HiSeq 2000 sequencer (Illumina) of the proband led to the identification of a novel missense mutation within PRPS1. Mutations in this gene, which codes for the phosphoribosylpyrophosphate synthetase 1 (PRS-1) enzyme, were previously demonstrated to cause X-linked syndromic conditions associated with hearing impairment (e.g. Art syndrome and Charcot-Marie-Tooth disease-5), and, most recently, NSHL in 4 families (DFNX1 locus). The identified mutation segregates with prelingual, bilateral, profound NSHL in the proband’s family. A subsequent screening of the entire PRPS1 gene by Sanger sequencing in 13 additional unrelated probands from NSHL families showing a likely X-linked inheritance pattern led to the discovery of a second missense mutation segregating with pre-lingual hearing impairment. The two novel variants were absent in a cohort of 126 Italian audiologically-tested, normal-hearing controls. Both amino-acid substitutions are predicted to cause a destabilization of the enzyme structure. The impact of both PRPS1 mutations on the function of PRS-1 is currently under analysis by measuring the enzyme activity in the patients’ emolysates compared to controls. In conclusion, we provide evidence of the usefulness of whole-exome NGS for the genetic diagnosis of NSHL and we highlight the recurrence of PRPS1 mutations, suggesting that it may represent a major locus for X-linked NSHL to be prioritized in genetic screenings.

P12.170

A custom multiplexing mutation panel for Noonan, Costello, LEOPARD and Cardiofaciocutaneous Syndromes

Introduction: Noonan syndrome is a congenital genetic disease that affects both males and females equally. Often this syndrome is not diagnosed, but it is related to many complex problems such as coagulation defects and lymphatic dysplasias. Differential diagnosis includes major diseases in the same metabolic pathway - Costello, Cardiofaciocutaneous and LEOPARD Syndrome. Noonan Syndrome is often present in prenatal cases with increased nuchal translucency and normal karyotype. Method: We developed a custom multiplex mutation panel (CGG Mutation Panel - Pat. Pending) that contains a total of 81 point mutations on genes PTPN11, RAFI, SOS1 and KRAS, HRAS, BRAF, MAP2K1 and MAP2K2 involved in Noonan, LEOPARD, Costello and Cardiofaciocutaneous syndromes. With this panel we analysed 85 samples (35 prenatal and 50 postnatal). Results: From the 85 samples tested (35 prenatal and 50 postnatal), in 2 prenatal samples we found mutations on PTPN11 gene allowing the diagnosis of Noonan and in 3 of the postnatal samples we found mutations on SOS1, BRAF and PTPN11 gene allowing the diagnosis of Noonan and Cardiofaciocutaneous syndromes. Conclusion: This approach is a valuable prenatal and postnatal diagnostic tool, since it detects the most common mutations associated with Noonan Syndrome and syndromes of the same metabolic pathway in a single test. This panel diagnoses time and considerably reduces the costs for the diagnosis of Noonan Syndrome. Its capability, independently of the sample type, allows an earlier decision-making process in patient management, and is useful especially in prenatal diagnosis situations with increased nuchal translucency and normal karyotype.

P12.168

The prevalence of OTOF mutations in Iranian deaf population

N. Bazazzadeh1, N. Meyer2, K. Kahrai3, M. Babanepaul2, J. Kalalvand2, N. Nikzad1, S. Arzhanghi1, R. J. H. Smith1, H. Najmabadi1;1Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran, 2Molecular Otolaryngology Research Laboratories, Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa, IA, United States.

Hearing impairment is the most common genetic sensory defect in humans worldwide. In one in 1,000 neonates is born with profound congenital deafness. About 70% to 80% of hereditary sensoryneural hearing loss (SNHL) is non-syndromic (DFN) and at least 80% of these cases have autosomal recessive (DFN) inheritance. To date, genetic studies have shown that mutations in more than 90 loci and 40 genes are associated with DFN. Mutations in OTOF gene are cause of neurosensory non-syndromic recessive deafness, DFNB9. OTOF gene contains 48 exons which encode a transmembrane protein, otoferlin. Several mutations in this gene have been found in Lebanese, Pakistani, Turkish, Colombian and Spanish families.

Recently, we observed an Iranian family with autosomal recessive non-syndromic hearing loss (ARNSHL), which showed linkage to OTOF gene. Mutation detection of this gene revealed a missense mutation. So we decided to screen our population for this gene.

One hundred and forty four ARNSHL families with two or more affected individuals originated from different ethnic groups of Iran were selected for this study. All the families were subjected to homozygosity mapping using flanking STR markers of OTOF gene. After screening all the families, one family showed linkage to this gene. Further analysis using direct sequencing of this gene revealed a splice site mutation (IVS28+2 T>C). So, in comparison with other countries such as our neighboring country, Pakistan, OTOF mutations are very rare in Iran.

P12.169

Exome sequencing identifies PRPS1 as a major locus for X-linked nonsyndromic hearing loss in the Italian population

M. Zagaglia1, P. Perngmann1, P. Castorina1, P. Tavares1, Y. Liu2, Y. Jiang2, P. Ambrosiet3, S. Caccia1, U. Ambrosiet3, Y. Vier2, Y. Jiang2, S. Duga3, G. Soldà3; 1Dipt. di Biologia e Genetica per le Scienze Mediche, Università degli Studi di Milano, Milano, Italy, 2BG-Shenzhen, Shenzhen, China, S.O. Genetica Medica, Ospedale Niguarda Ca’ Granda, Milano, Italy, 3O. Audiology, Fondazione IRCCS, Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy, 4Dip. di Scienze e Tecnologie Biomediche, Università degli Studi di Milano, Milano, Italy.

Non-progressive congenital ataxias (NPCA) with or without intellectual disability (ID) are clinically and genetically heterogeneous conditions. As a consequence, the identification of the genes responsible for these phenotypes remains limited. Using high resolution microarrays, we identified intragenic copy number variations in the CG-1 domain of the Calmodulin-binding Transcription Activator 1 (CAMTA1) gene, segregating with autosomal dominant ID with NPCA in two unrelated families, and a de novo deletion located in the same domain in a child presenting with NPCA. In the ID patients, the deletion led to a frameshift, producing a truncated protein, while this was not the case for the patient with isolated childhood ataxia. Brain MRI of the patients revealed a pattern of progressive atrophy of cerebellum medium lobes and superior vermis, parietal lobes and hippocampi. Although DNA sequencing of the CG-1 domain in 197 patients with sporadic or familial non-syndromic intellectual deficiency, extended to full DNA sequencing in 50 patients with ID and 47 additional patients with childhood ataxia, we identified no pathogenic mutation, there is considerable evidence that CAMTA1 rearrangements are being disease causing. Indeed, CAMTA1 is a brain specific calcium responsive transcription factor expressed in the brain and cerebellum during development and later implicated in memory processes; intragenic rearrangements are concentrated in a highly conserved functional domain with transcription regulation ability and nuclear trafficking functions; CAMTA1 transcriptional studies have shown upregulation of genes already implicated in intellectual disability and autism spectrum disorder. Altogether, we showed that CAMTA1 loss-of-function is responsible for NPCA with or without ID.
A spectrum of mutations in PTPN11, SOS1 and RAF1 genes in patients with Noonan syndrome clinical suspicion.

A. Abramowicz, M. Gozdowski, M. Kudelski, J. Makowska, J. Szczepaniak, A. Szafranska-Rozniewska, A. Kucharska-Kozianowska, I. Piechura, L. Poleszczuk, J. Bal, B. Biocan, E. Bocian1; 1Institute of Mother and Child, Warsaw, Poland, 2McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada.

Noonan syndrome (NS) is a relatively common developmental syndrome belonging to the group of RASopathies, that are characterized by increased activity of the RAS/mitogen activated protein kinase (RAS/MAPK) signaling pathway. NS is known to be a disorder with variable phenotypic expression including symptoms like short stature, dysmorphic features, congenital heart defects and many other. Noonan syndrome is caused by a germline mutation in one of the genes that encode proteins involved in RAS/MAPK signaling pathway. In NS patients, heterozygous mutations have been identified in PTPN11, SOS1, RAF1, BRAF, NRAS, ARK2, MEK1 and CBL genes.

Three hundred eleven individuals (237 patients with clinical suspicion of NS and 74 relatives) were referred to our laboratory for molecular examination. The PTPN11, SOS1 and RAF1 genes were examined in 237, 70 and 28 patients, respectively. The analysis is coding sequence was performed using direct sequencing method. The known NS causing missense mutations were found in 89 (37.5%) cases: 67 had mutation in PTPN11, 10 in SOS1 and 12 in RAF1. All the identified mutations, according to the literature, were gain-of-function type. Although most of the probands with NS have a de novo mutation, we have identified 17 (50%) familial cases (14 - PTPN11, 2 - SOS1, 1 - RAF1). The low frequency of identified mutations among patients included in the study might suggest that more stringent criteria should be used for patients' qualification for molecular testing.

Supported from NCN research project no. DEC-2011/01/D/NZ5/01347.

P12.175 Oncogenic NRAS G12S discovered as a germline mutation in a patient with Noonan/CFC syndrome

S. Jakubicka1, J. Spranger2, A. Plehn3, C. C. I. T. G., M. Zekner1; 1Institute of Human Genetics, Magdeburg, Germany, 2Praxis for Human Genetics, Bremen, Germany, 3Hospital Bremen-Mitte, Bremen, Germany.

Noonan syndrome (MIM 163950) and cardiofaciocutaneous syndrome (CFC syndrome; MIM 115150) are clinically overlapping syndromes caused by mutations in various genes encoding components of the RAS/MAPK signaling pathway. Here, we report on a 1-year-old girl with facial anomalies, heart defect, and developmental delay leading to the differential diagnosis of Noonan or CFC syndrome. She has not had any signs of a myeloproliferative disease or other malignancy, so far. Mutation analysis revealed the heterozygous NRAS mutation c.34G>A (p.G12S) in leukocyte DNA. The presence of the mutation was also confirmed in the patient's buccal cells and could be ruled out in the parents, thus indicating a de novo mutational event in the germline. G12S is one of the most frequent somatic NRAS mutations and predominately observed in cancers of haematopoietic and lymphoid tissue. So far, very few germline NRAS mutations sparing the classical oncogenic mutation hotspots have been identified to date in patients with Noonan syndrome. It has been hypothesized that oncogenic mutations when occurring in the germline might lead to embryonic lethality. Two anecdotal reports, however, described the known oncogenic NRAS mutation G12D being apparently present in the germline of patients with a hematologic phenotype but no obvious signs of Noonan syndrome. Our observation documents a clear RASopathy phenotype and absence of myeloproliferative disorder in a patient with oncogenic NRAS G12S as a constitutional mutation.

P12.176 Cornelía de Lange Syndrome diagnostics in times of NGS

P. Stöbe1, T. Schopen1, H. Gabrield, M. Gencik1, A. Gencik1; diagenos, Osnabrück, Germany.

The syndrome consists of failure to thrive, a natural killer cell deficiency, an atypical Fanconi’s type DNA breakage disorder and features of familial glucocorticoid deficiency. In addition the children had delayed bone age, clairaudity and some presented with hypoglycaemia. Using SNP homozygosity mapping, we identified a locus for this syndrome on 8p11.21-q11.22. Targeted resequencing of the candidate region revealed a homzygous mutation in MCM4/PRKDC in all ten patients that segregated with the phenotype. Consistent with the observed DNA breakage disorder, MCM4 and PRKDC are both involved in the ATM/ATR DNA repair pathway which is defective in patients with Fanconi’s anaemia. Deficiency of PRKDC in mice has been shown to result in an abnormal NK cell physiology similar to that observed in the patients. Mutations in MCM4/PRKDC represent a novel cause of DNA breakage and NK cell deficiency. Our findings suggest that clinicians should consider this disorder in patients with failure to thrive who develop pigmentary or who have recurrent infections.

P12.172 Interpretation of atypical NOTCH3 mutations: lessons from patients with novel large NOTCH3 alterations but no CADASIL

J. W. Rutten1, 2, E. M. Booij3, H. G. Dausinger4, P. Lahermo1, M. K. Lien, E. J. Vollebregt5, A. de Kort5, M. H. Breuning6, S. van Daunen1, G. M. Tervoort5, J. A. L. N. G. Oosterbein5; 1Leiden University Medical Center, Leiden, Netherlands, 2VU medical center, Amsterdam, Netherlands, 3St. Elisabeth Hospital, Tilburg, Netherlands.

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by early onset stroke and vascular dementia. It is caused by stereotyped missense mutations in NOTCH3, which invariably lead to an uneven number of cysteines in one of the 34 EGF domains that constitute the NOTCH3 ectodomain. In addition to missense mutations, a few small pathogenic NOTCH3 deletions and insertions have been described. All changed the number, or the spacing, of cysteine residues. A frame shift mutation leading to a stop was reported as pathogenic, but molecular and clinical testing was incomplete.

We describe three patients with large NOTCH3 alterations, of which the pathogenicity was initially unclear. We combined extensive laboratory analysis (MLPA, DNA and RNA analysis, Western Blotting) with thorough clinical evaluation. The first patient has a deletion of exon 3-16, leading to a premature stop, the second patient has an exon 3 stop mutation. Clinically, they did not have a CADASIL phenotype. Molecularly, the mutations are predicted to result in small NOTCH3 fragments that lack transmembrane and intracellular domains and are highly unlikely to be expressed at the cell surface. The pathogenicity of the mutation in the third patient, a splice site mutation causing exon 7 skipping, remains uncertain but do not give classical CADASIL phenotype.

We conclude that i) clinical and molecular investigation by an experienced team is indispensable for the correct interpretation of atypical NOTCH3 mutations and ii) NOTCH3 stop mutations do not cause CADASIL, arguing against the theory that hypomorphic NOTCH3 alleles also cause CADASIL.

P12.174 Recassitative mutations in MCM4/PRKDC cause a novel syndrome characterized by a primary immunodeficiency and impairments in DNA repair

J. P. Casey1, M. Nobile1, P. McGee1, S. Lynch1, S. Ennis2; 1National Children’s Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland, 2Health Sciences Centre, University College Dublin, Dublin, Ireland, 3Bristol Genetics Laboratory, Bristol, United Kingdom, 4College of Life Sciences, University College Dublin, Dublin, Ireland, 5National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.

We present a study on ten children from three families with a novel syndrome born to consanguineous parents from the Irish Traveller population.
P12.177 New insights in non-syndromic albinism

Background: Albinism is a complex group of genetic disorders characterized by reduced or complete absence of melanin pigment in the skin, hair, and eyes associated with decreased visual acuity, nystagmus, and photophobia. Oculocutaneous albinism (OCA) is classified into several types based on clinical and molecular categories. The prevalence of all forms of albinism varies considerably worldwide and has been estimated at approximately 1/17,000.

Patients and Methods: After informed consent was obtained, blood samples were collected from patients with clinical signs of OCA. We screened 13 families (7/13 Spanish, 1/3 Basran and the 2/13 Africans) for sequence variations in the coding region of the TYR gene avoiding the TYRL pseudogene and the 6, 7 and 13 exons of the OCA1 gene. Also MLPAp325 was performed in order to detect deletions or duplications in the TYR and OCA2 genes.

Results: At least one single mutation in either or both TYR and OCA2 genes has been identified in 12 out of 13 families. Most of the identified mutations were detected in a heterogeneous pattern, but with the exception of the mutation p.Pro81Leu and the 2,7kb including exon 7.

Discussion: The entire coding regions of 4 genes associated with non-syndromic OCA have been analysed in many cases, however one single mutation has been identified in many of the cases analysed which suggests that other genes yet unidentified probably exist. Epistatic phenomenon also has been described in mice assays. The new technologies such as Next Generation Sequencing would provide us new insights in this disease.

P12.178 Novel OFD1 mutations in males extend the phenotypic spectrum to situs inversus, and basal bodies docking impairment
4,18, centre de génétique, Dijon, France, 5Equipe émergente GAD, Hf Santé STIC, Université de Bourgogne, Dijon, France, 6Unité INSERM U701, Hôpital Necker – Enfants Malades, Paris, France, 7Université Paris Descartes, Paris, France, 8Service dAnatomopathologie, Centre hospitalier intercommunal de Créteil, Créteil, France, 9Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, CHU, Dijon, France, 10Département de génétique médicale, CHU de Marseille - Hôpital de la Timone, Marseille, France, 11Département de Génétique, CHU, Saint Etienne, France, 12Laboratorio di ricerca, Telethon Institute of Genetics and Medicine (TIGEM), Napoli, Italy, 13Medical Genetic Services, Department of Pediatrics, Federico II University of Naples, Napoli, Italy, 14Département de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Assistance Publique –Hôpitaux de Paris (AP-HP), Paris, France, 15Service de Radiologie Pédiatrique, Hôpital Necker-Enfants Malades, APHP, Paris, France, 16Service de Génétique, CHU, Besançon, France, 17Service d'Histologie - Embryologie Hôpital Armand Trousseau, APHP, Paris, France.

OFD1 is classically responsible for dominant X-linked OFD1 syndrome with male lethality, but mutations were recently reported in males, one syndromic mental retardation (MR) families (SGBS2, MIM300209) and two Joubert syndrome (JBS10, MIM300804). We therefore sequenced the OFD1 gene in a cohort of 92 males, including 32 JBS patients, 20 fetuses with Joubert/Meckel syndrome or ciliopathy spectrum, as well as 40 additional males with syndromic MR based on1 the association of at least 2/5 of the following criteria: macrocephaly, obesity, polycystic, recurrent respiratory infections, and retinopathy.

We identified 2 novel truncating OFD1 mutations, both located in exon 21. The first de novo mutation was found in a fetus with polycystic, vermis hypoplasia, but also hypothalamic hamartoma and situs inversus extending the phenotypic spectrum of OFD1 mutations. The second maternally inherited truncation mutation was found in a 10 year-old JBS male with polycystic obesity, recurrent bronchitis and normal nasal NO measurement. Electronic microscopy of airways epithelia in both cases showed cilia abnormalities and an abnormal centrosomal docking at the cell surface. OFD1 expression analysis during early human development correlates with its phenotypic spectrum. Our study further confirms that OFD1 mutations in the C-terminal domain lead to syndromic recessive X-linked JBS in males. The OFD1 gene should therefore be sequenced in JBSD males with molar tooth sign, in association with other suggestive features such as retinopathy, polycystic, macrocephaly but also hypothalamic hamartoma and situs inversus, and recurrent bronchitis. Abnormal NO measurement might help orienting the molecular analysis towards OFD1.

P12.179 A compound heterozygous missense mutation and a large deletion in the KCTD7 gene presenting as an opsonoscler-myoclonus ataxia-like syndrome
D. Lev1, L. Blumkin1, S. Koty1, R. Shomrat2,1, T. Lerman-Sagie1,2, E. Leshinsky-Silver1,2. 1Wolfson Medical Center, Holon, Israel, 2Sackler school of Medicine, Tel Aviv, Israel.

Purpose: To describe a new presentation of KCTD7 mutations: an opsonoscler-myoclonus ataxia like syndrome with subsequent development of gene-prenuminal leukoencephalopathy.

Methods: We recorded the clinical course of the disease, the evaluation and the response to steroid therapy. After excluding possible genetic causes, whole genome exome sequencing was performed in order to identify the causative gene. Sequence variants were filtered according to the phenotype. Sanger sequencing was performed to confirm the point mutation and MLPA was used for screening for a possible deletion in the second allele.

Key finding: Two pathological variants were found in the KCTD7 gene: R84W and a large deletion of exons 3 and 4. The father is heterozygous for the R84W mutation and the mother is heterozygous for the exon 3+4 deletion.

Significance: KCTD7 mutations were described in a single family with progressive myoclonus epilepsy. Our patient presented with non epileptic myoclonus, ataxia and opsonoscler response to corticosteroid treatment and only two years later developed an epileptic EEG without overt seizures. The different phenotype broadens the spectrum of KCTD7 related diseases.

P12.180 Lack of mutations in COL1A2 gene in osteogenesis imperfecta patients from Russia
D. Nadyrshina1, R. Khushnatova1,2, E. Khushnatovina1,2.
1Institute of Biochemistry and Genetic RAS, Ufa, Russian Federation, 2Bashkir State University, Ufa, Russian Federation.

Osteogenesis imperfecta (OI) is a heritable disorder of connective tissue mainly caused by dominant mutations in type I collagen genes COL1A1 and COL1A2. The aim of our study was to identify mutations in COL1A1 and COL1A2 genes in Russian OI patients.

We examined 54 patients with OI from 43 families and 50 healthy controls corresponding by age, gender, ethnicity and place of residence. All 51 coding exons in COL1A1 gene and 52 exons and flanking intronic regions in COL1A2 gene were analyzed by SSCP-analysis and direct sequencing. One frameshift mutation (c.579delT (p.Gly194ValfsX71), three nonsense mutations (c.967G>T (p.Gly323X), c.1081C>T (p.Arg336X), c.2869C>T (p.Gln957X)) and one splice mutation (c.4005+1G>T) were identified in patients with autosomal dominant inheritance of OI type I. Two mutations (c.2444delG (p.Gly815AlafsX293) and c.35-40,34insC (p.Gly1181AlafsX393)) occurred in sporadic cases of OI type I, whereas c.1243C>T (p.Arg415X) mutation - of OI type 3. In conclusion, the present study reveals eight mutations in COL1A1 gene (two of them observed de novo: c.967G>T (p.Gly323X) and c.35-40,34insC (p.Gly1181AlafsX393)) and no mutations in COL1A2 gene in Russian patients with OI. However, no predominant mutations were detected. Despite the previous studies indicating the vast majority (70%) of COL1A1/CO L1A2 mutations causing OI being glycine substitutions to amino acid with a bulky side chain, we detected no missense ones. Interestingly, all detected mutations were unique for each family except for the frameshift mutation c.579delT (p.Gly194ValfsX71) observed in two unrelated families. Future research should focus on other genes responsible for OI development in Russian patients.

P12.181 LEPRE-1 gene in Osteogenesis Imperfecta: study of mutations in Brazilian patients
F. Paole,1 C. Barbato1, C. M. G. Almeida1, V. Sipollati1, R. G. O. Rebouças1, V. Kuner1, A. N. Akl Junior1, L. D. Louar1.
1Department of Biology, Federal University of Espirito Santo, Vitória, Brazil, 2Hospital Infantil Nossa Senhora da Glória, Vitória, Brazil.

Osteogenesis Imperfecta (OI) is a heterogeneous genetic disease characterized by bone fragility, recurrent fractures and clinical variability. The
majority of OI cases has autosomal dominant inheritance and is caused by mutations in genes that codify type I collagen protein. The LEPRE1 gene is one of the most frequent mutated gene described in OI patients with recessive pattern. In order to characterize mutations in LEPRE1 gene a total of 33 unrelated Brazilian OI patients were studied using SSC screening and sequencing analyses. This study was approved by the Research Ethics Committee and all patients agree in participate of the work. The previously described African mutation (c.1080+1C>T) was found in homozygous state in one isolated case with severe OI. Two mutations were identified in heterozygosis: the c.1087A>G/p.Lys363Glu missense mutation detected in a sporadic case with severe form and the c.2024+6>T/Y-Try675Leu change detected in a moderate case with recessive inheritance. In these patients the other changes were not found probably because of the technique limitations. The c.1720+52C>T mutation and c.1812C>T silence change were found in one patient with mild OI and dominant heritance, but absent in his affected mother, suggesting that these were no-pathogenic changes. Our results showed that almost 10% of Brazilian OI patients carry mutations in LEPRE1 gene. Moreover most of the carry patients have severe phenotype and are sporadic cases. These dates showed the importance of the study of LEPRE1 gene in OI and corroborate dates observed in other populations. Supported by Brazilian Institutions: CAPES, FAPES, FACITEC, CNPQ, Arcorel-Mittal, Brazil.

P12.183 An overview of clinical, biochemical and molecular findings in series of 36 COL1A1/COL1A2 mutation-negative osteogenesis imperfecta patients

F Majdi, S Symoens, P Coucke, A De Paepe; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.

Autosomal recessive osteogenesis imperfecta (OI) is associated with mutations in an expanding list of genes, encoding collagen-modifying enzymes and chaperones (CRIPT, LEPRE1, PPIB, FKBP10, SERPINH1 and PLOD2), and more recently SP7 and SERPINF1. We studied the presence of mutations in these genes in a carefully selected cohort of 36 COL1A1/COL1A2 mutation-negative patients with a clinical diagnosis of OI type II, III or IV, or with Bruck syndrome (BS), a related, panniculitis-like, characterised by bone fragility and congenital contractures. Homozygous/compound heterozygous mutations were found in 19/36 probands. The majority of mutations were present in LEPRE1 (n=6) and FKBP10 (n=5) and, to a lesser degree, in CRIPT (n=3), SERPINH1 (n=2), PPIB (n=1), SERPINH1 (n=1) and PLOD2 (n=1). In agreement with previous reports, LEPRE1, CRIPT and PPIB defects cause a severe to lethal osteochondrodysplasia that overlaps with but is distinctive from OI type II/III, whereas FKBP10 and PLOD2 mutations are associated with Bruck syndrome. Two probands with progressive OI harboured homozygous SERPINF1 mutations, and a homozygous p.Arg222Ser was found in SERPINH1 in a patient with OI type III. Biochemical collagen studies provide a valuable contribution to the diagnostic work-up for recessive OI as important overmodification of the collagen type I e-chains is seen in the presence of CRIPT and LEPRE1 mutations. The abnormal electrophoretic pattern for type I collagen was also observed for the SERPINH1 mutation, but not for mutations in the other genes. Our findings also indicate that still other gene(s) are involved in the pathogenesis of OI.

P12.184 Identification of nucleotide substitutions and mutations in the Otoferlin (OTOF) gene in a cohort of patients with auditory neuropathy (AN)

A Heneaccoeur, X Pepermans, N Degghoui, M Vast, K Doham, K Claes, A De De Leenheer, M Vinkula, S Staiger; "Center for Human Genetics, Ghent University Hospital, Ghent, Belgium.

OTOF gene mutations were identified causative for an isolated autosomal recessive Braxton-Hill inheritance of auditory neuropathy, DFNB9. Since 1998, molecular investigation identified absence of hotspot mutations, numerous polymorphisms and variants of unknown significance. The first 10 local patients were reported at ESHG 2011 meeting. Additional patients were studied. Material and methods: Patients were enrolled if they fulfill criteria for AN. Molecular investigation relied on complete ORF sequencing (NM_194248.2, long isoform, 1997a). Our molecular lab is the only one in Belgium to sequence the complete OTOF gene. Substitutions were normal as 'unclassified variants' when absent from Ensembl and Uniprot databases or from available publications. Family members were investigated when available. Results: Among 32 patients referred for AN, 24 had isolated NA among whom 15 were congenital (prelingual)/1.15 was identified with 1 homozygous mutation (c.3269C>A); 2/15 carried one mutation and a variant, probably pathogenic1 (c.[2401G>T/2402A>T]=[2446C>T] and c.[2490T>G;2492A>T;4936C>T]=[607A>G]). These last two propositus originated from unrelated pedigrees from Congo and Burundi. 1 patient was carrier of one determined variant c.[3751T>G;3063C>T]) and 6 patients had one variant only. Conclusion: The present screening confirms substitutions considered as pathogenic reported once1 and present in different genetic background population. Identified compound heterozygous (one mutation and one variant, this last reported so far as ‘probably pathogenic’) may account for a less determined status. Precise genetic counseling remains delicate. Molecular strategy encompasses GJB2 and GJB6 genes before OTOF ORF sequence screening in AN. Reference: 1.Romano J, J Hum Genet 2009;54:382-385

P12.186 Novel mutation in Cathepsin C (CTSC) and the Modeling of Mutated Protein in Three Iranian Families with Papillon Lefèvre Syndrome

E. Dodkati, M. Moghaddasian, H. Arabi, H. Boustani Forkhoush, M. Kazemi Noughabi, M. R. Abbaspourdehaghi; 1Human Genetics Division, Immunology Research Center, Azizzena Research Institute, Mashhad Medical School of Sciences (MUMS), Mashhad, Islamic Republic of Iran, 2Department of Periodontology, School of Dentistry and Dental Research Center, Mashhad University of Medical Sciences (MUMS), Mashhad, Islamic Republic of Iran.

Papillon-Lévére syndrome (PLS) is a rare autosomal recessive disorder characterized by hyperkeratosis followed later by periodontitis, destruction of alveolar bone and loss of primary and permanent teeth. Mutation of the lysosomal protease Cathepsin C (CTSC) gene is the genetic cause of PLS. The CTSC Gene was analyzed in three Iranian families with affected PLS showing premature tooth loss and palm plantar hyperkeratosis. Direct automated sequencing of genomic DNA was performed following amplification of exonic regions and associated splice intron site junctions of the CTSC gene. Mutation screening and sequence analysis of the CTSC gene revealed a novel mutation (P.35 dell) in exon 1 of one patient, and two previously reported mutations in other probands. The known mutations were a missense mutation in exon 4 which converts Arginine to Proline (GTT→ CCT, CM9993131, codon 210) and a nonsense mutation in exon 6 that causes a stop codon (CGA→TGA, CM9993134, codon 272) in the other two patients. RFLP for 100 normal alleles confirmed the new mutation. Protein modeling of the deduced novel mutation was performed by online server Swiss-Prot automated modeling and analyzed by special bioinformatic softwares including ZMM, ICM-browser and SPDB-viewer to better understand the structural defects. The structural defect caused by the mutation P.35 dell. alters the polarity of the molecule. As this mutation occurred in the conserved domain of the CTSC, the structural analysis might reveal inconsistency of the special binding sites in the CTSC molecule which could be very important in the functionality of the protein.

P12.187 The guanine nucleotide exchange factor kalirin-7 is a novel synphilin-1 interacting protein and modifies synphilin-1 aggregate transport and formation

Y. Tsuo, O. Riess, H. Nguyen, A. S. Soehn; Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany.

Synphilin-1 has been identified as an interaction partner of alpha-synuclein, a key protein in the pathogenesis of Parkinson disease (PD). To further explore novel binding partners of synphilin-1, a yeast two hybrid screening was performed and kalirin-7 was identified as a novel interactor. Kalirin-7 is a brain-specific guanine nucleotide exchange factor (GEF) enriched in the postsynaptic density (PSD) of excitary synapses. It contains a SEC14 domain, a spectrin-like domain, a RhOGEF domain and a Pleckstrin homology domain (PH) which control multiple aspects of the protein. Kalirin-7 activates Rac1 and regulates dendritic spine morphogenesis, plasticity and development. An interaction of kalirin-7 with huntingtin-associated protein 1 (HAP1), nitric oxide synthase (iNOS), and disrupted in schizophrenia 1 (DISC1) further links the protein to Huntington disease (HD), Alzheimer disease (AD), and schizophrenia.

In order to evaluate the functional relevance of this newly discovered interaction, we first focused on the ability of synphilin-1 to promote inclusion formation, as this feature provides a functional overlap of kalirin-7 and synphilin-1. By means of Co-immunoprecipitation, Fluorescent immunostaining, and Live cell imaging, a novel role for kalirin-7 in aggresome dynamics was described. A synergistic interaction of kalirin-7 and synphilin-1 is critical for inclusion formation, as this feature provides a functional overlap of kalirin-7 and synphilin-1. These findings establish kalirin-7 as a novel regulator of synphilin-1-mediated inclusions and suggest a new role for kalirin-7 in both neurotoxicity and pathology.
P12.188

Parkinson disease: whole genome sequencing for the identification of novel genes

A. Versteylen1,2, B. Crausser1,1/2, P. Crau1,1/2, C. Van Broeckhoven1,1/2, J. Thoen1,1/2
1Neurodegenerative Brain diseases Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; 2Institute Born-Bunge, University of Antwerp, Antwerp, Belgium

Gene identification studies can be instrumental in the elucidation of disease mechanisms underlying neurodegenerative brain diseases such as Parkinson disease (PD) and eventually support the development of earlier and more accurate diagnostic tools as well as formulation of preventive or curing therapies. We therefore performed whole genome sequencing in a Flanders-Belgian PD patient with an onset age of 24 years and both unaffected parents. Successful filtering of the identified variations was based on sequence quality, genomic location and frequency in both the 1,000 genomes project and an extended collection of Flanders-Belgian individuals. Finally, variations were selected based on segregation in line with one of the four possible inheritance patterns. Focusing on high-confidence coding and splice site variations we identified 115 de novo, 40 homozygous recessive, 55 heterozygous compound recessive and 11 X-linked variations. Genetic validation in an extended cohort of geographically matched control individuals (N=1000), to exclude polymorphisms, resulted in 16 variations in 10 genes with a high potential to be linked to PD in this Flanders-Belgian nuclear family. We are currently estimating the contribution of these variations to PD pathogenesis in our cohort of Flanders-Belgian PD patients (N=600) using various genotyping platforms. Further we plan to sequence the selected candidate genes using a custom MASTR-NGS assay to identify other mutations in these genes to further support a role in PD pathogenesis. Eventually, functional characterization of the probable pathogenic variant(s) will be performed to gain insights into the mutation mechanism and disease processes.

P12.189

Caspase 8 and caspase 9 activation in peripheral blood lymphocytes of patients with LRRK2-associated Parkinson’s disease

T. Usenko, A. Yakimovskii, A. Emelyanov, S. Pchelina; Petersburg Nuclear Physics Institute, Saint-Petersburg, Russian Federation.

Mutations in the LRRK2 are the most frequent cause of familial Parkinson’s disease (PD). Although the precise physiological and pathological role of LRRK2 is unclear, direct link between mutant LRRK2 and apoptosis has been suggested. There are two main caspase activation pathways of apoptosis, receptor-mediated sequential activation of caspase-8, and cytochrome c-dependent mediated caspase-9 activation. Earlier we showed higher level of spontaneous apoptosis in patients with LRRK2-associated PD compared to controls (persons without neurological disorders). The aim of our present work was to examine the level of active caspase 8 and 9 in peripheral blood lymphocytes (PBLs) after incubation (37°C, 5% CO2). PBLs were isolated from venous blood, Cells were resuspended in RPMI1640 with Fetal Calf Serum and were incubated for 48 hours. We estimate the level of active caspase 8 of PBLs in two patients with LRRK2-associated PD (the G2019S mutation) compared controls (n=4) after 1h, 24h and caspase 9 after 24h of incubation by western blot analysis. β-actin was tested as an internal standard. The active enzyme subunits were 18kDa for caspase 8 and 10kDa for caspase 9. We found the activation of caspase 8 in both patients with the G2019S mutation and in all controls after 1h, 24h of incubation. The active caspase 9 was detected in both carriers of the G2019S mutation and in one from four controls after 24h of incubation. Thus, predominant activation caspase 9 in patients with LRRK2-associated PD could be suggested.

P12.190

Novel PCDH19 mutations in Bulgarian epilepsy cases

A. V Kirov1, P. Dimova, A. Todorova1, T. Todorov2, V. Boymovi1, V. Mitrev2
1Department of Medical Chemistry and Biochemistry, Medical University Sofia, Sofia, Bulgaria; 2Genetic-Medico-Diagnostic Laboratory Genica, Sofia, Bulgaria, 3Clinic of Child Neurology, St. Naum University Hospital of Neurology and Psychiatry, Sofia, Bulgaria

X-linked female-limited epilepsy is characterized by seizure onset in infancy or early childhood and cognitive impairment. The spectrum of phenotypes has been extended to include female patients with early infantile epileptic encephalopathy, type 9 (GIE9). Heterozygous PCDH19 mutations were identified in a subset of patients with infantile spasms and/or hypsarrhythmia, a phenotype that is most prominent in the cerebral hemisphere, where the molecular layer is strongly reduced, Purkinje cells are abnormally small and misaligned, and the cells of the internal granular cell layer are almost absent. Based on imaging and neuropathological findings we have divided the PEHO syndrome into two types, the cortical atrophy and loss of myelin being pronounced in type 2. Using a 318 k genome-wide SNP scan we identified a 435 kb region on chromosome 17 that was homozygous in Finnish type 1, but not type 2 patients. Sequencing of positional candidate genes revealed a missense mutation in a gene not previously associated with human disease in all but one patient with type 1 PEHO. Mutations were not present in type 2 patients. The

P12.191

Identity-by-Descent Mapping Reveals a New Locus for Primary Congenital Glaucoma, GLC3E, on Chromosome 19p13.2

Verdin1, B. Larrey2, B. Dhame1, F. Cognet1, S. Leferve1, P. G. Kestelyn1, E. De Baere1
1Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium. 2Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.

Primary congenital glaucoma (PGC) is caused by developmental anomalies of the trabecular meshwork and the anterior chamber angle, resulting in an increased ocular pressure (IOP) and optic nerve damage from birth or early infancy. In general PGC displays an autosomal recessive inheritance and is genetically heterogeneous. To date, four PGC loci are known (GLC3A-D), in which two genes have been identified, CYP1B1 and LTBP2. Here, we aimed to map the disease gene in a large, four-generation consanguineous family with PGC originating from Jordan. Mutations in known PGC genes were excluded. Identity-by-descent (IBD) mapping was performed in six affected members using genome-wide SNP genotyping with 250K arrays. The common IBD regions did not overlap with any known PGC loci. Filtering on both size of the region and number of consecutive homozygous SNPs revealed a new candidate region on 19p13.2, named GLC3E. This region measures 2.67 Mb and contains 93 genes. Using prioritization tools, BEST2 was selected as the best candidate gene. Indeed, BEST2 is expressed in non-pigmented epithelial cells of ciliary body, which is responsible for formation of aqueous humour. Also, Best2-/- mice have significantly lower IOP than wild type littermates. Sanger sequencing of BEST2 in affected individuals revealed no mutations however. To analyze the other genes in the IBD region, two affected individuals underwent exome sequencing for which data analysis is currently ongoing. We identified a potential new PGC locus, named GLC3E, confirming the genetic heterogeneity of PGC, and representing a unique opportunity to identify the third PGC gene.
"PEHO*" gene encodes a protein possibly involved in transcriptional regulation. It is widely expressed in the brain, the expression pattern being compatible with the neuropsychological findings. In developing mouse brain, the "PEHO*" protein expression is strong in neural progenitor and migrating precursor granular cells. Transient overexpression studies revealed no difference in subcellular localization. This is the first step towards understanding the pathogenesis of PEHO, that is genetically heterogeneous.

P12.193
Perrault syndrome: Evidence for genetic heterogeneity and whole-exome sequencing to identify novel molecular mechanisms
F. E. Percin1, Y. Lî, B. Gavard1, B. Wollnîke;
1Gazi University, Faculty of Medicine, Dept. of Medical Genetics, Ankara, Turkey;
2Institute of Human Genetics, University of Cologne, Cologne, Germany.

Autosomal recessively inherited Perrault syndrome (MIM233400) is a clinically and genetically heterogeneous disorder. It is typically characterized bilateral hearing loss, ovarian dysgenesis in female patients, and can be associated with neurological manifestations such as mental retardation and cerebellar ataxia. A proposed clinical classification suggests type I does not show neurological symptoms while type II patients do show variable affection of the nervous system. Recently, mutations in HSD17B4 and in HARS2 were described in some, but not all, patients with Perrault syndrome. Here we report a 16 years old girl with Perrault syndrome born to consanguineous parents, who presented with ovarian agenesis, microcephaly, mental retardation, neurologic abnormalities including ataxic gait, and no speech acquisition. Hearing impairment was not observed. Her karyotype was normal (46,XX). We excluded homozygosity of regions of described genes for Perrault syndrome by marker analysis. Subsequently, we performed whole-exome sequencing. Our strategy for the identification of the causative gene is based on an initial determination of homoygous stretches using all identified variants followed by a prioritization of likely damaging variants within these homoygous stretches. Using this innovative filter strategy we aim to identify a new gene underlying Perrault syndrome giving more insights into the pathogenic mechanism of the disease.

P12.194
A novel splice site B3GALT1 mutation confirms typical Peters plus syndrome in two Tunisian patients
O. Sialâ1, N. Belguîth2, S. Kammoun3, N. Hmida1, I. Chachchoub1, F. Fahiki1;
1Laboratory of Human Molecular Genetics, SFAX, Tunisia, 2Laboratory of medical genetics, SFAX, Tunisia, 3Laboratory of Medical Genetic, SFAX, Tunisia, 4Service d'ophtalmologie, SFAX, Tunisia, 5Service de Pédiatric, SFAX, Tunisia.

Peters plus syndrome is an autosomal recessive rare disorder comprising ocular anterior segment dysgenesis, short stature, hand abnormalities, distinctive facial features, and often other major/minor additional defects. Only six mutations in the B3GALT1 gene were recently reported in patients with Peters plus syndrome, leading to the inactivation of the B1, 3-glucosyltransferase involved in the synthesis of a rare disaccharide that occurs on thrombospondin type 1 repeats of many biologically important proteins. In our study, we screened the B3GALT1 gene in two unrelated Tunisian patients with typical Peters plus Syndrome. A novel homozygous c.597-2 A>G mutation was identified in both patients. Bioinformatic analyses using the MFOLD and the EMB OSS programs showed that this mutation modulates the pre mRNA secondary structure of the gene, and decreases the score value related to the formation of splicing loops. Moreover, the c.597-2 A>G mutation is located in a CpG island of the B3GALT1 coding region, eliciting a potential epigenetic role of this position including gene’s methylation and regulation. These data confirm an important role of the B3GALT1 gene test that provides diagnosis confirmation and improves dramatically genetic counselling for the families.

P12.195
Molecular genetic analysis of PAH gene in Belarus: two novel mutations
J. V. Tsukerman, K. A. Mosse;
National Center of Applied and Research Medicine “Mother and child”, Minsk, Belarus.

Phenylketonuria (PKU) is one of the most common inherited monogenic diseases in Belarus, its frequency is 1:6000 newborns. Classical PKU (OMIM#261600) is caused by mutations in PAH gene. We completed the molecular-genetic analysis of R158Q, R261Q, Y414C, IVS10-1G>A and IVS12+1G>A mutations and sequencing of six exons of PAH gene in patients with PKU in Belarus. Identified mutations are shown in table 1.

Table 1. Mutations of PAH gene in patients with PKU in Belarus.

<table>
<thead>
<tr>
<th>Exon/Intron</th>
<th>Mutation</th>
<th>No. of Chr.</th>
<th>Frequency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS2-13T>G</td>
<td>6</td>
<td>6.06%</td>
<td></td>
</tr>
<tr>
<td>R111X</td>
<td>3</td>
<td>0.48%</td>
<td></td>
</tr>
<tr>
<td>D84Y</td>
<td>1</td>
<td>0.16%</td>
<td></td>
</tr>
<tr>
<td>P99S</td>
<td>1</td>
<td>0.16%</td>
<td></td>
</tr>
<tr>
<td>R158Q</td>
<td>40</td>
<td>6.4%</td>
<td></td>
</tr>
<tr>
<td>E221D222FSAdel</td>
<td>1</td>
<td>0.16%</td>
<td></td>
</tr>
</tbody>
</table>

*Identified by RFLP-analysis
**Novel mutation

We identified two novel mutations, each on single chromosome: duplication c.1127_c.1132 in exon 11 and deletion 427C in exon 12. Both mutations were found in compound heterozygosity with R408W. In addition to mutation R408W, significant frequency in the Belarus population also have mutations R158Q (6.4%), E228K (2.4%), R261Q (1.4%), R252W (1.3%) and IVS12+1G>A (1.3%).

P12.196
Improvement of the PKHD1 mutation database for autosomal recessive polycystic kidney disease (ARPKD)
A. Venghaus, I. Bieck, J. von Bothmer, K. Zerres, N. Ortiz Brüchle;
Institute of Human Genetics, RWTH University Hospital, Aachen, Germany.

Mutations in the PKHD1 gene on 6p12 are associated with autosomal recessive polycystic kidney disease (ARPKD). This primary ciliopathy is characterized by enlarged bilateral polycystic kidneys and congenital hepatic fibrosis. The PKHD1 gene (longest ORF 66 exons) is highly complex due to its genomic size (470 kb). Its gene product polyductin/fibrocystin contains fibrosis. The PKHD1 gene (longest ORF 66 exons) is highly complex due to a disease specific database e.g. for use in clinical practice. Here we report on c.1127_c1132dup** in exon 11 and deletion 427C in exon 12. Both mutations were found in compound heterozygosity with R408W. In addition to mutation R408W, significant frequency in the Belarus population also have mutations R158Q (6.4%), E228K (2.4%), R261Q (1.4%), R252W (1.3%) and IVS12+1G>A (1.3%).

P12.197
AMH gene mutations in two Egyptian families with persistent mullerian duct syndrome
L. Mazen1, M. El Gammal1, K. Amer1, M. Abdel Hamid1, A. Aref1;
1National research Center, Cairo, Egypt, 2Faculty of Medicine, Cairo, Egypt.

Introduction: The anti-mullerian hormone (AMH) is responsible for regression of müllerian ducts during male sexual differentiation. Mutations
in AMH or its type II receptor lead to persistence of the uterus and fallopian tubes in male children i.e. persistent müllerian duct syndrome (PMDS). Both conditions are transmitted according to a recessive autosomal pattern and are symptomatic only in males.

Paternal or Maternal Mutation? We report two unrelated Egyptian consanguineous families with PMDS. The first family comprised 3 affected prepubertal siblings complaining of undescended testis, pelvic exploration and laparotomy revealed mullerian derivatives. The other family was presenting with an adolescent male with impalpable left testis and pelvic exploration showed remnants of fallopian tubes and rudimentary uterus. AMH levels were very low and almost undetectable in all affected patients in both families. Direct sequencing of the coding region of the AMH gene identified two homozygous mutations in exon 1, R95X in the first family and V12G in the second family.

Conclusion: These data confirmed the autosomal recessive type of the PMDS, which needs molecular investigations of this rare disorder on large numbers of cases with undescended testis in Egypt will be of great value for proper diagnosis and genetic counseling.

P12.198
Phenotype and genotype variability of the PMM2 gene mutation among the same Egyptian family
S. F. Abou-Nemer, H. O. S. Ayad, F. H. M. M. El-Shamy
Charité Virchow-Klinikum Institut für Medizinische Genetik und Humangenetik, Labor Berlin Charité Vivantes, Berlin, Germany, 1National Research Centre Clinical Genetics Department, Cairo, Egypt.

Deficiency of phosphomannomutase (PMM2) is considered the most common congenital disorder of glycosylation (CDG) and designated as CDG1a. Phenotypic presentation is variable from severe disorder to mild phenotype. Here we describe an Egyptian family with 4 affected from 2 generations with mutation in PMM2 gene with different genotype and phenotype presentation in each generation. The older generation with 3 affected who was the paternal side sibship for our proband and were derived from first cousin parents. All of them had moderate to severe psychomotor retardation, the male patient never experienced walking and was non educable The older female affected was able to walk at the age of 6 years, and the younger female was able to walk with support and had a mild intellectual impairment. Interestingly, the female patients had no menstrual cycle. The hormon- nal and abdominopelvic sonar investigations revealed a premature ovarian failure in the affected females. Our proband was a six years old male patient from far relative parents with a normal cognitive function He had hypotonia, mild intension tremors and ataxic gait although his MRI scans showed severe cerebellar atrophy. Strabismus was noted in the second year of life and corrected by surgical intervention. The sequence analysis of the PMM2 gene revealed a compound heterozygous mutation in Exon 5 and in exon 8 and corrected by surgical intervention. The sequence analysis of the PMM2 gene showed that the mutation was predominant and represents a potential founder mutation.

P12.199
Mutations in Rotatin link primary cilia function to abnormal development and organization of the cortex in human patients

Polymicrogyria is a post-migratory organization defect of the cerebral cortex characterized by many small gyri with abnormal cortical lamination. Here, we identified autosomal recessive mutations in the Rotatin gene, RTTN, in patients with polymicrogyria from separate families. Rotatin determines early embryonic axial rotation as well as anterior-posterior and dorsoventral patterning in mouse. We show that Rotatin localizes with the basal bodies at the primary cilium. Cultured fibroblasts from patients have structural abnormalities of the cilia and show down-regulation of BMP4, WNT5A and WNT2B, key regulators of planar cell polarity, expressed at the cortical hem, the cortex organizing center giving birth to Cajal-Retzius (CR) neurons. Indeed, in mouse embryos Rotatin expression co-localizes with CR neurons. Knockdown experiments in human fibroblasts and neuronal stem cells confirm a role for Rotatin in cilia structure and function. Rotatin mutations thereby link cilia dysmorphogenesis to abnormal development and organization of the cortex in human patients.

P12.200
Mutations in a novel dynein assembly factor PF22 (DNAAF3) cause cilia dysmotility and left-right axis defects
M. Wolf1,3,14, M. J. Mitchel1,4, J. Fresneda1, N. T. Loges3,4, A. D. Anthony5, R. A. Hirst6, C. Oldaghalli7, H. Blu8, T. Vogt9, H. Muanoff1, C. Funk7, H. Omran1,15, D. Mitchell1,15, H. M. Mitchell1;
1Medical Research Council/University of Cambridge, Cambridge, United Kingdom, 2Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States, 3Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany, 4Department of Pediatrics and Adolescent Medicine, University Hospital Münster, Münster, Germany, 5Department of Pediatrics, University of California, Los Angeles, CA, 6Department of Infection Immunology and Inflammation, University of California, Los Angeles, Royal College of Physicians, London, United Kingdom, 7Pulmonary Unit, Schneider Children’s Medical Center of Israel, Petah-Tikva, 8Tulsa School of Medicine, Tulsa, Arkansas, USA, 9Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan, 10National and Adolescent Paediatric Unit, University College London (UCL), London, United Kingdom.

Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder arising from dysmotility of cilia in the respiratory tract, brain ventricles, ovary and the embryonic node leading to chronic obstructive pulmonary disease, reduced fertility and situs abnormalities. With a frequency of up to 1 in 10,000 PCD is a rather common “rare disease”. To date, 12 genes causing approximately 40% of all cases have been identified, two encoding proteins (KTU, LRRC5) involved in cytosolic axonal dynein co-assembly. Using homology searching and subsequent Sanger sequencing we have identified mutations in a new gene, C190RF51 in PCD patients with absent dynein arms. We find that the Chlamydomonas ortholog of C190RF51, PF22, is involved in the cytoplasmic assembly of the outer dynein arms preceding their import into the axoneme. PF22 mutants, axonal dynein heavy chain stability as well as co-assembly of heavy with intermediate chains is significantly disturbed and PF22 appears to act downstream of KTU and LRRC50 in the dynein preassembly pathway. In zebratfish, PF22 knockdown results in a typical ciliopathy phenotype (axis curvature, pronephric cysts, hydrocephalus and situs inversus) due to loss of the axonal dynein arms resulting in cilia dysmotility. We therefore propose a conserved multi-step pathway for formation of assembly competent dynein complexes, and that PF22 (renamed DNAAF3, “dynein axonal assembly factor 3”) mutations cause PCD with situs inversus due deficient cytoplasmic dynein assembly resulting in absent dynein arms.

P12.201
Novel molecular findings in patients with primary hyperoxaluria and implications for advanced molecular testing strategies
N. Reinetjes1, A. Biassner2, A. Buescher2, S. Habibi1, M. J. Kemper1, F. Sikora3, C. Mache4, M. Pohl5, M. Stahl6, B. Toenshoff7, L. Fäge7, H. Frenzschuh7, D. E. Jacob1, B. Grothe1, M. T. Groth5, L. Nürnberg1, G. Nürnberg1, G. Yigit1, E. C. Salido16, B. Hoppe8, B. Beck9; 1Institute of Human Genetics, Cologne, Germany, 2Department of Pediatrics, University Children’s Hospital Essen, Essen, Germany, 3Department of Pediatric and Adolescent Medicine, Division of Pediatric Nephrology University Hospital Cologne, Cologne, Germany, 4Department of Pediatrics, Division of Pediatric Nephrology, University of Hamburg, Hamburg, Germany, 5Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland, 6Department of Pediatrics, Nephrology Unit, Medical University of Graz, Austria, 7Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology, University of Freiburg, Freiburg, Germany, 8Department of Pediatrics, University Children’s Hospital Heidelberg, Heidelberg, Germany, 9Department of Pediatric Nephrology, Hannover Medical School, Hannover, Germany, 10Department of Pediatric Nephrology Memmingen, Memmingen, Germany, 11Earth System Science Research Centre and Department of Geosciences, Johannes Gutenberg University, Mainz, Germany, 12School of Dentistry, University of Western Ontario, London, ON, Canada, 13Department of Pediatric and Adolescent Medicine, Division of Pediatric Nephrology University Hospital Cologne, Cologne, Germany, 14Mexicali Pediatric Center, Medical Center of Dallas, University of Texas Southwestern Medical Center, Dallas, TX, United States, 15Cologne Center for Genomics, University of Cologne, Cologne, Germany, 16Center for Biomedical Research on Rare Diseases, Hospital Universitario Canarias, Universidad de La Laguna, Tenerife, Spain.

Primary hyperoxaluria (PH) constitutes a group of autosomal recessive disorders characterized by excessive endogenous oxalate synthesis resulting in nephrocalcinosis and/or urolithiasis. Currently three types of PH (PH-I, II, III) can be accurately defined. In contrast to the well-characterized entities of PH-I and PH-II, the pathophysiology and prevalence of recently described PH-II, caused by HOGA1 mutations, is largely unknown.

In this study, we analyzed a large patient cohort previously tested negative for PH-II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were identified in 15 patients. In patients of non-consonant European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation. In vitro analysis of the c.700+5G>T mutation using a minigene assay showed activation of a new splice site 52 bases downstream from the wild-type donor splice site leading to an in-frame insertion of 17 amino acids to the
P12.202
tion in the course of evolution, and chemico-physical parameters of wild-type and mutant amino acids. A clear relation emerged between genotype and phenotype because 4 (80%) of the 5 probands with onset at birth showed FLT4 mutations and 4 (80%) of the 5 probands without distinct rash and with FOXC2 mutations had no clinical manifestation outside the skin domain, in line with data recently reported by van Steensel MAM et al. (2009).

P12.204

Restrictive dermopathy-like phenotype caused by the homozygous mutation LMNA p.R435C due to partial uniparental disomy of chromosome 1

M. Wehnert1, P. Meinke1, S. Zagel1, B. Schröder1, S. Starke2, W. Keiser1, U. Felber1

1Institute for Human Genetics Greifswald, University Medicine Greifswald, Greifswald, Germany, 2Universitätsklinikum und Poliklinik für Kinder und Jugendliche Department für Frauen- und Kindermedizin Leipzig, Leipzig, Germany.

Restrictive Dermopathy (RD) is a rare autosomal recessive disorder characterized by intracranial growth retardation, tight and rigid skin with prominent superficial vessels, bone mineralization defects, dysplastic carnivales, and severe aortic and early death soon after birth. RD can be caused by mutations in LMNA or FBN1. FBN1 codes for the ZMPSTE24 protein, which is necessary for the processing of lamin A. LMNA mutations may affect the cleavage site for ZMPSTE24 resulting in progeroid syndromes. We report a patient affected by a progeroid syndrome with RD-like features. Besides missing hairiness, stigmatising weight and growth, RD-like features including skin swelling and solidification, acrocontractures, osteolysis and muscular hypotension were continuously progressive until the patient died at the age of 11 months. For mutational analysis, the complete coding region including intron/exon boundaries of the LMNA and FBN1 genes was amplified and used for direct Sanger sequencing. As a result, the homozygous mutation LMNA p.R435C was found. Interestingly, this mutation is not located at the cleavage site necessary for processing of lamin A by ZMPSTE24. This might explain the atypical phenotype compared to other published cases of RD. Sequencing of the non consanguineous parents showed that the mutation was present only in the mother in heterozygous state, but not in the father who was wild-type. MLPA analysis confirmed that the patient had two copies of the gene. Direct Sanger sequencing of highly polymorphic markers on chromosome 1 showed a partial uniparental disomy of chromosome 1 (1q21.3 to 1q21.31) including the LMNA gene.
Welfare Sciences & Rehabilitation, and Medical Genetics Department, Sarem Women
chondrodysplasia punctata type I (RCDP I) revealed a novel
therapeutic options through small-molecule inhibitors of BMP receptors.
gical observations in PXE can be merged in this pathway, which may provide
an effect of oxidative stress and PXE serum, three principal pathophysiolo-
explain the expression profile of proteins previously implicated in PXE, lea
osteogenic BMP2-Smad-RUNX2 pathway in PXE. RUNX2 upregulation can
all tissues. Comparable qPCR results and apoptosis rates were obtained on
stains demonstrated co-localization of apoptosis with mineralization foci in
says revealed significant increase in apoptosis in PXE fibroblasts. Caspase 3
trols, which was confirmed via qPCR on human PXE fibroblasts. TUNEL as
RUNX2 in whiskers of Abcc6 knock-out mice and human PXE dermis sho-
Methods & Results. Immunohistochemistry for BMP2, Smad 1-4-5-8 and
lator of proteins involved in mineralization, osteogenesis and apoptosis. We
sequence data revealed a missense homozygous mutation of G to A at nu-
cleotide 257 on exon3 of PEX7 coding sequence. Moreover, genomic analysis of
PXE gene confirmed the mutation in the mentioned location. This mutation
causative amino acid residue substitution of Cys to Tyr at codon 86
located on WD1 repeat domain region severely affected the functionality of
PEX7 protein. Back-transfection of vector containing mutant CDS of PEX7 did not restore the normal peroxisomal function in ROPD patient’s fibroblasts
unlike the native type of PEX7.

P12.206

P12.207

P12.208

P12.209

High Prevalence of Mutations in the CRB1 Gene in Spanish Patients with Congenital and Child-Hood Onset Retinal Dystrophies
S. D. Tatu1, S. C。， M. Corton2, P. F. San Jose3, A. Avila-Fernandez4, F. Blanco-Kelly5, E. Vellela6, J. Tapons1, D. Contalpedres1, R. Biviere-Alvare6, S. Bernad6, B. Garcia-Sandovol6, M. Bai6, C. Ayuso6
1Department of Genetics, IIS-Fundacion Jimenez Diaz, Madrid, Spain, 2Department of Ophthalmology, IIS-Fundacion Jimenez Diaz, Madrid, Spain, 3Department of Genetics, Instituto de Investigacion Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
Purpose: Mutations in the CRB1 gene have been associated with severe con-
P12.2.11
Next-generation sequencing of 53 known genes for retinitis pigmentosa and allied diseases identifies the causative mutations in the majority of 40 patients
*Center for Human Genetics, Bioscientia, Ingelheim, Germany, 1Department of Ophthalmology, Justus-Liebig University Giessen, Giessen, Germany, 2Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Conclusions: This study proved that 10% of Spanish patients with early-onset RP carried mutations in RP1, ranging from 7% of early-onset RP cases to 15% of LCA families. The most frequent mutation in our cohort was p.Cys948Tyr, which was present in 22% of the alleles (15/68) in 13 families.

P12.2.14
Clinical and molecular analysis of Rett syndrome patients from the University Hospital of Medical School from Ribeirão Preto - Brazil G. A. Molfetta, M. C. I. Moura, A. M. S. A. de Mello*, C. A. C. van der Lans, D. J. M. Peters; 1University of Sao Paulo, Ribeirão Preto, Brazil, 2National Institute of Science and Technology in Stem Cell and Cell Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil, 3Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Rubinstein-Taybi Syndrome is a developmental disorder caused by mutations in the CREBBP gene on chromosome 8. The syndrome is characterized by mental retardation and a particular dysmorphology mainly concerning the growth retardation and a particular dysmorphology mainly concerning the hands, feet, and face. The most frequent cause of Rett syndrome is a mutation in the MECP2 gene in patients clinically diagnosed as Rett syndrome.

In a cohort of 119 patients suspected of having Rett syndrome, in 12 patients (6%) a deletion involving the CREBBP gene have been found in ~10% of patients. Mutations in EP300 have been published, but seem to be rare with a frequency of 1/10,000 newborns. The syndrome is characterized by mental retardation and a particular dysmorphology mainly concerning the hands, feet, and face. The most frequent cause of Rett syndrome is a mutation in the MECP2 gene in patients clinically diagnosed as Rett syndrome.

In conclusion, the four exons and the promoter region will be screened and genetic counseling will be offered to the families carrying mutations. This methodology is efficient for confirming the diagnosis of patients under suspicion of Rett syndrome, a subdiagnosis pathology due to its complex clinical suspicion. Financial Support: FAPESP, INCTC.
P12.216
The identification of the SCA36 intron expansion in Spanish further highlights the role of dysfunctional RNA processing in neurodegeneration
M. García-Murias1,2, R. Quintana1,2, M. Arias1, A. Reis1,2, P. Cachero1, Z. Vízková, R. Tarriño1, J. Pardo1, S. Arias-Rivas1, P. Blanco-Arias2, J. Sequeiros2, A. Carracedo1,1, I. Silveira1, M. J. Sobrido1,2.
1Fundación Pública Gallega de Medicina Xonómica, Santiago de Compostela, Spain, 2Genomic Medicine Group, School of Medicine, Santiago de Compostela, Spain, "Clinical Hospital of Santiago de Compostela- SERGAS, Santiago de Compostela, Spain, "Center for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain, "Department of Basic Medical Sciences, Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain, "IBIMC- Instituto de Biología Molecular e Celular, Universidade do Porto, Porto, Portugal, "ICBAS, Universidade do Porto, Porto, Portugal.

SCA36 was recently shown to be caused by a GCTG repeat expansion in intron 1 of NOP55 in Japanese families. NOP56 encodes a component of the ribonucleoprotein complex and plays a role in transcription and splicing processes. We found the same mutation in ten families, including two very large kindreds from the coastal region in Northwestern Spain (Costa da Morte, Galicia). The screening of the NOP56 expansion, carried out with Southern Split blot analysis and repeat-primed PCR, revealed expanded alleles ranging from 650-2500 repeats, within a unique haplotype. The most recent common founder chromosome was dated over 600 years ago. We have studied 66 mutation carriers and observed both further expansions and contractions of the repeat upon transmission. The main clinical characteristics of the disease are a late-onset cerebellar syndrome with upper and lower motor neuron signs, oculo-motor abnormalities and sensorineural hearing loss. SCA36 represents the most frequent SCA type so far in our region, with epidemiological implication for South American countries, the main destiny of traditional Galician emigration, where thus additional SCA36 cases might be identified. Together with the recent description of the intronic C9ORF72 hexanucleotide expansion in amyotrophic lateral sclerosis, our findings further highlight the increasing recognition of a major role of abnormal RNA processing in neurodegeneration.

Acknowledgements: Xunta de Galicia-Conselería de Sanidade (PGIDIT05SAN26P0), Consellería de Economía e Industria (10PBIB0910280PR) and Consellería de Innovación (lucas Labrada contract to MG-M), Instituto de Salud Carlos III, Madrid, Spain; Miguel Servet contract to MS and ECHIL-SERGAS stabilization contract to BQ.

P12.217
Genotype-phenotype correlations in epilepsy patients with the SCN1A point mutations
D. Hoffman-Zacharska1, E. Szczepanik1, I. Tereszyńska1, R. Total1, J. Bul1; 1Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland, 2Clinic of Neurology of Child and Adolescents; Institute of Mother and Child, Warsaw, Poland.

SCN1A, the gene encoding the sodium channel alpha 1 subunit, is now one of the most important epilepsy genes. SCN1A-related seizure disorders encompass a spectrum ranging from simple febrile seizures (FS), generalized epilepsies (GE), absence seizures, plus (GEFS+), to Dravet syndrome (DS) and intractable childhood epilepsy with generalized tonic-clonic seizures (ICE-GTC). Mutations of this gene were also detected in less common phenotypes. More than 700 mutations in SCN1A gene have already been associated with DS/GEFS+, mainly sequence alterations (80%). All mutations are dominant and most of them occur de novo, however familial cases also have been described (5-10%). In such cases proband, usually shows the most severe form, while the remaining family members milder phenotypes.

We present analysis of the distribution and type of SCN1A point mutations, we have identified in 50 patients clinically diagnosed as DS/GEFS+ and referred for molecular testing. Most of them showed spordic form of disease (each with different mutation), but we also identified familial forms (3 families). Because all identified familial cases have mutation at this same allele of the same SCN1A gene (each with different mutation), but we also identified familial forms (3 families). We present evidence that mutations c.279G>A and c.3676-8G>A in combination with c.2860 C>T on the other allele. In two unrelated families with CMT4C in combination with a known pathogenic mutation (c.2860 C>T in one family, c.505T>C in the other) on the second allele of SH3TC2. Variant c.3676-8G>A was detected in one patient on one allele of the SH3TC2 in combination with c.2860 C>T on the other allele.

In-silico tests were performed and Exon Trap experiments were undertaken to prove the effect of both mutations on proper splicing of SH3TC2. Fragments of SH3TC2 were subcloned into pET01 Exon Trap vector (Mobitec) and transfected into COS-7 cells. Results: Aberrant splicing was predicted by computer tests for both mutations, which was confirmed by Exon Trap analysis. For c.279G>A it was shown that 19 bases from intron 3 are retained in cDNA. For c.3676-8G>A it was shown that the mutation produces a novel splice site acceptor site for exon 17 and complex changes in splicing were observed.

Conclusions: We present evidence that mutations c.279G>A and c.3676-8G>A in the SH3TC2 gene cause aberrant splicing and are therefore pathogenic and causal for CMT4C. This report broadens the spectrum of causal mutations in the SH3TC2 gene. Supported by: IGA MZ CR NT11521-4 and AV0Z5020514.

P12.220
Clinical, in-silico and experimental evidence for pathogenicity of two novel splice site mutations in the SH3TC2 gene
P. Lassathou1, M. Gregor2, L. Sarnow3, E. Machalova3, R. Sedlacka3, P. Seeman1; 1DNA lab, Department of Paediatriatric Neurology, 2nd Faculty of Medicine, Charles University in Prague a, Prague, Czech Republic, 2Institute of Medical Genetics, University of Zurich, Schwerzenbach-Zurich, Switzerland, 3Genomic Medicine Group, School of Medicine, Santiago de Compostela, Spain.

Introduction: Charcot-Marie-Tooth (CMT) neuropathy is the most common inherited neuromuscular disorder. CMT is genetically very heterogeneous. Mutations in the SH3TC2 gene cause Charcot-Marie-Tooth neuropathy type 4C (CMT4C), a demyelinating form with autosomal recessive inheritance. Two novel splice site mutations in the SH3TC2 gene have been studied (c.279G>A, c.3676-8G>A).

Patients and Methods: Mutation c.279G>A was detected on one allele in two unrelated families with CMT4C in combination with a known pathogenic mutation (c.2860 C>T in one family, c.505T>C in the other) on the second allele of SH3TC2. Variant c.3676-8G>A was detected in one patient on one allele of the SH3TC2 in combination with c.2860 C>T on the other allele.

In-silico tests were performed and Exon Trap experiments were undertaken to prove the effect of both mutations on proper splicing of SH3TC2. Fragments of SH3TC2 were subcloned into pET01 Exon Trap vector (Mobitec) and transfected into COS-7 cells. Results: Aberrant splicing was predicted by computer tests for both mutations, which was confirmed by Exon Trap analysis. For c.279G>A it was shown that 19 bases from intron 3 are retained in cDNA. For c.3676-8G>A it was shown that the mutation produces a novel splice site acceptor site for exon 17 and complex changes in splicing were observed. The identification of the SCA36 intron expansion in Spanish further highlights the role of dysfunctional RNA processing in neurodegeneration. We present evidence that mutations c.279G>A and c.3676-8G>A in the SH3TC2 gene cause aberrant splicing and are therefore pathogenic and causal for CMT4C. This report broadens the spectrum of causal mutations in the SH3TC2 gene. Supported by: IGA MZ CR NT11521-4 and AV0Z5020514.

P12.219
Delineation of a novel syndrome caused by biallelic SEMA3A mutations
K. Hofmann1, M. Zuev2, C. Zweier3, W. Wittmann4, M. Heczko4, J. Hoyer4, S. Uede5, C. Thiel1, A. B. Eklöf1, A. Reis1, A. Rauch2; 1Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany, 2Animal Physiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany, 3Kinderzentrum St.Martin, Regensburg, Germany, 4Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany, 5Institute of Medical Genetics, University of Zurich, Schwerzenbach-Zurich, Switzerland.

Defects of ciliogenesis have been implicated in a wide range of human phenotypes and play a crucial role in different signal transduction pathways and cell cycle coordination. We recently identified nonsense and splice site mutations in NEK1 as the underlying cause of short rib-polydactyly syndrome type Majewski. In the current study, we carried out whole genome sequencing of a 48 kb region on chromosome 19 encompassing the NEK1 gene, which codes for NEK1, a serine-threonine kinase that is involved in cilia formation. We identified two novel mutations, a frameshift mutation (c.582_584dup) and a splice site mutation (c.203-2G>A) in the second intron of the NEK1 gene. The frameshift mutation leads to a premature stop codon, whereas the splice site mutation affects the acceptor site of intron 2. Both mutations are predicted to lead to a truncated protein with loss of function. The identification of the NEK1 frameshift mutation in a Majewski patient further highlights the role of dysfunctional RNA processing in neurodegeneration.

Methods: We present evidence that mutations c.279G>A and c.3676-8G>A in the SH3TC2 gene cause aberrant splicing and are therefore pathogenic and causal for CMT4C. This report broadens the spectrum of causal mutations in the SH3TC2 gene. Supported by: IGA MZ CR NT11521-4 and AV0Z5020514.

P12.218
Ciliogenesis associated signal transduction is altered by NEK1 mutations in short rib-polydactyly syndrome type Majewski K. Kecskés1, A. Geiszt2, J. H. Brandstätter1, A. Rauch2; 1Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany, 2Animal Physiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.

Absence of full-length NEK1 leads to a severely reduction of primary cilia in the short rib-polydactyly syndromes (SRPS) are classified into four distinct defects: Saldino-Noonan (I), Majewski (II), Verma-Naumoff (III) and Beemer (IV) and include the phenotypically related associated thoracic dystrophy (ATD) and Ellis-van Crefeld syndromes (EVC). Here, mutations in EVC1/2, IFT80, and DYNC1H1 have been observed. Absence of full-length NEK1 leads to a severely reduction of primary cilia length and a significant decrease of ciliated fibroblasts. The primary cilium acts as a chemosensor for important developmental pathways like hedge-
P12.221 Counteracting effects on the allosteric control of SHP2’s function drive selection of the recurrent Tyr62Asp and Tyr63Cys substitutions in Noonan syndrome
S. Martinelli1, A. P. Nardozza2, S. Delle Vigne1, G. Bocchinfuso3, A. Glaser1, S. Venanzi1, G. Sabetta2, P. Torreri1, M. Morgante2,5, L. Stella1, L. Castagnoli1, M. Tartaglia1

Abstract
Activating mutations in PTPN11 cause Noonan syndrome (NS), the most common non-chromosomal disorder affecting development and growth. PTPN11 encodes SH2, an SH2 domain-containing protein tyrosine phosphatase that positively modulates RAS function. Here, we characterized functionally all possible amino acid substitutions arising from single-base changes affecting codons 62 and 63 to explore the molecular mechanisms underlying the largely invariant occurrence of the Tyr62Asp and Tyr63Cys substitutions occurring in NS. We provide structural and biochemical data indicating that the autoinhibitory interaction between the N-SH2 and PTP domains is perturbed in both mutants as a result of an extensive structural rearrangement of the N-SH2 domain. Most mutations affecting Tyr63 exerted an unpredicted disrupting effect on the structure of the N-SH2 phosphopeptide-binding cleft mediating SHP2’s interaction with signaling partners. Among all the amino acid changes affecting that codon, the disease-causing mutation was the only substitution that perturbed the stability of SHP2’s inactive conformation without severely impairing proper N-SH2’s phosphopeptide binding. On the other hand, the disruptive effect of the Tyr62Asp change on the autoinhibited conformation of the protein was balanced, in part, by less efficient binding properties of the mutant. Overall, our data demonstrate that the selection-by-function mechanism acting as driving force for PTPN11 mutations affecting codons 62 and 63 implies balancing of counteracting effects operating on the allosteric control of SHP2’s function.
nnes in PBMC suggesting that none of the two is responsible for neuroprotection of the asymptomatic females. In EBV-immortalized cells instead, we measured comparable expression levels only for FL-SMN transcripts across the subjects tested, while a dramatic reduction for PLS3 transcripts, ranging from 25 to 100-fold less, was observed in two out of the three SMN1 deletants. A strong reduction of PLS3 expression could reflect an EBV-dependent event or particular feature of B lymphocytes. To address this question we compared transcript levels of PLS3 in B and NON-B cells from the two unrelated, phenotypically discordant subjects and observed a decrease in B cells only, ranging between 1.6 and 5-fold less than those in PBMC. We conclude that PLS3 transcript level, at least in phorbol ester is unrelated to health/disorder condition of SMA deletants and that an EBV-dependent immunomodulation could alter gene expression.

P12.226
A novel SMAD3 variation in a family primarily affected by symptoms of aneurysms-osteoarthritis syndrome
B. Keyser1, M. Mair2, J. Schmidtke3, E. West4, O. Bartosch5, M. Stuhrmann-Spangenberg5; 1Institute of Human Genetics, Hannover Medical School, Hannover, Germany, 2Institute of Human Genetics, Saarland University, Homburg/Saar, Germany, 3Institute of Human Genetics, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.

Thoracic aortic aneurysm and dissection (TAA) is a condition that can occur isolated or in combination with other syndromes, such as Marfan syndrome or Loeys-Dietz syndrome. Recently a new syndrome, termed aneurysms-osteoarthritis syndrome (AOS), has been described (van de Laar et al., 2011). AOS is an autosomal dominant disorder. The main features of AOS are aortic aneurysms and dissection, osteoarthritis and aneurysms of other vessels, such as the cerebral arteries. Mutations responsible for this disease were found in the SMAD3 gene. The SMAD3 protein is activated by TGF-β receptors and functions as a transcriptional modulator. We report on a family in which the affected members present with diverse symptoms, including aortic aneurysms, skeletal and ophthalmological manifestations, and variable expressivity. We identified a novel sequence variation, c.934G>A (p.Ala312Thr), in the SMAD3 gene. The variation is located in exon 7 in the MH2 domain of SMAD3, which is responsible for oligomerization of SMAD3 with SMAD4. The mutated alanine residue is highly conserved among other species and biometric analysis predicted this variation to be pathogenic. In one family member with skeletal manifestations we could not detect the SMAD3 variation. This could indicate that the SMAD3 variant acts as one of several genetic and non-genetic factors predisposing for the disease in this family.

P12.227
A restricted spectrum of mutations in the SMAD4 tumor-suppressor gene underlies Myhre syndrome
V. Caputo1, L. Cianetti1, M. Niceta1, C. Carta1, A. Cioffi1, G. Bocchinfuso1, E. Caranni1, M. L. Dentic1, E. Biancina1, E. Belligni2, L. Garavelli2, L. Boccone2, D. Melis2, A. Generosi1, R. D. Gelli1, L. Stella2,1, M. Silengo2,3, B. Dallapiccola2, M. Tartaglia4; 1Istituto Superiore di Sanita’, Rome, Italy, 2University of Roma ‘Tor Vergata’, Rome, Italy, 3Istituto di Clinica Medica Genetica, Rome, Italy, 4Università ‘Federico II’, Naples, Italy, 5Mount Sinai School of Medicine, New York, NY, United States, 6Neuromed, IRCCS, Pozzilli (IS), Italy.

Myhre syndrome is a developmental disorder characterized by reduced growth, generalized musculoskeletal hypotrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness and skeletal anomalies. Here, by performing exome sequencing of a single affected individual coupled to a hypothesis-driven filtering strategy, we established that heterozygous mutations in SMAD4, which encodes for a transducer mediating TGFβ1 and BMP signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile248 within the evolutionarily conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. While SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders predisposing to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth.

P12.228
The mutation status of BMPR1A, SMAD4, PTEN and STK11 genes in Polish patients with hamartomatous polyposis syndromes
M. Podralska1, W. Cichy1, A. Plawski2, R. Szomolak3; 1Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland, 2Karol Marcinkowski University of Medical Sciences, Poznan, Poland.

The hamartomatous polyposis syndromes are a heterogeneous group of disorders that share an autosomal-dominant pattern of inheritance and are characterized by hamartomatous polyps of the gastrointestinal tract. These syndromes not only carry the risk of developing colorectal cancer, but also increase the risk of malignant transformation in other organs. In this study four hamartomatous polyposis syndromes (juvenile polyposis syndrome, Peutz-Jeghers syndrome, Cowden syndrome and mixed polyposis syndrome) were investigated. Mutations in SMAD4, BMPR1A, STK11 and PTEN are responsible for developing hamartomatous polyps. The study group consisted of 62 Polish families. Mutation screening methods and MLPA technique were used. The sequence analysis was performed for fragments with differences SSCP/duplex patterns and for verification of MLPA method. As a result of molecular analysis 32 pathogenic mutations in 34 patients were identified. Three mutations were detected in BMPR1A gene. In four families with juvenile polyposis syndrome has been identified pathogenic mutations in SMAD4. In STK11 gene was detected 12 types of mutations in 13 families with Peutz-Jeghers syndrome. Two substitutions were detected in families with Cowden syndrome. Moreover, numerous of polymorphic changes in both the coding and intronic sequences were observed. The majority of mutations are large changes and they represent 40% of all detected mutations. Mutations established in Polish population have heterogeneous nature. Only three mutations were recurrent. In addition, there was no strong genotype-phenotype correlation in all studied hamartomatous polyposis. In all cases, MLPA analysis should be performed as a first step to improve efficiency of molecular diagnostics. Supported by grant NN401014435

P12.229
Modifiers of Smith-Lemli-Opitz Syndrome and implication for mutation databases
B. Lanthaler1, J. Zschoche2, M. Witsch-Baumann1; 1Medical University Innsbruck, Innsbruck, Austria, 2Institute Background: The Smith-Lemli-Opitz Syndrome (SLOS [MIM 270400]) is an autosomal recessive malformation syndrome that shows a great variability regarding severity. SLOS is caused by mutations in the Δ7-sterol-reductase gene (DHCR7; E.C. 1.3.1.21) which disrupt cholesterol biosynthesis. Phenotypic variability of the disease is already known to be associated with maternal ApoE genotype. Recently a second modifier of this monogenic disease has been demonstrated which is ABCA1. The current LOVD based mutation databases includes the DHCR7 genotype for each phenotypical described patient. It includes the so-called severity score, DHCR7 haplotypes, geographic origin, and cholesterol data if present.

Findings on modifiers of SLOS: We have identified the known allelic variants ApoE2, E3, E4 determined in the mothers who play a role in phenotypic variability and cholesterol concentrations of the patient. Regarding ABCA1 it is the maternal genotype of the SNP p.Aрг1587тАё that is associated with severity of the disease and in an already unknown manner with the viability of SLOS foetus.

Implication for mutation databases: The aim of patient based mutation database is to interpret molecular findings concerning the accurate diagnosis, getting information about prognosis and possible useful therapies. Hence the existing database is complemented now by additional data about maternal ApoE genotype. Adding all known sequencing results (SNPs) of the concerned genes, and additionally molecular data of modifier genes makes particularly sense in atypical patients.

P12.230
Study of positive modifiers of spinal muscular atrophy severity in Russian patients
M. Maretina1, A. Kiselev2, G. Zheleznyakova1, A. Egorova2, V. Baranov2,1; 1Saint-Petersburg State University, Saint-Petersburg, Russian Federation, 2Otto’s Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russian Federation.

Spinal muscular atrophy (SMA) is a autosomal recessive neuromuscular disorder caused by homozygous mutation within the SMN1 gene. The ability of SMN2 gene, a nearly identical copy gene of SMN1, to produce 10% of full length transcript makes it principal positive disease modifier. The SMN2 copy number correlates with patients’ phenotypes and is used as reliable biomarker for SMA diagnostics. The second positive disease modifier is c.859G>C substitution in SMN2 gene. The aim is to evaluate role of positive disease modifiers in Russian patients. We have developed fast and reliable
Autosomal recessive cerebellar ataxias (ARCA) comprise a heterogeneous group of inherited neurodegenerative disorders that affect the cerebellum, the spinocerebellar tract and/or the sensory tracts of the spinal cord. They lead to progressive cerebellar ataxia in association with other neurological or extra-neurological signs. The epidemiological features and the relative frequency of such disorders are quite unknown yet. We prospectively studied 262 suspected ARCA patients from Brazil between 2005 and 2011. All patients were evaluated in the neurogenetics clinics with a standard evaluation, neuroimaging studies (CT scan, brain MRI with spectroscopy), ophthalmological and auditory evaluations, neurophysiological studies (EEG, ERG, and EMG/NCV), hormone and biochemical tests, muscle biopsies with respiratory chain mitochondrial analysis, screening for inborn errors of metabolism (enzyme studies, peroxosomal and steroid panels, cholestasis detection, organic acids, aminoacids chromatography), molecular studies for the FRDA expansion, mitochondrial point mutations and SCAs 1, 2, 3, 6, 7, 10, 12, 17 - organic acids, aminoacids chromatography), molecular studies for the FRDA expansion, mitochondrial point mutations and SCAs 1, 2, 3, 6, 7, 10, 12, 17 - when indicated, nerve/skin biopsy for EM studies and karyotype were also performed. A conclusive diagnosis was established for 196 patients. The most frequent causes seen in our cohort were Friedreich ataxia, leukodystrophies, loubert syndrome, ataxia with oculomotor apraxia types I and II, mitochondrial disorders and neuropolipodies. ARCA are rare disorders with a wide differential diagnosis. Recognition of the most frequent genetic causes of ARCA can lead to a sequential evaluation capable of establishing a definitive diagnosis in the majority of patients; new techniques as SNP arrays and exome sequencing can be extremely useful in identification of new ARCA, although they were not available for our study.

P12.232 Search for a novel gene locus for spino cerebellar ataxia in combination with leukodystrophy: Genome wide linkage, fine mapping and exclusion of candidate genes in a German family

We investigated three brothers affected by severe, progressive gait and limb ataxia in combination with dysarthria and nystagmus starting early in childhood. MRI revealed white matter loss. Since the mother is also affected, but signs and symptoms started in her late twenties, we postulate autosomal dominant or X-chromosomal recessive inheritance. After exclusion of all known genes mutated in spinocerebellar ataxia (SCA), we additionally excluded diseases such as Pelizaeus-Merzbacher Disease/Paraplegia Typ 2 (PLP) and Alexander Disease (GFAP).

Since we were not able to detect a disease-causing mutation in any of the analyzed genes, we performed genome wide linkage analysis. Ten genomic regions linked to the disease were identified. Among those, regions on 1q, 3q, 7q, 9q, 11q, 12q, and 19q. We subsequently further delineated the critical regions and searched for copy number variations. Linked regions and candidate genes based on expression data and function will be presented.

P12.234 Novel mutations in a family with spondylocostal dysostosis
J. Wu, F. Tsai, Y. Chen; 1. Inst. of Biomedical Sciences, Taipei, Taiwan, 2. China Medical University Hospital, Taichung, Taiwan.

Spondylocostal dysostosis (SCDO) is a heterogeneous group of disorders with multiple vertebral segmentation defects that result in hemivertebrae, rib fusions and deletions. We characterized a SCDO family with unknown etiology. All affected children inherited as an autosomal recessive mode in Taiwan. Four known genes causing autosomal recessive forms of SCDO were excluded to be disease-causing gene for this family by direct Sanger sequencing. Exome sequencing of this family using Illumina HiSeq2000 was subjected to identify novel homozygous variants and compound heterozygous variants. A novel homozygous insertion variant that results in a frameshift in amino acid sequence was identified in a gene that has caused other disorders with vertebral malsegmentation and much severe clinical manifestations. This variant is not present in 376 Taiwanese controls. This finding expends the phenotypic spectrum resulting from novel mutations of the gene.

P12.235 Genetic testing of Stargardt disease as a model for high-throughput analysis of heterogeneous diseases
1. Universitätsklinikum Regensburg, Regensburg, Germany; 2. Institute of Human Genetics, Regensburg, Germany.

Stargardt disease (STGD), a frequent maculopathy with juvenile onset, is caused by mutations in ABCA4, CNGB3, and ELOVL4. To date, more than 550 distinct ABCA4 mutations have been reported to cause disease. Nevertheless, the genetic heterogeneity of STGD and the complexity of the ABCA4 gene, which has 50 coding exons, often hinder routine application in genetic testing. We therefore developed an Affymetrix-based re-sequencing array that allows analysis of STGD-related genes in a cost- and time-saving procedure. A challenging task is the interpretation of sequence data and the identification of disease-relevant variants. Consequently, we have generated an automated variant interpretation pipeline which is linked to ongoing international DNA variant project efforts such as the 1,000 Genomes Project or the NHLBI Exome Sequencing Project which currently has data from 3,510 individuals of European descent. In addition, the pipeline automatically queries in-silico prediction tools such as MutationTaster and PolyPhen-2. Neutral and intrinsic sequence changes not affecting the canonical splice-acceptor or splice-donor sites are analyzed with the Alamut decision-support software. Neutral variants are considered putatively neutral.

Novel mutations in a family with spondylocostal dysostosis
J. Wu, F. Tsai, Y. Chen; 1. Inst. of Biomedical Sciences, Taipei, Taiwan, 2. China Medical University Hospital, Taichung, Taiwan.

Spondylocostal dysostosis (SCDO) is a heterogeneous group of disorders with multiple vertebral segmentation defects that result in hemivertebrae, rib fusions and deletions. We characterized a SCDO family with unknown etiology. All affected children inherited as an autosomal recessive mode in Taiwan. Four known genes causing autosomal recessive forms of SCDO were excluded to be disease-causing gene for this family by direct Sanger sequencing. Exome sequencing of this family using Illumina HiSeq2000 was subjected to identify novel homozygous variants and compound heterozygous variants. A novel homozygous insertion variant that results in a frameshift in amino acid sequence was identified in a gene that has caused other disorders with vertebral malsegmentation and much severe clinical manifestations. This variant is not present in 376 Taiwanese controls. This finding expends the phenotypic spectrum resulting from novel mutations of the gene.
P12.2236
Alu elements cause most common mutation of STK11 gene in Peutz-Jeghers patients
P. Buron1, D. Lipniacki1, T. Bonastrezić2, M. Goby1, A. Plawski3.1
1Institute of Human Genetics, Poznan, Poland, 2University of Medical Sciences, Poznan, Poland.

The STK11 gene mutations cause the occurrence of the Peutz-Jeghers syndrome. These mutations are heterogeneous, but a significant proportion of them are large rearrangements. The occurrence of large mutations may be associated with the presence of interspersed repeats or microhomologies. In the STK11 gene, only one type of interspersed repeats is observed - Alu elements. Alu sequences represent 19% of the entire gene sequence. Among large mutations of STK11 gene the deletion of exons 2 and 3 has been described four times so far in different European populations. In two cases the deleted sequence was described in detail and in another two, deletions were identified only on the basis of the MLPA results. The deletion of exons 2 and 3 was also observed by us in one of the cases of Polish families. The deleted sequence endpoints are located in Alu elements. We can assume that Alu elements localized in regions including nucleotides c.280+559 and c.464+384 are responsible for causing one of the most common recurrent mutation of STK11 gene in Peutz-Jeghers patients.

P12.2237
Sudden death and next generation sequencing: characterization of heart disease using a 72-gene NGS panel
1Sistemas Genómicos, Paterna, Spain, 2Marfan Unit, Hospital 12 de Octubre, Madrid, Spain, 3Servicio de Pediatría, Hospital Virgen del Camino, Pamplona, Spain, 4Laboratorio Médico Echavarria, Bogotá, Colombia, 5Servicio de Cardiología, Hospital civil de Canarias, Tenerife, Spain, 6Laboratorio de Cardiogénética Moléculaire - Centre de Biologie et Pathologie Est, Lyon, France, 7University of Medical Sciences, Poznan, Poland, 8Hospital Donostia, San Sebastián, Spain, 9Complex Hospitalario de Vigo Hospital Xeral, Vigo, Spain.

Purpose - Genetic characterization of heart disease patients in a fast, comprehensive and cost-effective way using a 72 gene NGS approach, coupled with a bioinformatics pipeline.

Methods - A methodology was developed for sequence 72 genes [44 genes associated with cardiomyopathies, arrhythmogenic right ventricular dysplasia, Marfan syndrome, aortic aneurysm, and 28 genes associated with Brugada syndrome, long QT and short QT syndromes, familial atrial fibrillation and catecholaminergic polymorphic ventricular tachycardia]. The total amount included 750 kb of exons, splicing regions, 5′ UTR and 3′ UTR. Targets were captured (SureSelect, Agilent), and then sequenced in a SOLID v4 platform. The bioinformatics pipeline consisted of mapping and aligning reads against the GRCh37/hg19 sequence, classification and identification of point variations, structural variations, and small indels, as well as their involvement at the transcriptional level. Results were confirmed by Sanger sequencing. A set of 12 cases with a known mutation was used for validation studies.

47 patients were studied [20 cases with aortic aneurysm/Marfan syndrome, 2 cases with ARVC/D, 7 cases with hypertrophic cardiomyopathy, 1 case with dilated cardiomyopathy, 2 cases with familial cardiomyopathy, 6 cases with long QT syndrome, 1 case with Brugada syndrome, 3 cases with familial arrhythmia, and 5 cases with family history of sudden death].

Results - 91 relevant nucleotide changes were found: 14 pathogenic mutations; 77 unclassified variations, of which, using in silico predictions, 9 are likely pathogenic and 7 are unlikely pathogenic.

Conclusions - Targeted sequencing enables the efficient analysis of genes associated with heterogeneous heart diseases.

P12.2238
Defects in the Ski complex, a multi protein complex involved in aberrant mRNAs decay, cause Syndrome Diarrhea
A. Fabre1, C. Martinez-Vinson1, V. Collado1, D. Egrity1, S. Sayar1, B. Bouquelaure1, J. Sarles2, N. Lacroix3, C. Badens3.
1UMR 910 - AP HM, Marseille, France, 2AP HP, Paris, France, 3School of medicine, Ankara, Turkey, 4School of medicine, Antalya, Turkey, 5AP HM, Marseille, France.

Syndrome Diarrhea (SD) is a rare and severe disorder characterized by intractable diarrhea, dysmorphism, immune deficiency and hair abnormalities. This syndrome has been recently associated with mutations in TTC37 in 21 patients but several other individuals with typical SD present no variation in this gene. The function of TTC37 in humans is not known but it is reported in databases as being the human ortholog of Skp3, one of the yeast Ski complex cofactors. The Ski complex is required for the exosome-mediated RNA surveillance including normal mRNAs regulation and non-functional mRNAs decay such as non-covalently mediated mRNA decay, go-decay or non-stop decay. Considering TTC37 homology with Skp3, we assumed that other genes encoding Ski complex proteins might be responsible for SD in patients without variation in TTC37 and confronted this hypothesis with the results of a linkage analysis performed in a consanguineous family with such a patient. We noticed, in a region of homozygosity, a gene encoding another cofactor of the Ski complex, SKIV2L. Direct sequencing of SKIV2L in seven patients presenting typical SD without variation in TTC37 identified stop or frameshift mutations in all seven.

Although genetically heterogeneous, SD is extremely homogenous clinically suggesting that a defect in the Ski complex function is a key mechanism responsible for the clinical features.

Our results show that mutations in genes encoding cofactors of the human Ski complex cause SD, establishing for the first time, a link between defects of the exosome complex and a Mendelian disease.
tract tissue ruptured during his operation of diverticulitis. A complete absence of tenascin-X was identified on triplicate testing of the proband’s serum. TNX-B mutation analysis was performed and showed a homozygous 1-bp deletion in exon 25, encoding fibronectin type III repeat. The parental segregation was both on the lower side of the normal distribution and intermediate between the proband and the background population. Further analysis is currently underway.

Leri’s pleonosteosis results from a genetic defect causing dysregulated TGF-beta signalling

S. Banka, S. Cain, S. Daly, J. Ureghart, G. Erdem, M. Bottomley, B. Kerr, N. Kingdom, S. Carin, C. L. R. Merry, C. M. Kielty, W. G. Newman; University of Manchester, Manchester, United Kingdom.

The Transforming Growth Factor-beta (TGF-B) signalling pathway is key to many cellular processes and its dysregulation has been documented in a number of Mendelian phenotypes characterised by joint contractures and scleroderma, including stiff skin syndrome, Myhre syndrome, acromicric and geleophysic dysplasias.

Leri’s pleonosteosis [MIM 151200] is a rare autosomal dominant condition characterized by flexion contractures of the interphalangeal joints, restricted motion of multiple joints, facial dysmorphism, bony overgrowths, short broad hands and feet and occasional sclerodermatous thickening of skin.

We genotyped the two most distantly related individuals in a large family with Leri’s pleonosteosis by Affymetrix SNP6.0 array. Copy number analysis revealed a shared ~1Mb duplication of chromosome 8q22.1 that segregated with the phenotype and was confirmed by QPCR. The duplication was not present in polymorphism databases and over 500 controls. We identified an overlapping 8q22.1 duplication in an unrelated patient with Leri’s pleonosteosis to confirm the causal relationship.

The minimum critical region consists of six genes, including SDC2 encoding the transmembrane heparan sulphate proteoglycan, syndecan-2. We show that overexpression of SDC2 causing altered TGF-B signalling in fibroblasts is the major molecular contributor to the clinical phenotype. We therefore add Leri’s pleonosteosis as a further disorder to a spectrum of conditions characterized by dysregulation of TGF-B signalling and importantly, provide an insight into role of altered proteoglycan homeostasis in this pathway.

Multiplex assay for the detection of common Mediterranean beta-thalassemia mutations

B. L. Atanassovska, G. L. Bozhinovski, D. Plasheva-Karanfikha, L. Chalalova; Research Centre for Genetic Engineering and Biotechnology, Skopje, The Former Yugoslav Republic of Macedonia.

Hemoglobinopathies are the most abundant group of genetic abnormalities in humans. Genetic defects affect the globin genes encoding for the hemoglobin alpha and beta chains. In particular, a great variety of mutations present in heterozygous, homozygous and compound heterozygous states disturb the function of the HBB gene. Molecular characterisation of the causative genetic variants is an essential part of the diagnostic process. The unusually large number of individual mutations presents technical challenges. However, in any particular population, a limited number of genetic variants are responsible for the vast majority of hemoglobinopathy cases. Developing reliable, rapid and cost-effective molecular diagnostic assays targeting particular populations greatly facilitates routine hemoglobinopathy investigations. We developed a one-tube single-nucleotide primer extension assay for the detection of eight common Mediterranean beta-thalassaemia mutations: IVS-1-110 (G->A), IVS-1-1 (G->A), IVS-4-6 (T->C), Codon 39 (C>T), IVS-2-745 (C>G), Codon 5 (C>T); GCT(Phe)>GCG (Val), Codon 6 (A>G), GAG(Glu)>G-G, and Codon 8 (T>AA). AAG(lys)>G-G. According to available mutation frequency data, these eight sequence variations together account for a large proportion of the hemoglobinopathy cases in Macedonia (89%).

The novel assay offers superior accuracy achieved through double mutation interrogation on both genomic strands. We validated the new assays using previously generated databases obtaining 100% agreement between independent genotyping methods. Our protocol, applicable in a range of Mediterranean countries, provides a cost-effective diagnostic tool of unmatched precision. It can be further adapted to particular populations by including/excluding assayed mutations. We facilitate future modifications by providing detailed information on assay design.

The modifying effect of Xmn1-1-HBG2 on thalassemia phenotype is associated with its linked elements in beta globin LCR

M. Neitzhaber1, S. Zaman1, A. Askerivai1, R. Zaman1, S. Abedin1, H. Darvish1, H. Najmabadi1,2

1Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran, 2Thalassemia Clinic, Research Center, Ironman blood transfusion Organization(IBTO), Tehran, Islamic Republic of Iran, 3Kerman and Najmabadi Pathology and Genetics Center, Tehran, Islamic Republic of Iran.

The core sequence of 5’HS4-beta globin locus control region and Xmn1-1-HBG2 site were analyzed and compared among 86 thalassemia patients with homozygous or compound heterozygous beta globin gene mutations and 101 normal individuals. Frequency of the G allele in the polymorphic palindromic sequence of 5’HS4 (TTGGGAG/CGGCTA) and positive Xmn1-1-HBG2 profile was significantly higher in thalassemia patients compared to the normal population. Linkage disequilibrium was observed between the G allele and positive Xmn1-1-HBG2 profile in patient population. Furthermore, dominance of IVSII-1 in the mutation spectrum of the patients enabled us to identify linkage disequilibrium relationships between IVSII-1, positive Xmn1-1-HBG2 and the G allele at 5’HS4. The frequency of milder clinical phenotype was significantly higher in patients with GG+/+ than cases with AA+/genotypic pattern in 5’HS4/Xmn1-1-HBG2 loci. These data together with biochemical evidence suggesting a role for the A/G polymorphism at 5’HS4 palindromic site on modifying chromatin structure and in the absence of any evidence from functional studies relating the Xmn1-1-HBG2 site to the increased gamma chain expression, suggest that the phenotype modifying role long time assigned to Xmn1-1-HBG2 is possibly played by more functionally potent elements linked to it in LCR.

A new TP63 mutation in a patient with cleft lip, split hand, and tibial agenesis

TP63 gene, located at 3q27 chromosome region, encodes a transcription factor that plays an essential role in the development of epidermis, upper lip and limbs. Homozygous tp63 null mice exhibit craniofacial abnormalities, limb truncations, and absence of epidermal appendages. In humans, mutations in TP63 can give rise to a series of syndromes characterized by various combinations of ectodermal dysplasia, limb malformations and orofacial clefting. The propositus here reported is the first child of a non-consanguineous couple. Some individuals of the maternal family were referred, but not examined, to be affected by some of the malformations found in the propositus, suggesting an autosomal dominant inheritance. The main clinical features included left cleft lip, bilateral split hand, bilateral tibial agenesis, club feet and absence of the right hallux. No ectodermal abnormalities were observed. Despite of mild hypotonia in the first months, neuropsychomotor development was apparently normal. The analysis of copy number variations (CNVs) was performed using the Genome-Wide Human SNP Array 6.0 (Affymetrix). None potential pathogenic CNVs were found. Subsequently, the gene was sequenced. A four-nucleotide insertion (AGAG) was detected at 5’UTR region of this gene resulting in a frameshift mutation. Considering the site of this mutation, it might have caused an alteration in the pattern of expression of TP63 gene. To our knowledge this is the first time that a mutation in the TP63 has been associated with this pattern of malformations- cleft lip, split hand and preaxial limb reduction defect in lower limbs. Financial support: Fapesp and CNPq.

Auto-regulation of the THAP1 (DYT6) gene and THAP1-mediated activation of SGCE (DYT11) gene expression

F. J. Koster1, A. Ergulur1, P. Steibler2, D. Brauhold2, A. Grießwalder, R. Deppe1, J. Eckhold1, A. Rakovic1, G. Gillesen-Kaesbach1, C. Klein1, K. Lohmann1

1Institut für Humangenetik, Lübeck, Germany, 2Section of Clinical and Molecular Neurogenetics at the Department of Neurology, Lübeck, Germany, 3Institute of Physiology, Center for structural Biology in Medicine, Lübeck, Germany.

Mutations in Thanatos-associated [THAP] domain-containing apoptosis-associated protein 1 (THAP1) cause a form of pure dystonia (DYT6). THAP1 encodes a transcription factor that regulates the expression of the DYT1 dystonia gene TORDIA. Here, we investigated whether THAP1 also influences the expression of the myoclonus-dystonia (DYT11) associated gene SGCE and its own expression. Using in-silico prediction and luciferase reporter gene assays, we characterized the SGCE and THAP1 promoters. Interestingly, these two core promoters contained one or five THAP binding sequences (THABS). Luciferase reporter gene assays revealed that THAP1 activates
the expression of SGCE and that this activation is disturbed by different THAP1 mutations. In addition, THAP1 represses its own expression. Binding of THAP1 to the core promoters was demonstrated using chromatin immunoprecipitation (ChIP). Further, THAP1 binding to the THABS within the upstream activating sequence (UAS) was confirmed by electromobility shift assay (EMSA). To test for in-vivo changes of expression levels, we re-programmed fibroblast cells from a THAP1 mutation carrier (Leu596180X) and controls to pluripotent induced stem (iPS) cells that were differentiated into neurons. Quantitative PCR in these cells did not reveal a significant difference of SGCE expression in a THAP1 mutation carrier compared to wildtype samples. However, THAP1 expression was increased in mutant THAP1 cells suggesting an autoregulation of THAP1. In conclusion, we identified two targets for THAP1, SGCE and THAP1 itself, in vitro and confirmed THAP1 in vivo. It is conceivable that the autoregulation compensates for alterations in the expression of other target genes to a certain degree.

P12.246
Transcriptome profiling during early neuronal differentiation in Lissencephaly associated with DCX mutations
J. Schuster1, M. Sobol1, T. Bergstr‘gan1, D. Raykova1, S. Kandil1, M. Bartish1, B. Anderlid1, G. Ammerlet1, K. Forsberg Nilsson1, N. Dahl2
1uppalska University, Uppsala, Sweden, 2Karolinska Institute, Stockholm, Sweden.

Genetic factors play a major role in a large proportion of patients with congenital neurological and neurodevelopmental disorders. Despite the progress related to genotype-phenotype associations, little is known about how specific gene mutations mediate abnormal cellular and molecular processes during early neuronal differentiation. Induced pluripotent stem cell (iPSC) technology has emerged as an indispensable tool to model genetically determined phenotypes at the cellular and molecular levels in non-accessible tissues. We have initiated an iPSC-based effort to model different monogenic phenotypes derived from neuronal or neural crest cells, e.g. Lissencephaly. Lissencephaly is a neurodevelopmental disorder characterized by abnormal cerebral surface, mental retardation and seizures. The disease is caused by insufficient migration of maturing neurons, although disease mechanisms are currently not fully understood. We have generated iPSC from skin fibroblasts of two Lissencephaly patients with different doublecortin (DCX) mutations.

To study perturbations of neuronal differentiation and function in more detail we established iPSC lines from the Lissencephaly patients and healthy controls. All lines were characterized and showed the capacity to form all three germ layers in embryoid body differentiation assays. iPSC lines were differentiated into neuronal precursor cells (NPC) and further into neuronal cells. Total RNA samples are obtained from the iPSC and NPCs and sequenced using the SOLID platform. The aim is to identify and compare transcriptome signatures during early neuronal differentiation.

We present how this "pipe-line" may be used as a sensitive method to characterize and mirror molecular abnormalities associated with DCX mutations at early stages of neuronal differentiation.

P12.247
A novel exon 2-skipped TNFR1 transcript: regulation by TNFRSF1A DCX mutations
rs1800692 and possible role on TNFR-associated Periodic Syndrome
J. Schuster1, M. Sobol1, T. Bergstr‘gan1, D. Raykova1, S. Kandil1, M. Bartish1, B. Anderlid1, G. Ammerlet1, K. Forsberg Nilsson1, N. Dahl2
1uppalska University, Uppsala, Sweden, 2Karolinska Institute, Stockholm, Sweden.

The effect of TNFR1 exon2 skipping in patients with a TRAPS phenotype and possibly in patients suffering from other inflammatory conditions and that, this new protein could have a role on the physiopathology of TRAPS.

P12.248
Frequency of POLR1D, POLR1C and TCF1 Mutations in a Large Cohort of Patients with Treacher Collins Syndrome
A. W. O’Rourke, M. Bowman, C. Archer, M. Oldridge, A. Seller, T. Lester; Regional Molecular Genetics Laboratory, Oxford, United Kingdom.

Treacher Collins syndrome (TCS) is a disorder of craniofacial development characterised by a combination of bilateral downward slanting palpebral fissures, coloboma of the lower eyelid, micrognathia, malformation of the external ear and bilateral conductive hearing loss. TCS type 1 is caused by dominant loss-of-function mutations in the TCOF1 gene. The Oxford Molecular Genetics Laboratory, UK, has provided a molecular diagnostic service for this gene since 2005. To date 119 referrals with a good clinical diagnosis of TCS have been analysed and pathogenic variants have been detected in approximately 70% of patients (of which around 4% were large deletions) [1]. In approximately 30% of referrals, no pathogenic variant was detected.

Mutations in the POLR1D and POLR1C components of RNA polymerases I and III, have recently been reported in individuals with TCS [2]. Sequencing analysis of these genes was undertaken in a cohort of 26 patients strongly suspected of having TCS, in whom a pathogenic TCOF1 variant was not detected. Probable pathogenic variants in the POLR1D gene were detected in 6 out of the 26 patients (23%) tested to date. The mutation spectrum includes novel frameshift, missense and nonsense variants, all predicted to result in loss of protein function. No pathogenic variants were detected in the POLR1C gene.

Data from our cohort suggests that approximately 7% of individuals with a strong clinical diagnosis of TCS may have a pathogenic mutation in the POLR1D gene.

P12.249
A novel TRPS1 gene mutation in the family with Trichorhinophalangeal syndrome from Russia
T. V. Fedotova1, T. A. Adyar2, Y. P. Fedotov3, A. V. Polyakov2
1 Regional Clinical Hospital, Voronezh, Russian Federation, 2Research Center for Medical Genetics, Moscow, Russian Federation.

Trichorhinophalangeal syndrome I (MIM 190350) is a malformation syndrome characterized by the distinctive craniofacial and skeletal abnormalities and is inherited as an autosomal dominant. Patients have sparse scalp hair, bulbous tip of the nose, long flat philtrum, thin upper vermilion border, and protruding ears. Skeletal abnormalities include cone-shaped epiphyses at the phalanges, hip malformations, and short stature. We presented five patients from four generation family with TRPS I type transmitted as an autosomal-dominant trait from Russia. All patients had uniform symptoms. Proband 18-old man had the height 174 cm, typical symptoms: facial features included low-set, posteriorly rotated ears, prominent malar eminence and orbital ridge, bulbous nose, hypoplastic nasi alae nasi, hypotrichosis, and long philtrum. He also had brachymesophalangy, wide halluces, and flat arches. Radiographs showed short metacarpals, cone-shaped epiphyses of middle and proximal phalanges (2nd, 3rd, 4th fingers). This leads to varying degrees of brachydactyly without short stature. For this proband we conducted direct automated sequencing of zinc finger transcription factor gene TRPS1, encodes the 1281 amino acids protein TRPS1, participating in the regulation of chondrocytes and the perichondrium, as result the novel mutation c.2800_+2C>T(Gly934Ser) in exon 6 had been found in the heterogeneous state. By the additional research, this mutation was not detected among the 60 population samples (120 chromosomes). The same mutation was also detected in the DNA sample of proband’s mother suffering TRPS I type. Thus, these data support the fact that the detected change is a pathological mutation.
P12.250

Fragile X mental retardation 1 (FMR1) premutations: instability and associated phenotypes

J. Louveau1, J. Jorge1, J. Marques2, R. Santos3, A. I. Seixas1, M. Martins3, J. Vale3, J. Sequeneces1, S. Silvera1

1uNGene and CGGP, IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal, 2Porto, Portugal, 3Service de Neurologia, Hospital de Ega Moniz, Lisbon, Portugal, 4ICBAS, Universidade do Porto, Porto, Portugal.

Abstract: Fragile X syndrome (FXS) is the most common hereditary form of intellectual disability with an estimated frequency of 1/4000 males and 1/8000 females. FXS is caused by a (CGG) expansion of over 200 repeats, in the 5’UTR of the FMR1 gene, which as a result is methylated and gene silenced. Based on (CGG) length, four classes of alleles can be distinguished: normal (5-44), intermediate (>45-54), premutated (55-200) and fully mutated (>200; FM) alleles. Both FMR1-related primary ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FXTAS) have been described in premutation carriers. To gain insights into instability of FMR1 (CGG), and associated phenotypes, we assessed repeat-length in 541 individuals from 128 Portuguese FXS families. We found 5.3% of intermediate, 26.6% of premutated and 26.6% of FM alleles. For a total of 115 transmissions of the maternal premutation, 26 (23%) with alleles ranging 60-98, the average expansion was 17 repeat units, whereas 89 (77%) with alleles 66-199, expanded to FM. In 44 transmissions of maternal FM, the offspring inherited the FM. For 10 paternal transmissions of premutations, ranging 56-120, all the daughters inherited a premutation, with an average expansion of 7 repeat units. We identified one male with FXTAS and two females with FXPOI among seven investigated premutation carriers; the remaining premutation individuals were not yet examined. In conclusion, in Portuguese FXS families, allele instability upon transmission is in agreement with previous reports, where the risk of premutation to FM expansion is linked to the premutation size of the transmittting mother.

P12.251

Molecular diagnostic of tuberous sclerosis by next-generation sequencing technology

L. Běhalová1, L. Híkleš1, M. Híklešíková1, P. Iglauer1, A. Nagy1, J. Mešťánek1, M. Genčík1, A. Genčík1

1Medgene s.r.o., Bratislava, Slovakia, 2Diagenos, Obnubrueck, Germany, 3ADINIS, Trnava, Slovakia.

Abstract: Tuberous sclerosis complex (TSC) is a rare genetic disorder, that belongs to neurocutaneous syndromes where both the skin and central nervous system are involved. It is characterized by an autosomal dominant pattern of inheritance and a variable penetrance. The symptoms of tuberous sclerosis vary from person to person and may include seizures, developmental delay, skin abnormalities, lung and kidney disease. TSC is caused by mutations in the genes TSC1 or TSC2, which encode the protein hamartin and tuberin respectively. These proteins act as tumor growth suppressors, agents that regulate cell proliferation and differentiation.

Molecular analysis can detect mutations in about 85% of cases and is complicated by the size of both genes, absence of mutations hotspots and a high rate of de novo mutations. Untill now DGGE mutations scanning, direct sequence analysis in combination with deletions/duplications analysis of TSC1 or TSC2 was performed in patients with suspected TSC. In respect to the progress of new molecular genetic technologies we have adapted next-generation sequencing (NGS) and began routine testing in respect to the progress of new molecular genetic technologies we have adapted next-generation sequencing. In order to analyze these genes, we performed conventional and next-generation sequencing and MLPA: proposal of a diagnostic strategy.

C. Neuscha1, T. Eisenberger1, K. Busch2, C. Deckert1, B. Lorenz3, M. Preising1, L. Kennerknecht4, M. Pfister5, B. Schulze5, D. Mitter6, M. Kautza7, C. Bergmann8, A. H. Bolz9, 1Center for Human Genetics, Bioscientia, Inghenheim, Germany, 2Department of Ophthalmology, Justus-Liebig University Gießen, Gießen, Germany, 3Institute of Human Genetics, University of Münster, Münster, Germany, 4Department of Otorhinolaryngology, University of Tübingen, Tübingen, Germany, 5Praxis für Humangenetik Dr. B. Schulze, Hannover, Germany, 6Institute of Human Genetics, University Hospital of Leipzig, Leipzig, Germany, 7Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany, 8Department of Human Genetics, RWTH Aachen University, Aachen, Germany, 9Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.

Usher syndrome (USH) is an autosomal recessive disorder with congenital sensorineural hearing impairment (HI) and retinitis pigmentosa (RP). There are three clinical subtypes: USH1 presents with severe to profound HI, faculative vestibular impairment and early RP, whereas USH2 is characterized by moderate to severe HI and RP in adolescence. USH3 is rare and variable. Because of the mostly large size of the 10 USH genes, genetic confirmation of the diagnosis is the exclusion. We have applied a novel and efficient diagnostic strategy to 32 patients. For USH2, we sequenced USH2A, followed by USH2A-MLPA and next-generation sequencing (NGS) of all 10 USH genes. For USH1 or atypical USH samples, we sequenced MYO7A (USH1B) before NGS was available to us; now, they directly undergo NGS. We found USH2A mutations in 10 out of 19 USH2 patients, including large intragenic deletions and duplications. NGS revealed GPNB9 (USH2C) mutations in one USH2 patient, but no USH1 gene mutations in the only patient with a monoallelic USH2A mutation. All three atypical USH patients and 4 of the 10 USH1 cases carried MYO7A mutations. CDH23 mutations were found in one USH1 patient, and linkage analysis with subsequent sequencing and MLPA identified PCDH15 mutations in two USH1 families from Syria. NGS for three MYO7A-negative USH1 patients is ongoing. In conclusion, our results with USH2A as the major USH2 gene and mutations more evenly distributed in USH1 support the following diagnostic procedure (in the order of listing): USH2: USH2A sequencing, USH2A-MLPA, NGS. USH1 and atypical USH: NGS, MLPA or linkage-based approaches where applicable.
We sequenced the exomes of four affected individuals from three families and found homozygous and compound heterozygous mutations in KIAA1632 in all four patients. Affected individuals from eleven additional Vici syndrome families were analysed by Sanger sequencing of KIAA1632. Mutations were detected in ten families. No KIAA1632 mutations were identified in the remaining family nor in two further families with similar features, suggesting locus heterogeneity. KIAA1632 was recently identified as the human homologue of the metazoan-specific autophagy gene epg-5 (ectopic pgl granules family member 5) (Tian et al) encoding a key protein of the autophagy pathway implicated in the formation of degradative autolysosomes. Immunohistochemical, histological and functional studies were consistent with homozygous or compound heterozygous null mutations in KIAA1632 causing autophagy defects. The remaining human homologues of the metazoan-specific autophagy genes identified in Tian et al, VMP1 and EL24, were screened in three Vici syndrome / Vici-like families without KIAA1632 mutations. No mutations were identified.

P12.256
A novel mutation in the distant sonic hedgehog (SHH) cis-regulator ZRS in family with Werner mesomelic syndrome from Russia

V. Fedotov1, N. Galeeva2, A. Polyakov2;
1Regional Clinical Hospital, Genetic counseling, Voronezh, Russian Federation; 2Research Center for Medical Genetics, Moscow, Russian Federation.

Werner mesomelic syndrome (WMS)-autosomal dominant tubial hemimelia-polydactyly-triphalangeal thumbs syndrome (MIM 180770). We present a family with 2 affected members in 2 generations from Russia. Propositus, a 17-old age boy and his mother, have bilateral hypoplasia of the tibia with preaxial polydactyly in the feet and hands. The height of the boy is 128 cm and his mother is 135 cm. The right hand of the boy is characterized by 6 and the left hand by 7 isodactylous digits (on the left hand I and II digits are triphalangeal), the thumbs is no opposable. Also boy has short legs due to bilateral hypoplasia of the tibia (156 cm; 154 mm) and bilateral preaxial polydactyly of the feet with 7 triphalangeal digits. Radiologically and MRI legs showed thicken of fibula and dysplasia of hip. His mother on the hands has 5 digits, I digit is triphalangeal on both hands, the thumbs is no opposable. On the feet she has 6 triphalangeal digits and tibia hypoplasia which lead to shortening of legs. The molecular-genetic study of boy and his mother identified heterozygosity for a 4035C>T transversion in the zone of polarizing activity (ZPA) regulatory sequence (ZRS) in intron 5 of the LM-B1 gene in both patients. Population analysis of 150 unaffected people did not detect this mutation.

P12.258
Novel mutations in the POUSF4 gene in patients with X-linked hearing loss

A. Schoener1, A. Giesenmann2, H. Hartmann2, J. Schmidtke3, M. Stuhrmann1;
1Institute of Human Genetics, Hannover Medical School, Hannover, Germany; 2Institute of Diagnost and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany; 3Clinic for Paediatric Nephrology, Hepatology and Metabolic Disorders, Hannover Medical School, Hannover, Germany.

Up to half of the X-linked hearing loss cases are caused by mutations in the single exon gene POUSF4 which encodes a 361 aa POU domain transcription factor mainly expressed in the inner ear and central nervous system. Intragenic mutations as well as deletions of the coding region or the upstream region of POUSF4 have been reported. Most affected males show a profound sensorineural hearing loss with or without a conductive component (which can be masked by the sensorineural loss). Common features are stapedial fixation and temporal bone anomalies (including dilation of the internal auditory canal), visible in computed tomography (CT).)leading to a perilymphatic gusher following stapedectomy or during cochlear implantation. We sequenced DNA from blood samples of five patients with a characteristic temporal bone CT and sequenced the coding region of the POUSF4 gene and its flanking sequences. For the detection of larger deletions or duplications MLPA analysis was applied. In three patients we found intragenic mutations which have not been described so far: one mis sense mutation (c.844G>T;p.Arg282Trp), classified as probably pathogenic by biometric analysis, and two frame shift mutants detected in two families. c. 1576delG, p.Trp526fs*5 c.1691fs*77 leading to a truncated protein lacking both DNA-binding domains. The two other patients showed deletions of the POUSF4 coding exon. Our study shows that POUSF4 mutations are frequently found in patients with X-linked hearing loss and that genetic testing may contribute to the confirmation of the clinical diagnosis.

P12.260
Sequencing X-chromosome exomes: A diagnostic approach in non-syndromic intellectual disability

P. Bauer1, C. Dufke1, C. Bauer1, M. Sturm1, C. Dufke1, C. Bauer1, A. Dufke1, A. Riess1, U. Grasshoff1, M. Kehrer1, O. Riess2, A. Tzschach2;
1Department of Medical Genetics, Tübingen, Germany.

Non-syndromic intellectual disability (ID) poses a considerable diagnostic demand, as it includes more than 100 genes that have been associated with familial forms of ID. Since X-chromosomal genes greatly contribute at least in affected males, diagnostic tools for the detection of causal genetic changes are a prerequisite for molecular diagnoses. In order to test, whether NGS provides us with a diagnostic platform in ID, we established a sequencing pipeline involving target enrichment for all coding sequences of the X chromosome. Sequencing of males with non-syndromic ID typically yielded in 60-100x coverage of X-chromosomal genes and a robust base calling in these hemizygous individuals. Moreover, even drop-out of single exons could be monitored in our patients as measured as a significant reduction in read coverage per exon. A total of 112 patient cohort of 112X revealed a high sensitivity and specificity to identify novel mutations. Our diagnostic approach was able to detect 60% of all coding bases covered less than 10x. As a result, we were able to identify novel mutations to 0-1 observations. In summary, X-ome sequencing represents a robust tool for the detection of causal genetic changes in patients with X-linked ID. Moreover, even partial exome sequencing, which is already a feasible diagnostic tool in ADID, may benefit from a targeted approach to identify novel variants in a large part of ID patients.

P12.261
Two forms of rare short stature syndromes in Yakuts

N. R. Maksimova1, A. Negovitsina1;
1Yakutsk Science Center of Complex Medical Problems of Russian Academy of Medical Sciences, Yakutsk, Russian Federation; 2Republican Hospital N1, Yakutsk, Russian Federation.

Herein we introduce a one of the rarest syndromes in Yakuts affected by short stature. We have identified 49 patients with short stature syndrome in 43 Yakut families with pre- and post-natal non-progressive growth failure, facial dysmorphism and normal intelligence. A genome-wide linkage analysis for families with pre- and post-natal growth failure, facial dysmorphism and normal intelligence was recently identified as the human homologue of the metazoan-specific autophagy epg-5 (ectopic pgl granules family member 5) (Tian et al) encoding a key protein of the autophagy pathway implicated in the formation of degradative autolysosomes. Immunohistochemical, histological and functional studies were consistent with homozygous or compound heterozygous null mutations in KIAA1632 causing autophagy defects. The remaining human homologues of the metazoan-specific autophagy genes identified in Tian et al, VMP1 and EL24, were screened in three Vici syndrome / Vici-like families without KIAA1632 mutations. No mutations were identified.

P12.260
Sequencing X-chromosome exomes: A diagnostic approach in non-syndromic intellectual disability

P. Bauer1, C. Dufke1, C. Bauer1, M. Sturm1, C. Dufke1, C. Bauer1, A. Dufke1, A. Riess1, U. Grasshoff1, M. Kehrer1, O. Riess2, A. Tzschach2;
1Department of Medical Genetics, Tübingen, Germany.

Non-syndromic intellectual disability (ID) includes multiple types of intellectual disability, as well as many syndromes that have been associated with familial forms of ID. Since X-chromosomal genes greatly contribute at least in affected males, diagnostic tools for the detection of causal genetic changes are a prerequisite for molecular diagnoses. In order to test, whether NGS provides us with a diagnostic platform in ID, we established a sequencing pipeline involving target enrichment for all coding sequences of the X chromosome. Sequencing of males with non-syndromic ID typically yielded in 60-100x coverage of X-chromosomal genes and a robust base calling in these hemizygous individuals. Moreover, even drop-out of single exons could be monitored in our patients as measured as a significant reduction in read coverage per exon. A total of 112 patient cohort of 112X revealed a high sensitivity and specificity to identify novel mutations. Our diagnostic approach was able to detect 60% of all coding bases covered less than 10x. As a result, we were able to identify novel mutations to 0-1 observations. In summary, X-ome sequencing represents a robust tool for the detection of causal genetic changes in patients with X-linked ID. Moreover, even partial exome sequencing, which is already a feasible diagnostic tool in ADID, may benefit from a targeted approach to identify novel variants in a large part of ID patients.

P12.261
Two forms of rare short stature syndromes in Yakuts

N. R. Maksimova1, A. Negovitsina1;
1Yakutsk Science Center of Complex Medical Problems of Russian Academy of Medical Sciences, Yakutsk, Russian Federation; 2Republican Hospital N1, Yakutsk, Russian Federation.

Herein we introduce a one of the rarest syndromes in Yakuts affected by short stature. We have identified 49 patients with short stature syndrome in 43 Yakut families with pre- and post-natal non-progressive growth failure, facial dysmorphism and normal intelligence. A genome-wide linkage analysis for families with pre- and post-natal growth failure, facial dysmorphism and normal intelligence was recently identified as the human homologue of the metazoan-specific autophagy epg-5 (ectopic pgl granules family member 5) (Tian et al) encoding a key protein of the autophagy pathway implicated in the formation of degradative autolysosomes. Immunohistochemical, histological and functional studies were consistent with homozygous or compound heterozygous null mutations in KIAA1632 causing autophagy defects. The remaining human homologues of the metazoan-specific autophagy genes identified in Tian et al, VMP1 and EL24, were screened in three Vici syndrome / Vici-like families without KIAA1632 mutations. No mutations were identified.

Conclusions: The R356W distribution in the Macedonian patients with classical CAH is comparable whereas the Q318X frequency was higher than reported in the most European populations. However, these findings further support a role of the severe mutations Q318X and R356W in the salt wasting form of the 21-hydroxylase deficiency.

P12.264

A genome-wide association study identifies risk loci for non-syndromic sagittal craniosynostosis on chromosomes 20 and 7

C. Naydenov18, S. Kim3, J. Kim3

Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, United States, 1Department of Pediatrics, Division of Craniofacial Medicine and Seattle Children’s Craniofacial Center, University of Washington, Seattle, WA, United States, 2Department of Pediatrics, University of California Irvine, Irvine, CA, United States, 3Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States, 4Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States, 5Department of Anthropology, Pennsylvania State University, University Park, PA, United States, 6Division of Genetics, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, United States, 7Department of Haematology and Genetics, SEALS, Sydney, Australia, 8Congenital Malformations Registry, New York State Department of Health, Albany, NY, United States, 9Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, United States, 10Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, United States, 11Department of Genetics, University of California San Diego, La Jolla, CA, United States, 12Department of Anthropology, University of California San Diego, La Jolla, CA, United States, 13Department of Genetics, University of California San Diego, La Jolla, CA, United States, 14Department of Genetics, University of California San Diego, La Jolla, CA, United States, 15Department of Genetics, University of California San Diego, La Jolla, CA, United States, 16Department of Genetics, University of California San Diego, La Jolla, CA, United States, 17Department of Genetics, University of California San Diego, La Jolla, CA, United States, 18Department of Genetics, University of California San Diego, La Jolla, CA, United States.

Craniosynostosis, the premature fusion of one or more cranial sutures in the skull, is a common malformation, affecting 1 out of 2,500 live born babies. Sagittal craniosynostosis is the most common type, accounting for 40 to 50% of all cases. We conducted the first genome-wide association study (GWAS) for non-syndromic sagittal craniosynostosis using 130 European American case-parent trios. The strongest associations reached p = 1.13 x 10^-14 (OR = 4.57) in the 3' UTR of BMP2 on chromosome 20 and p = 1.61 x 10^-10 (OR=0.19) in an intron of BB9 on chromosome 7. We replicated these associations (p = 4.98 x 10^-10) in an independent European American population of 186 unrelated probands with non-syndromic sagittal craniosynostosis and 564 unaffected controls. We focused our studies on the locus on chromosome 20. We did not find coding variants of BMP2 by direct sequencing; but using quantitative real-time PCR, we found a significant increase in BMP2 expression in three of eight calvarial osteoblasts (p = 3.4 x 10^-5) compared to control calvarial osteoblasts. ELISA assays and protein immunoblot analysis showed that two of the same osteoblast lines have higher levels of BMP2 protein and increased phosphorylation of SMAD 1/5/8. In summary, we identified two candidate loci for sagittal NSC and suggest that BMP2 plays a role in the genetic etiology of sagittal craniosynostosis.

P12.265

Improving genetic counselling in carriers of spinal muscular atrophy with two copies of the SMN1 gene

L. Gómez1, A. M. Bernarr1, M. Barceló2, S. Bernal2, M. Baiget1, E. F. Tizzano1;

1Hospital Sant Pau, CIBERER U-705, Barcelona, Barcelona, Spain, 2Hospital Sant Pau, Barcelona, Barcelona, Spain, 3Hospital Materno Infantil de Las Palmas, Gran Canaria, Spain.

Autosomal recessive spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 gene (SMN1) leading to loss of motor neurons of the spinal cord. Carrier frequency is around 1/50. Detection of carriers of SMN1 deletions is crucial to determine couples at risk for SMA offspring. One of the pitfalls in quantitative SMA carrier diagnosis is the presence of two SMN1 genes in cis (2/0 carriers). We analysed 2827 individuals (810 parents and 2017 other relatives) for SMA carrier diagnosis. In the group of parents, 78% (97%) showed one SMN1 copy. The remaining 24% showed two copies and based on the inheritance of the at-risk alleles and quantitative analyses of their parents or siblings, 18 individuals were considered 2/0 carriers (2.25%) and 6 “de novo” cases (0.7%). In the group of relatives we detected 600 carriers with one copy, 1362 two copies, 50 three copies and 5 four copies. Using the same criteria as in the parent group, 27 of the

P12.262

ZNF750 downregulation in keratinocytes promotes cell proliferation and decreases apoptosis

I. Cohen1,2, R. Birnbaum2,3, K. Leibson4, R. Taube5, S. Sivan5, O. S. Birk1,2,4,5

1The Morris Kahn Laboratory of Human Genetics, National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, 2Dept. of Molecular Genetics and Virology, Ben-Gurion University, Beer Sheva, Israel, 3Dept. of Molecular Genetics and Virology, Ben-Gurion University, Beer-Sheva, Israel, 4Genetics Institute, Soroka Medical Center, Beer Sheva, Israel.

Seborrheic dermatitis (SD) and Psoriasis are common dermatologic diseases with overlapping features. Each of the two dermatoses affects 2-3% of the population worldwide. The molecular mechanisms leading to excessive keratinocyte proliferation, the hallmark of both diseases, remain elusive. ZNF750 mutations were previously reported to be associated with psoriasis and with familial psoriasis. ZNF750 encodes a putative transcription factor that is highly expressed in keratinocytes and represents a psoriasis candidate gene.

To understand ZNF750 function, we initially determined the sub-cellular localization of ZNF750 and assessed the effect of ZNF750 silencing on cell proliferation and apoptosis in the human keratinocyte cell line, HaCaT. Immunofluorescence and subcellular fractionation followed by western blot analysis showed nuclear localization of ZNF750. In addition, using EGFP-tagged constructs, we identified which of the two ZNF750 nuclear localization signals is functional. As excessive proliferation of keratinocytes is a hallmark of both psoriasis and SD, we examined the effects of ZNF750 silencing in HaCaT keratinocytes on cell proliferation (K67 assay) and apoptosis (annexin V assay). In comparison to controls, HaCaT cells in which ZNF750 expression was down-regulated exhibited a 10-fold increase in cell proliferation and a 3-fold decrease in apoptosis.

We are currently performing genome wide expression microarray analyses of ZNF750 silenced cells and ChIP-seq analysis to identify downstream targets of ZNF750. Unraveling the role of ZNF750 in keratinocyte proliferation and determining its downstream pathways might open new insights to the events leading to excessive keratinocyte proliferation in psoriasis.

P12.263

Distribution of the Q318X and R356W mutations of the CYP21A2 gene in Macedonian patients with classic 21-hydroxylase deficiency

V. Anastasovska1, M. Kocova2

1Genetic Laboratory, Skopje, The Former Yugoslav Republic of Macedonia, 2Genetic Laboratory, Department of Endocrinology and Genetics, Skopje, The Former Yugoslav Republic of Macedonia.

Background: Deficiency of 21-hydroxylase is present in 90-95% of all cases with congenital adrenal hyperplasia (CAH), an autosomal recessive disorder: Phenotype in all clinical forms of the disease: calssic salt wasting (SW) and simple virilizing (SV) and nonclassic late onset form (LO) corresponds to the genetic lesion in the CYP21A2 gene. The Q318X nonsense and R356W mutations of the CYP21A2 gene are well known both in classic and nonclassical forms of the 21-hydroxylase deficiency.

Conclusion: The R356W distribution in the Macedonian patients with classic CAH is comparable whereas the Q318X frequency was higher than reported in the most European populations. However, these findings further support a role of the severe mutations Q318X and R356W in the salt wasting form of the 21-hydroxylase deficiency.
cases with two SMN1 copies (4.3%) were considered 2/0 carriers. In 414 individuals of the general population (partners of possible or confirmed carriers) 15 (3.6%) showed one copy, 342 two copies, 36 three copies and 4 four copies. We conclude that 2/0 carriers are detected using both, marker and quantitative SMN1 analyses. For better genetic counselling, cases from the general population can be identified after quantitative analyses of their parents when one parent shows 3 SMN1 copies and the other one SMN1 copy (Supported by CIBERER/FIS 11-2606).

P13.01 Metabolic disorders

P13.01.01 Metabolarray®: targeted array-CGH for the detection of copy number changes in inherited metabolic disease

B. Pérez1,2, E. Vallespin3, J. Nevado4, P. Santos1, P. Rodriguez-Pombo1,2, B. Merino1, C. Pérez-Cerdá1, P. Lapuente1, M. Ugarté1, R. L. Desviation1,2
1Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain; 2Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Madrid, Spain, 3CIBERER, Madrid, Spain; 4INGEMM-Hospital La Paz, Madrid, Spain.

Clinical molecular testing in inherited metabolic disease (IMD) is currently PCR-based precluding the identification of deletions which account for a variable fraction (1-25%) of mutant alleles depending on the gene involved. We have developed a high-resolution comparative genomic hybridization array (Metabolarray®) for the detection of CNVs in 205 genes involved in IMD which are currently diagnosed in the laboratory. The array consists of 62,979 oligos spread genome wide, with 40,555 hybridizing to target genes with an average spacing of about 250 bp and 26,678 covering the rest of the genome. For validation, we have retrospectively analyzed a series of IMD patients carriers of mosaic deletions previously genotyped by different methods (MLPA, SNP-arrays). All the heterozygous and homozgyous deletions even of a single exon were detected using the Metabolarray®. We are applying this tool prospectively to a series of patients with complete genotype.

In one propionic acidemia patient with discordant Mendelian inheritance, we have identified a novel 2 Kb deletion in the PCCB gene encompassing exons 4 and 5. Our results show the clinical utility of this new molecular tool for prospective to a series of patients with incomplete genotype.

P13.02 Association of non-alcoholic fatty liver disease and hypercholesterolemia with mutations on the genes LEP, UGT1A1, ATP7B

A. Zarina1, L. Piekuse2, Z. Steinberga1, M. Kreile1, A. Krumina2
1Infectology Center of Latvia, Riga, Latvia; 2Institute of Clinical Biochemistry, Leibniz Center for Diabetes Research, Düsseldorf, Germany.

Abstract: We screened for hypercholesterolemia (total cholesterol >5 mmol/l) and liver pathology (including NAFLD). Gilbert syndrome could be involved in lipid metabolism as liver pathology (including NAFLD). Gilbert syndrome could be involved in lipid metabolism, especially in patients with mutations in the ATP7B gene, (TA)n allele frequency 0.01, in control group it was not found. After linear regression analysis there were not found significant associations (p>0.05) with any of biochemical marker.

Conclusions: There have to be done larger study to evaluate genetic reason to find association for NAFLD and hypercholesterolemia.

P13.03 Deletion of NTSE promotes dislipidemia, intramyocellular lipid accumulation and results in peripheral insulin resistance

1Institute of Molecular Genetics, Nalle, Germany; 2Institute of Molecular Cardiology, Düsseldorf, Germany; 3Institute of Clinical Biochemistry, Leibniz Center for Diabetes Research, Düsseldorf, Germany; 4Paul-Langerhans-Group, "Integrative Physiology," Leibniz Center for Diabetes Research, Düsseldorf, Germany; 5Department of General Pediatrics – University Children’s Hospital, Düsseldorf, Germany; 6Institute for Animal Development and Molecular Biology, Düsseldorf, Germany; 7Institute of Metabolic Physiology, Düsseldorf, Germany.

Mutations in NTSE are the cause of nonfunctional CD73 in humans and subsequently result in calcification of lower-extremity arteries and hand and foot joint capsules. CD73 converts extracellular AMP to adenosine, which is known to inhibit lipolysis. It is unknown, however, whether adenosine formed by CD73 is functionally relevant in lipid homeostasis. We therefore explored the effect of CD73-derived adenosine on lipid metabolism of transgenic mice lacking CD73 (CD73−/−) at the age of 6-8 months. Using H MRI we found significantly decreased superficial fat content in CD73−/− mice (WT: 2.6±0.9 a.u.; CD73−/−: 1.4±0.5 a.u.) accompanied by increased serum free fatty acids (WT: 203±65 µM; CD73−/−: 354±141 µM), triglycerides (WT: 4.2±4.9 mg/dl; CD73−/−: 15.4±22.2 mg/dl), blood glucose (WT: 111±14 mg/dl; CD73−/−: 146±24 mg/dl) and serum insulin levels (WT: 1.20±1.15 µg/l; CD73−/−: 7.06±5.51 µg/l). Consistent with insulin resistance, intramyocellular lipid levels as measured with localized 1H MR spectra cope were significantly increased (WT: 1.01±0.31 a.u.; CD73−/−: 1.5±0.61 a.u.; n=10 each).

Insulin-induced Akt phosphorylation was reduced in skeletal muscle of CD73−/− mice. Islets from WT mice did not express CD73 at the mRNA and protein level, and glucose-stimulated insulin release from pancreatic islets was not different between WT and CD73−/− mice. In contrast, high fat diet almost completely downregulated the expression of CD73 in WT mice, which was also observed in adipose tissue from ob/ob mice. Our findings suggest that adenosine generated by NTSE/CD73 is an important insulin independent modulator of lipid metabolism in vivo, whereas non-functional NTSE/CD73 results in peripheral insulin resistance.

P13.04 A novel cardiomyopathy syndrome due to dolichol kinase deficiency

E. Morava1, D. Kapustu1, H. Mandel2, D. Lejfeber3, R. Wevers4
1UMC Nijmegen, Nijmegen, Netherlands; 2University of Rambam, Rambam, Israel.

Congenital disorders of glycosylation are a growing group of inborn errors of protein glycosylation. Cardiac involvement is frequently observed in the most 14 common forms, PMM2-CDG, especially hypertrophic cardiomyopathy. Dilated cardiomyopathy, however, has been only observed in a few CDG subtypes, usually with a lethal outcome. We report on cardiac pathology in nine patients from three unrelated Israeli families, diagnosed with dolichol kinase deficiency, due to novel, homozygous DK1 gene mutations. The cardiac symptoms varied from moderate, mild dilation to overt heart failure with death. Two children died unexpectedly with acute symptoms of heart failure before the diagnosis of DK1-CDG and heart transplantation could take place. Three other affected children with mild dilated cardiomyopathy at the time of the diagnosis deteriorated rapidly, two of them within days after an acute infection. They all went through successful heart transplantation; one died unexpectedly and 2 others are currently (after 1-5 years) clinically stable. The other 4 children diagnosed with mild dilated cardiomyopathy are doing well on supportive heart failure therapy. In most cases, the cardiac findings dominated the clinical picture, 33 without central nervous system or multi-system involvement, which is unique in CDG syndrome. We suggest to test for DK1-CDG in patients with dilated cardiomyopathy. Patients with discrete cardiomyopathy may remain stable on supportive treatment while others deteriorate rapidly. Our paper is the first comprehensive study on the phenotype of DK1-CDG and the first successful organ transplantation in CDG syndrome.

P13.05 Determining clinical relevance of gene conversion CYP21A2 and its pseudogene CYP21A1P

S. Herbst, B. Eichorn, R. Fahrhold
Medizinischer Praxissversuch Humangeteknik, Dresden, Germany.

Con genital adrenal hyperplasia (CAH) is a common autosomal recessive disorder caused mainly by mutations in the 21-hydroxylase gene (CYP21A2). The CYP21A2 is located at 6p21.3 about 30 kb apart from its pseudogene CYP21A1P, which encodes for an inactive protein due to the presence of 15 mutations. Gene and pseudogene are part of a tandemly repeated structure;
hence they are often targets of intergenic recombinations causing small lesions, deletions, duplications and gene conversions. Latter comprises fused genes with its 5‘ end and 3‘ end corresponding to CYP21A1P and CYP21A2 respectively, which are known to be pathogenic. However, here we demonstrate three patients with a fusion between CYP21A2 and CYP21A1P observed by a suspicious MLPA result. In all patients exons 1-3 of the gene are duplicated whereas the corresponding region of the pseudogene is deleted. Direct sequencing reveals that a part of the gene (from upstream of the promoter to intron 3) indeed replaced the corresponding region of the pseudogene. Even if the gene promoter is present, the stop mutation in exon 7 of the pseudogene part generates a truncated protein. In addition two intact CYP21A2 copies are present. In conclusion, the described chimeric gene CYP21A2/CYP21A1P is not disease causing, while at least one intact copy of the CYP21A2 gene is present. We recommend performing a long-range PCR in combination with direct sequencing subsequent to the observation of aberrant MLPA pattern to validate whether an intact gene copy is available.

P13.06
Defect of cobalamin intracellular metabolism (chB, chD and chF defects) masquerading as diabetic ketoacidosis
S. Sharoda, S. Angell, A. B. Khalil, S. V. Atre,
Post Graduate Institute of Medical Education and Research, Chandigarh, India.

Inborn errors of metabolism, especially aminoacidopathies, manifesting as diabetic ketoacidosis or hyperglycemia are rare, only a few cases have been reported. We report a 13-month-old boy who presented with vomiting, dehydration, coma, hyperglycemia, high anion gap metabolic acidosis, and ketosis mimicking diabetic ketoacidosis (DKA). Treatment with parenteral fluid, electrolyte and insulin infusion lead to an improvement in hyperglycemia but persistence of metabolic acidosis and lack of improvement of neuromuscular findings led us to suspect an inborn error of metabolism. Urinary organic acid analysis revealed increased methymalonic acid levels. In addition to this, he also had increased plasma and urine homocysteine tested by high performance liquid chromatography (HPLC). There was some improvement in neurologic status and metabolic parameters after treatment with low-protein diet, vitamin B12, and L-carnitine but he ultimately succumbed to nosocomial sepsis. Methymalonic acidemia presenting with DKA like symptoms has been reported. But to the best of our knowledge, this is probably the first case report of late-onset combined methylmalonic acidemia and homocystinuria (chB, chD and chF defects) masquerading as diabetic ketoacidosis. The early diagnosis of IEM is of utmost importance for the treatment, prognosis as well as genetic counseling for the family. High index of suspicion even in varied clinical presentation is the only way to diagnose these disorders in places where newborn screening is still not a routine practice.

P13.07
Genetic analysis of congenital disorders of glycosylation patients using candidate gene genomic capture and next generation sequencing
C. Medrano, C. Pérez-Cárdenas, P. Gómez-Puertas, L. R. Desvti, M. Ugarte, B. Pérez,
Centro de Diagnóstico de Enfermedades Moleculares-Centro de Biología Molecular, CIBERER, IDIAPZ, Madrid, Spain, Centro de Biología Molecular, Madrid, Spain.

Congenital disorders of glycosylation are a heterogeneous group of disorders caused by genetic defects in the protein glycosylation pathway. The clinical and subsequent biochemical diagnosis allow to classify the affected patients as CDG type I caused by defects in cytoplasmic and endoplasmic reticulum proteins or CDG type II caused by defects in the Golgi apparatus. Genetic diagnosis is required to identify the affected gene using a high-time consuming approach to sequence gene by gene. The aim of this study was to improve molecular diagnosis for congenital disorders of glycosylation by developing a customized array. We present the initial results obtained by combination of a targeted in solution capture from Agilent and subsequent next generation sequencing using the Solid platform. In this work 16 barcoded patients have been analyzed (seven CDG1 and nine CDGII). On average, coverage was 45 to 60 fold and we have detected close to one-hundred SNV per patient. The SNV were filtered excluding common variants and also excluding synonymous, deep intronic variants and also UTR changes. The initial results have allowed the identification of pathogenic mutations in DPAGT1, RTF1 and COG7 genes. In summary the development of next generation sequencing panels in the genetic diagnostic laboratory allows a most efficient genetic diagnosis compared with the conventional gene-by-gene sequencing.

P13.08
Cystic fibrosis related diabetes-risk factors
I. M. CIUCANU, L. Popa, I. Toma, D. Iosif, I. Toma, L. Popa,
1Pediatric II Department, Timisoara, Romania, 2Biochemistry Department, Timișoara, Romania.

Background: Cystic fibrosis related diabetes (CFRD) is frequent in female with pancreatic insufficiency, carriers of so-called severe mutations. While risk factors for type 1 diabetes are well-known, CFRD risk factors who could be influenced are still looking. Objectives: Evaluate the risk factors for the development of CFRD in our patients. Methods: We performed retrospective survey of six years cohort study; 81 patients were evaluated. For all CFRD patients were obtained data about familial history of diabetes, positive antecedent of rickets and early diet. Biannual biochemical evaluation was completed in addition to clinical examination. Results: CFRD was diagnosed in eight patients (9.8%), 50% carriers of class I mutations. Prevalence was significantly higher in girls (75%) compared to boys. Median age at CFRD debut was 13.37 years and the mean age at CF diagnosis was 7.27 years. We did not notice positive family history for diabetes in any of patients. Five patients (62.5%) had rickets as toddlers, although vitamin D was given for prophylaxis. All of CFRD patients were nourished with cow’s milk formulas, one was breast fed for 2 months. Early introduction of gluten cereals (at 4 months) was documented in 7 patients (87.5%). Unfortunately 50% of CFRD patients died from pulmonary disease. Conclusion: Girls diagnosed late with CF, fed with cow’s milk and gluten nourishment in the early infancy, with positive history of vitamin D deficiency are more prone to develop CFRD. Early dietary intervention especially in female patients with “severe” genotype might be helpful.

P13.09
Metabolic characterization of common variants of the FTO and TCF7L2 loci by nutritional challenge tests
1Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, Neuberger, Germany, 2EKTZ, Chair for Nutritional Medicine, Technical University Muenchen, Freising, Germany, 3Diabetes Center, Medical Clinic Innenstadt, Ludwig Maximilians University, Munich, Germany. 4Institute of Epidemiology I, Helmholtz Zentrum Muenchen, Neuberger, Germany, 5Institute of Epidemiology II, Helmholtz Zentrum Muenchen, Neuberger, Germany, 6Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, Neuberger, Germany, 7Department of Genomics Biology, Helmholtz Zentrum Muenchen, Neuberger, Germany, 8Department of Physiology and Biophysics, Weill Cornell Medical College, Education City, Qatar, 9Hannover Unified Biobank, Hannover Medical School, Hannover, Gabon, 10ZIEL, Research Center for Nutrition and Food Sciences, Technical University Muenchen, Freising, Germany.

Common single nucleotide polymorphisms in the FTO and TCF7L2 gene loci have been consistently associated with obesity and type 2 diabetes mellitus, respectively. The mechanisms underlying these associations remain poorly understood. Measuring metabolic response profiles by metabolomics during nutritional challenges may help to unravel how the interaction of genetic variants with lifestyle influences metabolism. We present an approach combining detailed phenotyping, nutritional and intravenous interventions and metabolomics analyses to investigate early metabolic alterations in healthy risk allele carriers. 77 non-obese male participants of the KORA S4/F4 cohort, aged 34 to 67 years, were recruited. 19/24 homozygous carriers of the FTO locus risk allele rs9939609, 16/17 carriers of the TCF7L2 locus risk allele rs7903146 and 20/24 homozygous controls performed nutritional challenges, respectively. Nutritional challenges comprised an oral glucose tolerance test after overnight fasting, a standardized fast food meal, and a lipid tolerance test within a two-day study period. The intravenous challenge consisted of an intravenous glucose tolerance test and a subsequent euglycemic hyperinsulinemic glucose-clamp test. For metabolomics analysis, blood was sampled at three time points for each participant during each challenge and concentrations of 165 metabolites were determined using the AbsoluteIDQ™ p150 kit (Biocrates Life Sciences AG). We show the initial analyses of metabolite-response profiles to the different nutritional interventions and metabolomics analyses to investigate early metabolic alterations in healthy risk allele carriers. 77 non-obese male participants of the KORA S4/F4 cohort, aged 34 to 67 years, were recruited. 19/24 homozygous carriers of the FTO locus risk allele rs9939609, 16/17 carriers of the TCF7L2 locus risk allele rs7903146 and 20/24 homozygous controls performed nutritional and intravenous challenge tests, respectively. Nutritional challenges comprised an oral glucose tolerance test after overnight fasting, a standardized fast food meal, and a lipid tolerance test within a two-day study period. The intravenous challenge consisted of an intravenous glucose tolerance test and a subsequent euglycemic hyperinsulinemic glucose-clamp test. For metabolomics analysis, blood was sampled at three time points for each participant during each challenge and concentrations of 165 metabolites were determined using the AbsoluteIDQ™ p150 kit (Biocrates Life Sciences AG).
P13.10 Investigation of CAT gene C1167T polymorphism in diabetic nephropathy
C. Cătoreanu1, A. Cimpoeru1, D. Clenciu1, E. Cioboata1, M. Bacu1, S. Serban-Sosoi1, M. Stavraciou1, M. Ioana1, M.M. Panduru1, M. Eta1, M. Matoc1
1University of Medicine and Pharmacy, Craiova, Romania, 2Genetics Department of Bucharest University, Bucharest, Romania, 3“Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania.

Diabetic nephropathy (DN) is the most severe diabetic complication. Oxidative stress may play a role in its pathogenesis. Antioxidant defense seems to be modulated by genetic variability. The aim of this study was to investigate the association of CAT gene C1167T (rs769217) polymorphism with DN in type 1 diabetes. Clinical data and blood samples were collected from 269 Romanian patients with type 1 diabetes. They were divided in two groups according to the presence of DN - 108 patients without DN and 161 patients with DN. Genomic DNA was extracted from peripheral blood leucocytes using commercial kits and the rs769217 polymorphism was assessed by TaqMan SNP assay on the Viia7 Real-Time PCR system. Statistical analysis was performed using PLINK v1.07 software.
The sample population was in Hardy-Weinberg equilibrium. The frequency of minor allele (T) was 0.21 in DN group and 0.26 in the controls without DN. The OR of lack of T allele (OR=0.762, [95%CI 0.521-1.135], p=0.18) or C allele (OR=1.312, [95%CI 0.881-1.954], p=0.18) conferred risk or protection for DN. We performed adjustment for a minimal additive model (age, sex duration of diabetes and glycated hemoglobin A1c), but the results remained concordant with the raw analysis (OR=0.773, [95%CI 0.5073-1.178], p=0.23).
In summary, CAT gene C1167T (rs769217) polymorphism does not seems to confer risk for DN in patients with type 1 diabetes.

P13.11 Type V Hyperlipoproteinemia with Neonatal Onset
C. Cladovan1, D. Dubui1, A. Sziegely1, C. Jurca1
1University of Oradea, Faculty of Medicine and Pharmacy, Oradea, Romania, 2University of Oradea, Faculty of Medicine and Pharmacy, Oradea, Romania.

Introduction. Familial hyperlipoproteinemias in neonates are rarely encountered in clinical practice. The incidence of Frederickson type V familial hypertriglyceridemia is not estimated in childhood. The pattern of inheritance is autosomal dominant. Hypertriglyceridemia is not estimated in childhood. The pattern of inheritance is autosomal dominant.

Case report. We present a case of sixteen days old newborn admitted in our department for milky plasma detected in Maternity and association of severe bleeding disorders. Physical examination revealed pallor, dysmorphic face with xanthomas, mucosal bleeding, abdominal distension. Laboratory findings identified extremely high values for triglycerides (2500 mg/dl), cholesterol (1276 mg/dl initially then 336 mg/dl with HDL 19 mg/dl, LDL 3.87 mg/dl), total fats (5317 mg/dl), the test for chylomicrons positive, severe alteration of coagulation tests with proof of clotting factors deficiency, transitory thrombocytopenia. Echocardiography revealed non-compaction cardiomyopathy. First -degree relatives have evidence of dyslipidemia above 90th percentile.

Conclusion. Our case presented a rare familial hyperlipoproteinemia type V with neonatal onset associated with severe bleeding disorder and non-compaction cardiomyopathy.

P13.12 Development of a cell-based reporter assay for the analysis of regulatory interactions between FGF23/KLOTHO/FGFR1, small inhibitors and downstream targets
S. Diener1, B. Lorentz-Depiereux1, T. M. Strom1,2
1DKFZ, Heidelberg, Germany, 2Diabetes Genetics Department.

The analysis of rare genetic disorders affecting phosphate homeostasis led to the identification of several proteins essential for the renal regulation of phosphate homeostasis: PHEX (XLI [MIM 307800]), FGF23 (ADHR [MIM 193100]), SLCT4A3 (HHRI [MIM 241530]), DMP1 (ARHR1 [MIM 241520]), ENPP1 (ARHHR2 [MIM 133132]), GALNT3 (FFC [MIM 211190]), and KLOTHO (FFC [MIM 219190]). A key regulator of phosphate homeostasis is the fibroblast growth factor 23 (FGF23). It is mainly secreted from osteocytes, circulates in the blood, and binds to receptor heterodimers composed of FGF receptor 1 (FGFR1) and KLOTHO in the kidney. FGF23 activates KLOTHO/FGFR1 to inhibit renal phosphate reabsorption and to suppress 1,25-dihydroxyvitamin D3 synthesis. As a key signalling pathway mitogen-activated protein kinase (MAPK) pathway is employed. To analyse regulatory interactions between FGF23/KLOTHO/FGFR1, small inhibitory compounds and further downstream targets, we have developed FGF23-inhibible HEK293 cells that stably express KLOTHO (HEK293-KL). Stable cell clones were picked, expanded, and expression of KLOTHO was confirmed by Western blot analysis. By investigating the activation of MAPK pathway we could show that HEK293-KL cells are FGF23-inhibuble. Moreover, we could inhibit the induction with FGF23 by the use of two small inhibitory molecules; (1) SU5402, an inhibitor of FGFR1 and (2) U0126, an inhibitor of MAPK pathway. Taken together, we have established a potent cell-based reporter assay, which can now be used to investigate FGF23/KLOTHO/FGFR1 receptor signalling and receptor complex inhibition in more detail. We will try to identify novel downstream targets which may be candidates for regulatory compounds involved in phosphate homeostasis.

P13.13 A novel splice mutation and a novel exon deletion in the AGL gene in a patient with Forbes-Cori disease (GSD III) M. Kuhn3, C. Dieter1, K. Wegner1, D. Glaeser1
1Genetikum, Ne-Ulm, Germany, 2Pediatrics, St. Marien-Hospital, Dueren, Germany.

Glycogen storage disease type III (GSD III) is an autosomal recessive disorder characterized by excessive accumulation of glycogen in the liver and in skeletal / cardiac muscles. The typical symptoms are hepatomegaly, hypoglycemia and muscles weakness, also shown in our 4 years old male patient. GSD III is caused by a deficiency of the glycogen debranching enzyme (AGL). We performed screening for mutations in the AGL gene by sequencing all exons including flanking intronic sequences. The analysis revealed a heterozygous mutation at the donor splice site of exon 10. Considering the autosomal recessive inheritance pattern of GSD III, this mutation cannot solely be responsible for the present phenotype in the patient. So it was appropriated to search for possible deletions in the AGL gene. A gross deletion was excluded by Array-CGH. As there is no commercial MLPA kit for AGL available, we designed our own MLPA probes. Having established the assay we analyzed DNA from the patient. We found a heterozygous novel single exon deletion in the AGL gene. This result was confirmed by junction fragment analysis using flanking primers. Sequence analysis of the junction fragment revealed a 2.3 kb deletion and the intronic break points. The deletion could also be detected in paternal DNA and the splice mutation in maternal DNA. This demonstrates the compound heterozygosity of the two detected genetic alterations. Our results show that home-made MLPA tests are an appropriate method to detect causative exon deletions in genes since there is no commercial MLPA kit available.

P13.14 Efficacy of enzyme replacement therapy with velaglucerase alfa in patients with type 1 Gaucher disease and marked thrombocytopenia or splenomegaly A. Zinor1, D. E. Gonzalez1, M. Kabrati1, E. A. Lukina2, P. Grihaldo3, A. Kissnowsky1, M. Ben Dridi1, D. Elstein1, D. Zahrnhof1, E. Crombez1, H. Ben Turkus1
1Shaare Zedek Medical Center and Hebrew University-Hadassah Medical School, Jerusalem, Israel, 2Sanatorio Español, Asunción, Paraguay, 3All India Institute of Medical Sciences, New Delhi, India.

Background. The responses of type 1 Gaucher disease (GD)-related thrombocytopenia and splenomegaly to enzyme replacement therapy (ERT) are linked to their pretreatment severity.

Methods. TKT032 and HGT-GGB-039 were parallel-group trials; eligible patients were ≥2 years old with untreated type 1 GD. In both trials, 1 treatment arm was allocated to velaglucerase alfa 60 U/kg ERT every other week (EOW). Patients completing either trial could enrol in a combined extension study, HGT-GGB-044.

Results. 27 type 1 GD patients received velaglucerase alfa 60 U/kg EOW in TKT032 or HGT-GGB-039 and HGT-GGB-044 over 24 months. 15/27 patients had a pretreatment (Baseline) platelet count <100×10^9/L; 6 of these 15 had a platelet count <60×10^9/L. All 15 had an intact spleen. 6/27 patients had severe splenomegaly (spenic volume >15 multiples of normal); all 6 had a platelet count <100×10^9/L. At 24 months, 14/15 (93%) patients had reached the platelet count therapeutic goal and 6/6 with severe Baseline splenomegaly had reached the splenic goal. 5/6 (83%) patients with a Baseline platelet count <60×10^9/L had a normal platelet count >20×10^9/L, including 2 with severe Baseline splenomegaly.
P13.17 Diagnostic tests for the genetic defects of urate transporters

J. Sebesta, B. Stiborová

1Inst Med Biochem and Lab Dg,Inst of Inher Metab Dis, First Faculty of Medicine, Prague, Czech Republic; 2Inst of Inher Metab Dis, First Faculty of Medicine,Charles University, Prague, Czech Republic.

Introduction: Primary hereditary renal hypouricemia is a genetic disorder affecting renal uric acid (UA) reabsorption with clinical features such as nephrolithiasis and exercise-induced acute renal failure. The known causes are: defects in the SLCA2A12 gene, encoding the human urate transporter 1 (hURAT1), and also impairment of voltage urate transporter (URAT1v1), encoded by SLCA29 (GLUT9) gene. Diagnosis is based on hypouricemia (<119 μmol/L) and increased fractional excretion of UA (>10%). To date more than one hundred Japanese patients with mutations in hURAT1 gene have been described. Hypouricemia is sometimes overlooked, therefore we have set up the flowchart for this disorder.

Methods: The patients were selected for molecular analysis from 640 Czech hypouricemic patients. These cases were found in 3700 blood and urine samples. Serum and urinary UA and creatinine were determined. The sequence analysis of SLCA2A12 and SLCA29 genes were performed. Results: Other secondary causes of hyperuricemic hypouricemia were excluded. The estimations of: 1) serum UA, 2) excretion fraction of UA, 3) and analysis of hURAT1 and URAT1v1 genes follow. We have found 3 transition, 4 deletions in SLCA2A12 gene and one nucleotide insertion in SLCA29 gene in overall 7 Czech patients. Three patients had acute renal failure and urate nephrolithiasis.

Conclusions: Our finding of the defects in URAT1v1 gene gives further evidence that SLCA29 is a causative gene of primary renal hypouricemia. Hereditary renal hypouricemia is still unrecognized disorder and probably not wide spread in East Asia only. (Supported by project PRVOUK, MOLMED of Charles University).

P13.18 Identification of two novel isoforms of the HNF1A gene

D. Fernández García, E. González Ruano, C. Cieza Borrella, I. Rodríguez Hernández, J. Miralles García, R. González Sarmiento

1Unidad de Medicina Molecular-Departamento de Medicina e IBMC. Universidad de Salamanca, Salamanca, Spain, 2IBSAL, Salamanca, Spain, 3Servicio de Endocrinología. Hospital Universitario de Salamanca, Salamanca, Spain.

Background

HNF1A is a transcription factor that plays a central role in the regulation of pancreatic beta cells. It controls the transcription of key genes such as insulin and GLUT2. Their mutations cause deregulation of certain processes leading to the onset of MODY3 diabetes. So far it has been described three HNF1A isoforms. We have identified two new isoforms in liver cells.

Methods

HNF1A cDNA was synthesized in HepG2, Capan 1, Hek and MCF7 cells (negative control). The reaction products were cloned to analyse the isoforms activity by luciferase assay in COS1 and HepG2 cells. We carried out a predictive analysis of the structures of two new isoforms and their location was determined by immunoﬂuorescence in both cell types.

Results

We found two unreported transcripts: HNF1AΔ2, which lost exon 2 and the reading frame, and HNF1AinsV8, who never missed the reading frame and inserts 3 amino acids in the protein. Luciferase analysis show a 77% reduction in expression levels of isoform HNF1AΔ2 and a twofold increase in the activity of the isoform HNF1AinsV8 with respect to the Wt. The structure prediction shows a significant change in the case of isoform HNF1AinsV8. Immunofluorescence analysis shows that this isoform maintain the nuclear localization. This isoform is expressed in Hepg2 cell line but not in Capan1, Hek239T, JURKAT or MCF7. Analysis of HNF1AΔ2 isoform is underway.

Conclusion

We report two novel isoforms cloned by HNF1A gene that are expressed in HepG2 cell line and could help to better understand HNF1A activity.

Table.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Baseline age, y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>7</td>
<td>19</td>
<td>23</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>8</td>
<td>20</td>
<td>24</td>
<td>32</td>
<td>47</td>
</tr>
</tbody>
</table>

Notes:

- Patients with spleens ≥5 multiples of normal in volume at Baseline.
- Below goal.

Methods:

1. Therapeutic goals by 2 years: spilcocyte volume must decrease 50-60%; Baseline platelet count ≥60×10^9/L must be ≤100×10^9/L; Baseline platelet count (≥100×10^9/L) must increase 2-fold.

Conclusion: Clinically significant improvements in platelet count and splenic volume occurred in the first 24 months of velaglucerase alfa treatment among patients with type 1 GD and severe Baseline splenomegaly and/or a platelet count ≥100×10^9/L (including those with a platelet count <60×10^9/L).

P13.15

The genetic origin of glucaric aciduria type I in Belarus

A. Zinovik, S. Massilov, N. Gasina

National Research and Applied Medicine Centre “Mother and Child”, Minsk, Belarus.

**Glucaric aciduria type I (GA-I) is a rare organic aciduria caused by inherited deficiency of glutaryl-CoA dehydrogenase which is involved in the catabolic pathways of L-lysine, L-hydroxylysine and L-tryptophan. From 1975 more than 500 patients were diagnosed worldwide. More than 200 disease-causing mutations of GCDH gene (19p13.2) are known thus far; most mutations are unique to individual families. In some countries GA-I is included in the panel of diseases identified by expanded newborn screening. In Belarus the possibility to diagnose GA-I appeared after the beginning of acylcarnitine analysis by tandem mass spectrometry (MS/MS). From 2007 4120 patients passed selective screening by MS/MS, and 4 unrelated patients, aged 7 months - 2 years, were diagnosed as having GA-I. The analysis of GCDH gene revealed one common mutation, p.R402W, covering 75% (6 from 8) of all mutant alleles. High prevalence of p.R402W also among Russian patients indicates possible Slavic origin of this mutant allele and suggests that screening for this mutation may be appropriate for the confirmation of biochemical and clinical diagnosis, identification of carrier status and prenatal diagnosis of GA-I in this region.

P13.16

Association of HFE gene mutations with HLA-A and -B alleles in patients with idiopathic hepatohepatic disorders

O. Bilewych, D. Zastavna, H. Makush, O. Terpylyuk

Institute of Hereditary Pathology, NAMS of Ukraine, Lviv, Ukraine.

Hereditary hemochromatosis (HH) is an autosomal recessive disease characterized by abnormal accumulation of iron in parenchymal organs leading ultimately to organ dysfunction. This is the most common inherited liver disease. HH gene (HFE) is located within the human leukocyte antigen (HLA) class I region on chromosome 6. It is suggested linkage disequilibrium between these genomic regions which results in certain clinical features of HH. The aim of the study was to establish the distribution of HLA-A and -B alleles in patients with idiopathic hepatohepatic disorders (IHD) in association with C282Y and H63D mutations in HFE gene. The presence of HFE mutations was established in 70 patients with IHD (chronic idiopathic hepatitis, liver cirrhosis, hepatomegaly) and in 60 healthy controls. HLA typing was performed in 25 HFE mutation carriers and 20 non-carriers. HFE mutations were screened for by RFLP performed on PCR products. HLA alleles were detected using allele-specific PCR. Heterozygous C282Y mutation found in 14.3% of patients with IHD was significantly higher than in control group (χ^2=4.625, P<0.05). The differences in H63D mutation frequencies were not reliable. An expected significant association between HFE mutations and HLA-A3 allele was established (χ^2=3.902, P<0.05). 4 out of 5 patients with chronic idiopathic hepatitis were HLA-A3/B7, HLA-A3/B62 and HLA-A3/B14 genotype carriers in association with both C282Y and H63D mutation. We suggest that heterozygous us status for C282Y mutation may be a risk factor for IHD. HLA-A3 allele and HLA-A3-containing genotypes in combination with HFE mutations may play important role in susceptibility to chronic idiopathic hepatitis.
P13.19 Molecular genetic analysis in patients with congenital hyperinsulinism of infancy: Identification of novel mutations in ABCB8 and KCNJ11 and implementation of genetic diagnosis in disease management

J. Engel1, O. Pechkurova;1 1Department of Pediatrics, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, Szeged, Hungary; 2Department of Pathology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, Szeged, Hungary; 3VLCAD deficiency Research Group. Clinical Neuroscience Department, King’s College, London, United Kingdom; 4Department of Neurology, University of Pécs, Pécs, Hungary.

Leigh syndrome (LS) is a progressive neurodegenerative disorder with symmetrical lesions in the brainstem and/or basal ganglia in infancy and childhood. Mutations in nuclear and mitochondrial genes of the energy metabolism have been associated with LS. The G13513A mutation in ND5, one of the 7 mtDNA encoded subunits of Complex I, was originally reported in MELAS, but later identified in children with LS.

We present the first Hungarian documented case of LS associated with the G13513A mtDNA mutation in a 5-year-old girl. Psychomotor delay was noted at the age of 1 year, unaided walking developed at 1.5 months, bilateral ptosis at 21 months, ataxia and intention tremor at 3 years of age. Elevated blood and CSF lactate, multiple lesions in the cerebellum, brain stem, cauda equina, internal capsule and thalamus pointed to LS. Progressive deterioration from age 3 years on lead to death at age 3.5 years due to aspiration. Mutation analysis from blood showed a 60% heteroplasmy of the G13513A mutation.

No mutation was detected in blood from the mother. In muscle tissue, other respiratory chain activities were normal. Functional analysis carried out at the VUB revealed a 60% heteroplasmy of the G13513A mutation.

P13.20 Clinical signs of autosomal dominant inherited hypophosphatasia

J. Engel, S. Rost;1 F. Jakobs, K. Mohnike2, S. Empting2 1Department of Pediatrics, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, Szeged, Hungary; 2Department of Pathology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, Szeged, Hungary; 3VLCAD deficiency Research Group. Clinical Neuroscience Department, King’s College, London, United Kingdom; 4Department of Neurology, University of Pécs, Pécs, Hungary.

Leigh syndrome (LS) is a progressive neurodegenerative disorder with symmetrical lesions in the brainstem and/or basal ganglia in infancy and childhood. Mutations in nuclear and mitochondrial genes of the energy metabolism have been associated with LS. The G13513A mutation in ND5, one of the 7 mtDNA encoded subunits of Complex I, was originally reported in MELAS, but later identified in children with LS.

We present the first Hungarian documented case of LS associated with the G13513A mtDNA mutation in a 5-year-old girl. Psychomotor delay was noted at the age of 1 year, unaided walking developed at 1.5 months, bilateral ptosis at 21 months, ataxia and intention tremor at 3 years of age. Elevated blood and CSF lactate, multiple lesions in the cerebellum, brain stem, cauda equina, internal capsule and thalamus pointed to LS. Progressive deterioration from age 3 years on lead to death at age 3.5 years due to aspiration. Mutation analysis from blood showed a 60% heteroplasmy of the G13513A mutation.

No mutation was detected in blood from the mother. In muscle tissue, other respiratory chain activities were normal. Functional analysis carried out at the VUB revealed a 60% heteroplasmy of the G13513A mutation.

P13.23 Leigh Syndrome with mild neonatal Complex IV deficiency

S. Seneca1, S. Van Campenhout1, J. Smet, R. Van Coster1, L. Durr1, U. Ullmann1, W. Lissens1, S. Van Dooren2, L. De Meirleir1, 1VUB Brussels, CRMG, Brussels, Belgium, 2Vrije Universiteit Brussel (VUB), Brussels, Belgium, 3Ghent University Hospital, Division of Pediatric Neurology and Metabolism, Ghent, Belgium, 4ZNA Koningin Paola Ziekenhuis, Department of Neurology, Antwerp, Belgium, 5Institut de Pathologie et de Génétique, Gosselies, Belgium, 6VU Brussels, Department of Child Neurology, Brussels, Belgium.

Isolated complex IV deficiency is a frequent cause of respiratory chain impairment and mitochondrial disease. Onset, nature and severity of the clinical presentation or the genotype of these patients are heterogeneous.

Here, we report clinical, biochemical and genetic data of a male infant with pathogenetic mutations in COX15. The patient was born as the 2nd child to healthy, not related parents and has an healthy brother. He was hypotonic and presented with feeding difficulties, failure to thrive, psychomotor retardation, lactic acidosis and cardiomyopathy. His MRI was suggestive for Leigh Disease. The cardiomyopathy progressed rapidly and the patient died of heart failure at five months of age.

Mitochondrial phosphorylase (MPHOSPH) enzyme activities were measured using spectrophotometric analysis. Biochemical analysis of the COX activity showed a very mild decrease in fibroblasts and a normal range value in muscle tissue. Other respiratory chain activities were normal. Functional integrity of the five complexes was evaluated using blue native polyacryl-
amide gel electrophoresis followed by in-gel activity staining in muscle tissue, and showed a decreased amount of fully assembled CI, CII, CIII and CIV, and the presence of subassembled products of CIV. Sequencing analysis of the coding exons of the COX15 gene revealed that the patient is compound heterozygous p.Ser151X/p.Pro302Leu. Although the number of reported COX15 mutant patients is limited to four, the p.Ser151X mutation was previously seen in two unrelated families with a predominant clinical presentation of cardiomyopathy. This mutation might represent a hot spot location in the COX15 gene.

P13.24 Recurrent LMNA mutation in patients with familial partial lipodystrophy Dunnigan-type

D. Mitter1, C. Gläser1, K. Muehle1, J. Forramm1, R. Stock1, M. Fasthauer1, K. Hoffmann1;
1Institut für Humangenetik, Universitätshilsklinikum, Leipzig, Germany, 2Institut für Humangenetik, Universitätshilsklinikum, Halle, Germany, 3Department Innere Medizin, Universitätshilsklinikum, Leipzig, Germany.

Familial partial lipodystrophy (FPLD) Dunnigan type is an autosomal dominant disorder with abnormal distribution of adipose tissue. After puberty, patients show excess fat on their face, neck, back, and absence of subcutaneous fat of the extremities, trunk and gluteal region resulting in a muscular appearance. Metabolic abnormalities include insulin-resistant diabetes mellitus, abnormal serum lipoproteins, and hypertension. FPLD is a heterogeneous disorder with mutations in LMNA and other genes including PPAR, AGPAT2, and PLIN1. We compared clinical and molecular findings in 15 patients presenting with FPLD. Sequencing of LMNA identified a heterozygous missense mutation in exon 8 (p.R482Q) in 5 female patients from 3 families. All 5 carriers of p.R482Q show a characteristic muscular habitus with abnormal fat distribution. Of note, 3 of 5 patients complained about muscle pain, which seems to be an additional characteristic feature. 3/5 patients had mild elevated HbA1c (mean 6.2 %). One patient only required insulin therapy since the age of 47 years. Patients showed dyslipoproteinaemia and hypertyrigeridemia (3/5), elevated cholesterol (4/5), low HDL (3/5), and elevated LDL (3/5). Additional features included hypertension (4/5), hyperuricemia (2/5). None of the p.R482Q carriers but 9/10 of the other patients without LMNA mutations had pancreatitis. The overlap of metabolic features in FPLD and metabolic syndrome and the overrepresentation of female patients raise the possibility of significant under diagnosis of FPLD among patients with the reported metabolic changes. Especially men with a muscular habitus and less prominent metabolic changes may be suspected to have metabolic syndrome instead of FPLD.

P13.25 Is histidinemia always a “non-disease”? and why truncating mutations in the HAL gene appear so rare?

A. Pitol1, C. Redin2, F. Feiller2, L. Fairen1, M. Alice1, O. Chris1, J. Mandel1;
1IGMIC, Strasbourg, France, 2Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Médecine Infantile I, CHU Broussais Enfants, Vaujours en Normandie, France, 3Centre de Référence des Maladies Rares du Bébé, Centre de Biochimie Métabolique, Hôpital Necker-Enfants Malades, Paris, France.

Histidinemia is an autosomal recessive defect with an incidence of 1/12000-20000, due to a deficient activity of histidine-ammonia-lyase (HAL gene). Initial studies in the 1970s suggested that it might be associated to intellectual deficiency, epilepsy, autism or ataxia. Later assessment of cases identified through neonatal screening, who did not suffer from developmental delay or ID, led to consider histidinemia as a non-disease. A recent study has suggested that halinemia could be a risk factor for autism (Miyachi et al. 2009). Because of this lack of established clinical impact, interest in this trait has subsided and a single mutation study in the HAL gene revealed only 4 different missense mutations in a minority of tested cases ascertained through neonatal screening. Following the identification of histidinemia in a girl with developmental delay and ataxia, we initiated a mutation study. Preliminary results on 3 patients with ID revealed 5 different missense mutations, and one splice site mutation. In another case with no reported neurological phenotype, another homozygous missense variant was found, not predicted pathogenic by SIFT or Polyphen2. Up to now, truncating mutations appear underrepresented (one detected compared to 10 different missenses). The spontaneous histidinemic mouse mutant (with no obvious neurologic phenotype) is also due to a missense mutation. One may wonder whether hypothetically histidinemia depends on the level of residual activity, and whether the total loss of function may be lethal or very severe. We are looking for collaborations to extend this study to other cases with or without neurological involvement.

P13.26 GI microbiota and epigenetic markers in metabolic syndrome and caloric restriction

A. G. Hasberger1, M. Remely1, E. Aumüller2, V. Con, B. Rüppel1;
1Universität, Vienna, Vienna, Austria, 2Université de Nancy, France.

Microbial diversity, abundance and metabolic activities contribute to a highly individual GI tract microbiota. The metabolic syndrome is one condition, where host genetic factors, microbiota composition and microbiota-directed regulation of gene expressions combined contribute to pathogenesis. Intestinal symbiosis is maintained via the signaling activities of short chain fatty acids (SCFAs), bacterial LPS mediated immune reactions, but also via epigenetic mechanisms, e.g. causing a hyporesponsiveness of toll-like receptors (TLRs) towards the symbiotic and commensal constituents of the microbiota. We analyzed changes in microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetic (n = 25) volunteers under caloric restriction in comparison to lean (n = 18) and obese (n = 8) healthy controls. The abundance of bacteria and bacterial subgroups we measured in fecal samples with quantitative PCR (qPCR) of 1.65 RNA coding regions. Lactobacilli and Clostridium cluster XIVa differed significantly in type 2 diabetes compared to lean controls before intervention and after weight loss. Obese individuals had a higher Firmicutes to Bacteroidetes ratio than lean controls. In type 2 diabetes with weight loss the ratio of Firmicutes to Bacteroidetes increased throughout the study period. In addition to changes in the microbiota composition, we also report that epigenetic mechanisms regulate gene promoters with relevance to inflammation, antioxidation and DNA-repair in type 2 diabetes and that diet and caloric restriction have epigenetic regulatory effects.

P13.27 High endocannabinoid levels are genetically determined and are associated with obese phenotype

A. Prossamoratti1, F. Fanelli2, E. Marasco2, G. Fazio1, I. Bellioume3, V. Di Lallo1, M. Mezzullo3, A. Aquilano1, F. Carugatti1, I. Pugafott3, V. Mantovani2, O. S. Glotov3, K. Miehle2, J. Porrmann2, F. Stock1;
1Ott’s Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russian Federation, 2Genetics of Complex Diseases Research Center, 3Department of Applied Biomedical Research (CRBA), S.Orsola-Malpighi Hospital, Bologna, Italy, 4Unit of Endocrinology, S.Orsola-Malpighi Hospital, Bologna, Italy, 5Department of Experimental Pathology, Bologna University, Bologna, Italy.

The endocannabinoid system (ECS) is involved in energy homeostasis and food intake. It was suggested that ECS hyperactivation may contribute to obesity development, however conflicting data are reported. Aim of this study was to investigate the association of variants in the ECS receptor (CNR1) and degrading enzyme (fatty acid amide hydrolase, FAAH) genes with the obese phenotype and the plasma levels of ECS mediators. 736 randomly selected subjects were submitted to SNPs genotyping and measurement of EC plasma levels. Seven SNPs in CNR1 region (rs12720071, rs806368, rs806370, rs1049353, rs806381, rs6454674, rs10485170) and 7 SNPs in CNR2 region (rs234420) were genotyped by MassARRAY platform. Circulating ECs, AEA, 2-AG, PEA and OEA were measured by LC-MS/MS method validated according to FDA’s guidance. Genotypes were compared to EC levels and to body mass index (BMI; kg/m²), waist circumference and waist-to-hip ratio. EC circulating levels were significantly higher in overweight and obese (BMI>25,0) compared to normal weight subjects (AEA, PEA, OEA p=0.0001; 2AG p=0.008). FAAH 385A allele carriers showed significantly increased EC circulating levels were significantly higher in overweight and obese (AEA, PEA, OEA p=0.0001; 2AG p=0.008). FAAH 385A allele carriers showed significantly increased EC levels, particularly OEA (p=8x10-11) and PEA (p=5x10-4), but they showed no significant association to obesity indexes. Coexistence of FAAH-predisposing genotype and increased EC levels also did not correlate with obesity. None of CNR1 SNPs showed association with obesity indexes, nor with EC increased levels. In conclusion, our data show that the FAAH 385A allele carries a direct effect on EC elevated plasma levels, and that the detected hypometabolism of ECS may be a novel biomarker of obesity.

P13.28 Effectiveness of metformin treatment for obesity and metabolic syndrome in children and adolescents depends on TCF7L2 genotype

O. S. Glotov1,2, I. A. Mackirova1, M. A. Gilevova1, I. V. Pugachanova1, T. E. Iatkachenko1, N. P. Shabalov1, V. S. Baranov2;
1Ott’s Institute of Obstetrics and Gynecology RAMS, Saint-Petersburg, Russian Federation, 2Saint-Petersburg State University, Saint-Petersburg, Russian Federation, 3BioGen Company Limited, Saint-Petersburg, Russian Federation, 4Mechnikov North-Western State Medical University, Saint-Petersburg, Russian Federation, 5SM. Kirov Military Medical Academy, Saint-Petersburg, Russian Federation.

Despite a large body of research, currently there is no common strategy for drug therapy of obesity and metabolic syndrome (MS) in children and adolescents. At present, Metformin is the drug of choice for treating children with MS over 8 years old. However, a number of patients remain refractory.
to Metformin. We investigated the contribution of TCF7L2 IVS3 C>T polymorphism to response to Metformin in children with MS. 38 of 200 children with obesity in the age of 10 - 17 enrolled in this study were treated with Metformin. Patients were diagnosed with MS in accordance with guidelines developed by International Diabetes Federation in 2007. Among 38 of 200 children treated with Metformin, one (2.6%) was diagnosed with MS, and in another 37 abdominal-type obesity with concurrent abnormalities was manifested. Abnormalities included impaired glucose tolerance (in 35.1% of children), hyperinsulinemia (in 32.4%), atherogenic dyslipidemia (in 45.9%), hypertension (in 10.8%). 20 children taking Metformin were genotyped as C/C, 13 as C/T, and 5 as T/T. Postprandial glucose level in children with C/T and T/T genotypes was higher than in children with C/C genotype. During the treatment, the most pronounced improvements were observed for children with C/T genotype, namely, reduction in body weight (p<0.001), body mass index (p<0.001), waist circumference (p<0.001), fasting plasma (p=0.017) and postprandial (p=0.003) glucose levels, uric acid level (p=0.05), atherogenic index (p=0.029). Our data suggest that Metformin treatment efficiently promotes body weight reduction and normalization of carbohydrate metabolism in children, suffering from obesity and MS, with TCF7L2 C>T genotype.

P13.29
New probable pathogenic mutations in 22 tRNA mitochondrial genes in Iranian cytopenia patients
A. Arastehkani1, F. Keshevari2, V. Ghodsinejad-Bahalhouri3, M. Dehghan Manshadi4, G. Aryani5, M. Ashrafii, M. Houshamdi6
1Department of Biology, Science and Research branch, Islamic Azad University, Karadust, Islamic Republic of Iran, 2Special Medical Center, Dept. of Medical Genetics, Tehran, Islamic Republic of Iran, 3Department of Biology, Sanandaj branch, Islamic Azad University, Kurdistan, Islamic Republic of Iran, 4Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran, 5National Institute of Genetic Engineering & Biotechnology, Dept. of Medical Genetics, Tehran, Islamic Republic of Iran.

Mitochondrial tRNA (MTT) gene mutations are an important cause of human morbidity and are associated with a wide range of pathology, from isolated organ-specific diseases such as myopathy, hearing loss, MELAS, MERRF, CPEO, Leigh syndrome through to multisystem disorders with encephalopathy. The aim of this study was to detect any type of mutations, polymorphisms and possible pathogenic variations in blood samples of Iranian cytopenia patients. We describe the result of extensive sequence analysis for tRNA genes in 18 patients selected according to several criteria. The result included: reported mutation as T554C3 in tRNA25, A834G in tRNA3, G12236A in tRNA4 and Several known polymorphism such as A12308G were observed. This findings are beside to novel transitions, m.15930G>A in tRNA3, m.5790C>A in tRNA4 and m.667G>T in tRNA4, in different patients who were negative for reported mtDNA mutations. These nucleotide were moderated and they were absent in 100% supporting its pathogenicity. So further investigation includes familial study, functional assay and nuclear genes analyses are needed.

P13.30
Large-scale deletions on 22q13.33 and 12q24.33 detected in patients with mitochondrial disorders
M. Tesarova1, A. Vondrackova1, K. Vesela1, K. Vinsova1, T.Honacki2, V. Stranecky1, H. Hanzlikova1, J. Zeman1
1Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 2, Czech Republic, 2Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague 2, Czech Republic.

Mitochondrial disorders (MD) represent a group of clinically and genetically heterogeneous diseases whose molecular-genetic diagnosis is challenging. The standard diagnostic approach is direct DNA sequencing of candidate genes. Nevertheless, this technique does not enable to detect large heterozygous deletions. SNP arrays with high marker density may be utilized. The aim of this study is to analyze large-scale deletions in group of 15 patients with MD of unknown etiology. Genome-Wide Human SNP 6.0 Array allowing detection of deletions larger than 700 bp was successfully used to determine genetic diagnosis in 3 out of 15 patients. Supported by research project PRVOUK of the Charles University in Prague-First Faculty of Medicine (program MOL-MED) and grant IGA NT 11865/5-2010.

P13.31
Molecular modifications and bioenergetics in relation to phenotype of MILS-NARP syndrome
D. Lin,1, H. L. Liu,1, N. C. Chiu,2, C. S. Ho1
1Dept. of Pediatric Genetics, Mackay Memorial Hospital, Taipei, Taiwan, 2Chemical Engineering and Biotechnology, National Taiwan University of Technology, Taipei, Taiwan.

Objectives: Mitochondrial DNA mutations at m.8993T>G of the mtDNA AT-Pase 6 gene typically cause the Maternal Inherited Leigh Syndrome (MILS) and neurogenic muscle weakness, ataxia, retinitis pigmentosa (NARP). To elucidate the molecular-clinical correlations in MILS-NARP syndrome, the phenotype, biochemical parameters, mtDNA mutant loads, and bioenergetics were investigated in three generations of a pedigree harboring m.8993T>G mutation.

Methods: Detailed neurological and ophthalmological phenotypes, biochemical and metabolic status, mutant load, cellular bioenergetic and molecular modification were investigated in members of three generations of pedigree with MILS-NARP syndrome.

Results: The ATP6 mutation was ubiquitously distributed in various tissues of the affected individuals. A remarkable high mutation load was demonstrated in individuals with MILS and Retinitis Pigmentosa (RP), respectively. While a mutant load ranging from 5% to 97% was noted in those individuals with mild or absent clinical symptoms. Interestingly, the individual affected with MILS showed remarkable elevation in the levels of lactate, pyruvate, and alanine, and deficiency of carnitine, impaired cellular bioenergetics, and molecular modification with glycolysis. While the fibroblasts from RP showed molecular modification through the nuclear respiratory chain complex genes.

Conclusion: The correlation between the mutant load in tissues and the severity of phenotype in MILS-NARP is very complex, and the genetic background may play an important role in modulating the bioenergetics, biochemical defects and clinical outcome. Our results emphasize the complexity of mechanism contributing in the phenotypic expression of the m.8993T>G mutation and the need for caution in predictive counseling in such patients.

P13.32
A constant and similar assembly defect of mitochondrial respiratory chain complex I allows rapid identification of NDUF4 mutations in patients with Leigh syndrome
A. Lebre1,2, M. Jambou1, M. Rio2, C. Boile-Feysson1, F. De Lonlay1,2, C. Barnerias3, L. Deguerriue4, C. Bonnemains5, C. Guillermuet6, J. Steffann1, A. Munnich1,2,3, J. Bonnefont1,2,3

Isolated complex I deficiency is a frequent cause of respiratory chain defects in childhood. In this study, we report our systematic approach with Blue native PAGE (BN-PAGE) to study mitochondrial respiratory chain assembly in skin fibroblasts from patients with Leigh syndrome and CI deficiency. We describe five new NDUF4 patients with a similar and constant abnormal BN-PAGE profile and present a meta-analysis of the literature. All NDUF4 mutations that have been tested with BN-PAGE result in a constant and similar abnormal assembly profile with a complete loss of the fully assembled complex I usually due to a truncated protein and the loss of its canonical αCAMP dependent protein kinase phosphorylation consensus site. We also report the association of abnormal brain MRI images with this characteristic BN-PAGE profile as the hallmarks of NDUF4 mutations and the first founder NDUF4 mutations in the North-African population.

P13.33
Mutations in the GCK gene are the most common cause of MODY-Diabetes in a cohort of over 600 patients in Germany
P. J. Lautenen-Forsblom, S. Bingemann, C. Bayerl, D. Strohmayer, C. Nevinny-Stickel-Hinzeper;
P13.34

Clinical features in 17 patients with Mucopolysaccharidosis
B. G. Nur1, A. Toylu2, O. A. Clark3
1Akdeniz University School of Medicine, Department of Pediatric Genetics, Antalya, Turkey, 2Akdeniz University School of Medicine, Department of Medical Genetics, Antalya, Turkey.

The mucopolysaccharidoses (MPS) are a large group of inherited lysosomal storage disorders. Each mucopolysaccharidosis subtype is caused by a deficiency in the activity of a single specific lysosomal enzyme which requires for glycosaminoglycan degradation. The deficiency of these enzyme results in the storage of the glycosaminoglycans in several tissues.

The clinical presentation and the natural course of the patients with MPS may be different among subtypes which are influenced by the presence of the genetic background including functional polymorphisms and environmental problems. The general features are coarse facies, corneal clouding, developmental delay, mental retardation, skeletal and joint abnormalities, and cardiac abnormalities.

We report frequency of the clinical symptoms of the MPS patients of our pediatric genetic clinic. Between January 1995 and December 2011, aged 2-10 years, 47 patients (24 children, 23 adults) were examined. The MPS I, MPS II, MPS IV, and MPS I were the most frequent subtypes amongst the MPS patients, respectively. The patients were most frequently presenting coarse facies, skeletal abnormalities, mental retardation and hepatomegaly. Although MPS is a rare disorder, it is important to consider the MPS in the differential diagnosis of patients presenting coarse facies, skeletal abnormalities, neurodevelopmental disabilities and hepatomegaly. We could not forget the importance of the screening for oligosaccharidases in children with neurodevelopmental delay with mild phenotypic symptoms. Early diagnosis and effective medical management in some types can improve patient outcomes and may reduce the disease burden on patients and caregivers. Furthermore, it allows genetic counseling.

P13.35

Cystic fibrosis mutation detection - difficulties and traps
L. Pop1, I. Cucur2, Z. Popa3, L. Tamasa, I. Popa1, A. Anghel2
1Pediatric II Department, Timisoara, Romania, 2Biochemistry Department, Timisoara, Romania.

Background: A characteristic aspect for Romania is the CF mutations heterogeneity which leads to a reduced percentage of genotype identification. Objective: Assessment of a mixed panel efficacy for CF mutation detection in Romanian patients. Methods: We evaluated retrospectively 40 patients (pts) with typical CF, registered in the National CF Center Timisoara. The genetic tests were performed using a mixed panel - (29 mutations) - ARM and another kit for 38 mutations-PCR. 18 mutations were common to the two kits; the total number of identifiable alleles was 49. Results: The first panel identified in order of frequency: ΔF508, G542X, N1303K, 621 + 1 G>T, I148T, representing 17.2% from panel 1. We found the following patients genotypes: 2 pts homozygous for F508del, 10 pts with F508del/ x, 5 pts F508del/G542X, 1 patient F508del/ N1303K. In 3 patients with compound genotype non-F508del, the other allele could not be identified, especially in heterozygous genetic testing form in parents have ruled out the possibility of homozygous non-F508del genotype. In 13 patients (32.5%) we could not fully identify the genotype, thus they were further tested with panel 2. Conclusions: Superposition of kits with identified mutations in CF Romanian patients is low, although kits contain the most frequent mutations used in Europe. Genetic heterogeneity in Romania limits significantly the possibility of detection of both alleles, the diagnosis rate of heterozygote being reduced. The question of using additional kits or methods like GF gene sequencing raises the issue of a high cost.
Here we report 3 Iranian affected cases that were confirmed by filipin staining and mutation analysis. We detected mutations in NPC1 gene in all of them, in two patients the mutations were novel and have not been reported before. Two of the patients are under treatment with Miglustat and now their general conditions are stable especially with amelioration of visceromegaly.

P13.38
Evaluation of the innate immunity in mucopolysaccharidoses: analysis of the functional activity of phagocytes
1Translationals Research Laboratory Premier, C. A. Hurt, Instituto de Medicina Integral Premier, Fernando Egas yuri (IMIP), Belo Horizonte, Brazil; 2UMS - Instituto da Criança da FMUSP São Paulo, Brazil, 3Genetics Unit, Instituto da Criança da FMUSP, São Paulo, Brazil, 4LIM3 - Hospital das Clínicas da FMUSP, São Paulo, Brazil, 5Instituto da Criança da FMUSP, São Paulo, Brazil.

Mucopolysaccharidoses (MPS) are a group of inherited metabolic disorders characterized by the deficient activity of catalytic enzymes in the lysosomes and its consequent abnormal accumulation of deposits of glycosaminoglycans (GAGs). The lysosomal dysfunction caused by this irregular storage is responsible for the clinical manifestations seen in MPS. Once the lysosome is also important for normal functioning of the immune system, playing a key role in the expression of cellular membrane receptors, the presentation of antigens, the secretion of cytokines and phagocytosis, we presume that these processes may be impaired in patients with MPS. The presence of recurrent respiratory infections in these individuals may be a clinical clue of the immune dysregulation in MPS. We studied the leukocyte oxidative burst activity and chemotactic function of neutrophil granulocytes and phagocytic activity and expression of mieloperoxidase in phagocytes by flow cytometric immunoassay of 15 patients with MPS types I, II, IV, and VI. All patients demonstrated normal phagocytic activity and normal chemotactic function of neutrophilic granulocytes. Normal levels of reactive oxygen metabolites after the stimulation with PMA and opsonized Escherichia coli and normal expression of myeloperoxidase by granulocyte and monocyte. In our in vitro tests using widely available commercial kits, we were not able to find either quantitative deficiency or functional defects of granulocytes and monocytes. This is the first study in the literature of evaluation of the innate immunity in patients with MPS.

P13.39
The mutant phenylalaninhydroxylase gene is more often found out in alcoholics
S. Khalchitsky*, A. Shaposhnikov1, J. Nikiforova2, I. Bulycheva3
1Laboratory of Medical Genetics DPISH LD, Saint-Petersburg, Russian Federation, 2Interdistrict nacrolological clinic, Saint-Petersburg, Russian Federation.

It has been investigated 156 patients with alcoholism of both sexes at the age of 25-60 years on presence of mutation in the PAH gene. By PCR method the R408W mutation is established in 11 out of 156 alcoholic patients (7.05%) and 10 out of 417 volunteers of the same age (2.39%). Metabolism of Phe appeared to be impaired in chronic alcoholism as shown by an increase in concentration of Phe in blood serum as well as by elevation urinary excretion of Phe and phenylpyruvic acid. The most distinct impairment in the metabolism was observed in alcohol withdrawal syndrome (delirium tremens). This study aimed to investigate whether the mayor (about 60%) R408W mutation in phenylalanine hydroxylase (PAH) gene influences chronic alcoholism and delirium tremens cases. The data obtained indicate that decreased by R408W mutation activity of PAH and development of alcoholism and especially delirium tremens are impaired. So, genetic rearrangements in PAH are the contributing factor to development of alcoholism.

P13.41
Genome-wide association study identified MEP1A in relation to insulin metabolism in Polycystic Ovary Syndrome
U. Lam*, E. Leurchtain1, N. Schweighofer1, D. Trummer1, G. Genser2, E. Katharina2, A. Grosul-Strele1, T. Pieber2, B. Obermayr-Pietsch1
1Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria, 2IGI Biostatistical Consulting, Graz, Austria, 3Center for Medical Research, Medical University of Graz, Graz, Austria.

There is a clear association between polycystic ovary syndrome (PCOS) and carbohydrate metabolism which might be based on disorders of glucose metabolism. Accumulating evidence suggests that insulin resistance and hyperinsulinaemia affect 65-70% of PCOS patients. Vitamin D has been shown to influence both insulin resistance and other symptoms of PCOS. In a genome-wide association study (GWAS) of cardiovascular patients, we found MEP1A as a potential candidate gene in PCOS. MEP1A variants were replicated in 586 PCOS women and 105 controls. Metabolic, hormonal, functional and anthropometric parameters were determined. In cell culture experiments, human hepatocellular carcinoma (HeP2) cells were treated with insulin, vitamin in D and parathyroid hormone (PTH) for the expression of MEP1A. In the replication cohort, MEP1A variants were not associated with the incidence of PCOS per se. However, the SNPs showed a significant association with insulin metabolism in overweight/obese PCOS. MEP1A GG-carriers showed a significantly increased HOMA index (p = 0.005), elevated fasting insulin (p = 0.006), and stimulated insulin after 30min (p = 0.005). 1h (p = 0.008) and 2h (p = 0.009). HepG2 cell experiments showed a relation of MEP1A to the expression of bone genes and vitamin D. MEP1A is a possible target for disease modifying in PCOS and potential new therapeutic options. It might contribute to the involvement of vitamin D deficiency in abnormalities of glucose metabolism and insulin sensitivity. Whether MEP1A is a potential risk factor for PCOS and how it is associated with gene function will be further investigated.

P13.42
Homozygous 669-698del in exon 12 of HMBS gene in a Spanish patient with acute intermittent porphyria
1Hospital de la Ribera, Atzena (Valencia), Spain.

Acute intermittent porphyrria (AIP, MIM # 176000) is an autosomal dominant disease caused by a partial deficiency of hydroxymethylbilane synthase (HMBS; EC 4.3.4.18). It is characterized by acute attacks of neurovisceral dysfunction, often precipitated by several factors. Early detection of AIP carriers is very important for the prevention of acute attacks. The diagnosis of AIP is based on clinical symptoms and increased urinary porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG), in combination with the HMBS activity assay. We report a case of a female patient of 35 years old who came from a southeasteren region of Spain, with abdominal pain, neurovisceral symptoms, hypotenraemia and tachycardia. Neurological cephalax showed axonal polyneuropathy with focal atrophy with normal CT. In the past, she had two episodes of muscular weakness of limbs. Abdominal examination did not reveal any abnormality. There was no sensory impairment. Laboratory investigations showed the TLC of 6,300/cmm with a DLC of P-52%, L-33%, M-13% and E-2%; hemoglobin was 7.9 g/dL. Urine was strongly positive for ALA (172 mg/24h) and PBG (5.3 mg/24h). Genomic DNA was isolated from PBL, and all 15 exons and flanking regions of the HMBS gene were amplified by PCR and sequenced in an ABI PRISM 3100 Genetic Analyzer. Patient was carrier of a homozygous 30 pb deletion in exon 12 of HMBS gene. This mutation, 669-698del, causes a mutant protein that lacks of 10 amino acids (p.Glu23-Leu23) and has been described previously in Spanish AIP of southern ancestral origin with a possible founder effect.

P13.43
Novel variants in the CYP51 gene found in Caucasian mothers and neonates with potential to contribute to spontaneous preterm birth
M. Lewinska1, D. Izman2, J. C. Murray3
1Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, Uniuer, Ljubljana, Slovenia, 2Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America, Iowa City, IA, United States.

Cholesterol is an essential component of cell membranes, a precursor of steroid hormones, oxysterols, and bile acids. It is involved in many signaling pathways, including the son of sevenless (S受理) pathway. Sterol availability is an important role in maintaining pregnancy, and a large amount of cholesterol is required during oogenesis and embryogenesis. Defects in cholesterol synthesis or intracellular transport result in serious malformations and mutations in some cholesterol synthesis genes are associated with preterm delivery (PTD). Here we investigated for the first time variants in fetal and maternal lano genes and especially delirium tremens are impaired. So, genetic rearrangements in PAH are the contributing factor to development of alcoholism.

CYP51 is a key enzyme in cholesterol synthesis, and we examined their contribution to PTD. Ten amplicons covering exons, untranslated regions (UTR) and intron-exon borders have been investigated in 188 Caucasian women who had a spontaneous preterm delivery and 188 unrelated preterm infants born at a gestational age <37 weeks. The study included neonates from singleton pregnancies, 94 of each gender. We identified 22 polymorphisms, where 11 represent rare, novel variants. Three novel variants are heterozygous missense mutations in exons 1, 3 and 4. According to PolyPhen2 the mutation in exon 3 causes a probably dama-

www.eshg.org
P13.44 Yeast, a simple and effective tool to study COQ gene mutations causing primary CoQ10 deficiency
M. Doima1, C. Santos-Ocal2, P. Nava1, F. Hildebrandt1, L. Salvetti1, E. Trevisson1
1Clinical Genetics, Department of Pediatrics, University of Padova, Padova, Italy, 2Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and CIBERER, ISCIII, Seville, Seville, Spain, 3Department of Human Genetics, University of Michigan, Ann Arbor, Ann Arbor, MI, United States.

Primary coenzyme Q10 (CoQ) deficiency is associated to different phenotypes mainly affecting SNC, skeletal muscle or kidney and it is caused by mutations in genes involved in CoQ biosynthesis. Mutations in COQ6, encoding a monooxygenase required for CoQ biosynthesis, have been reported in patients affected by early-onset steroid-resistant nephrotic syndrome (SRNS) with sensorineural deafness. We employed a yeast model to evaluate the role of different isoforms of COQ6 and to study the functional consequences of the mutated alleles on protein function. Human COQ6 encodes for at least two isoforms. In yeast there is only one COQ6 isoform and its deletion causes the loss of the ability to grow without non-fermentative carbon source (glycerol).

We proved that human isoform a but not isoform b can complement the deleted yeast. We then modeled the “human” mutations on the corresponding residues of the yeast gene that are conserved throughout evolution.

The yeast model proves to be simple and effective to validate COQ6 mutations. All alleles, except for a nonsense mutation, show some residual activity (as shown both by growth and CoQ6 content analysis). Analysis of the COQ6/DemetoxyCoQ ratio in the mutants did not detect an altered ratio (as in the case of COQ2 mutations) suggesting that the mutations affect only COQ6 catalytic activity but not the structure of the entire CoQ biosynthetic complex. Together these data show that all patients thus far identified still retain some residual endogenous CoQ biosynthesis, supporting the notion that complete lack of CoQ biosynthesis is embryonically lethal.

P13.45 Characterisation of a novel metabolic defect in proline synthesis and pathomechanism in autosomal recessive cutis laxa syndrome type 2B
T. Gardeitchik1, B. Fischer2, D. Koweniger3, M. Mohamed4, U. Kornak1, L. Nietman5, E. Morava1;
1UMC Nijmegen, Nijmegen, Netherlands, 2Max Planck Institute, Berlin, Germany.

Mutations in the Pyrroline-5-carboxylate reductase 1 (PYCR1; EC 1.5.1.2) gene have been recently discovered as the underlying etiology of patients diagnosed with autosomal recessive cutis laxa syndrome (ARCL-2B). Intriguing is this unique metabolic defect in proline synthesis, leading to a recognizable dysmorphology syndrome, appears to be a mitochondrial disorder as well, based on careful evaluation of the phenotype.

PYCR1 is a mitochondrial enzyme, catalyzing the NAD(P)H-dependent conversion of pyrroline-5-carboxylate to proline. This disease is closely linked with PSCS deficiency, caused by mutations in ALDHHA1, a gene coding for an enzyme catalyzing an earlier step in de novo proline synthesis. Both disorders are associated with progeroid features, lax joints, dysmorphic features, microcephaly, intrauterine growth retardation and developmental delay.

While patients diagnosed with PSCS deficiency have variable hyperammonemia and abnormal amino acid levels no obvious metabolic abnormalities have been described so far in PYCR1 patients. Here we report on the phenotypic and metabolomic characteristics of 5 patients with cutis laxa syndrome diagnosed with recessive PYCR1 mutations. Mitochondrial function, respiratory complex activity and oxygen consumption have been evaluated in patient cell lines and in HEK cells after knockdown of PYCR1. Proline synthesis and its metabolic consequences were studied in differentiated body fluids of patients by NMR analysis and in fibroblast cell culture media. Our results suggest that PYCR1 mutations lead to a metabolic defect altering the intracellular endogenous proline buffer changing the balance in NAD(H) concentration and mitochondrial membrane gradient, leading to early apoptosis.

P13.46 MECP2-related disorders and molecular investigation: Italian aspect
J. Dadgar1, A. Arestehkani2, A. Soudi3, D. Arastehkani4, M. Hoummand5;
1Department of Special Education, Tehran University of Iran, 2National Institute of Genetic Engineering & Biotechnology, Pazhoohesh Blvd. 17th Km Tehran-Karaj Highway, Tehran, Iran, Tehran, Islamic Republic of Iran.

MECP2-related disorders include classic Rett syndrome, variant or atypical Rett syndrome, and mild learning disabilities in females and neonatal encephalopathy and mental retardation syndromes in males. Classic Rett syndrome is a progressive neurologic disorder in girls characterized by normal birth and apparently normal psychomotor development during the first 1 to 2 years of life, followed by a period of developmental stagnation, resulting in severe psychomotor delay. The girl then enter a short period of developmental stagnation followed by rapid regression in language and motor skills. Females with classic Rett syndrome typically survive into adulthood, but the incidence of sudden, unexplained death is significantly higher than in controls of similar age.

The study was supported by the National Science Centre project no. 1154/B/2014/13. The rest of our cases showed no alteration related to disease.

Mutations in the SC02 gene (2q13) lead to severe COX deficiency observed mainly in muscles, heart and brain. SC02 is one of the ancillary proteins necessary for correct assembly and functioning of cytochrome c oxidase (COX). It is involved in the transport and incorporation of the copper ions to the CuA enzymatic site on COXII subunit. A common substitution, g.1541G>A (Arg 168 Term), the other two patients showed C>T (Gln 406 Term) and each of these alterations C>T (Arg 106 Trp), C>T (Arg 270 Term), G>A (Val 288 Met) were found in 1 patient, respectively. Investigation about the new alterations which have been seen in 12 patients without any reported mutations was under reviewed. The rest of our cases showed no alteration related to disease.

P13.48 Frequency distribution of NQO1*2 and SULT1A1*2 alleles in Polish population
O. Zazerska1, E. Ciemniejevska1, M. Skrzypczak-Zielinska1, A. Mikostacki1, B. Tamoscius1, R. Slomski2;
1Centre Medical, Poznan, Poland, 2Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan, Poland, 3Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland, 4Department of Anaesthesiology and Intensive Care Medicine, Poznan, Poland.

The SULT1A1 gene encodes a phenol sulfotransferase, which belongs to the enzyme superfamily involved in the sulfonation of xenobiotics, hormones and drugs. Quinone oxidoreductase encoded by NQO1 gene is a detoxification enzyme that catalyses the reduction of a wide range of substrates. Both enzymes participate in the biotransformation pathway of popular anaesthetic drug - propofol, catalyzing the secondary step of its metabolism. Changes in this metabolism step, related to variations in SULT1A1 and NQO1 genes may lead to adverse effects after propofol use. Large interindividual variability in these enzymes activity has been shown and several polymorphisms in genes coding these enzymes have been described. Most of this variability...
is related to the polymorphism P187T in NQO1 gene and R213H amino acid substitution in SULT1A1 gene, which are responsible for decreased enzyme activity. The aim of our study was to determine the frequency distribution of these two alleles SULT1A1*2, NQO1*2 in Polish patients under propofol anaesthesia. We analyzed 232 alleles using pyrosequencing as a rapid genotyping method. The frequency of the SULT1A1*2 allele was 19.3% and NQO1*2 was 14.2%. Disturbed enzyme activity in biotransformation pathway may lead to increased risk of propofol toxicity. The current analysis is an important initial step in bringing these polymorphisms into an optimal planning of anaesthesia based on the modified pharmacodynamic response of propofol.

P13.49
ATP7B expression measurement improves detection rate of newly diagnosed patients with Wilson Disease
A. Stafleu1, E. Pfitzer1, W. Witting1, T. Krech2, M. Brotz1, B. Schlegelberger1, U. Baumann1, N. von Neuhoff1
1Hannover Medical School, Institute of Cell and Molecular Pathology, Hannover, Germany; 2Hannover Medical School, Paediatric Gastroenterology and Hepatology, Hannover, Germany; 3Hannover Medical School, Institute of Pathology, Hannover, Germany.

Background: Wilson Disease (WD) is an autosomal recessive disorder leading to toxic accumulation of copper mainly in liver tissue. Currently, more than 370 mutations are known in the disease-related ATP7B gene (OMIM#606682). However, standard investigations to diagnose WD occasionally fail, e.g., disease-causing ATP7B-mutations so far have remained undetected by direct sequencing.

We therefore aimed to evaluate quantification of ATP7B mRNA as a new tool to improve WD diagnostics.

Methods: Total RNA was extracted from snap-frozen and from FFPE liver tissue. After cDNA synthesis, real-time PCR was performed using HybProbes and TATA Box-binding protein (TBP) as reference gene. Expression determination was done by calibrator-normalized relative quantification with efficiency correction. ATP7B-expression of 12 snap-frozen liver specimens from WD-patients was compared to that of 22 patients with hepatocellular carcinoma (HCC), 9 patients with biliary atresia, 8 clinically healthy donors and 12 patients with other liver diseases. Furthermore, ATP7B-expression in FFPE liver tissue from 8 WD-patients was compared to that of 4 hepatitis B and 5 biliary atresia patients.

Results: ATP7B mRNA expression in snap-frozen liver tissue from WD-patients was significantly lower (median 1.7) than in the control groups (median: HCC 5.3; biliary atresia 4.9; healthy 7.4; other 6.5). Comparable results were found in FFPE tissue (median: WD 1.08; hepatitis B 3.50; biliary atresia 2.65).

Conclusion: Our findings suggest that quantification of ATP7B mRNA provides a novel tool for the diagnosis of WD in patients where no ATP7B mutation is found. Prospective studies in larger patient cohorts are necessary to validate our results for clinical practice.

P14.04
Therapy for genetic disorders

P14.04.01
Effect and tolerability of agalsidase alfa in patients with Fabry disease who were treatment-naive or formerly treated with agalsidase beta
1Hannover Medical School, Institute of Cell and Molecular Pathology, Hannover, Germany; 2Hannover Medical School, Paediatric Gastroenterology and Hepatology, Hannover, Germany; 3Hannover Medical School, Institute of Pathology, Hannover, Germany.

Background: Wilson Disease (WD) is an autosomal recessive disorder characterized by recurrent attacks of fever and serositis. Although colchicine is the standard therapy for preventing attacks and suppressing inflammation, 5%-10% of compliant patients are colchicine-resistant. We report the effect of CYP2D6 in FMF with colchicine unresponsiveness. The genetic polymorphism results in different drug-related); 1 switch patient died (not drug-related).

Conclusion: After 12-months agalα, no statistically significant change in eGFR (naïve/ switch) or eGFR (naïve) occurred. Plasma showed an eGFR drop of -3.2 ml/min/1.73m2. Plasma and creatinine-normalized urine Gb3 (naïve/switch) and lys-Gb3 (naïve) dropped significantly. Agalα was generally well tolerated.

P14.05
Polyorphism in gene encoding drugs and xenobiotic metabolizing enzyme CYP2D6 as a risk factor for drug response in colchicine unresponsive FMF patients
S. Alt1, F. Ozer1, S. Gur1, A. Uluadag1, C. Silian1, E. Silian1, O. Ozdemir1
1Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey; 2Department of Medical Genetics, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey; 3Department of Internal Medicine, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey; 4Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey.

Familial Mediterranean Fever (FMF) is a recessively inherited autoinflammatory disorder characterized by recurrent attacks of fever and serositis. Although colchicine is the standard therapy for preventing attacks and suppressing inflammation, 5%-10% of compliant patients are colchicine-resistant. We report the effect of CYP2D6 in FMF with colchicine unresponsiveness. The genetic polymorphism results in different drug response in various tissues of the IKBKAPlox/loxflo^mice. Here we show that the IKBKAPlox/loxflo^mice have great potential for use as a model to evaluate the effects of PS and other potential therapeutic agents on the mRNA and protein levels of IKBKAP in cell lines generated from FD patients. We demonstrated that PS treatment increased IKBKAP mRNA levels in various tissues of the IKBKAPlox/loxflo^mice. Here we show that the IKBKAPlox/loxflo^mice have great potential for use as a model to evaluate the effects of PS and other potential therapeutic agents on the mRNA and protein levels of IKBKAP. Hence, this mouse model provides a medical breakthrough in the research of FD for preliminary evaluation of drugs that may improve the clinical status of FD patients.
P14.06 The Metabotropic Glutamate Receptor Theory in Fragile X Syndrome: testing the safety and efficacy of AFQ056/Mavoglurant in adults and adolescents

T. Jaclquin1, A. Angelovi1, B. Kourmaral1, C. Colllor2, J. Lee3, F. N. Hossain1, J. Lustig1, S. Satija4, M. Brinkman5, A. Grafi6, P. von Raison1

Fragile X syndrome is the most common cause of inherited mental retardation and is associated with behavioral problems including hyperactivity, attention deficit disorder and autism. It is caused by the expansion of a CGG repeat in the FMR1 gene, leading to hypermethylation and transcriptional silencing of FMR1, and absent or reduced levels of the translational repressor FMR1 protein (FMRP). The metabotropic glutamate receptor (mGluR) theory hypothesizes that without FMRP, uncontrolled protein synthesis occurs in response to activation of synaptic mGluRs and may lead to the clinical symptoms of FXS. Randomized controlled data suggest that the mGluR5-antagonist AFQ056/Mavoglurant might improve behavioral symptoms of FXS, especially in patients with fully-methylated FMR-1 promoter regions (30 points improvement in the Aberrant Behavior Checklist-Community edition (ABC-C) vs. placebo, p<0.05).

Novartis currently conducts the largest clinical development program in FXS, testing the safety and efficacy of AFQ056/Mavoglurant. It is the first program conducted in Europe (Denmark, France, Germany, Italy, Spain, Switzerland, Sweden, UK) and across multiple languages and cultures. Adults (18-45 years) and adolescents (12-17 years) are randomized in two separate studies to up to 4 months treatment with AFQ056/Mavoglurant or placebo.

In summary, the AFQ056/Mavoglurant program is testing the mGluR5 theory in FXS and attempts to replicate the promising results seen previously. It is actively recruiting patients worldwide. Studies in smaller children and over longer treatment periods are planned.

P14.07 The mGluR5 antagonist AFQ056 does not affect methylation and transcription of the mutant FMR1 gene in vitro

E. Tabolacci1, F. Pirozzii2, B. Gomez-Mancilla1, F. Gasparini1, G. Neri1; 1Institute of Medical Genetics, Rome, Italy, 2Catholic University, Rome, Italy.

Novartis Institutes for Biomedical Research, Basel, Switzerland.

Fragile X syndrome (FXS), the leading cause of inherited mental retardation, is due to expansion and methylation of a CGG sequence in the FMR1 gene, which results in its silencing and consequent absence of FMRP protein. This absence causes loss of repression of metabotropic glutamate receptor 5 (mGluR5)-mediated pathways resulting in the behavioral and cognitive impairments associated with FXS. In a randomized, double-blind trial it was recently demonstrated a beneficial effect of AFQ056, a selective inhibitor of metabotropic glutamate receptor type 5 (mGluRs), on fully methylated FXS patients with hyperactivity and motor symptoms. FRDA patients. To determine whether AFQ056 may have secondary effects on the methylation and transcription of FMR1, here we treated three FXS lymphoblastoid cell lines and one normal control male line. A quantitative RT-PCR was performed to assess transcriptional reactivation of the FMR1 gene. To assess the methylation status of the FMR1 gene promoter it was carried out a bisulphite sequencing analysis. Both FMR1-mRNA levels and DNA methylation were unmodified with respect to untreated controls. These results demonstrate that the AFQ056 effect on fully methylated FXS patients is not due to a secondary effect on DNA methylation and consequent transcriptional activation of FMR1. Supported by FRAXA Foundation and Telethon Onlus.

P14.08 A phase II randomized placebo-controlled double-blind pilot clinical trial to test the safety and effectiveness of Ascorbic acid and Alpha-tocopherol on behavioral and learning problems in the Fragile X syndrome

I. Fernandez Carvajal1, L. Perez Castillas2, C. Quintero3, R. Calvo Medina1, R. Heredia Farfan1, L. Sanchez Salido1, E. Lima Cabello1, V. de Diego Otero1; 1IBGM-Universidad de Valladolid-ISCIII, Unidad de Genética Genética Molecular de la Enfermedad, Valladolid, Spain, 2Unidad de Gestión Clínica de Salud Mental. Hospital Carlos Haya, Málaga, Spain, 3Laboratorio de investigación. Fundación IMABIS. Hospital Carlos Haya, Málaga, Spain, 4Unidad de Gestión Clínica de Pediatria. Hospital Carlos Haya, Málaga, Spain, 5Laboratorio de investigación. Fundación IMABIS. Hospital Carlos Haya, Valladolid, Spain.

Introduction and Objectives: Fragile X Syndrome (FXS) is a neurodevelopmental disorder affecting intelligence and behaviour. The treatments available today are unable to normalize these symptoms. We demonstrated that an excess of oxidative stress is present in FXS-mouse brain and a treatment with antioxidants could reverse hallmarks of the FXS-mouse phenotype. We propose a combination of ascorbic acid and alpha-tocopherol to improve learning abilities in young male patients.

Material and Methods: Phase II randomized placebo-controlled double-blind pilot clinical trial to treat 30 selected FX male patients (15 treated patients and 15 in placebo) in two groups: A: 12 to 18 and B: 13 to 18 year olds. Mean age (SD) 11.67 (4.20) (treated subgroup: 12.13 (3.4); placebo subgroup: 11.71 (4.86)).

A questionnaire to evaluate clinical data and neuropsychological tests was performed at the beginning of the trial (T0) and at 12 weeks of placebo versus treatment (T1). The principal variable: the Wechsler Intelligence Scale for Children (WISC-R) tested by simple linear regression (p<0.05).

Results: Significant improvements in direct scores in total manipulative and total verbal subscales were observed in young patients compared to the placebo group only when they were not taking psychoactive medication.

Conclusions: Clinical trials for Fragile X Syndrome are necessary due to the absence of effective therapies and the side effects of available psychopharmacological treatments. We present our positive results about improvement in learning problems measured with the WISC-R scale after 12 weeks of treatment with a combination of two well known vitamins with a potent antioxidant capability, ascorbic acid and alpha-tocopherol.

Source of Funding: Spanish Ministry of Science and Innovation (grant number SAF2008-00486), Spanish Ministry of Health (TRA152, EC1-0-191, EC11-434), Andalusian Regional Health Ministry (grant number PI2009-0507), and Andalusian Regional Economy, Innovation and Industry Ministry (Grant numbers CTS-546, P10-CTS-07504).

P14.09 Current efforts towards population screening and therapeutic drug discovery for Friedreich Ataxia

D. Oglesbee1, C. Kroll1, O. Galasso1, A. Bentz1, E. Deutsch1, D. Lynch1, R. Kowall1, R. Gavrilov2, S. Tortorelli3, P. Rinaldi1, D. Matern1, D. Hook4, G. Issaly5; 1Mayo Clinic, Rochester, MN, United States, 2University of Minnesota, Minneapolis, MN, United States, 3Children’s Hospital of Philadelphia, Philadelphia, PA, United States.

Background: Friedreich ataxia (FRDA) is a neurodegenerative disease characterized by progressive ataxia and cardiomyopathy with an incidence of 1:5,000. FRDA is typically diagnosed by identifying GAA-repeat expansions, or mutations, in FXN that cause reduced frataxin expression. We describe a Luminex immunoassay to measure frataxin in whole blood (WB) and dried blood spots (DBS) for population screening and therapeutic monitoring of FRDA. In addition we adapted this assay to a MesoScale Discovery platform and completed an initial screen of a Library of Pharmacologically Active Compounds (LOPAC 1280) in FRDA patient cells. Results: Recovery for frataxin is 99% from WB and DBS. Intra-assay imprecision is 4.9-13% CV and inter-assay imprecision is 9.8-15.8% CV. The LOD is 0.07 ng/mL and reportable range is 2-200 ng/mL. The reference range for adult and pediatric normals is 15-82 ng/mL (median: 33) for WB and DBS. FRDA carriers (n=30) have frataxin levels of 12-30 ng/mL (median: 16) and FRDA patients (n=32) of 2.6-26 ng/mL (median: 6). Pratxin was stable for over 6 months at 22°C, 4°C and -70°C. An initial screen of LOPAC 1280 has yet to uncover any positive hit but also has not provided evidence that EPO, pentamidine, or bisbenzimide enhance frataxin expression as observed by others in different experimental settings. Conclusions: We validated a high-throughput assay for frataxin that is applicable to diagnosis and population screening and modified the method for FRDA drug discovery. Ongoing work includes expanding the drug screen beyond LOPAC 1280.
P14.11 Evaluating the effects of olesoxime, a mitochondria-targeting drug on the behavioral and neuropathological phenotype of a Huntington Disease rat model

Department of Medical Genetics, Tuebingen, Germany, 7Department of Cardiac Surgery, University of Schleswig-Holstein Campus Luebeck, Luebeck, Germany, Luebeck, Germany.

Olesoxime, a cholesterol-oxime is a neuroprotective compound and was found to exert its beneficial effects by an improvement of mitochondrial function. Since mitochondrial dysfunction also plays a prominent role in Huntington disease (HD), we evaluated its effects on the behavioral and neuropathological phenotype of the BACHD rat, a full-length mutant huntingtin (mhtt) model of HD. Behavioral observations were carried out during a 12-months study period and neuropathology was investigated subsequently. BACHD rats displayed clasping behavior and had severe problems to run on a rotating rod already at 6 weeks of age, indicating early-onset motor dysfunction. A simple swimming test carried out at 8 months of age revealed a deficit in reversal learning. Furthermore, BACHD rats showed metabolic abnormalities, deteriorating with disease progression. However, no difference was found between rats treated with olesoxime and untreated rats. NMRI revealed a specific reduction in cerebral and not cerebellar volume in the BACHD rats. Immunostaining of brain slices further showed cytoplasmic aggregation and intranuclear accumulation of mhtt in most cerebral brain regions as well as a decreased width of axonal bundles within the corpus striatum. Treatment with olesoxime increased overall brain volume in BACHD but also in wild type rats, and by trend reduced nuclear mhtt accumulations within the prefrontal cortex. It remains unclear, how olesoxime exerts these effects and whether there is an interaction between olesoxime and mhtt. However, the beneficial effects found ex vivo did not lead to an improvement of the behavioral phenotype of the BACHD rat.

P14.12 The investigation of the ITPA and XDH genes variants in Polish IBD patients treated with thiopurine drugs

1Department of Human Genetics, Polish Academy of Sciences, Poznan, Poland, 2Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan, Poland, 3The National Institute of Medical Genetics, University of Poznan, Poznan, Poland, 4Department of Gastroenterology, Human Nutrition and Internal Diseases, University School of Medical Sciences, Poznan, Poland.

Thiopurine drugs are widely used in the treatment of inflammatory bowel disease (IBD). However, even among patients treated with azathioprine (AZA) or 6-mercaptopurine varied responses to treatment were observed. Thiopurines in as many as 30% of patients are not effective and in 20% of cases it was reported the presence of one or more adverse reactions related or life-threatening). Anti-velaglucerase alfa antibodies were not detected in any patient receiving velaglucerase alfa, including 3 patients who developed anti-imiglucerase antibodies in HGT-GCB-039.

Methods: In HGT-GCB-039, treatment-naive GD1 patients aged ≥2 years received velaglucerase alfa or imiglucerase as a continuous 60 µg/kg intravenous infusion (60 µg/kg every other week [EOW]; 9 months). Imiglucerase-treated patients completing HGT-GCB-039 could enroll in ongoing extension study (HGT-GCB-044, switching to velaglucerase alfa [60 µg/kg EOW]). Assessments were conducted after 15 months in HGT-GCB-044 (total of 2 years’ extension, replacement therapy).

Results: Sixteen patients receiving imiglucerase in HGT-GCB-039 entered HGT-GCB-044 (median age, 27 years; male, n=7; splenectomized, n=10). Mean changes from baseline (HGT-GCB-039 entry) at 9 months and 2 years, respectively, were 1.40 g/dL and 1.98 g/dL for hemoglobin concentration, 10.49+1.7/L and 16.49+1.0/L for platelet count, –1.18% and –1.67% body-weight for liver volume, and –2.79% and –3.63% body-weight for spleen volume. Adverse events (AEs) reported by ≥20% patients: arthralgia and inflammatory injury in HGT-GCB-039; headache and upper respiratory tract infection in HGT-GCB-044. Three serious AEs occurred in 3 patients (none study drug-related or life-threatening).

Conclusions: GD1 patients continued to improve across 4 key clinical parameters after switching from imiglucerase (9 months’ treatment) to velaglucerase alfa (15 months’ subsequent treatment). No patient exposed to velaglucerase developed anti-velaglucerase alfa antibodies.

www.eshg.org
replacing root operations. All patients are meeting strict diagnostic criteria for Marfan syndrome based on the original Ghent nosology and underwent aortic valve-replacing root operations. We collected clinical data, biological samples (DNA/blood samples, aorta/valve tissues), and echocardiographic data. We were better in patients treated with losartan.

Results. In the 20 patients who received losartan experienced better control of blood pressure during the day, previously normalized clinical parameters, quality of life, none of the patients did not require repeat surgery. The changes in aortic distensibility and cross-sectional compliance were similar between the two groups. Mean aortic diameter increased 0.5 mm/year, while in patients who have not received losartan 1.6 mm/year. Left ventricular function was better in patients treated with losartan.

Conclusions. The results of this clinical study could lead to profound modification of the management of aortic risk and complications in patients with Marfan syndrome. The uniqueness in our study is related to the fact that the additive effect of losartan evaluated in patients with Marfan syndrome who have already undergone surgery.

P14.15

The differentiation of human mesenchymal stem cell in to neural cells

1Department of Genetics, Faculty of Basic Sciences, Alzahab Branch, Islamic Azad University, Tehran, Islamic Republic of Iran, 2Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran, 3Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.

The differentiation of human mesenchymal stem cell to neuron like cell on engineered nanofibrous scaffolds have a great potential for bioanamoritral cell transplantation therapy of neuro degenerative disease and injuries of the nervous system. We investigated the potential of human bone marrow derived mesenchymal stem cell (MSCS) for neural differentiation in vitro on polycaprolacton (PCL) nanofibrous scaffolds. Studies in this field have led to the realization that invivo cells interact with the extra cellular matrix, composed of nanofibrous at sub-micron scale, which not only provides the mechanical support to the cells but also plays any role in regulation of cellular behavior with stem cells is emerging as an important tool in the development of tissue engineering and regenerative medicine. PCL characterization were carried out using SEM, contact angle and tensile instrument. The differentiation of MSC was carried out using neural inducing factors including Retinoic acid, epidermal growth factor (EGF) and fibroblast growth factor (FGF-2) and ibmx in DMEM/F12. Scanning electron microscopy results showed normal morphology and proliferation of Mesenchymal cell on PCL nanofibrous scaffolds. The expression of neural protein markers was analyzed by immunocytochemistry. The differentiated Mesenchymal cell on nanofibre scaffold were found to express the neural protein, - tubulin III and Map2. On day 14 after culture by immune- fluorescent.

Our studies on the differentiation of MSC to Neural cells on nanofibrous scaffold suggest their potential application towards nerve regeneration.

P14.16

Partial mechano-sensory blindness to micrometer topography in NF1 haploinsufficient cultured fibroblasts indicates a new function of neurofibromin in mechanotransduction

D. Kaufmann1, J. Hochoe1, L. Deeg1, K. Mellert2, S. Biela2, S. Jungbauer2, Y. Su2, J. Spatz2, R. Kemkemer2.

1Institute of Human Genetics, Ulm, Germany, 2Max Planck Institute for Intelligent Systems, Stuttgart, Germany.

Cells sense their physical environment and translate geometries into biochemical signals enabling them to adapt to cues in their surroundings. In this study, cell responses to surface topography of micro-structured polydimethylsiloxane substrates were investigated in cultured human cells differencing in NF1. Age matched dermal fibroblasts from five patients with Neurofibromatosis type 1 (NF1+/−) and five controls (NF1+/+) were tested. As response indicator the mean cell orientation along micro-structured grooves with heights of 175 or 200 nm and distance of 2 µm was systematically examined by analysis of microscopy images using ImageJ. The tested NF1 haploinsufficient fibroblasts were significantly less affected by the topography than those from healthy donors. Incubation of the NF1+/− fibroblasts with the farnesyltransferase inhibitor FTI-277 disrupting constitutive H-Ras-specific activation of MAP kinase ameliorates significantly the cell orientation. These data indicate that the response to surface topography can be altered by NF1 haploinsufficiency resulting in a partial mechano-sensory blindness in cultured fibroblasts. In further studies this new function of Neurofibromin in mechanotransduction will be tested in more detail.

P14.17

Artificial over expression of NT3 and its receptor TrkC in bone marrow stromal cells

Z. Hajebrahimi1, M. Movahedian2, S. J. Movah2.

1Department of Physiology, Aerospace Research Institute, Tehran, Islamic Republic of Iran, 2Department of Anatomy, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran, 3Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.

The adult mammalian nervous system has a very limited capacity to replace neurons lost following an injury. In the last few decades, transplantation of neural-like cells derived from stem cells has been carried out as a potential treatment for neurodegenerative diseases. The potential success of the transplantation process, however, depends on the functional activity of the grafted cells in their new environment. Bone marrow stromal cells (BMSCs) which are capable of differentiating into neural cells, has been employed for cell and gene therapy of neurodegenerative diseases. Neurotrophin-3 (NT-3) is a member of the neurotrophin family of growth factors, best characterized by its survival- and differentiation-inducing effects on developing neurons. Our previous studies revealed that BMSCs do not express NT-3 and its receptor, TrkC, either before or after differentiation into neural like cells. Since during the development of the brain, NT-3 expresses earlier than other NTs, we used electroporation technique to introduce NT-3 and TrkC genes into the BMSCs by pDsRed-N1 and pCMV vector, respectively. pDsRed-N1 is a mammalian expression vector that encodes a variant of red fluorescent protein. Vectors transformed into E cell DH15a. Expression of NT-3 and TrkC confirmed using fluorescence microscopy and RT-PCR method. Our results showed that BMSCs have the potential for being genetically manipulated and electroporation can serve as a fast, easy, and efficient method for it. We successfully obtained cells could express RFP, NT3 and TrkC. Due to the expression of RFP, the fate of cells can be easily traced after transplantation into tissues.

P14.18

Induction of embryonic microRNA (miR) cluster 302 and pluripotency genes in human mesenchymal stroma cells under hypoxic culture conditions

S. Fejz1, M. Jung2, O. Pelo-Ackerman1, I. Schroeder2.

1Department of Human Genetics, Halle/Saale, Germany, 2Translational Centre for Regenerative Medicine, Leipzig, Germany, 3Translational Centre for Regenerative Medicine, Leipzig, Germany, 4BD Biosciences GmbH, Heidelberg, Germany, 5Department of Anatomy and Cell Biology, Halle/Saale, Germany.

Multiple ways and cells sources for the generation of induced pluripotent stem (iPS) cells using for analysis of pathogenesis and personalized treatment are currently under investigation. We hypothesized that due to their multipotency human mesenchymal stroma cells (hMSC) could be more easily reprogrammed than other somatic cells. Therefore, we investigated whether cultivation of MSCs under hypoxic culture conditions, known to support pluripotency in embryonic stem (ES) cells, would suffice to induce pluripotency in MSCs. In particular we analysed the expression of pluripotency-associated genes and the microRNAs (miRs) 302, specific for pluripotent embryonic stem cells, as parameter for reprogramming. Therefore primary human MSs obtained from bone marrow aspirates and the MSC cell line L87 were cultured under hypoxic (5%O2) and normoxic (20%O2) culture conditions with and without FGF2 supplementation. We found that under hypoxic culture condition in the presence of FGF2, MSCs showed higher proliferative capacities and decreased senescence. FGF2 induced OCT4 and NANOG analyzed by real-time-RT-PCR. In combination with hypoxia this effect was potentiated. If not already present, KLF4 and c-MYC were likewise induced. Most importantly, in contrast to many retroviral methods, the combination of hypoxia and FGF2 led to an induction of the miR302 cluster similar to that found in ES cells leading to the repression of their predicted targets at day 14. In summary, we showed that hypoxia is a safe, easily applicable and sufficient tool to induce pluripotency-associated genes and miRs in multipotent MSCs. This may serve as a first step to generate clinical-grade iPSCs.
P14.19
Bezafibrate as treatment option in patients with mitochondrial complex I deficiency
R. M. Huberberger1, J. Freisinger1, V. Strecker2, K. Hein2, U. Aebi2, B. Rolinski3, T. Haack4, J. Mayer5, W. Sperl6, E. Willichowski6, M. Schuelke6, T. Klopstock2, M. Zeviani7, I. Wittig5, T. Mettig5,2, H. Proksch1,7; 1,2

Institute of Human Genetics, Technical University Munich, Munich, Germany, 3Institute of Human Genetics, Helmholtz Zentrum, Munich, Germany, 4Department of Paediatrics, Klinikum Reutlingen, Reutlingen, Germany, 5Molekulare Biotechnologie, Zentrum für Biologische Chemie, Goethe-Universität Frankfurt, Frankfurt, Germany, 6Städtisches Kinderklinik und Poliklinik, Universitätsklinikum Heidelberg, Heidelberg, Germany, 7Department of Pediatrics, Paracelsus Medical University, Munich, Munich, Germany.

Mitochondriopathies are inherited metabolic disorders with a severe clinical phenotype affecting different organ systems. A majority of them affect the respiratory chain and the cellular ATP production but even these clinical manifestations are highly variable, extending from early childhood encephalopathy to adult-onset myopathies. In spite of rapid progress identifying the molecular cause, curative therapeutic options are barely available. Bastin et al. (2008) and Wenz et al. (2008) provided evidence from in vitro studies and mouse models that activation of the PPAR/PGC-1-alpha pathway with bezafibrate could be a new therapeutic approach. In order to verify this effect, we collected 28 fibroblast cell lines from patients with isolated complex I deficiency and derived a defined molecular diagnostic. The complex I activity in patient fibroblasts differed from 10% to 80% compared to controls. Bezafibrate treatment led to significant improvement of complex I activity in more than 50% of the cell lines. In a subgroup of 13 cell lines, the treatment effect was additionally analyzed on genome-wide expression levels, revealing increased expression of genes involved in lipid and fatty acid metabolism and transport. In 5 cell lines which responded to bezafibrate treatment with significant increase of complex I activity, we found increased amounts of complex I assembled in supercomplexes by two-dimensional blue native SDS-PAGE experiments. These results support bezafibrate as a promising treatment option in a well defined subgroup of patients. They have to be verified in other mitochondrial disorders like COX-deficiency.

P14.20
Vascular malformations and soft tissue tumours in segmental overgrowth disorders respond to mTOR inhibitors, in spite of normal PTEN and AKT1 function
E. Lasch1, B. Koppert2, E. Maa3, B. Zabel1, C. Niemeyer1, J. Büssler1; 1Universität Freiburg, Freiburg, Germany, 2Olshospital, Stuttgart, Germany.

Vascular malformations are common among patients with segmental overgrowth disorders. Very recently, a recurrent activating AKT1 mutation was identified in Proteus syndrome lesions and loss-of-function mutations of PTEN are known to cause SOMALAM syndrome. Genetically, both aberrations are predicted to increase downstream phosphoinositide 3-kinase (PI3K) signaling pathway activity. A significant number of patients, however, do not show mutations in either PTEN, or AKT1, and the pathogenesis of hamartomatous tumours and associated vascular malformations remains unresolved. Over the past years, we provided clinical care and molecular diagnosis for patients affected by vascular and hamartomatous tumours. No constitutive PTEN mutation was detected in a cohort of eleven children with segmental overgrowth disorders, mainly classifiable as Proteus, or Proteus-like syndrome. Molecular analyses of tumour tissues failed to demonstrate somatic activation of AKT1. Mosaic mutations were neither found in dermal fibroblasts derived from affected regions, nor in vascular malformations, nor in soft tissue tumours. Nevertheless, experimental therapy with mTOR inhibitors was able to induce rapid remission in three of three treated patients, proving efficacy against diverse lesions, including intestinal haemangioendothelioma, and retro-orbital lymphangioma. In view of the poor outcome and high complication rate of surgical approaches, mTOR inhibition therefore holds the promise of a well-tolerated first line medical alternative for this group of disorders, regardless of mutational status of proven disease genes. Our results provide clear evidence for genetic heterogeneity in segmental overgrowth disorders, especially in Proteus, and Proteus-like syndrome. Preliminary clinical data suggest a common pathogenic mechanism involving the PI3K/PTEN/AKT/mTOR pathway.

P14.21
Testing Riluzole in a conditional mouse model of SCA3
J. Schmidt; 1,2 A. Kaiser, B. Rolinski, T. Schmidt, University of Tuebingen, Tuebingen, Germany, 3Department of Paediatrics, Paracelsus Medical University, Munich, Munich, Germany.

Spinocerebellar ataxia type 3 (SCA3) or Machado-Joseph disease (MJD) is an inherited neurodegenerative disorder caused by the expansion of a CAG repeat within the MJD-1 gene resulting in a polyglutamine repeat in the encoded protein ataxin-3. SCA3/MJD therefore belongs to the group of polyglutamine diseases. Up to now, no treatment is available for this disease. In a recent study, a positive effect of riluzole (benzothiazol, Rilutek), was observed in a heterogenous group of patients suffering from different types of hereditary ataxias after a four-weeks of treatment with riluzole. However, in the mentioned study, only short-term effects were analyzed which may just be symptomatic. In order to analyze whether riluzole may also be beneficial for SCA3 and whether also long-term effects of riluzole treatment can be observed, we treated our recently generated inducible mouse model of SCA3 with riluzole. This mouse model allows us not only to measure a possible effect of riluzole on disease progression but also to quantify this effect by comparison with an “optimal treatment” (i.e. turning off the expression of ataxin-3). We started the treatment once significant deficits in the rotarod performance were obvious in the genetated mice and followed the outcome of the treatment using Rotarod and measurement of home cage activity. Mice were sacrificed at different time points and brain tissue was analyzed for inclusions and neuropathology using Western-blot and immunohistochemistry. Tissue was also analyzed on RNA level to exclude that riluzole influences the expression of the transgenic ataxin-3.

P14.22
The prevalence of VKORC1 1639 G>A and CYP2C9*2*3 genotypes in patients that requiring anticoagulant therapy in Turkish population
C. Silan1, O. T. Dogan1, F. Silan1, F. M. Kusluoglu1, H. F. Argun2, S. Ozdemir1, A. Uldagi1, A. Atil1, B. Gungor1, S. Ahdur1, H. E. Akodus1, O. Ozdemir1; 1Department of Pharmacology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey, 2Department of Chest Diseases, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey, 3Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey, 4Department of Emergency/Faculty of Medicine, Cumhuriyet University, Sivas, Turkey, 5Department of Cardiovascular Surgery/Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey, 6Department of Nuclear Medicine, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey, 7Department of Medical Genetics, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.

The VKORC1 and CYP2C9 genotypes were investigate in anticoagulant therapy requiring patients in two different Turkish populations. Cohort included 292 patients that need anticoagulant therapy with the history of deep vein thrombosis and/or pulmonary artery thromboembolism.Genomic DNA was isolated from peripheral blood samples and StripAssay reverse hybridization technique was used for genotype analysis. Genotypes for CYP2C9 were detected as; 165 (56.5%) for CYP2C9*1/*1, 67 (23.0%) for CYP2C9*1/*2 25 (8.6%) for CYP2C9*2/*2, 5 (1.7%) for CYP2C9*3/*3 for CYP2C9 and the allele frequencies were: 0.73 for allele*1, 0.182 for allele*2 and 0.095 for allele*3 respectively. Genotypes for VKORC1 were detected as; 64 (21.9%) for VKORC1*2/*2, 52 (17.7%) for VKORC1*1/*2, 67 (23.0%) for VKORC1*1/*1 and 67 (23.0%) for VKORC1*1/*2. The prevalence of VKORC1 1639 G>A and CYP2C9*2*3 genotypes in patients that requiring anticoagulant therapy in Turkish population.

P14.23
Sodium butyrate and Valproic acid as a splicing restoring agents in erythroid cells of β-thalassaemia patients
S. M. Derakhshan, M. S. Khanhiane, M. Tagizade; Tabriz university of Medical Science, Tabriz, Islamic Republic of Iran.

β-thalassaemia is a common autosomal recessive disorder in humans caused by a defect in β-globin chain synthesis. Over two hundred different mutations have been found to cause β-thalassaemia, with the most common being splicing mutations (1). Most of these mutations activate aberrant cryptic splicing of 5’ or 3’ splice sites without abolishing completely normal splicing. Some mutations allow a significant level of normal splicing (e.g. IVSI-6), leading to thalassaemia intermedia, while others reduce normal splicing to low (e.g. IVS1-110) or very low levels (e.g. IVS5-1 and IVS2-64) and lead to blood transfusion dependency in the homozygote form. In most of the cases, the normal spliced, correctly spliced mRNA compete with the normal and aberrant splice sites and the production of variable amounts of normal mRNA. Modulation of splicing can be achieved by activation or suppression of transacting factors such as SR proteins and
P15. Laboratory and quality management

P15.01 A novel StripAssay for the detection of genetic factors modulating the risk of developing AA amyloidosis
S. Németh1, L. Oehle1, S. Grandemanne2, J. Touts1, H. Lachmann3, C. Oberkanins3
1ViennaLab Labordiagnostica GmbH, Vienna, Austria, 2BiotecResearch Laboratories, IRCS Fondazione Policlinico San Matteo, Pavia, Italy, 3Inserm U844, Montpellier, France.

AA amyloidosis is an inherited systemic disease characterized by the deposition of fibrillar amyloid in multiple tissues, most prominently in the heart and kidney. The main risk factor for the occurrence of AA amyloidosis is the TNFRSF1A mutation c.2080A>G (M694V) that is present in approximately 60% of all patients. The remaining cases are due to other genetic variants, which are rarely or not associated with amyloidosis. An association between autoimmune diseases and AA amyloidosis has been suggested, especially in patients carrying the TNFRSF1A c.2080A>G (M694V) mutation. Previous studies have shown that 14% of patients with AA amyloidosis are affected by inflammatory disease. The association between autoimmune diseases and AA amyloidosis has been observed in various populations, including patients with rheumatoid arthritis, chronic inflammatory bowel disease, and multiple sclerosis.

We developed and validated a reverse-hybridization assay (StripAssay) for the detection of genetic factors modulating the risk of developing AA amyloidosis. The StripAssay is based on multiplex PCR and reverse-hybridization of biotinylated probes and snapback primers. The assay is performed on the LightScanner® (MJ Research, Watertown, MA). The StripAssay is designed for multiplex PCR and reverse-hybridization of biotin-labeled amplification products to a parallel array of allele-specific oligonucleotides immobilized on membrane teststrips. The test follows a simple protocol and requires only small amounts of DNA for comprehensive genetic analysis.

Complete genotyping by StripAssay of AA amyloidosis patients was performed using PCR and StripAssay. The StripAssay was able to detect the TNFRSF1A mutation c.2080A>G (M694V) and other genetic variants with a high degree of specificity and sensitivity. The StripAssay was able to detect the TNFRSF1A mutation c.2080A>G (M694V) and other genetic variants with a high degree of specificity and sensitivity. The StripAssay was able to detect the TNFRSF1A mutation c.2080A>G (M694V) and other genetic variants with a high degree of specificity and sensitivity.

Almost 2000 mutations have been described in the Cystic Fibrosis (CF) associated genetic factor, the CFTR gene. In a few populations the mutation spectrum is well-defined and screening tests for the most frequent mutations exist. Sequencing of the entire CFTR gene would be preferable, especially in less well characterized populations. Thus, we tested two next generation sequencing (NGS) platforms (Ion Torrent Personal Genome Machine™ (PGM™) and 5500 SOLID™ System) and the SentenceModulator-based sequencer (Ion Torrent PGM™ Sequencer).

Testing of 20 human samples with different known mutations was performed using the StripAssay. The StripAssay was able to detect the TNFRSF1A mutation c.2080A>G (M694V) and other genetic variants with a high degree of specificity and sensitivity.

The StripAssay was able to detect the TNFRSF1A mutation c.2080A>G (M694V) and other genetic variants with a high degree of specificity and sensitivity.
P15.06 Pyrosequencing Assay Panels For Genotyping Disease-Associated Polymorphisms/Mutations
D. Cigligor, B. Metters, E. Salahi1, B. Torun, S. Richard, F. Narr2; 1KIT Biotechnology, Ankara, Turkey, 2Qiagen GmbH, Hilden, Germany.

Background: Molecular diagnostics are increasingly used to guide diagnosis and therapy of human diseases. The detection of key polymorphic variants/mutations in human genes provides valuable information about diagnosis, risks or therapeutic regimens.

Methods: Pyrosequencing assays were developed targeting key mutations/polymorphisms in genes associated with thrombosis (Factor V, Factor V, MTHFR, PAI-1). BTAL is a blood disorder that reduces the production of hemoglobin. BTAL is common in Mediterranean countries such as Greece, Italy, Spain, Cyprus, but occurs as well in North Africa, the Middle East, India, and Eastern Europe. Thrombosis is a blood clot inside a blood vessel, obstructing or stopping the flow of blood through the circulatory system. Thrombotic diseases are one of the main causes of mortality worldwide.

Results: All assays allow flexible, fast and reliable genotyping of the mutations in DNA isolated from whole blood with excellent concordance to Sanger sequencing.

Conclusions: Pyrosequencing was shown to be highly suitable to detect, identify and quantify important polymorphisms/mutations in human disease-associated genes. The newly developed assays have a significant lower turn-around time and are easier to interpret raw-data compared to the current gold standard Sanger sequencing and maintain the flexibility of a sequencing-based method.

P15.07 Guidelines for the genetic diagnosis of hereditary recurrent fevers
Y. Shinar1, L. Obici2, L. Aleksentievich3, I. Touitour4; 1FMF Molecular Diagnostics Lab, Sheba Medical Center, Tel HaSomer, Israel, 2Amliont Center, Biotechnology Research Laboratories, Fondazione IRCCS, Pavia, Italy, 3National University Hospital, Hershey, PA, United States, 4UMAI laboratoire de génétique, Montpellier, France.

Hereditary recurrent fevers (HRFs) are a group of monogenic autoinflammatory diseases characterized by recurrent bouts of fever and serosal inflammation that are caused by pathogenic variants in genes important for the regulation of innate immunity. The discovery of the molecular defects responsible for these diseases has initiated genetic diagnostics in many countries around the world including the Middle East, Europe, USA, Japan and Australia. However, diverse testing methods and reporting practices are employed, and there is a clear need for consensus guidelines for the HRF genetic testing.

Draft guidelines were prepared based on current practice deduced from previous HRP External Quality Assurance (EQA) schemes and data from the literature. The draft document was disseminated through the EMQN (European Molecular genetics Quality Network) for broader consultation and amendment. A workshop was held in Bruges (Belgium) on September 18 and 19, 2011 to ratify the draft into a final consensus document.

An agreed set of best practice guidelines was proposed for genetic diagnostic testing of HRFs, for reporting the genetic results, and for defining their clinical significance.

Supported by EU projects EuroGentest (FP6-512148), Eurotraps (FP7-2008-200923), La Région Languedoc-Roussillon, Eurofever (EAHC, Project 20073732).

In the 2000s, a number of initiatives were taken internationally to improve quality in testing services. To contribute to and update the limited literature available related to this topic, we surveyed 910 human molecular genetic testing laboratories, of which 291 (32%) from 29 European countries responded. The majority of laboratories were in the public sector (61%), affiliated with a university hospital (60%). Only a minority of laboratories were accredited (23%), and 22% of laboratories did not participate in external quality assessment and 28% did not use reference materials. The main motivations given for accreditation were to improve laboratory profile (85%) and national recognition (94%). Nearly all respondents (95%) would prefer working in an accredited laboratory.

In accredited laboratories, participation in external quality assessment (p<0.0001), use of reference materials (p=0.0014) and availability of continuous education on medical/scientific subjects (p=0.023), specific tasks (p=0.018), and quality assurance (p<0.0001) were significantly higher than in non-accredited laboratories. Restriction of the development of new techniques (p=0.023) and the improvement of work satisfaction (p=0.0002) were significantly underestimated by non-accredited laboratories. By using a quality assessment score, we showed that accredited laboratories (average score 92) comply better than certified laboratories (average score 69, p<0.001), and certified laboratories better than other laboratories (average score 44, p<0.001), with regard to the implementation of quality indicators. We conclude that quality practices vary widely in European genetic testing laboratories. This leads to a potentially dangerous situation in which the quality of genetic testing is not consistently assured.

P15.11 Quality assurance of PCR based molecular genetic tests through elimination of thermocycler variability during assay validation
M. A. W. Verblakt1, M. T. M. Hendriks1; 1CYCLERTest BV, Landgraaf, Netherlands, 2GENOmics BV, Landgraaf, Netherlands.

Validation and verification of PCR methods and procedures before their use in clinical molecular genetic testing is essential for producing correct and clinically relevant results.

Over the past decades many validation studies and external quality assessments have addressed the difficulties of producing and reproducing PCR, qPCR and HRM molecular diagnostic results. We designed an assay using real-time PCR 7500 with allele-specific Taqman probes with the Light Cycler 2.0 analyzer (Roche). The rs7025486 mutation of DAB2IP gene (c.18554G>A) was performed by direct sequencing with Analyzer Genetic Systems. The assay was designed using real-time PCR 7500 with allele-specific Taqman probes in 96-well plate format samples. In all samples we obtained the same genotype for each mutation with both methods (sensitivity and specificity of 100%). However, the automated process by real-time PCR genotyping plate allows us to analyze a large number of samples in each run (n = 92) including matched controls (n = 4). If this protocol was employed using automated DNA extraction, the full process would last 2 hours until the report of the results. Conclusion: TaqMan allele discrimination assay provides a good alternative tool in detection of SNPs associated with venous thrombosis. Red RECLAW RD 06/0014/0016. Generalitat de CatalunyaAG-AUR 20095GR1147.

P15.09 Automated analysis by using real-time PCR assays of mutations: Factor V Leiden, F12C46T and rs7025486 of DAB2IP gene
I. Tirado1, I Coll, B. Cuevas, E. Martín-Sánchez, J. Mateo, J. Fontcuberta; 1Hospital Sant Pau.Unitat d’Hematologia i Trombosis, Barcelona, Spain.

Several genetic factors implicated in the pathogenesis of venous thromboembolism have been reported in the literature. The aim of this study was to automate the methods of genetic analysis of factors: Factor V Leiden, and F12C46T and rs7025486 of DAB2IP gene. Methods: DNA extraction was performed by MagnaPrep Compact (Roche), TaqMan®-based assays in real-time PCR 7500 (Applied Biosystems). We were selected DNA samples from patients (n=50) from whom the mutations were previously genotyped by other assays. Factor V Leiden and F12C46T mutations were performed by real-time PCR with allele-specific probes with the Light Cycler 2.0 analyzer (Roche). The rs7025486 mutation of DAB2IP gene (c.18554G>A) was performed by direct sequencing with Analyzer Genetic Systems. The assay was designed using real-time PCR 7500 with allele-specific Taqman probes in 96-well plate format samples. In all samples we obtained the same genotype for each mutation with both methods (sensitivity and specificity of 100%). However, the automated process by real-time PCR genotyping plate allows us to analyze a large number of samples in each run (n = 92) including matched controls (n = 4). If this protocol was employed using automated DNA extraction, the full process would last 2 hours until the report of the results. Conclusion: TaqMan allele discrimination assay provides a good alternative tool in detection of SNPs associated with venous thrombosis. Red RECLAW RD 06/0014/0016. Generalitat de CatalunyaAG-AUR 20095GR1147.
between and within thermocyclers. This variability is expressed in inconsistent, false negative, lower positive or incorrect PCR results.

Typically, thermocyclers can not be adjusted and therefore solutions must be sought to deal with this variability in the design and validation of PCR assays. Currently, accredited laboratories consider PCR assays as sufficiently validated when an empirical validation study on a limited number of thermocyclers has produced comparable results. However, the large variability as measured during this study reveals the severely underestimated risk of using limited numbers of thermocyclers for empirical validation studies. Through this detailed study we have generated guidelines for easy, straightforward, analytical validation of PCR based molecular genetic tests. These guidelines are accepted by auditors around the world.

P15.12

The Unified Sample Identifier - A universal sample coding system to manage large numbers of biological samples

S. Hernas 1, J. E. Boltz 2, A. Reinscheid 3, T. F. Winkel 4, M. M. Noethen 5, S. Cichon 6

1 Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany, Bonn, Germany, 2 Deutsches Zentrum fuer Neurodegenerative Erkrankungen, Berlin, Germany, Bonn, Germany, 3 Institute of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany, Bonn, Germany, 4 Gene Mapping Center, Max-Delbrueck-Center, Berlin, Germany, Berlin, Germany, 5 Institute of Human Genetics, University of Bonn, Bonn, Germany, Bonn, Germany, 6 Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Brain, Genomic Imaging, Research Center Juelich, Juelich, Germany.

Since the introduction of high-throughput DNA genotyping and sequencing technologies, the number of DNA samples analyzed for genetically complex phenotypes has tremendously increased. Furthermore it has become very important to combine samples from different sites to further increase statistical power to detect small genetic effects. This has led to serious challenges concerning the individual sample coding. Often encountered problems which hamper the unambiguous identification of individual samples include samples having the same identifier by chance as well as spelling errors in the sample identifier. To address these problems we have developed an universal sample coding system the Unified Sample Identifier (USI) over the last years. The USI is based on the ISO certified IBAN system which is used in the international banking system since more than 30 years. The USI includes a checksum making it very resistant to spelling errors and data about project, study, sample type and aliquot, but does not include any information on the affection status, diagnosis, gender and ethnicity.

Here we present data on the implementation of the USI in our database system, the use of automatically generated barcodes and the evaluation of the check sum system. We especially analyzed the probable risk of collisions - different lab codes sharing the same check sum - in the normal lab context. We checked for random one letter changes first and focused on common human letter recognition issues in a second analysis. Based on these results we are further optimizing the algorithms for automatic correction of coding errors.

P15.13

About sequence quality: impact on clinical applications

T. Noguchi 1, V. Bourdon 2, H. Sabol 2

1 Institute Paoli-Calmettes, Marseille, France, 2 Faculté de Médecine, Aix-Marseille Université, Aix-Marseille, France.

Advance of sequencing technologies is accelerating with a surprisingly fast rhythm, and it is clear that next-generation sequencing (NGS) should be in clinic in near future. Recent survey shows that the introduction of desktop sequencers like Ion Torrent PGM and Illumina MiSeq will be a primary growth driver for this new market. Nevertheless, it doesn’t necessary mean the end of Sanger sequencing: re-growth driver for this new market.

High-throughput genotyping projects in large epidemiological study populations require sophisticated laboratory information management systems (LIMS). Small to medium sized genotyping facilities often lack such LIMS and thus have to rely on basic R or VBA scripts for the quality control of their genotyping experiments. Since modern genetic epidemiological studies often comprise >10,000 individuals, automated workflows are, however, required to handle and review the large amount of genotypic data generated by modern multiplex genotyping approaches such as Sequenom iPLEX. To address this issue, we developed the web application ”SNPflow”. This solution provides automated data management and quality control for genotyping experiments employing the ABI 7900 HT-platform (e.g. TaqMan, KASPar Assays) or the Sequenom iPLEX platform. It automatically merges single raw output files of different DNA plates, converts them to ready-to-use genotype lists and stores the quality-controlled genotypes in a dedicated MySQL database. For each SNP assay QC values such as call rates, discordance rates and Hardy Weinberg Equilibrium (HWE) are calculated and a comparison of the observed genotype frequencies with the HapMap data is generated. It even provides a fast overview on these QC values for dozens of SNPs in one list. All data can be finally exported in well-arranged files for further analysis.

We demonstrated that with a combination of three parameters (average quality value alone is too inaccurate and not sufficient for clinical uses. We demonstrated that with a combination of three parameters (average quality value, relative sequence intensity and electropherogram profile), it is possible to determine accurately the quality of any sequence.

P15.14

SNPflow - A laboratory information system for automated data processing and quality management of SNP genotyping results

H. Noguchi 1, J. E. Bolz 2, M. Haun 3, S. Cichon 4, M. Neuner 4, L. Forer 4, G. Specht 5, A. Klose-Brandstädtter 1, F. Kronenberg 1, S. Coassin 5

1 Division of Genetic Epidemiology, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Innsbruck, Austria, 2 Research group Databases and Information Systems, Institute of Computer Science, University of Innsbruck, Innsbruck, Austria.

Spinal muscular atrophy is a hereditary motor neuron disease characterized by proximal muscle weakness due to degeneration of the anterior horn cells of the spinal cord. Approximately 94% of patients with SMA reveal homozygous absence of the SMN1 gene. However, small intragenic mutations are not detected by SMN1 gene dosage analysis and the presence of two normal SMN1 copies on one chromosome 5 can mask a deletion of SMN1 on the other chromosome 5 (carrier). Subsequently, de novo mutation rate is relatively high. Accurate risk assessment and clinical genetic counseling are particularly important due to the genetic complexity and high SMA carrier frequency. This external quality assessment scheme was designed to assess laboratories’ abilities to correctly genotype cases suspected of having SMA and to identify carriers of SMA. Each year three DNA samples (accompanied by mock clinical information) were distributed to approximately 70 laboratories from more than 30 countries after validation of the SMN1 and SMN2 gene copy numbers. Each laboratory sent in their written reports, usually accompanied by raw lab data. Each of the written reports is marked for genotyping and subsequent interpretation according to predetermined evaluation criteria. Most laboratories used MLPA to quantify SMN1 gene copy number for diagnostic and carrier analysis. The genotyping error rate has increased comcomitant to a deceased number of labs with full interpretation score. A full report of the results of the SMA schemes and recommendations for best practice guidelines for molecular analysis of SMA are presented.
J01. Genetic counseling, including Psychosocial aspects, Genetics education, Genetic services, and Public policy

J01.01 Genetic counseling: association of microdeletion 22q11.2 and Fragile X syndromes in one family

N. Rumiantseva, N. Venchikova, I. Novikova, O. Khurs, A. Polityko, L. Isakovich, K. Messe; Republican Medical Centre “Mother and Child”; Minsk, Belarus.

Association of few genetic disorders in one family is not rare. Quality of genetic counseling for the outcome prognoses (model of inheritance, risk) depends on the accuracy of nosologic diagnosis. We present results of clinical, genetic, laboratory, prenatal and morphological investigations of the family, affected by del22q11.2 and Fragile X syndromes (FRAx), detected by FISH and DNA studies. Parents were young, healthy, nonconsanguineous. G1: population risks, standard combined prenatal screening (SCPS) results were unremarkable, healthy girl was born. G2: SCPS data were normal at 1-st trimester, but heart defect, suspected via sonography at 16 weeks, was confirmed at 20 weeks of gestation. Fetus karyotype: 46,XX. Pregnancy was terminated due to fetus malformations. Morphological examination showed heart defects (membranous VSD, bicuspid aortic valve, aortic stenosis, hypoplastic aorta ascendens, interrupted arch), thymus aplasia, cleft palate. Presumably DiGeorge syndrome (del22q11.2) was confirmed by FISH (lymphocytes of umbilical cord blood). Karyotype: ishdel(22)(q11.2q11.2)(2N5)-dn. Parents had normal karyotypes (GTG, FISH) and no risk of del22q11.2 for offspring. G3: normal SCPS, but pregnant had mentally retarded non-examined brothers (halfsiblings) and needed an outcome prognoses. FRAx was detected by PCR in both (mother was obligate carrier of CGGn expansion). The daughter was not examined because fetus (female) had low risk. G4. Pregnant underwent DNA examination of FMR1 gene because of possible risk of FRAx for fetus (male). Expansion of CGGn was excluded (low risk), healthy boy born. Next pregnancy prognosis: population risks, SCPS. Scheme of genetic counseling and prenatal diagnostic protocols, made for each pregnancy will be presented.

J01.02 Are DentalFaculty Knowledgeable About Genetics and Understand its Implication forClinical Dental Practice and Education?

R. J. Crout1, G. T. Castor1,2; 1West Virginia University, Morgantown, WV, United States; 2Indian River State College, Fort Pierce, FL, United States.

Objectives: In a companion study, dental students at the West Virginia University School of Dentistry (WVU SOD) were lacking “Knowledge, Skills, and Attitudes Required for Oral Health Professionals to Care for Patients with Genetic Conditions” utilizing the Report of Panel 3 of the Macy Study. The aim is to investigate the genetic knowledge, skills and attitudes of West Virginia (WVU SOD) faculty utilizing the same report for specific questions.

Methods: All full time dental faculty (32) were invited to answer 16, primarilyLikert style questions (1 = Strongly Agree to 5 = Strongly Disagree). Questions included Knowledge: of genetic transmission; molecular biology of the human genome; principals of population genetics; Skills: to perform a head/neck exam with special attention to signs of major genetic disorders; recognize when to refer a patient for genetic screening, testing, and counseling; Attitude: to understand the potential for genetics to contribute to the development of new approaches to prevention, diagnosis and treatment.

Results: 15 (46.9%) participated. When it came to their Knowledge of transmission, biology of the human genome, principals of population genetics and Skills to perform a head/neck exam and when to refer, 62.2%, 51.2% 95.5% and 69.1% disagreed respectively. There were no statistically significant differences in the knowledge of genetics transmitted in the family, however, there was a statistically significant difference in the knowledge of the genetics transmitted in the family. When it came to their Attitude: to understand the potential for genetics to contribute to the development of new approaches of disease with 96.7 % interested in a CE update. When it came to their Knowledge of genetics transmitted in the family, 66.7% interested in a CE update.

J01.03 Importance of prenatal diagnosis of chromosomal abnormalities in

J01.04 The Role of Genetic Counselling in the Prevention of Hereditary Haemochromatosis: the perception of health professionals requesting HFE genotyping in Portugal

B. Leandro1, M. Panaveque2, J. Sequeiros1, G. Porto2; 1Institute for Molecular and Cell Biology, Porto, Portugal; 2Centro Hospitalar do Porto - Hospital Geral de Santo António, Porto, Portugal.

AIM - To understand physician’s main motivations behind requests for molecular tests of hereditary haemochromatosis and for consultation of genetic counselling, accessing to current medical practices of screening and early diagnosis of hereditary haemochromatosis and considering whether these can be improved to increase the effectiveness of prevention.

RESULTS - There is still a lack of awareness by physicians (especially by general practitioners) about the patient cases that should be sent for genetic counselling or for molecular test in hereditary haemochromatosis. This can compromise the prevention of the disease (early diagnosis and treatment) and a primordial family-based screening.

CONCLUSION - It’s necessary to discourse more information about hereditary haemochromatosis among health professionals in order to improve strategies for screening and diagnosis.

J01.05 Pregnant women disorders and indications of legal abortion in Iran

M. Amirian1, A. Solimanpour2, Z. Nafei3; 1Shahid Sadoughi Medical University, Yazd, Islamic Republic of Iran; 2Yazd Legal Medicine Organization - Legal Medicine Research Center, yazd, Islamic Republic of Iran; 3Yazd Legal Medicine Organization, yazd, Islamic Republic of Iran; 4Shahid Sadoughi Medical University, yazd, Islamic Republic of Iran.

Maternal mortality in the world has decreased because high level of health and medical science. But some medical conditions such as congenital heart disease in pregnancy can cause maternal mortality. During pregnancy, pregnant women suffer from some diseases it can lead to infirmity, before sixteen weeks from last menstrual period, therefore the legal abortion is recommended. This subject in Iran would be done by requesting from judicial authorities. It would be accepted by three experts who are related to pregnant women disorders, then the legal abortion is issued by the legal medicine organization and eventually the legal abortion will be done by Obstetricians and gynecologists in public hospital. This case is about a twenty four years old woman who three years ago due to aortic valve stenosis after the first pregnancy, before sixteen weeks of pregnancy, abortion was permitted and performed but she desire to have children regardless of comment her doctor was pregnant and died during
J01.06 Assessing teaching and learning Medical Genetics

R. Drogue, M. Popovici; Medical and Pharmacy University „Carol Davila”, Bucharest, Romania.

In the last years I have tried to improve the outcome of teaching genetics to medical first year students. This time I have questioned whether useful or not to send the lessons by e-mail.

Students from the Medical and Pharmacy University „Carol Davila” in Bucharest, were given twice the same two open questions during the first term. 132 students participated in the practicals I taught in the academic year 2010/2011. 6 of them did not come to the second testing. In this academic year from 106 students were absent at both tests. This year’s students received the lessons by e-mail. In this study I compared only the marks obtained by my students during the second testing in the two different academic years.

In case of this year’s students the higher marks were more frequent (table). In both years the students received twice the questions, so that the repetition could not bias the result. The comparison was made only for the second testing, when most of this year’s students became aware of having received by e-mail everything I had previously taught.

This study assessed the use of written material received from the teacher and it showed that the purpose was achieved, students having better results after learning individually, what was taught during oral presentations.

Comparison between students achievements in the academic years 2010/2011 and 2011/2012.

<table>
<thead>
<tr>
<th>Marks obtained by students</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students marks in 2010/2011 (%)</td>
<td>0.83</td>
<td>0.74</td>
<td>6.61</td>
<td>9.09</td>
<td>10.74</td>
<td>13.22</td>
<td>13.22</td>
<td>9.92</td>
<td>11.57</td>
<td>15.36</td>
<td>17.36</td>
</tr>
<tr>
<td>Students marks in 2011/2012 (%)</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>18</td>
<td>18</td>
<td>22</td>
</tr>
</tbody>
</table>

J01.07 Twinning antecedents in families of patients with Down Syndrome

S. Turyk, M. Salvaris; Hospital Britanico de Buenos Aires, Buenos Aires, Argentina.

Twinning has been reported in association with many chromosome abnormalities. It has been suggested that the incidence of Down Syndrome (D.S) is significantly higher in multiple pregnancies than among singletons. The aim of this study is to describe the association of twin pregnancies in families of patients with D.S. Contained within this report is a detailed clinical and genealogical history of 72 patients with Down Syndrome. Statistics show that 41 (56.9%) with 47,XX,+21 karyotype and 31 (43.1%) with 47,XY,+21 karyotype. The mean maternal age was 35.7 (age range 22-43 years) and the mean paternal age was 39.1 (age range 19-58 years). The antecedent of multiple pregnancies was found in 11 (15.2%) families. The rate of twinning antecedents in D.S. families is significantly higher; compared with 2313 families in the control group. It is very important for families with twinning antecedents to have genetic counselling in order to make prenatal diagnosis.

J01.08 Promoting genetic counselling in South Africa by creating a comprehensive web-based genetics resource

S. Erasmus, N. Kinsey; GC Network, Johannesburg, South Africa.

Genetic counselling in South Africa is a developing field with 16 practising genetic counsellors. Annually, approximately 57,000 individuals with genetic defects are born in South Africa, while genetic counsellors see around 2,000 clients. To date, no genetic counselling information and/or genetics resource website exists in South Africa even though internet usage is rapidly increasing with 14% of the population accessing the internet in 2011 compared to the 5.5% in 2000. More than 80% of the population have mobile phones that can potentially access the internet.

The growth of, and access to genetic counselling in South Africa is hindered by the lack of awareness and knowledge by the public and healthcare providers. To address this need, a new website http://www.geneticcounselling.co.za was created. The ultimate goals of this website are to: build an online genetic counselling community thereby connecting professionals, patients and the generally inquisitive, to be the first comprehensive web-based genetics resource and to promote and increase awareness of genetic counselling in South Africa.

The website is intended to be accessible and informative to both the lay public and medical professional. The focus is on genetic counselling and its available services but the site also includes pages on knowledge share (customised talks, corporate consults and continual professional development), resources (our pamphlets, and links to external information sites), local and international news and events, and local support groups. In due course we intend to use this as the foundation to build the ultimate genetics resource in South Africa.

J01.09 Using internet social media to enhance public understanding of genetics and provide support for the psychosocial concerns of genetic carriers

J. Karwowski; University of Nevada, Las Vegas, Las Vegas, NV, United States.

Communication is crucial to disseminating information and facilitating understanding. The Internet age provides unprecedented opportunity for communication of virtually anything at all. This presentation will introduce a selection of current social media tools that are, or can, be used to facilitate supportive communication primarily with individuals affected by genetic conditions. The internet provides a selection of current social media tools that are, or can, be used to make genetic information more accessible by connecting families from around the world who are dealing with relatively rare genetic health concerns. Several examples from the well over 500 online social networks will be considered in depth. The use of multilingual tools such as Facebook and Twitter will be summarized.

Although many individual genetic disorders have a presence on the Internet, their focus is understandably on what can be done for those with the disorder. But reproductive decision making is fraught for parents of affected children, as well as for persons aware of their genetic risk prior to starting a family. One site, MyBlueGenome.org, aims to address issues of interest to genetic carriers regardless of the particular disorder of concern. Instead of dealing deeply with one disorder, it deals broadly with one aspect common to many disorders: coping with carrier status. The emphasis is on those psychosocial dimensions that require long-term engagement and the support of peers who have been through similar experiences. Resources such as understandable summaries of research articles for the lay public and links to related sites can do much to expand the genetic knowledge available to the public.

J01.10 Pharmacogenomics and public health: Implementing populationalized medicine

L. A. Mette; Charité Universitätsmedizin, Berlin School of Public Health, Berlin, Germany.

Pharmacogenomics is most commonly used in personalized medicine to individualize therapy for a patient where it holds the potential to increase therapy benefits and minimize adverse drug reactions. Applying this technology to a population would produce the same benefits, in addition to saving already scarce health resources. The objective of this study is to review what has been researched and published in the fields of pharmacogenomics and public health, regarding how the two sciences can constructively interact. Literature addressing pharmacogenomics in terms of global burden infectious diseases, public health initiatives, and public policy were researched in the PubMed database. Six major themes were identified and further discussed: interactions between public health and pharmacogenomics, pharmacogenomics and drugs, pharmacogenomics and diseases, benefits of including pharmacogenomics in public health policy, keys for implementing pharmacogenomics into public health policy, and points for consideration. Pharmacogenomics can prove to be a beneficial addition to a public health policy by maximizing therapeutic benefits, decreasing adverse drug reactions, and allowing for a better allocation of resources. Indirect health benefits can also be realized through economic advantages and international collaboration. The pharmacogenomics research surrounding major infectious diseases (malaria, tuberculosis, and HIV/AIDS) is limited, although important discoveries have been made. The implementation of this information and its implications are far reaching, and deserve extensive consideration. In order to realize the full benefits of this technology, support is needed from the private, public and governmental sectors in order to ensure the appropriateness, acceptability and affordability of this technology within a society.

www.eshg.org
J02.01 Detection of polymorphism µ-opioid receptor in addicted people to opiates
A. Dinarnová, M. Hashemí, M. Zarindast, R. Dinarnová
1Islamic Azad University:Science and Research Branch, Tehran, Islamic Republic of Iran, 2Islamic Azad University,Tehran medical Branch, Tehran, Islamic Republic of Iran, 3Tehran medical university, Tehran, Islamic Republic of Iran.

Addiction is a social problem in Iran and other countries. Studies have shown that addiction may be related to some factors including environment, genes and fetal developmental events. This study has evaluated the effect of gene and gene mutations in the mu opioid receptor (MOR). One of the most important genes involved in addiction is the mu opioid receptor (MOR) gene located on the human chromosome number 6. This gene has multiple exons including exon number 3. Various mutations have been detected in this exon which are involved in the effects of MOR gene. This study has investigated the presence of single nucleotide polymorphisms in the exon 3 of MOR gene in Iranian people. 213 male and female individuals divided into two groups of addicted and non-addicted subjects participated in the study. After preparing blood samples from subjects, DNA was extracted with G-DEX kit. MOR gene exon 3 was amplified with thermocycler equipment. PCR products were sequenced. And analysis by DNA MAN software, a 877 G>A mutation and 759 C>T mutation was detected. Both of these samples were belonged to non-addicted male subjects. Furthermore, in addicted, a 1043 G>C mutation was found. After analysis by x2 analysis, no significant relationship between addiction and genotype and significant relationship between addiction and sex was obtained (P<0.05). This is the time which 1043 G>C mutation has been reported in Iran.

J02.02 Phenotypic variant of Alpers syndrome in a Hungarian family
K. Hadzsiević, K. Komlósi, G. Kasztolányi, A. Gál, M. Molnár, G. Csábi, K. Hollódy, B. Melegh
1Department of Medical Genetics, Pécs, Hungary, 2Clinical and Research Center for Molecular Neurology, Semmelweis University, Budapest, Hungary, 3Department of Pediatrics, Pécs, Hungary.

Alpers-Huttenlocher syndrome is an autosomal recessive mitochondrial DNA depletion syndrome that has been associated with pathogenic mutations in the mitochondrial polymerase γ (POLG1) gene. Comprised oxidative phosphorylation leads to progressive hepatoencephalopathy manifesting in severe, often intractable seizures, myocloni and stroke-like episodes, psychomotor regression and variable hepatic dysfunction. Symptoms usually appear following normal early development, initial symptoms are often infection-induced. The phenotypic spectrum associated with POLG1 mutations is very heterogeneous, even intrafamilial phenotypic variability is observed.

We present a case of a 19 months-old boy in whom myocloni, lethargy and elevated liver enzymes following a viral infection and a positive family history raised the possibility of Alpers syndrome. His sister died at 18 months after an adenoviral infection provoked fulminant hepatoencephalopathy, and the hypothesis that haploinsufficiency of SHANK3 may cause the behavioral and cognitive features of Alpers syndrome. His sister died at 18 months with severe expressive language delay, severe/profound mental retardation and at times autism.

J02.03 Deletion of SHANK3 gene detected by MLPA in a patient with autistic features and hyperactivity
F. Gonzalo, A. Zuniga, L. Pedrola, Y. Bello; Hospital de la Ribera, Alzira (Valencia), Spain.

Autism is a severe neurodevelopmental disorder and one of the most heritable neuropsychiatric syndromes, with a male to female ratio of 4:1. The diagnosis of autism is based on impairments in reciprocal social interaction and communication, and restricted and stereotyped patterns of interests and activities, with abnormal development apparent within the first 3 years of life. Autistic spectrum disorders (ASDs) include: autistic disorder, childhood disintegrative disorder and developmental disorder—not otherwise specified, Asperger syndrome and Rett syndrome. There is substantial evidence from twin and family studies to support the involvement of genetic factors in ASDs. We report a case of 3 years old boy with echolalia, irrelevent talk, not comprehensible. Muttered to himself occasionally, poor social interaction and avoided eye contact. He was unable to follow commands and responded to his name very rarely. The child was born after 8 yrs of a non consangunious marriage, gestation was controlled and it was a full term caesarean delivery. The provisional clinical diagnosis was autistic features with hyperactivity. Karyotype was normal, X-fragile syndrome analysis was normal too and was performed a genetic analysis using MLPA (SALSA®MLPA Subtelomeic Screening P070, X-linked mental retardation P106 and Microdeletion Syndromes P245). Analysis results showed a deletion in SHANK3 gene in 22q13.3. Parents were not carrier of this deletion.

Several studies have described similar results and these findings have led to the hypothesis that haplosufficiency of SHANK3 may cause the behavioural and phenotypic consequences of severe expressive language delay, severe/profound mental retardation and at times autism.

J02.04 Beckwith-Wiedemann Syndrome in a newborn caused by aberrant methylation in KvDMR domain in 11p15
G. Pi, A. Zuniga, L. Pedrola, Y. Bello; Hospital de la Ribera, Alzira (Valencia), Spain.

Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder usually (but not always) present at birth characterized by an increased risk of childhood cancer and certain congenital features. Five common features are used to define BWS are: macroglossia, macrosomia, midline abdominal wall defects (omphalocele, umbilical hernia, diastasis recti), ear creases or ear pits, and neonatal hypoglycemia. This condition is caused by a genetic or epigenetic alteration within two domains of imprinted growth regulatory genes in chromosome 11p15, leading to deregulated expression of the imprinted genes within this region. Approximately 60-70% of the patients have imprinting abnormalities, other causes are uniparental disomy, mutations in the CDKN1C gene as well as small deletions and translocations.

We report a case of a premature newborn of 7 months old referred to Neuropediatric Service. Parents were moroccan origin and without consanguinity, with two previous normal children. Pregnancy was controlled and it was diagnosed an omphalocele at 20 week. Birth was premature at 34 week with a weight 3,100 g, length 43,5 cm, cranial perimeter 34 cm and Apgar 8-9. There was a detective closure in abdominal wall of 3 cm with intestinal loops recovered from the umbilical cord. Karyotype was normal and he was diagnosed as a phenotype of BWS. Genetic analysis was performed using DNA from PBL and MLPA (SALSA® MS-MLPA® BWS/RSS ME030-C1). Methylation analysis showed an aberration methylation of KvDMR domain in the 11p15 region, confirming diagnosis of BWS. MS-MLPA results a low cost technique that is suitable for detecting imprinting alterations.

J02.05 Late diagnosis of non-syndromic intrahepatic biliary atresia. Case presentation
O. N. Belof, M. Pop, T. Marcoveci, A. Militaru, C. Docaia, M. Puiu
1First Pediatric Clinic, University of Medicine and Pharmacy “Victor Babes” Timisoara, Romania, Timisoara, Romania, 2Third Pediatric Clinic, University of Medicine and Pharmacy “Victor Babes” Timisoara, Romania, Timisoara, Romania, 3Genetics and Cytogenetics, University of Medicine and Pharmacy “Victor Babes” Timisoara, Romania, Timisoara, Romania.

Biliary atresia (BA) is a progressive obliteration of intra or extrahepatic biliary system occurring in neonatal period. During the perinatal period an exogen factor influences the innate immune system of a genetically predisposed individual inducing an uncontrollable immune response with consequent atresia of the intra/extrahepatic bile ducts.Genetic factors that could account for the disease are assessed by recent studies.GWAS identified a susceptibility locus for BA on 2q37.3. The authors present a case of a 3 months female uninvestigated by the time of admission. The infant was admitted for schiro-tumegantaneous jaundice present since the first day of life and grow retardation. The family medical
history was insignificant. Clinical examination showed cutaneous trophic disturbances and hepatosplenomegaly. The infant didn’t associated phenotypic particularities or others malformations. Biological assessment showed increased conjugated bilirubin, increased colostasis enzymes, hypertransaminemia, hypercholesterolemia and negative serology for maternofetal infections. The abdominal ultrasound combined with biliary scintigraphy and liver biopsy confirmed the diagnosis of intrahepatic BA. The differential diagnosis was made with Alagille syndrome—an autosomal dominant disorder that associates intrahepatic BA with heart, skeleton, eyes malformations and characteristic facial appearance.

Besides medical treatment ursodeoxycholic acid, bile acid sequestrants and parenteral liposoluble vitamins, the patient was proposed for liver transplantation.

The particularity of this case was the late stage of BA diagnosis associating chronic cholestatic hepatitis (Knodell 14/Fibrosis 3). The diagnosis should be established in the first weeks of life at every infant with prolonged colestasic jaundice by increasing the awareness about this condition to primary care physicians.

The Yunis-Varón syndrome (YVS) represents a rare autosomal recessive syndrome of easy recognition characterized by cleidocranial dysplasia, os- tero-dentro-lucency, epiphysial dysplasia, joint laxity, systemic Moyamoya syndrome, mental retardation, deafness, microcephaly, and paroxysmal dyskinesia. The particularity of this case was the late stage of BA diagnosis associating chronic cholestatic hepatitis (Knodell 14/Fibrosis 3). The diagnosis should be established in the first weeks of life at every infant with prolonged colestasic jaundice by increasing the awareness about this condition to primary care physicians.

The maintenance of ion concentration influences several organs, including the cornea, the ear, and the kidney.

At the age of four it was found that she had impaired hearing at the routine screening. Her hearing loss was mild, bilateral and basin shaped. Perceptive deafness is thought to be associated with ion concentration in the endolymph of the inner ear. The hearing loss in Harboyan syndrome is progressive. One person in Great Britain is reported to have this mutation, but in a heterozygous state. We are presenting this girl hoping to learn about the hearing loss.

The first Alive Case of Yunis-Varón syndrome in Iran, Z. Hadipour, Y. Shahghafii, F. Hadipour; Genetic Department Sarem Cell Research center & Hospital, Tehran, Islamic Republic of Iran.

The Yunis-Varón syndrome (YVS) represents a rare autosomal recessive syndrome of easy recognition characterized by cleidocranial dysplasia, os- tero-dentro-lucency, epiphysial dysplasia, joint laxity, systemic Moyamoya syndrome, mental retardation, deafness, microcephaly, and paroxysmal dyskinesia. The particularity of this case was the late stage of BA diagnosis associating chronic cholestatic hepatitis (Knodell 14/Fibrosis 3). The diagnosis should be established in the first weeks of life at every infant with prolonged colestasic jaundice by increasing the awareness about this condition to primary care physicians.

The major goal of clinical evaluation in genetics is to establish the etiological diagnosis, the cornerstone for providing genetic counseling. Historically, the percentage of diagnoses established by geneticists has been low compared to other medical specialties in which a phenotypic diagnosis may be enough. With the recent advent of microarray-based comparative genomic hybridization (aCGH) which allows the rapid detection of submicroscopic genomic deletions and duplications, the number of etiological diagnoses established has progressively increased. However, there are many old and new diagnostic problems, frequently neglected, that contribute to make it difficult to establish the diagnosis.

At the Latin-American Association of Genetics (ALAG)’s meeting in Mexico in 1994, we first presented a classification delineating four groups of problems. For teaching and educational purposes, we recognized problems due to the patient, the disease, the observer, and the environment. This systematic review and illustration of different diagnostic problems creates awareness and improves the effectiveness of medical practice. With the new technologies, big advances have been made but also new problems have been recognized. In 2008 this classification was expanded to include a fifth group: problems of informatic due to the interpretation of microarray (aCGH) results mainly secondary to the incomplete knowledge about CNV and phenotype-genotype correlation. The application of aCGH to diagnosis is evolving and requires intense communication among medical geneticists and the laboratory specialists about their specific clinical queries or trouble-some cases. In this presentation we will review the diagnostic process and will illustrate and discuss different diagnostic problems.
There are six major subtypes described so far, with variable mode of inheritance. Additional subtypes are described linked with other comorbidities. We describe two sibs with major features of EDS. Two sibs - older sister and younger brother share the same facial features - broad face with coarse facial features, sagging cheeks, long nose, smooth fibrous, sparse hair, joint laxity, thin lax skin with skin wrinkling, hyperextensibility, poor skin healing with forming an atrophic scars. Both children had mitral valve prolapses. The girl, now aged 25 years started to lose her hair progressively, have mild form of kyphoscoliosis and experiencing menstrual irregularities. The boy develops seizures at the age of 14 years. EEG revealed spike-wave complexes. CT scan and magnetic imaging showed demyelination that progressed in years. During the last several years his mental and motor abilities deteriorated. Also the kyphoscoliosis that has been noticed at puberty became significant. The diagnosis in both children was established by skin biopsy and histology evaluation so far, showing destruction of collagen fibers.

Last classification of EDS is made upon major signs and symptoms that are present in the patient. Intrafamilial variability is described. In this case kyphoscoliotic type with variable expression can be suspected. Since both children had aged appearance that progresses with age, also progeroid form is assumed as well. Further evaluation is needed in this family.

J02.12 Examination of SCN1B in Iranian epileptic patient
B. Sedaghatikhayat1, N. Hatamnejadian1, M. Moghaddasi1, S. Zeinolli1, M. Fallahi1, A. Ebrahimzadeh2
1Parseh medical Genetics Center, Tehran, Islamic Republic of Iran, 2Rasool Alinezhad Hospital, Tehran University, Tehran, Islamic Republic of Iran, 3Kowsar human genetics research center, Tehran, Islamic Republic of Iran.

Epilepsy is a common chronic neurological disorder that is characterized by recurrent unprovoked seizures. Molecular studies of candidate genes can help us to define a correct differential diagnosis. So we studied SCN1B gene in Iranian patient with idiopathic Epilepsy includes Febrile Seizure, Generalized Epilepsy with Febrile Seizure (GEFS+) or Dravet syndrome, diagnosed clinically, to explain genotype-phenotype correlation. Materials and Method: We screened 34 selected epileptic unrelated Iranian proponds for all coding regions of SCN1B by PCR amplification and direct Sequencing. All families and propends were previously screened for SCN1A and mtDNA mutations. Results: PCR amplification of whole coding regions and splicing site of SCN1B followed by direct sequencing revealed two novel sequence variations in patients (p.248 R>S, p.210 L>P) which did not detected in the healthy normal family members. Conclusions: According to final results it seems that these two novel SCN1B variations are not causative mutation in epileptic patients but they can act as genetic predisposition factors in epileptic phenotypes which introduce susceptibility especially in response to antiepileptic drugs.

J02.13 Clinical and genetic studies in in Ewing sarcoma
R. Stefanoescu, S. Dumitru, C. A. Popa, M. Popa; University of Medicine &Pharmacy, Timisoara, Romania.

Throughout the latest years the results in treatment for familial Ewing’s sarcoma, in the metastasis-free stages, have considerably improved. The prognosis remains somber for the metastatic disease patients at the first diagnosis time point or in case of relapse after therapy. Inefficient chemotherapy and the relapse are the major mortality causes in Ewing’s sarcoma patients. For improving the therapy outcome in patients with potential relapse, the discovery of reliable markers that predict the tumor “behavior”, help making the diagnosis or identifying the therapeutic molecular targets when relapse, is mandatory. The study group includes 5 cases with Ewing syndrome, diagnosed and treated in the Pediatric Oncology & Hematology Clinic in Timisoara. The diagnostic protocol has included genetic testing (cytogenetic and molecular) and morpho pathology testing (histomorphology, immuno histochemistry). This article’s scope is to highlight this way, the present concepts of the sarcoma gene in Ewing’s sarcoma and the comparison of different molecular markers which could affect its prognosis or contribute to the development of future therapies. A better understanding of the cells of origin and the molecular pathways that regulates carcinogenicity in Ewing’s sarcoma could help in finding new therapies in Ewing’s sarcoma.

J02.14 Facio-audio-symphalangism Syndrome in a patient with partial 17q22 monosomy involving NOG gene
V. Geacintowicz1, C. Gogou-Papazoglou1, P. Bouwen1, R. Geniaux1, G. Minopoli2, A. Casertano1, A. Mormile1, P. Tedeschi1, L. Nitsch1, G. Androu1, D. Melvi1
1Department of Pediatrics Federico II University, Naples, Italy, 2Department of Cellular and Molecular Biology and Pathology Federico II University, Naples, Italy.

Multiple Syntosis Syndrome (SYNS - also called Facio-audio-symphalangism) is an AD disorder characterized by fusion of the proximal interphalangeal joints of the hands, multiple and progressive joint fusions in the hands, feet, cervical vertebrae, hips, brachydactyly, subluxation of the radial heads, associated with facial anomalies, strabismus and conductive hearing impairment. It is commonly caused by NOG (17q22) mutations, as a part of the so-called “NOG-related Sympalangism Spectrum Disorders”. We report a 11-years old boy presenting with synostosis of the proximal interphalangeal joints of the fifth finger of the hands, tall stature, facial anomalies (broad nasal bridge, hypoplastic ala nasi, thin upper lip, pynptomatism), webbed second and third toes, pes valgus, synostosis of cervical vertebrae C3-C4, subluxation of the radial heads, conductive hearing loss; he had normal mental development. CT-scan of temporal bones and brain MRI showed normal data. A clinical diagnosis of SYNS was proposed. It is noteworthy that tall stature has been described in 2 other cases of SYNS. Search for mutations in the NOG gene resulted negative. Array-GH analysis with a resolution of 100 Kb revealed a partial monosomy of 17q22, extending for about 320 kb, including the NOG gene. Deletions of the 17q22 have been associated to a more complex phenotype, including microcephaly, developmental delay, heart malformations, limbs anomalies (including symphalangism), tracheo-esophageal fistula and hearing loss (either sensorineural or conductive). To our knowledge, this is the first case of SYNS due to a specific NOG gene deletion.

J02.15 Fibrochondrogenesis in a 26-week fetus: Hepatic fibrosis
B. Çetinçelik, A. Ata, D. Saker; Sisli Etfal Training & Research Hospital, Istanbul, Turkey.

Fibrochondrogenesis is a rare condition, neonatally and perinatally lethal osteochondrodysplasia with an autosomal recessive mode of inheritance. The disease is clinically characterized by a flat midface with a small nose and anverted nares, significant shortening of all limb segments and a small bell-shaped thorax with a tapering abdomen. We report a 26-week male fetus in which the diagnosis of lethal osteochondrodysplasia was suspected on prenatal ultrasound. After termination of pregnancy, fibrochondrogenesis was confirmed in the postpartum physical and radiological examination, the histopathological study showed us the presence of hepatic fibrosis in addition to fibrochondrogenesis. Here we present a new case of fibrochondrogenesis with hepatic fibrosis which is not previously described. We discussed the molecular pathogenesis of the case.

J02.16 Fibrodysplasia Osissis Progressiva (FOP) in Cyprus: First case report and management issues
G. A. Tanteles, T. Deliartz, E. Souvou, A. Rotti, V. Anastasiadou-Christophidou; Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.

Fibrodysplasia Osissis Progressiva (FOP; MIM#135100), is a very rare and severely disabling autosomal dominant genetic disorder characterised by congenital malformation of the great toes and progressive heterotopic endochondral ossification in specific anatomical patterns. Bone forms at extraskelatal sites within tissues such as skeletal muscles, tendons, ligaments, fasciae and aponeuoses. Attempts to surgically remove heterotopic bone risk provoking explosive and painful new bone growth. Although most cases occur in individuals with no prior family history of FOP, autosomal dominant inheritance has been observed in a small number of families. We report a 27-year-old lady with FOP, the first case ever reported in Cyprus. She presented with a long standing history of joint stiffness, episodic painful inflammatory soft tissue swellings over the arms and back and increasing mobility difficulties starting from her early teens. Analysis revealed that she was heterozygous for the c.617G>A (p.Arg206His) ACVR1 mutation, reported in all classically affected FOP patients. She has recently started having reduced temporomandibular joint mobility and chewing difficulties. The case illustrates management complexities for rare disorders particularly in relatively small centres.
J02.17
Identification of a novel de novo mutation in FLNA in a patient with late onset temporal lobe epilepsy
A. Belca-Meieres1, L. Ramara1, U. Hebr1, F. Sales1, J. M. Sarrava1, 2, C. Bruce2, D. Galieva3, D. G. Rozea2

1Department of Medical Genetics, Paediatric Hospital, CHUC EPE, Coimbra, Portugal, 2Center for and Department of Human Genetics, University of Regensburg, Regensburg, Germany, 3Department of Neurology, Coimbra University Hospital, CHUC EPE, Coimbra, Portugal.

Cortical malformations associated with defects in neuronal migration result in severe developmental consequences including intractable epilepsy and intellectual disability. However, female carriers of X-linked disorders may present very subtle clinical manifestations.

We present the case of previously healthy 34 year old woman, daughter of consanguineous parents, referred to our clinic due to late onset partial focal epilepsy. The initial presentation consisted of light-headedness, dysphoric episodes, and maladaptive behaviors following loss-of-consciousness. The diagnosis of temporal lobe epilepsy was suggested. An MRI scan of the brain identified bilateral symmetric periventricular nodular heterotopias.

There was no relevant family history. Since the patient was planning a pregnancy, she was referred for genetic counseling at the Medical Genetics Department. Due to her parents’ consanguinity, we performed linkage analysis for the FPG2/F locus, which revealed that the patient was homozygous for all informative markers. We proceeded to sequence analysis of this gene, which identified no mutation.

We then performed sequencing of FLNA, associated with X-linked periventricular nodular heterotopias. A de novo missense mutation p.Pro97Ser was identified in exon 2. This mutation has not been described previously, and is predicted to be disease causogenic. The knowledge of this mutation will allow specific genetic counseling to this patient, who is at risk of having severely affected sons. This report also highlights the importance of considering de novo mutation in consanguineous families.

J02.18
Clinical and genetic study of patients from Republic Bashkortostan with novel mutation in GJB1 gene
D. Galiava1, E. Safafilina2, I. Skachkova3, I. Khidiatova2, R. Maghanov3, E. Khuntumudov4
1Bashkir State Medical University, Ufa, Russian Federation; 2Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russian Federation.

Hereditary motor-sensory neuropathy type IX occurs in 13.7% of all HMSN cases in the Republic of Bashkortostan. Two out of three GJB1 missense mutations were previously described: p.Arg75Gln (225C>G) and p.Arg22Gln (259C>G). The p.Thr86Ile (c.257C>T) mutation is novel. In the family with novel mutation the disease began in two males in their second decade of life and was characterized by severe impairment of the peripheral nerves with CNS involvement. Their clinical picture was presented by progressive weakness and wasting of distal extremities, reduced sensation of proprioception, sensitive ataxia, bilateral pes equinovarus deformity. Generalized postural tremor, muscle fasciculations in the hands were seen in one of the patients. Median motor conduction velocity (MCV) was 33 m/s, the M-amplitude was 3 mV. In one of female patients, first signs of the disease also appeared in her second decade of life. Her clinical picture was presented by bilateral pes equinovarus deformity, distal hypostenia, mild weakness of distal parts of the hands, moderate weakness of the legs. Four female patients had no health complaints. Meanwhile, physical examination showed the absence of the Achilles reflexes in two of them. In the remaining two patients - neuropathy signs were identified by electromyography alone.

J02.19
Is 0860 variation a rare polymorphism or associated as a secondary effect in HCM disease?
M. Montazeri, F. Bahgadi, M. Houshandmand, M. Ataei, M. Salek
National Institute for Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran.

Introduction: mtDNA defects, both deletions and point mutations, have been associated with hypertrophic cardiomyopathies. The aim of this study was to establish a spectrum for mtDNA mutations in Iranian hypertrophic cardiomyopathy (HCM) patients. Method and materials: The control group was chosen among the special medical centre visitors who did not have hypertrophic cardiomyopathy or any related heart disease. Hypertrophic cardiomyopathy (HCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondrial and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of HCM. Point mutations and deletions in the two hot spot regions of mtDNA were investigated by PCR and sequencing methods. Results: Some unreported point mutations have been found in this study but no deletion was detected. Meanwhile some of these point mutations have been investigated among HCM patients for the first time. Conclusions: AB8660G transition was detected in a high proportion, raising the question whether this rare polymorphism is associated as a secondary effect in HCM disease.

J02.20
Hemifacial microsomia: case report - from diagnosis to management
C. D. Bruta, D. Belengeanu, M. Stoian, A. Belengeanu
University of Medicine and Pharmacy, Timisoara, Romania.

Hemifacial microsomia (HFM) is the most frequently encountered form of isolated facial anomaly and is the second most common facial anomaly. The prevalence is 1 in 3000 up to 1 in 5600 births. HFM is an early vascular disruption, possible associated with chromosomal anomalies. Males appear to be more affected than females and the right side of the face is affected more frequent. We report a 13 year old male patient with right hemifacial microsomia and discuss the management steps from diagnosis to treatment aiming to improve the facial and occlusal aspects. The orthodontic diagnostic was class II division 1 malocclusion with frontal open bite. The maxilla was narrowed on the involved side with decreased palatal width and unilateral crossbite. Three-dimensional CT reconstruction showed hypoplastic, malformed right mandibular body, minimal underdevelopment of the condyle and unilateral aplasia of the mandibular rami, with absence of the geniod fossa. On the involved side: zygomatic arch was incomplete, maxilla, squamous temporal and malar bone were small; ear presented malformed lobule with rest of pinna absent and bony atresia of external auditory canal; hypoplasia of facial muscles has also been observed. Orthodontic treatment and partial aesthetic solving of the disability with silicone implant on the affected part improved the patient’s facial appearance. The treatment of patients with HFM requires an interdisciplinary approach including at maxillofacial surgery, plastic surgery and orthodontics. Co-operation not only within the team, but also with the patients and their families is essential in order to achieve the best results.

J02.21
Hereditary multiple exostoses - clinical study of nine illustrative cases
1University of Medicine and Pharmacy, Iasi, Romania; 2Pediatric Hospital “Sfanta Maria”, Iasi, Romania; 3University of Medicine and Pharmacy, “Gheorghe T Popa”, Iasi, Romania.

Hereditary multiple exostoses (HME) is a rare medical condition in which multiple bony spurs/lumps (exostoses/osteochondromas) develop on the bone's of a child. The prevalence is estimated at 1:50,000 and seems to be higher in males (male/female ratio 1.5:1).

We present a clinical study of 9 cases of HME (6 male and 3 female) diagnosed in our Medical Genetics Center, to discuss suggestive features, particularities, long term follow-up, management and genetic counseling. This exploratory descriptive aims also to study the impact on daily living activities and quality of life.

According to literature, most commonly involved bones are the femur(30%), radius/ulna(26%), tibia(20%) and fibula (13%). Hand deformity, resulting from shortened metacarpals, is common. Axial sites, such as the pelvis, scalpula, ribs and spine are more commonly the location of degeneration of osteochondromas to chondrodermo arcoma.

In our study exostoses are present in all patients. The most frequently involved bones were the tibia and fibula - 6 cases (66.7%), ribs and scapula 4 cases (44.4%), humerus, radius/ulna and fist 3 cases (33.3%), the femur and knee are affected in 2 cases (22.2%), the spine and elbow in 1 case (11.1%). 3 cases were familial. No tumoral degeneration was identified. Other associated anomalies are: soliosis, lower-back pain, moderate pectus excavatum, tumefaction of the elbow joint, brachydactyly, clinodactyly of fifth finger, long fourth finger, genital hypoplasia.

In conclusion, we present the clinical study of 9 illustrative HME cases, discussing particularities and consequences on daily living and quality of life, as well as management and genetic counseling issues.
Clinical and imagistic correlations among pathological forms of holoprosencephaly

M. Isio, D. Jacobs, A. Masson
University of Medicine and Pharmacology, V.Babes; Neonatology, Timisoara, Romania; Timisoara, Romania.

Introduction: The absence or the incomplete cleavage of prosencephalon into diencephalon and telencephalon in the 4-8 th weeks of fetal life, leads to holoprosencephaly. This is often associated with severe facial anomalies, microcephaly, harelip and cleft palate, and mental retardation. There are a number of genetic implications discovered in this condition (autosomal dominant, autosomal recessive, X-linked, and mitochondrial). Additionally, there are a number of other etiologies that should be considered, including teratogens, infection, and maternal diabetes.

Material and method: The study lot consisted of 4 newborn: 3 on term newborn with GA (gestational age) 39-40 weeks and BW (birth weight) 3500-4000 g and 1 newborn with IUGR (intrauterine growth restriction).

Results: On term newborn presented labio-palatine clefting; two of them presented cardiac malformations (Atrial septal defect and Ventricular septal defect); they were classified as having Semilobar Holoprosencephaly. Newborn diagnosed with Semilobar Holoprosencephaly had altered phenotype: harelip (2 clinical cases); labio-palatine clefting (3 clinical cases); micrognathia; flattened nose and upper implanted ear. Cranial ultrasound and MRI showed anomalies of the interhemisferic split, agenesis of the posterior region of corpus callosum, various degrees of fusion of the lateral ventricles, the absence of cavium septum pellicida.

Conclusions: Semilobar Holoprosencephaly is a severe form of illness due to the brain malformation which determines growth anomalies and severe neurological retardation.

MLPA analysis in 25 Brazilians individuals with Holoprosencephaly

1Universidade Estadual Paulista - Unesp/Brazil, Botucatu, Brazil, 2Hospital de Reabilitação de Anomalias Craniofaciais - HRAC-USP, Bauru, Brazil.

Holoprosencephaly is a common disorder of the developing forebrain in humans, occurring with a frequency of 1:25,000 to 1:100,000 births. The etiology is heterogeneous and complex, as this developmental disorder can be due to environmental factors, chromosomal aberrations, or genetic anomalies. SHH, ZIC2, SIX3 and TGF genes are the four major genes implicated in the susceptibility to HPE, but have only been found to explain 25% of the genetic cases, including mutations and microdeletion. We analyzed a cohort of 26 individuals within the holoprosencephaly spectrum thought Multiplex Ligation Dependent Probe Amplification (MLPA) technique using P187 Holoprosencephaly Kit (MRHC-Holland®). All individuals have been previously analyzed for mutations in SHH, ZIC2, SIX3 and TGF genes. We found one case with deletion in SHH gene. Numerous isolated HPE case reported have shown that most of the chromosomes have been implicated, emphasizing the genetic heterogeneity of HPE. Considering this multigenic aspect of the disease, investigation of HPE loci and identification of new HPE genes must be continued. Mutations and deletions in HPE genes do not always lead to physical signs of HPE, however this information may be helpful for genetic counseling purposes.

Grants: Fapesp n° 2010/18740-2

Findings in a routine setup of molecular diagnostics in Hypertrophic and Dilated Cardiomyopathy

C. Meyer-Kleine, R. Binner1, W. Maurer2, T. Schellf11, synlab MVZ Bad Nauheim, Bad Nauheim, Germany, 1Institute of Public Health, University Heidelberg, Mannheim, Germany, 2Celenus Fachklinik, Freiburg, Germany.

Background: Many findings has been published regarding the genetic background of hypertrophic (HCM) and dilated (DCM) cardiomyopathies. Hundred of mutations in a vast number of disease genes could be identified. However, most data were established using well defined study populations. In contrast, only few data are available about routine patients without an abnormal preselection bias.

Materials and methods: We studied n=140 consecutive patients with HCM and n=22 cases with DCM. In HCM a panel of the most frequent disease genes MYH7, MYBPC3, TNNT2, and TNIN3 encoding for ß-myosin heavy chain, myosin binding protein C, cardiac troponin T and cardiac troponin I respectively, were analyzed using direct terminator sequencing technology (ABI-BigDye-Terminatorv1; 3130xL). In DCM a panel of the most frequent disease genes LMNA (encoding for Lamin A/C), MYBPC3, MYH7 and TNNT2 respectively, underwent analyses.

Results: In HCM of 104 pts in n=54 pts (52%) using the HCM diagnostic panel a mutation in one of the disease genes could be found, whereas in DCM of 22 pts in n=3 pts (14%) using the DCM diagnostic panel could be detected.

Conclusions: In molecular diagnostics of serial HCM and DCM patients using specific panels of the most frequent disease genes in HCM more than a half of all patients and in DCM more than 10% of all cases could be genotyped positively. This is comparable to study based data. These findings indicate the positive transfer of scientific data into clinical routine use in favour of a better patients care in the field of genetic counseling.

Possible mosaicism in a case of lingual plexiform neurofibromatosis

F. F. Cionca1, L. Cionca2, C. Ardeleanu1, C. Andreia1.
1Institute of Public Health, University Heidelberg, Mannheim, Germany, 2Prof. Dr. Dan Teodorescu" Clinical Hospital of Oro-Maxilo-Facial Surgery, Bucharest, Romania.

Introduction Neurofibromatosis type I is typically an autosomal dominant inherited disorder with complete penetrance and variable expressivity, generated by the neurofibromatosis in mutation, a tumor suppressor gene located on chromosome 17q11.2. 50% of the cases are mutations de novo, with no other affected family members. Somatic mosaicism accounts for many sporadic cases. The classic NF1 is characterized by multiple neurofibromatosus tumors, including the plexiform neurofibroma, cafe-au-lait spots, freckling of the groin and axilla, Lisch nodules in the eye and skeletal abnormalities. The patients have increased susceptibility to develop other benign or malignant tumors, so they need regular follow-up to detect malignant degeneration, an early recurrence or appearance of other manifestations. A particular aspect is described in some patients, presenting only one clinical criterion of diagnostic, possibly generated by a mosaic form and having in this situation, serious implications for the patient’s evolution and its family.

Case presentation A 29 years old male was hospitalized for a large tumor located on the right hemi tongue. There were no other clinical findings in physical examination. The pathological personal antecedents and the family history were negative.

Histological examination demonstrated the presence of a lingual plexiform neurofibroma.

Conclusion Despite their occurrence in the head and neck region, neural heath tumors are rare in the oral cavity; oral manifestations are reported much often in patients affected by neurofibromatosis.

Because of this, we think our patient may present a form of mosaicism and needs genetic testing for NF1 mutations, considering the possible implications.
Abstracts - European Human Genetics Conference 2012

J02.27
Investigation of Familial Mediterrean fever (FMF) in 25 Iranian patients

V. Gholinejad, S. Halaie, A. Asratakhani, M. Halaie, A. Farraie, M. Houshmady
1Special Medical Center, Tehran, Islamic Republic of Iran, 2National Institute for Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran.

Familial Mediterranean fever (FMF) is an Autosomal recessive disorder characterized by recurrent Attacks of fever and inflammation in the peritoneum, synovium, or pleura, accompanied by pain. FMF is caused by mutations in MEFV gene that is located at 16p13.3 and encodes a protein, pyrin or marenostrin. In this study, PCR and sequencing method was performed for four high rate mutation exons of MEFV gene (2.35, 10) in 25 unrelated Iranian patients. The most frequent homozygote mutation was R202Q (in %24). followed by M694V (in 16%), and M680I (in 8%). Eight percent were compound heterozygotes for three mutations (V726A, E167D, F479L).

J02.28
Proband with Hunter syndrome: ten years later

M. O. Mkhederze, E. S. Shabanova, The North-West State Medical University named after I. I. Mechnikov, StPetersburg, Russian Federation.

Mucopolysaccharidosis II, Hunter syndrome (MPS II, OMIM 309900, Xq28, IDS, OMIM 300023), is a rare disorder caused by deficiency of the lysosomal enzyme iduronate sulfatase ((EC 3.1.6.13), leading to progressive accumulation of glycosaminoglycans in nearly all cell types, tissues, and organs. We reported on this case of HS in EJHG, v.11, Suppl 1, p. 166, 2003. Now proband is 18 yr aged. His intelligence is normal and the youth is the tenth grader of a comprehensive school. Proband has progressive coarsening of facial features, short stature (124cm) and underweight (32kg), skeletal deformities of thorax and feet, protuberant abdomen, hypermetropic astigmatism (S=0), chronic purulent ethmoiditis, cerebral ventricular dilatation, cardiac valvular disease (myxomatosis of mitral valve and mitral regurgitation, cardiomyopathy), hepatosplenomegaly. Joint mobility is decreased, and the fingers have a clawike deformities. Laboratory findings and imaging studies were found to show moderate abnormalities. Unilateral auditory prosthetics was made. Care for our patient with HS involves a multidisciplinary approach and includes pediatrician, neurologist, orthopedist, otolaryngologist, ophthalmologist, geneticist etc. To our regret ERT was not available.

J02.29
Novel mutations detected in the NF1 gene

F. Joncour, S. Gallati
Division of Human Genetics, University Hospital, Bern, Switzerland.

Mutations in the NF1 gene are the cause of Neurofibromatosis type I, the most common tumour-predisposing disorder in humans. As the mutation rate in the NF1 gene is among the highest known, analysis of the NF1 gene continues to reveal novel mutations in many patients. Because of the large size of the gene, the lack of a mutation hot spot and the diversity of pathogenic mutations found, NF1 analyses have long been laborious and sometimes yielded unsatisfactory results. Newer techniques are more efficient and allow detection of a causative mutation in the great majority of NF1 patients. We report on 7 novel NF1 mutations not yet described in the HGMD mutation database (version 9.12.2011). Among them a spectrum of different mutation types was found: 3 splice site mutations, caused by a small deletion (c.654+2delT), a duplication (c.2325+1dupG) and a base change (c.7126+1G>A) respectively, all concerning splice site consensus sequence positions. Furthermore we detected 2 missense mutations (c.3503G>A, c.6718C>T), 1 nonsense mutation (c.4720C>T) and 1 duplication leading to a frameshift (c.6676dupA). Two of the patients were adults, for whom genetic analysis served the confirmation of the clinical diagnosis. The patients who benefit most from the ameliorated mutation detection, however, are young patients with only little clinical manifestations and hence uncertain diagnosis. This was the case for five of the patients, who at the time of diagnosis were 11 years old (1 patient) or younger than two years (4 patients).

J02.30
Genetic testing for Neurofibromatosis (NF1). When and why?

H. Pyrissi, A. Spyrouli, S. Pisiou, S. Ktistos-Tsakil, A. Mavrini, K. Claesi, E. Kanavakis
1Department of Medical Genetics, University of Athens, "Athena Sophia" Childrens Hospital,Greece, Athens, Greece, Greece, 2Center for Medical Genetics-OMRB, Ghent University Hospital, Gent, Belgium, Belgium.

The diagnosis of Neurofibromatosis (NF1), a common autosomal dominant disorder affecting 1/3500 individuals, is based on well-defined clinical criteria in adults which are unsatisfactory in children. The responsible gene is the NF1 tumor-suppressor coding for the neurofibromin. Approximately 50% of cases represent new mutations. We describe the phenotypic and genetic variations in 39 Greek NF1 patients and report on the significance early genetic testing, aged 7-months to 34-years (21 males/18 females).13 patients underwent molecular analysis of the NF1 by cDNA sequencing of all exons and were found positive, 6 of them were younger than four years. If no mutation was detected the presence/absence of deletions was verified by MLPA. Our patients presented the following NF1 clinical features: café-au-lait spots in 34/39, two or more neurofibromas in 15/39, axillary or inguinal freckling in 9/39, optic glioma in 2/29, two or more Lisch nodules in 5/39, bony lesions in 13/39 and a first-degree relative affected with NF1 in 15/39. 5/39 patients had tumors (except neurofibromas) and mental retardation presented in 7/39 individuals older than 3 years. 15/39 patients had abnormalities in the brain MRI. 4/13 patients analyzed, carried novel mutations, 4/13 had missense, 2/13 frameshift, 6/13 nonsense and 1/13 a large deletion. From our small group of NF1-patients we must strongly recommend the implementation of molecular testing at an early age as clinical diagnosis is difficult in young children. The sooner the molecular analysis is performed the more beneficial it is for the family counselling and the follow-up of the patients.

J02.31
A particular presentation in a possible case of segmental neurofibromatosis Type I

F. M. Nedelea, L. Tarcule2, V. Piaia2, C. Alinen2, G. Peluceu2
1Clinical Hospital Filantropia, Bucharest, Romania, 2Institute for Mother and Child "Alfred Rusescu", Bucharest, Romania, 3University of Medicine "Carol Davila", Bucharest, Romania.

Neurofibromatosis type I is an autosomal dominant condition, with birth incidence 1/3500 and a high degree of variability of clinical expression. Segmental or regional neurofibromatosis type I (NF1) is diagnosed in individuals who have features of NF1, restricted to a part of the body and has an incidence approximately 1/40,000. Some of those patients displaying only pigmentary changes or dermal neurofibromas, and others having both features.

In some cases the unusual distribution of features is probably just a chance occurrence in a individual with NF1. In other individuals segmental neurofibromatosis type I represents mosaicism for a somatic NF1 mutation.

We report on a case of a 30 years old woman who associates pleomorphic neurofibroma in lumbar region, and has also a pigmented area with asymmetrical distribution in lumbar region, flanks, and downwards on superior parts of the legs. She is the first affected person in her family. Because the tumor growth is progressive and patient associates also pain the surgical removal is the first priority. Patient wants to have children after this intervention, but counselling is very difficult, knowing that have been reported cases with segmental NF1 whose children have typical NF1. Prenatal diagnosis is controversial and limited, because even in presence of molecular diagnosis severity of the disease cannot be predicted in affected fetus.

J02.32
Congenital heart defects in oculo-auriculo-vertebral spectrum

M. C. Panzaru, C. Rusu, M. Volociuc, E. Brahu, L. Butnariev, L. Gaba, M. Macev, R. Popescu, E. V. Gorduzau
"Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania, 2"Sf. Maria" Children Hospital, Iasi, Romania.

The oculo-auriculo-vertebral spectrum (OAVS) is a non-random association of hemifacial microsomia with mandibular hypoplasia, ear malformations, preauricular tags and ocular dermoid cysts. Most cases are sporadic. The underlying genetic mechanism remains unknown. Congenital heart defects (CHD) have been reported in 5-60% of the patients. We have analysed the types of CHD in 18 children with OAVS recorded in the files of Iasi Medical Genetics Center between January 2006 and December 2011. There were 7 girls and 11 boys. The diagnosis was based on the presence of the characteristic features of the disorder. CHD were present in 8 children - atrial septal defect (5/18), Fallot tetralogy (2/18) and ventricular septal defects (1/18). The prevalence of heart defects was higher in boys (54.5%) than in girls (28.5%). We found no correlation between the severity of the clinical manifestations and the association with CHD. In the literature ventricular septal defect and Fallot tetralogy are the most frequent CHD associated with OAVS. The comparison of our data and the literature data will be presented in detail.

In conclusion we present a study of 18 cases with oculo-auriculo-vertebral spectrum, 44.44% of them having heart defects. Cardiac defects are com-
J02.33
R. A. Gedeon;
Medical Genetic Unity, Maracásibo, Venezuela, Bolivarian Republic of.

Oral-facial-digital syndrome type I (OFDI; OFD1; OMIM 311200) is a rare developmental disorder transmitted as an X-linked dominant condition with embryonic male lethality. OFDI is characterized by malformation of the oral cavity, face, and digits. Central nervous system (CNS) abnormalities and cystic kidney disease can also be part of this condition. Lesions in the mouth include median pseudoclefting of the upper lip, clefts of the palate and tongue, lingual tumors and dental anomalies (missing or supernumerary teeth, enamel hypoplasia, and teeth malpositions). Dysmorphic features affect the face include hypertelorism, frontal bossing, micrognathia, facial asymmetry, alar hypoplasia and broadened nasal ridge. The digital abnormalities are syndactyly, clinodactyly, brachydactyly and, rarely, pre or post-axial polydactyly. Less frequently expressed phenotypic anomalies include skin mili, alopecia, deafness and trembling. It is considered to be a ciliopathy caused by mutations in the OFD1 gene. A variety of mutations have been described, and a genotype-phenotype correlation has been suggested. This disorder is due to mutations in the OFD1 gene that encode a centrosomal protein localized at the basal bodies at the origin of primary cilia.

The proband was a female newborn, sporadic case with suspected OFDI. This newborn had many of the typical manifestations, including frontal bossing, micrognathia, lingual tumors, cleft cheek, clono- dactyly and others less frequently described findings: alopecia and skin mili. We extended the pedigree to three proband’s generations, performing a thorough physical examination. In the light of this case, the author discuss the variability phenotypic expression of OFD1 gene and the genetic counseling in this family.

J02.34
Pathological findings of a male fetus with familial Pelizaeus–Merzbacher disease caused by a 320.6kb Xq22.2 duplication

Merzbacher disease caused by a 320.6Kb Xq22.2 duplication

1st Department of Pathology, Medical School, University of Athens, Athens, Greece, 1st Department of Obstetrics and Gynecology, University of Crete, Heraklion, Greece, 1st Department of Obstetrics and Gynaecology; University of Örebro, Örebro, Sweden. Pelizaeus-Merzbacher disease (PMD) is a disorder with clinical variability, ranging from the severe connal form to the classical form. We present the clinical and molecular findings of two affected male, three carrier females and an aborted male fetus with familial PMD. The two male probands exhibited severe PMD phenotype and intellectual disability (ID). High resolution oligonucleotide based array comparative genomic hybridization (aCGH) identified Xq22.2 duplication of 320.6kb [102641391-102961998, hg18], including the proteolipid protein 1 gene (PLP1) and surrounding chromosomal region. Postmortem examination was completed in the aborted male fetus. To our knowledge this is the first report of specific neuropathological lesions in a fetus with familial PLP1 duplication. The observed early degenerative brain lesions occurring before the onset of myelination suggest that the PLP1 gene has a more complex role in human brain development exceeding its structural function in myelin formation.

J02.35
A case with Rhizomelic chondro dysplasia punctata
E. KOPARI;
A. Gezdiric, A. Kopar, H. Ulucan, G. Guven, E. Yosunkaya, M. Seven, A. Yuka, M. Uzun;

1st Department of Medical Genetics, Medical School, University of Athens, Athens, Greece, 1st Department of Obstetrics and Gynaecology; University of Örebro, Örebro, Sweden.

Rhizomelic chondrodysplasia punctata (RCDP) is an autosomal recessive peroxisomal disorder with a phenotype of proximal shortening of humerus and femur, punctate calcifications around the large cartilage, possible calcification of the intervertebral discs, cataract, severe mental deficiency and postnatal growth retardation. It usually results in death in the first decade of life. Characteristic biochemical criteria were present: decreased plasmalogens, elevated levels of plasma phytic acid, and normal levels of very long chain fatty acids. Three variants: RCDP1, RCDP2 and RCDP3 are caused by mutations in the PEX7, GNPAT and AGPS, respectively. The clinical picture in RCDP2 and RCDP3 is similar with RCDP1, which is the most frequent type. To distinguish the subtypes, enzyme analysis is necessary from the skin fibroblasts. Here, we report a 7-month-old female with bilateral cataract, punctate calcifications around the large cartilage, and postnatal growth retardation. Plasma phytic acid level was elevated and long chain fatty acids levels were normal. The clinical phenotype and biochemical tests were consistent with RCDP and we analyzed our patient for PEX7 mutations. Sequence analysis of all exons and intron-exon boundaries of PEX7 showed no mutation. Enzyme analysis for subtyping and mutation analysis of the corresponding genes, GNPAT and AGPS are in progress.

J02.36
A Case of Sirenomelia Sequence with Aprosencephaly
M. Roks, H. Kahveci, M. Y. Alip, B. A. Aksy, E. Emir, A. Kazm;

Russian Academy of Medical Sciences, Research Center for Medical Genetic, Moscow, Russian Federation, *Research Center of Pediatrics and Child Surgery, Russian Health Ministry, Moscow, Russia, Moscow, Russian Federation.

Sirenomelia sequence is a rare congenital anomaly. This is also known as “mermaid syndrome” because of typical feature of lower limb. Sirenomelia sequence is characterized with a single midline lower limb. Our case is an infant delivered at 34 gestational weeks by spontaneous vaginal delivery from a 34 years old gravid a 2, para 0. Parents are not relative. Infant has one femur, one tibia and one phalanx at lower extremity. Calcaneus, metatarsals and other bones of the foot are absent. Patient has anal atresia and renal agenesis. Determining of sex was impossible since external genitalia was absent. Ultrasonographic examination revealed aprosencephaly. Although some risk factors (e.g maternal diabetes) have been suggested, etiology of sirenomelia sequence is debated. In this report, we describe a premature infant with sirenomelia sequence because of very rare presentation.

J02.37
Gross deletion in the SLC22A5 gene
A. Stepanova, S. Lisiniche;

1Russian Academy of Medical Sciences, Research Center for Medical Genetic, Moscow, Russian Federation, *Research Center of Pediatrics and Child Surgery, Russian Health Ministry, Moscow, Russia, Moscow, Russian Federation.

Systemic primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation. Disorder is affected by mutation in SLC22A5 gene, which consists of 10 exons, maps to chromosome 5q31 and encodes the neutral organic cation transporter (OCTN2). Affected patients can have a predominant metabolic or cardiac presentation. We have studied the patient with systemic primary carnitine deficiency. Prior for sequence analysis of coding regions and flanking intronic SLC22A5 gene were chosen. PCR products of exons 8, 9, 10 were not received. Exons were amplified in diplex PCR with the control marker - exon 13 PAH gene, mapping outside the SLC22A5 gene. PCR product was found only from the control marker. Therefore, a homozygous novel mutation - the deletion of exons 8, 9, 10 of the SLC22A5 gene was found. As a result the diagnosis of systemic primary carnitine deficiency was confirmed for the first time in Russia by molecular genetic methods.

J02.38
Coexistence of Townes-Brocks syndrome and Albinism in a case
K. Nadir, D. Gun, T. Curu, H. Kacar;
Selçuk University, Selçuklu Medical Faculty, The Department of Medical Genetics, Konya, Turkey.

Townes-Brocks syndrome (TBS) is a genetic disorder. The most common features of this syndrome are anal atresia, abnormally shaped ears, and hand malformations that most often affect the thumb. Most people with this condition have at least two of these three major features. Albinism is one of the archetypal inborn errors of metabolism. It is usually defined as a congenital hypopigmentation of the skin, hair, and eyes. In this report, we present 9 months male case having dysmorphic features. The patient’s mother and father were not consanguineous. Cyto genetic analysis was normal. The patient had an anal atresia, low and simple ears, ear tag, simian line and short palpebral fissure. In addition to these findings, he has also a congenital hypopigmentation of the skin, hair and eye, indicating albinism. This finding was seen in his mother diagnosed as albinism. This is the first case having coexistence of TBS and albinism in the literature. It is not clear whether this syndrome is associated with the other or independent event.
J02.39 The wide phenotypic variability of Tricho-rino-phalangeal syndrome type 1 - a five cases study

R. A. CEITJ, M. VELAZQUEZ1, M. PANZARÀ, L. BUTURNIO, E. BRAHÀ, S. POPA, A. GROZAVU, C. JACOB, O. GORDUA, C. RUST1;
1Medical Genetics Center, “Sfanta Maria” Children’s Hospital, Iasi, Romania, “Grigore T. Popa” University of Medicine and Pharmacy, Medical Genetics Department, Iasi, Romania.

Tricho-rino-phalangeal syndrome (TRFS) is a rare autosomal dominant syndrome, characterized by short stature, typical facial dysmorphism and skeletal abnormalities.

We present 5 cases of TRFS in order to illustrate this rare disorder, to present particularities and long term follow-up and to discuss management and genetic counseling.

Case 1: growth retardation, dysmorphic face (sparse/finely/depigmented hair, medial flare of eyebrows, bulbous nasal tip, hypoplastic nostrils, thin lips, micrognathia), brachydactyly. Associated anomalies: scaphocephaly, hemiangioma, cryptorchidism and right inguinal hernia.

Case 2: growth retardation, dysmorphic face (sparse/finely hair, lateral thinning of eyebrows, bulbous nose, hypoplastic nostrils, long/deeply grooved philtrum, thin lips), broad thumb, preaxial polydactyly (foot). Associated anomalies: umbilical hernia.

Case 3: short stature, dysmorphic face (sparse/finely/depigmented hair, lateral thinning of eyebrows, bulbous nose, long philtrum, thin lips, micrognathia), thick nails. Hand X-ray: metacarpal shortening, cone-shaped epiphyses (middle/distal phalanges), delayed bone age. Associated anomalies: empty sella, posterior fossa arachnoid cyst (head CT), hypothyroidism.

Case 4: growth retardation, dysmorphic face (sparse/finely/depigmented hair), long philtrum, high palate, abnormal tooth position, retrognathia), brachydactyly, kyphosis, scapulae alatae, mild mental retardation. Hand and forearm X-ray: slightly curved radius, clinodactyly.

Case 5: low weight, dysmorphic face (sparse scalp hair, abnormal columna, long/deeply grooved philtrum, thin lips, micrognathia, large ears), mild hypotonia. Associated anomalies: trisomy 18, left inguinal hernia.

In conclusion, we present five cases of TRFS, in order to illustrate this rare genetic disorder, to discuss phenotypic variability and particularities found in our patients, as well as long term follow-up, management and genetic counseling.

J02.40 Karyotype and treatment response correlations in Turner Syndrome

A. Chirita Emandi1, I. Micle1, M. Mararzan1, C. Pianer1, M. Puia1;
1Louis Turcana” Emergency Hospital for Children Timisoara, Timisoara, Romania, “University of Medicine and Pharmacy, Victor Babes”, Timisoara, Romania.

Aim: To assess treatment response to growth hormone (GH) and estrogen therapy in girls with Turner syndrome (TS) and to find possible correlations with karyotype.

Methods: Nine girls with TS that received treatment with GH for at least 2 years. We evaluated differences in height standard deviation score (SDS), at baseline, at one and two years from baseline; and pubertal stage development in patients with or without estrogen therapy.

Results: Median age was 12.1±3.7 years. Chromosomal analysis revealed six girls (66%) with pure 45X monosomy, while 3 (33%) had mosaic form. The patients had a baseline mean SDS=-3.29±0.65. After 2 years of GH treatment only one patient achieved SDS>−2 value for normal girls.

Conclusion: We did not find a significant correlation between karyotype and treatment response to GH and estrogen therapy. Therefore, karyotype cannot be used to predict response to treatment in TS patients. Further studies are needed to find possible correlations with karyotype and treatment response to GH and estrogen therapy in TS patients.

J02.41 Primary polytopic developmental anomalies - a particular form of VACTERL association

T. Marcondi1, O. Margineanu1, O. Belete1, M. Daescu1, A. Militaru1, L. Olariu1, D. Chiru1, O. Sarbu1, M. Puia1;

Background: VACTERL association occurs sporadic (16 cases/100,000 live births), more common in males. Low recurrence risk and heterogeneous causality are characteristic. The presence of at least three congenital malformations (Vertebral defects, Anal atresia, Cardiac anomalies, Tracheoesophageal fistula, Esophageal atresia, Renal anomalies, Limb defects) would suggest VACTERL diagnosis. Limb anomalies restricted to upper ones and cardiac septal defects are common. Intrauterine growth retardation and difficult weight gaining are noticed. Neuropsychological impairment is uncharacteristic. The management includes surgical correction of life-threatening abnormalities and long-term follow-up of their sequelae.

Material and methods: We present a 5 months old male infant with multiple congenital anomalies (absence of right forearm, atrial septal defect, esophageal atresia, proximal tracheoesophageal fistula) admitted for pneumonia. He is the product of a full-term pregnancy complicated by hydramnios and threatened miscarriage. Birth weight was 2600 g. Primary defects in family members and exposure to environmental factors were denied. Full assessment (history, clinical examination, biological and imagistic tests, neurological, cardiovascular and genetic evaluation) was done. Results: Productive cough, stridor, intermittent expiratory wheezing and mild weight deficit were noticed. Psychomotor acquisitions were age-appropriate. Barium swallow radiograph diagnosed gastroesophageal reflux and ruled out esophageal stricture. Child’s complex pathology and mother’s depressive disorder altered quality of family life.

Conclusions: VACTERL association is probable in this case. Anomiotic hand syndrome with congenital amputation of the right forearm has been considered. Efficient oncopediatric backing and genetic counseling, physical and occupational therapies are needed long-term. Multiple and prolonged hospitalizations for recurrent pneumonia may worsen the prognosis.

J02.42 The evaluation of stress in 40 molecularly-confirmed patients with Williams-Beuren syndrome

V. A. A. S. Amaral1, C. R. D. C. Quaio1, R. L. Dutra2, R. S. Honjo2, L. D. Kalikowki1, M. N. Moreira1, I. Gomy1, M. C. T. V. Teixeira1, D. B. Bertola3, A. C. Kim4;
1Unidade de Genética, ICF/FMUSP São Paulo, Brazil, 2UIC - Hospital das Clínicas - FMUSP São Paulo, Brazil, 3Universidade Presbiteriana Mackenzie, São Paulo, Brazil, 4Institut des Maladies Neurodégeneratives et Neuroinflammation, Université Paris-Est Créteil, Créteil, France.

The objective of the study was to determine the real extent of the stress in individuals with WBS and to identify the major events in their lives that might model a stress reaction.

A standard questionnaire based on DSM-IV-TR, the Brazilian version of intelligence measurement scales (WISCIII/WAIS-III) and objective stress scales (Lipp’s Children Stress Scale or Lipp’s Adult Stress Scale) were applied to 40 individuals with WBS. The stress scales were also applied to 40 normal individuals.

The major events related to stress reactions in the patients with WBS were excessive noise (60%), discrimination (58%) and excessive homework (35%). The average IQ in WBS was 68.5(SD: 8.9). Patients with WBS presented statistically significant (p<0.001) higher levels of stress (mean: 39.5) when compared to controls (mean: 24). No difference in subgroups of WBS patients stratified by gender (p: 0.74), level of IQ (p: 0.935) or whether they attended special education (p: 0.14) was observed.

Patients with WBS are at risk for stress. Hyperacusis was the most common stressor and, then, should be properly addressed in an attempt to improve the quality of life of patients with WBS.

J02.43 Meningomyelocele in the offspring of a patient with Waardenburg syndrome type 1 syndrome: a genetic counselling dilemma

M. Irbac1, J. Orrego2, V. Mandenge1, V. Pingualt1, L. Van Maldergem1;
1Centre de génétique humaine, Besançon, France, 2Dept of Biochemistry & Genetics, CHU Henri-Mondor, Université de Paris-Est Créteil, Créteil, France.

We describe two cases of Waardenburg syndrome type 1, one being diagnosed in a 5-year-old male with moderate mixed deafness, dystopia canthorum, causing subtle skin pigmentary changes of upper limbs and the other one in the unrelated 31 y-old husband of a 29 y-old female after termination of a 22 weeks pregnancy for lump sacral meningomyelocele and Arnold-Chiari malformation diagnosed by serial ultrasound screening. Family history of the genitor was unremarkable, except for a recent diagnosis of moderate deafness, in the context of familial premature graying of hair before 25 years of age (mother, sister, brother). On clinical examination, he has overfriendliness, empathy, a fluent speech and hyperacusis. They also show stereotyped behaviors, aggressiveness and some psychiatric disorders. These characteristics may increase the vulnerability of these patients to stress.

We present two cases of Waardenburg syndrome type 1, one being diagnosed in a 5-year-old male with moderate mixed deafness, dystopia canthorum, causing subtle skin pigmentary changes of upper limbs. The other one in the unrelated 31 y-old husband of a 29 y-old female after termination of a 22 weeks pregnancy for lump sacral meningomyelocele and Arnold-Chiari malformation diagnosed by serial ultrasound screening. Family history of the genitor was unremarkable, except for a recent diagnosis of moderate deafness, in the context of familial premature graying of hair before 25 years of age (mother, sister, brother). On clinical examination, he has overfriendliness, empathy, a fluent speech and hyperacusis.

They also show stereotyped behaviors, aggressiveness and some psychiatric disorders. These characteristics may increase the vulnerability of these patients to stress. The objective of this study is to determine the real extent of the stress in individuals with WBS and to identify the major events in their lives that might model a stress reaction.
topia canthorum, suggesting a diagnosis of autosomal dominant Waardenburg syndrome type 1. Neural tube defects are thought to occur sporadically as the consequence of multifactorial inheritance. Based on this assumption, a low recurrence risk is usually given (<3%), and folic acid supplementation (4mg/d) in the periconceptional period recommended in the future pregnant woman. Rare occurrences of NTD due to mendelian disorders have been described. They include, among others, MTHFR homozygous mutations, and Meckel syndrome with respect to autosomal recessive inheritance.

Van Gogh and PAC3 mutations when considering autosomal dominant inheritance. If the diagnosis of Waardenburg type 1 syndrome is eventually established in the genitor of the malformed fetus, a recurrence risk of 10% (empirical value) has to be taken into consideration, three fold-higher than the a priori 3% risk in the present case. We recommend to be aware of premature graying, dystopia canthorum and/or deafness when counseling for NTD.

J02.44 Novel synomyonic transthyretin gene mutation N98N in cardiomyopathy patient from St. Petersburg, Russia

K. V. Solovyov1, N. A. Grudinina1, E. N. Semenin1, E. V. Shliakhto1, A. Y. Gudkova1, M. M. Shavlovsky1

1Department of Molecular Genetics, Research Institute of Experimental Medicine, Northwestern Division, St. Petersburg, Russian Federation, 1Almazov Federal Center of Heart and Blood, Federal Agency of High Technology Medical Assistance, St. Petersburg, Russian Federation, 2Pavlov State Medical University, Institute of Cardiovascular Diseases, St. Petersburg, Russian Federation.

Over the past several years we have been searching transthyretin (TTR) gene mutations in patients with cardiomyopathies from St. Petersburg (Russia). In our previous work TTR gene mutations H90V, V30M and deletion (del9) were found in patients with restrictive amyloid cardiomyopathy. In the present investigation new TTR gene mutation was identified in patient with hypertrophic cardiomyopathy without amyloidosis. Screening TTR gene for mutations was provided with SSCP-analysis followed by sequencing. N98N mutation was detected in the 98 position from AAC to AAT (c.292T>C according to NCBI reference sequence NC_000018.9 (c.354C>T according to NCBI reference sequence NM_00371.3) was found. This mutation leads to TTR codon substitution in the 98 position (from AAC to AAT, p.N98N (p.N118N according to the mRNA sequence)) in the 4-th exon of TTR gene which doesn't lead to the aminoacid substitution in the TTR polypeptide sequence. The N98N mutation was detected in heterozygous state. The mutation revealed in this study was not previously identified in other populations and was not previously described in literature and databases. The causal relationship of this mutation with the disease is an object for further discussion.

J02.45 Is there Influence of the Genetic Variations Associated with Thrombophilia on Sports Success? V. P. Pushkarev1, D. A. Dyatlov1, E. V. Lekontsev1, J. E. Pushkareva1, V. J. Vishnev1, L. M. Kalibareva1

1Ural State University of Physical Culture, Cheyabinsk, Russian Federation, 2State Medical Academy, Cheyabinsk, Russian Federation.

Regular physical activity reduces risk of thrombosis development. However cases of thrombosis in different sports are described. There is unresolved question, what influence of the genetic variations associated with thrombophilia have on sports success. The study was approved by Ethics Committee of the Ural State University of Physical Culture (USUPC). All participants gave written informed consent to genotyping. Junior group was consisted of 245 persons, who participated in sport competition and training on regular basis. Sportsmen group was consisted of 300 athletes from different sports (sub-elite level - 47%, elite level - 53%). Healthy sedentary control group was consisted of 255 students, employees of the USUPC. All participants were unrelated Caucasians living in Ural region of Russia. DNA was isolated from buccal epithelium. Genotyping was done using a TaqMan® SNP Genotyping Assays by use StepOne™ Real-Time PCR System (Applied Biosystems, USA). The genotyping results were analyzed by using TaqMan® Genotype Software (Applied Biosystems). Frequencies of heterozygote carriers of Leiden and prothrombin mutations in control group were identical - 2.4%. Frequency of T/T genotype of C677T variation of MTHFR gene in control group was 9.8%. Frequencies of studied sequence variations at juniors and athletes either didn't differ, or differed were a little above, than in control. Apparently, variations rs1799963 in F2 gene, rs6025 in F5 gene, rs1801133 in MTHFR gene, associated with thrombophilia, don't render strong negative influence on sports success. Possibly, prothrombotic action of the investigated variations is compensated by adaptive changes of a hemostasis as response on aerobic trainings.

J02.46 Left Dominant Arrhythmogenic Cardiomyopathy caused by a novel nonsense mutation.

I. Gomez Milanes1, J. Ayala1, E. Garcia-Molina1, M. Sabater Molina1, I. Perez1, F. Ruiz-Expejo1, D. Lopez-Cuenca1, J. Lopez Ayala1, J. Gimeno1, M. Valdes1, P. Martinez1

1Genetic Diagnosys Laboratory, University Hospital Virgen Arrixaca, Clinic Analisys Service, Murcia, Spain, 2Cardiology department. University Hospital Virgen Arrixaca, Murcia, Spain, 3University of Murcia, Murcia, Spain.

INTRODUCTION
Some mutations in the desmoplakin gene generate an autosomal dominant inheritance pattern related to the involvement of the left ventricle (LV) in ARVC.

METHODS
It has made the study of 28 patients (14 women and 14 males), belonging to 3 families affected by ARVC. This cohort was obtained from a screening of 64 ARVC patients. The analysis of the 28 individuals was performed by sequencing of exons and flanking intrinsic regions for the DSP gene.

RESULTS AND CONCLUSIONS
We found a gene variant (Q447X) that is a heterozygous nonsense type not previously described. Is a C to T transition that generates a stop codon resulting in a peptide 85% smaller than the wild type and an autosomal dominant inheritance pattern with high penetrance (91%). In most cases, stop codon mutations are disease cause. Eleven of the 28 studied patients were mutation carriers and ten of them were affected by ARVC. The rest were healthy patients. The eleven carrier patients consisted of eight women and three men. The amino acid 447 is located in one of the globular head domains of desmoplakin to participate in the binding of this protein with phospholipids and phospholipase. It is noteworthy that several mutations in this gene have been associated with the development of arrhythmogenic left ventricular dominance and even isolated involvement of the ventricle and simulating idioopathic dilated cardiomyopathy. We conclude this gene variant Q447X could be possibly the cause of ARVC with predominant LV.

J02.47 R14Del, a Dutch phospholamban mutation in a spanish family. Genotype-phenotype aspects.

M. Sabater-Molina1, I. Gomez Milanes1, E. Garcia-Molina1, I. Perez1, F. Ruiz-Expejo1, D. Lopez-Cuenca1, J. Lopez Ayala1, J. Gimeno1, M. Valdes1, P. Martinez1

1Genetic Diagnosis Laboratory, University Hospital Virgen Arrixaca, Clinic Analysis Service, Murcia, Spain, 2Cardiology department, University Hospital Virgen Arrixaca, Murcia, Spain, 3University of Murcia, Murcia, Spain.

INTRODUCTION
Through genetic screening of dilated cardiomyopathy patients, we identified a previously described delection of arginine 14 (PLN-R14Del).

METHODS
Nine individuals were evaluated using dHPLC and bidirectional sequencing of the exon and intron regions flanking the PLN gene.

RESULTS
Seven of the nine patients studied were mutation carriers although only two of them met diagnostic criteria of dilated cardiomyopathy: the proband and her asymptomatic maternal grandmother. Five carrier's ECG showed strikingly low voltage QRS complex, despite no echocardiographic abnormalities in 3 (mother and 2 maternal aunts). Apart from proband all carriers were asymptomatic with no history of arrhythmia evidenced. Proband's father belongs to another family affected by Hypertrophic cardiomyopathy, although the father himself only express mild left ventricular hypertrophy with normal ECG.

R14Del mutation was described in 40 families to date. There is information suggesting a diagnosis of autosomal dominant Waardenburg syndrome type 1 and hereditary deafness when counseling for NTD.

www.eshg.org
J02.48
Age-related penetrance in genetic carriers of hypertrophic cardiomyopathy
A. Romotski, P. Perez, M. Sabater-Molinar, E. Garcia-Molinar, I. Gomez Milanor, D. Lopez-Cuenca, M. Olivera, F. Ruiz-Espaja, J. Gimeno, P. Martinez; 1Hospital Reina Sofia, Murcia, Spain, 2genetic diagnosis laboratory, Murcia, Spain, 3genetic diagnosys laboratory, Murcia, Spain, 4Cardiology department, University Hospital Virgen Aranzazu, Murcia, Spain, 5Genetic diagnosays laboratory, Murcia, Spain.
Introduction and Purpose: The aim is study the age-related penetrance of HCM in patients with different MYBPC3, MYH7 and TNNT2 mutations to determine whether the age at diagnostic depends on genetic background.
Methods: We included 195 HCM causal mutation carriers (55% males, age 40±16 years); 64.8% had clinical manifestations of the disease. All patients were diagnosed in inheritance cardiomyopathy consultation, in a reference hospital. 146 patients were carriers of at least one mutation in MYBPC3 (IVS23+1G>A (72), Arg891fs (37), A107fsX116 (26), A216T (13), V996M (4)), 21 were carriers of a mutation in MYH7 (T1377M (21), D928N (4), E1348Q (8), E1356Q (4), R1382Q (4)) and 8 patients were carriers of R278C in TNNT2. IVS23+1G>A, the most prevalent mutation, was present in 18 unrelated families. We performed time-to-diagnosis analysis according to the affected gene and the most prevalent mutations.
Results: No differences in time to diagnosis were detected between the most prevalent mutations. Median age at diagnosis was 46±2 years old for IVS23+1G>A, 44±3 years old (Arg891fs), 43±2 years old (A107fsX116), 44±7 years old (T1377M) and 51±9 years old (A216T); log rank p=0.963. Similarly, there were no differences according to the 3 analyzed genes (log rank p=0.935). Median age at diagnosis for the whole was 47±2 yrs. Conclusion: Mutations in MYBPC3 encoding myosin binding protein C could be considered as a precursor form of HCM than initially was considered. Now, genetic diagnosis reveals that HCM-phenotype can appear later in life, reaching near full penetrance in the elderly.

J02.49
Imprinting defect in patients with Albright’s Hereditary Osteodystrophy and platelet Gs hypofunction
B. Izzic, 1F. Francois, 2V. Labarque, 1C. Thys, 2C. Wittingenroth, 1K. Derouin, 1E. Legius, 2A. Van den Brulle, 1M. D’Hooge, 1D. Lambrechts, 1F. de Zegher, 1C. Van Geet, 1F. Freson; 1Center for Molecul, Vascular Biology- KULeuven, Leuven, Belgium, 2Department of Paediatriks- KULeuven, Leuven, Belgium, 3Center for Human Genetics- KULeuven, Leuven, Belgium, 4General Hospital Sint Jan Brugge, Brugge, Belgium, 5Vasalis Research Center- KULeuven and VIB, Leuven, Belgium, 6Center for Molecular and Vascular Biology and Department of Paediatriks- KULeuven, Leuven, Belgium.
Pseudo-hypothyroism (PHP) indicates a group of heterogeneous disorders whose common feature is represented by impaired signaling of hormones that activate Gs alpha, encoded by the imprinted GNAS gene. PHP-1b patients have isolated PTH resistance and GNAS epigenetic defects while PHP-1a cases present with hormone resistance and characteristic features jointly termed as Albright’s Hereditary Osteodystrophy (AHO) due to maternally inherited GNAS mutations or similar epigenetic defects as found for PHP-1. For the first time, paternal hypothyroism (PHP) patients with an AHO phenotype and no hormone resistance and progressive osseous heteroplasia (POH) cases have inactivating paternally inherited GNAS mutations.
We here describe 16 PHP patients subjects and 1 POH patient with platelet Gs hypofunction but lacking Gsalpha mutations. The methylation for the three differentially methylated GNAS regions was quantified via Sequenom EpiTYPER. Patients showed significant hypermethylation of the Kl ampicon compared to controls (36±2 vs. 29±3% p<0.001); a pattern that is reversed to XL hypermethylation found in PHPb. Methylation for NESP and ExonA/B was significantly different for some but not all patients, though in most patients have site-specific CpG methylation abnormalities in these amplicons. Since some AHO features are present in other imprinting disorders, the methylation of IG2, H1S, SNURF and GRB10 was quantified. Surprisingly, significant IG2 hypermethylation (20±10 vs. 14±7%; p<0.05) and SNURF hypomethylation (2.2±6 vs. 3.2±6% p<0.001) was found in patients vs. controls, while H1S and GRB10 methylation was normal.
In conclusion, this is the first report of epigenetic defects in PHP and POH though additional studies are needed to correlate epigenotype with the clinical phenotype.

J02.50
Contiguous Gene Deletion of ERC8 and NDUF4F2; Case Report
A. H. Al-Awami, 1N. A. Al-Sanna’a, 1M. Kruer; 1Diabetes Health Center, Diabhr, Saudi Arabia, 2Oregon Health & Science University, Portland, OR, United States.
Here we describe a patient with clinical manifestation of Leih’s disease including persistent lactic acidosis and chronic encephalopathy. In addi-

tion, there was associated dysmorphic facial features and abnormal brain structure. Molecular karyotyping detected a homozygous deletion of 11 oligonucleotide probes at 5q12.1, spanning approximately 248 kilobases. The deleted region contains two known genes, ERC8 (OMIM # 609412) and NDUF4F2 (OMIM # 609453). Mutations of ERC8 are associated with Cockayne syndrome, and mutations in NDUF4A2 are associated with mitochondrial complex I deficiency. Both of the parents were confirmed to be heterozygous for the same deletion. We believe that this chromosomal deletion contributed to the complex phenotype on this patient. Ultra violet light toxicity assay and mitochondrial study are still in progress.

J02.51
An Egyptian patient with cholestasis lymphoedema syndrome (Aagenaes syndrome)
T. Abdel Ghaffar, 1S. Bayou; 1Vasim Abdellahfarrer Center for Liver Disease and Research, Cairo, Egypt, 2Medical Genetics Center, Cairo, Egypt.
Lymphoedema cholestasis syndrome (Aagenaes syndrome) is a rare autosomal recessive disease consisting of hereditary, recurrent cholestatic liver disease and generalized lymphoedema from birth or childhood. The disease was first described by Aagenaes et al. in 1968 in Norway. Since then, most patients reported are originally from the same part of Norway. Fewer than 40 cases have been described elsewhere. To the best of our knowledge, none was described in Arab countries. Here, we describe the clinical and laboratory characteristics of the first Egyptian patient with Aagenaes syndrome. He is a 3.5 year old boy, the second in birth order of first cousin marriage after uncomplicated pregnancy. He had an older brother who developed jaundice soon after birth and died at the age of 35 days without any available investigation. Our patient has severe form of the disease with progressive cirrhosis and relatively low GGT and cholesterol levels. He also developed progressive arthritis, a feature which was not described before in this syndrome. Although molecular analysis was not done yet, we suggest that our patient could have a different severe form of the disease associated with arthritis that has a different locus than LGS1 similar to the Serbian Romani patient described by Frühwirth et al., 2003.

J02.52
An atypical case of Langer-Giedion-syndrome: the role of additional chromosomal abnormalities
G. Cappuccio, 1R. Genesio, 2V. Ginoschi, 2P. Bonomi, 2R. Genesio, 2G. Minopoli, 2A. Castetano, 1B. Granese, 1A. Morni, 1L. Nitsch, 1G. Andreoli, 1D. Melis; 1Department of Pediatrics Federico II University, Naples, Italy, 2Department of Cellular and Molecular Biology and Pathology Department of Pediatrics Federico II University, Naples, Italy.
Langer-Giedion syndrome (LGS), is defined as a contiguous gene disorder caused by the loss of functional copies of TRPS1 and EXT1 genes usually secondary to 8q microdeletion. This condition combines features of trichorhinophalangeal syndrome type 1 (sparse scalp hair, bushy eyebrows, bulbous nose, long philtrum, cone shaped epiphyses, short stature), multiple exostoses, mild to moderate mental deficiency (MD).
We report a case of a 4-year-old girl presenting with facial dysmorphism and skeletal abnormalities, short stature, congenital heart disease (CHD), central nervous system (CNS) anomalies, severe MD. A diagnosis of LGS was suspected. The HR karyotype showed a reciprocal balanced translocation between: 2p24 and 11p15 chromosomes. The parental high resolution karyotype was normal. Array-GH analysis revealed an interstitial deletion involving chromosome: 8q23.3-q24.11. Our patient shares with LGS: microcephaly, sparse hair, dysmorphic facial features, growth retardation, multiple exostosis. The presence of CHD, CNS anomalies (hypoplasia/agenesis of corpus callosum (CC), parietal gyral dysplasia), severe MD has never been described in patients with LGS.
The Array-GH confirmed clinical diagnosis. Up to date, this is the smallest deletion causing LGS. The patient also showed a balanced chromosomal translocation involving 2p24 region where maps ASXL2 gene. Recently, a patient carrying a balanced translocation involving the same 2p24 region has been described showing CCA and MD.
We speculate that ASXL2 gene disruption might be responsible for the more severe neurological phenotype described in the current patient.
We report eight unrelated individuals with intellectual disability and overlapping submicroscopic deletions of 8q21.11 (0.66-13.55 Mb in size). The deletion was familial in one and simplex in seven individuals. The phenotype was remarkably similar and consisted of a round face with full cheeks, high forehead, ptosis, cornea opacities, underdeveloped alae, short philtrum, cupid’s bow of the upper lip, down-turned corners of the mouth, micrognathia, low-set and prominent ears, and mild finger and toe anomalies (camptodactyly; syndactyly; broadening of first rays). Intellectual disability, hypotonia, decreased balance, sensorineural hearing loss, and unusual behavior were frequently observed. High resolution oligonucleotide array showed different proximal and distal breakpoints in all of them. Sequencing studies in three of the individuals revealed that proximal and distal breakpoints were located in unique sequences with no apparent homology. The smallest region of overlap was a 539.7 kb interval encompassing three genes: a Zinc Finger Homeobox 4 (ZFP4), one micro RNA of unknown function and one non-functional pseudogene. ZFP4 encodes a transcription factor expressed in adult human brain, skeletal muscle and liver. It has been suggested to be a candidate gene for congenital bilateral isolated ptosis. Our results suggest that the 8q21.11 submicroscopic deletion represents a clinically recognizable entity and that a haploinsufficient gene or genes within the minimal deletion region could underlie this syndrome.
were revealed in the 26 cases (12.2%). Among aneuploidy was detected Down’s syndrome in the 117 (63 %), Turner’s syndrome in the 25 (13.4 %), Klinefelter’s syndrome in the 23 (12.4 %), Edwards’s syndrome in the 9 (4.8 %), an androgen insensitivity syndrome in the 7 (3.7 %), the Paternos syndrome in the 1 (0.5 %), 47, in the 1 (0.5 %) cases.

were carried out following abnormalities: del(5)[p15.1], 46,XY,del(2) [p15p21], 46,add(7)[q31], 47,add(X)[q27], 46,t(6;13)[q26a;q13], 46,t(3;13)[q23;q32], 46,XX,t(14;18)[q13q23], 46,XX,t(10;16)[q23;q11.2], inv(9)[p1q13], 46,XX,inv(3) [q25p26], 46,t(10;12)[q32;q15], 15,del(15)[q14q10], 15,del(1;15) [q10p10], 46,XX[X][q10], 46,XX,t(7)[q11q31], 46,XX,t(6;13) [q11.2;p11.1], 46,t[X][q23;p15.2], 46,t[X;11] [q27p22] among 26 structural chromosomal abnormalities.

Infertility is a failure to conceive after at least one year of unprotected intercourse. It has been estimated that approximately 15% of the population in industrially developed countries are affected. Reproductive difficulties are associated with any cytogenetic abnormalities that could be structural aberrations such as translocations, inversions and supernumerary chromosomes (#), or, constitutional aneuploidies such Klinefelter syndrome, 47, XXX Turner syndrome and 47, XXX.

In the first case we found a normal female karyotype (46, XX) and a male karyotype with a reciprocal translocation involving the short arm of #4 and the long arm of #8 [46, XY, t(4;8) [p16.1;q11]], in the semen analysis a low spermatozoa concentration was detected and concerning morphology a border line value was found (4%). In the second case the female karyotype presented a paracentric inversion of #14 [46, XX, inv(14) [q13q24.3]] and the male has a normal karyotype (46, XY) with a normal semen analysis. This study strongly point out the importance of cytogenetic analysis of infertile couples to allow an appropriate genetic counseling.

We report on a 22-year-old patient presenting with attached ear lobule, thight skin, long height, short phalanges, gynecomastia, muscle weakness, short philtrum, long neck, webbed neck. The clinic features are overlapped with myotonic dystrophy. Standard cytogenetic analysis showed a de novo translocation, 46,XX,t(1;12)[p22;p12-13] karyotype. Three hypotheses have been postulated to explain such phenotype abnormalities, including a break in a gene, a positional effect and a cryptic deletion or duplication. According to the literature, coexistence of t(1;12)[p22;p12-13] karyotype with myotonic dystrophy features has not been reported. This is the first case presenting both features and karyotype. As for myotonic dystrophy, there are two types in adult onset. This identity may not be associated with the present karyotype. Therefore, it will be clarified of these two findings. This case places in adult onset. This identity may not be associated with the present karyotype. According to physical examination she had muscular hypotonia, short stature - 34 cm. She did not have unusual cry. At the age of 1 year 3 months her motor development was slow: she could poise her head, but she couldn’t sit or crawl. According to physical examination she had muscular hypotonia, hyphosphaty, enlargement of fontanelle (5,5x4 cm), her weight was 8200g (<3cd), length - 74cm (<3cd). She had minor dysomorphic features including: prominent forehead, preauricular pits, epicanthus folds, strabismus, coloboma of right iris, wide nasal bridge, long filiform, carminate deformations of thin skin, venous reticulation at the chest. Abdominal, transfontanellar and cardiac ultrasounds revealed right pyelectasis, enlargement of right corn of lateral ventriculuses of brain, patent ductus arterious, ventricular septum defect and ectopic of mitral valve cords.

The standard cytogenetic analyses revealed the additional chromosomal material on the short arm of chromosome 5. Parental karyotypes were normal. The FISH-analyses with the subtelomere probes for short and long arms of chromosome 5 (TelVision 5p, TelVision 5q) revealed absence of signal on the p-arm with additional chromosomal material. M-FISH (24Xyte, MetaSystems) analyses revealed that additional material was due to chromosome 5. Consequently the karyotype of patient was interpreted as inverted duplication with loss of subtelomic region: 46,XX,der(5)[del(5) [p15.3;dup(5)[p15.3p14]] . This case confirms assumption that inverted duplications deletions are not very rare forms of chromosomal rearrangements.

Here we report a duplication of chromosome 16 at q11.2 to q21 and the pericentric inversion of chromosome 9 at p11 to q13 identified by routine karyotyping in a one month old male patient. Pure duplications of 16q have only been reported in a small number of individuals. Partial trisomy for the long arm of chromosome 16 is a rare condition, uncommonly identified in children and adults. Cytogenetic aberrations on chromosome 9 have been reported to be one of the most frequent abnormalities. The pericentric inversion of chromosome 9 inv(9)[p1q13] is one of the most common balanced structural chromosomal aberrations found in 1 to 3% of the general population.

Conclusion

Objective: In this paper we present the cytogenetic findings of the expression of fragile sites in couples with two or more spontaneous abortions.

Material and methods: We studied 636 couples with recurrent spontaneous abortions (≥3) referred to Maternal - Fetal Medicine and Assisted Reproduction of Life memorial Hospital. No subject presented with obvious phenotype of chromosomal rearrangements.

Cytogenetic investigations were carried out from peripheral blood lymphocytes using standard techniques. The routine analyses was performed on G banded chromosomal preparations. Karyotypes of the fetuses were not studied.

Results: Autosomal fragile sites were found in 8 cases (0.6%). The fragile site was not typically folate-sensitive, being expressed in standard medium.
The role of fragile sites in causing abortion is still very difficult to assess. Fragile sites may possibly predispose to chromosome breakage and rearrangements in meiosis and consequent infertility.

J03.08

Heterochromatin variants of human chromosome 9 and the reproduction failure

A. Spek jr., A. Pancerz, R. Mihalova, L. Celhova, M. Janatka, M. Kohnovxova; Institute of Biomedical and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Pericentric inversion of chromosome 9 - inv(9) - is considered to be clinically insignificant heterochromatin variant of human karyotype. However, various authors repeatedly mention possible association of inv(9) and selected pathologies, especially with reproduction failure. This can cause some consultation dilemma, especially when inv(9) is identified in potential genetic donor.

Some authors also suggest the same role for other variants of the heterochromatin region of the human chromosome 9 (like 9qh or 9qh) as well. Using the data from our cytogenetic laboratory - we analyzed the clinical indications among 383 patients with heterochromatin variant of chromosome 9 and we have found the reproduction failure to be the most common diagnosis (more than 4%). That was far more, than was the incidence of reproduction failure in our control group of patients with normal karyotype. This difference was also statistically significant.

We have confirmed heterochromatin variants of chromosome 9 as relatively common finding, this time in population in the Czech Republic. The clinical significance, however, remains subject of discussion. Possible association of heterochromatin variants of human chromosome 9 with reproduction failure had quite low statistical significance and will require further investigation.

J03.09

Cytogenetic abnormalities detected in patients with non-obstructive azoospermia and severe oligozoospermia in North-West of Iran

A. Jalili 1, S. Abdollahi Fard2, K. Hasanzade1, N. Karimiyan1, Z. Seyedi1, S. Bahrami2; 1 Islamic Azad University, Ahar, Islamic Republic of Iran; 2 Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.

Introduction-Chromosomal anomalies have been postulated to be as one of the principal genetic factors in male infertility. Find the frequency and types of major chromosomal abnormalities with nonobstructive azoospermia and severe oligozoospermia in men who were referred because of primary infertility give appropriate genetic counseling before assisted reproduction techniques in north-west of Iran, and investigate the general characteristics in this infertile male population, was objective of study.

Material & methods-A total of 50 infertile males (35 were azoospermic, 15 severe oligospermic) were studied for the cytogenetic evaluation prior to use of assisted reproduction techniques. Also, 60 fertile males as a control group were studied. Karyotyping was performed on peripheral blood lymphocytes of 200 healthy examinees from the general population of Federation of Bosnia and Herzegovina. We have determined total number of analyzed examinees. For each sample were analyzed 1000 binuclear lymphocytes and determined total number of MN, cells with MN as well as their distribution (number in cells). MN was determined according to proposed HUMN criteria. Statistical analyze revealed following conclusions:

1. There is significant difference among number of MN found among genders (p<0.05).
2. There is highly significant difference in frequency number of MN among different age groups (p<0.001).
3. There is significant difference in frequency of 2 micronucleus and smoking habits of examinees while that difference is not present for 1 micronucleus frequency.

The results of this study considering age, gender and smoking habits are in accordance with results determined for general population of healthy people in other cytogenetic laboratories else in the world.

J03.10

Cytogenetic biomonitoring of general population of FB&H using micronucleus assay test

S. Ibrulj; A. Panczak, R. Mihalova, L. Celhova, M. Janatka, M. Kohnovxova; Institute of Biomedical and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.

The aim of this study is to determine values of Micronucleus Assay from peripheral blood lymphocytes of 200 healthy examinees both gender from general population of Federation of Bosnia and Herzegovina. We have determined micronucleus frequency and number of cells with micronuclei for each examinee, average (median) frequency of MN for each group of examinees divided into groups by the age (20-30y; 30-40y; 40-50y; 50-60y; 60-70y), as well as the gender (20M: 20F) and their smoking habits. 200 was the total number of analyzed examinees.

Some authors also suggest the same role for other variants of the heterochromatin region of the human chromosome 9 (like 9qh or 9qh) as well. Using the data from our cytogenetic laboratory - we analyzed the clinical indications among 383 patients with heterochromatin variant of chromosome 9 and we have found the reproduction failure to be the most common diagnosis (more than 4%). That was far more, than was the incidence of reproduction failure in our control group of patients with normal karyotype. This difference was also statistically significant.

We have confirmed heterochromatin variants of chromosome 9 as relatively common finding, this time in population in the Czech Republic. The clinical significance, however, remains subject of discussion. Possible association of heterochromatin variants of human chromosome 9 with reproduction failure had quite low statistical significance and will require further investigation.

J03.11

Multiples and different chromosome aberrations in a healthy female patient

L. Rodríguez, M. García, M. Sánchez, E. Abecia; Laboratorio AbcId-Genética. Hospital de Madrid, Madrid, Spain.

It is widely known that the presence of a chromosome alteration in a patient has usually associated different congenital abnormalities, nevertheless the vertical transmission of a chromosomopathy has also been described to be associated with no phenotypic effects, defined as “variants”.

In fact, once a chromosome alteration is found in a patient, such a chromosomopathy is present in all cells, unless it is a mosaicism (with two or three different cell lines) or it is a chromosomal instability syndrome, such as Ni-elson syndrome.

Here we present a very atypical case where multiples and different chromosome alteration were diagnosed in a peripheral blood karyotype of a 32 years old healthy female patient, who wanted to have a baby. As an antecedent she refers to have had a Hodgkin lymphoma 8 years ago, which was treated with chemotheraphy for 6 months and with radiotherapy for 2.1 sesions (30 greys). Once she was cured, she decided to have a baby although the chromosome findings in the lab where frightened scared, showing multiples and different chromosome aberrations in 20% of cells. The karyotype was repeated and the same findings were observed. The question is: Could it be any relation between the lymphoma treatment which happened 8 years ago and the multiple chromosome alterations? If so, is there any risk for a pregnancy in our patient? Should she avoid her oocytes and consider a donor? Is there any other patient describe with a similar karyotype? Shall we check her hematology looking for another lymphoma?

J03.12

Incidence And Clinical Significance Of Pericentric Inversion Of Chromosome 9.

S. Eren, N. Çiçek, B. Doğruoğlu, Z. İlahı, R. U. Akayunlu, E. Gümüşpılı, D. Sünnetç, H. Sarı; Kocaeli University, Kocaelı, Turkey.

Aim: The aim of the study was to study the frequency of inv(9) and its clinical correlation with human genetic diseases

Background: Pericentric inversion of the chromosome 9 is such a common occurrence that some cytogeneticists would consider them as normal variants. The frequency estimated to be 1 to 3% in the general population. Despite being categorised as a minor chromosomal rearrangement which does not correlate with abnormal phenotypes, there have been many controversial reports indicating that it may lead to abnormal clinical conditions such as subfertility, recurrent abortions, leukemia, dysmorphic features and psychiatric problems.

Materials and Methods: We studied retrospectively the incidence and clinical significance of pericentric inv(9) from the collected peripheral blood karyotypes of 1,800 cases being referred to our department with suspected genetic diseases over a 3-year period.

Results: Pericentric inv(9) was detected in 21 cases (1%). Ten cases were adult patients, four (40%) of them were with obstetric and fertility problems, five adult patients (50%) had a sibling or offspring with inv(9) and 1 adult patient (10%) had the diagnosis of acute myeloid leukemia. Eleven cases (52%) were paediatric patients with dysmorphic features and congenital anomalies.

Conclusion: The significance of inv(9) is still mostly unknown and hence to understand the clinical significance of the pericentric inversion of Chromosome 9 it will be required reporting of new additional cases with detailed chromosomal studies.
J03.13
Cyto genetics abnormalities of spontaneous abortion
Institute for Children and Youth Health Care Vojvodina, Novi Sad, Serbia.

The loss of the desired pregnancy is always a stressful event for both partners/spouses, and therefore it is always important to establish the cause that led to the loss of pregnancy and how to achieve success in the next pregnancy and get a healthy child.

Research objectives:
To determine the frequency, distribution and type of pathological karyotypes of spontaneous abortions.

Materials and methods:
The study group consists of partners who underwent karyotyping of spontaneously aborted fetuses. The analysis of 549 samples of spontaneous abortions revealed 19.85% of chromosomal aberrations.

Conclusion:
Most frequent chromosomal aberration in spontaneous abortion group was the Turner syndrome, followed by triploidy, trisomy of chromosome 18, trisomy of chromosome 15 and Down’s syndrome. Rare chromosomal aberrations were frequently present in earlier gestation ages. Women with spontaneous abortion, which is caused by a chromosomal aberration often have a history of adverse outcome of previous pregnancies.

J03.14
Probability rates of different pregnancy outcomes and meiotic segregation analysis of spermatozoa in carriers of t(1;11)
A. T. Midro;
Department of Clinical Genetic Medical University Białystok Poland, Białystok, Poland.

The unique rearrangement i.e. t(1;11)(p36.22;q12.2), ish t(1;11)(RP11-1115A15→RP11-476D13→RP11-499B2→RP11-807G9→RP11-496H15→RP11-575L21→RP11-874A11→RP11-855010→RP11-881M11→799F14+) was found in two relatively large pedigrees of carriers studied due to occurrence of three miscarriages (pedigree 1) and the birth of newborn with hydrocephalus and myelomeningocele (pedigree 2). The same hybridization pattern was found in both families indicating similar, if not the same, rearrangement.

STS marker walking analyses using hybrid containing derivative chromosome 1 did not allow us to define the 1p36 and 11q22 breakpoints in this rearrangement at the sequence level. Segregation analysis of cumulative data of pedigrees was performed by indirect method of Stengel-Rutkowski and showed that probability for unbalanced child at birth was 0/40 i.e. 0.09% after ascertainment correction, the risk for stillbirths/early newborn deaths was 1/40 i.e. 2.5%, and for miscarriages was 15/40 (37.5%±7.6%). We didn’t found any differences between males and females carriers.

Meiotic segregation pattern after the sperm analysis by three-color FISH method of one male carrier from pedigree showed all possible combinations after 2.2 and 3:1 segregations. The most common segregation types were adjacent I and adjacent I (similar frequency). Low frequency was observed in adjacent II type, in opposite to 3:1 segregation with the high proportion of unbalanced gametes. However we suggest, that only one form of chromosomal aberration could be related to success of pregnancy, correlation between the number of preferential gametic chromosomes and chromatid breaks. The results obtained confirmed the segregation pattern of one male carrier from pedigree showed all possible combinations after 2.2 and 3:1 segregations.

J03.15
Case of diagnostics of a rare syndrome 18p-
A. R. Shortina, T. A. Gayner, V. A. Makasheva;
Novosibirsk Regional Children’s Clinical Psychoneurological Dispensary, Novosibirsk, Russian Federation, ‘Center of New Medical Technologies of the Siberian branch of the Russian Academy of Science, Novosibirsk, Russian Federation.

Partial monosomies of short and long shoulders of a chromosome 18 are clinically distinguished syndromes. Considering a rarity of these syndromes, data on new cases deserve special attention. We result a case of diagnostics of a partial monosomy of a short shoulder of 18 chromosomes at the woman of 24-th years who has addressed for mediogenetic consultation. The patient had an expressed psychoneurological phenotype: an intellectual developmental delay (F70), organic disorder of the person. At survey became perceptible: dysmorphology of face, microcephaly, hypertelorism, ptosis; mandibule hypoplasia; dysplasia of auricles; an anesthetic constitution; the low growth and the lowered mass of a body; kyphoscoliosis of thoracic department of a backbone; short neck; cross-section-longitudinal platypodia; clindactyly of little fingers; hypoplasia of trailer phalanges of brushes; hypermobility of interphalang and radiocarpal joints; recession of unlar joints; hypomyelonia.

From integuments were taped: the expressed dryness, eczema, diffusive pigmentation, signs of a follicular hyperkeratosis. The accompanying somatic palmar having the follow for the patient: a peptic ulcer duodenum and an iron deficiency anemia. Developmental anomalies in the given observation it did not become perceptible.

The proband karyotype has been identified as 46,XX,del(18)(p11.31→qter). From parents of the patient it was possible to survey only mother, it has a normal karyotype. The phenotype of our patient corresponds to clinical descriptions of patients with a partial monosomy of a short shoulder of 18 chromosomes which were published earlier. However, along with characteristic craniofacial dysplasies and a delay of mental development, expression of somatic and dermal implications pays attention to itself.

J03.16
A case of 16p subtelomeric duplication with vascular anomalies
A. Lako (Babameto);
University Hospital Center, ‘Mother Teresa’, Faculty of Medicine, Tirana, Albania.

We report a patient, a boy 12 months old, with karyotype 46,XY,der(4), recognized by standard cytogenetic techniques, presenting with facial features, neurological impairment and pulmonary hypertension. He was the first child of healthy nonsangogenic parents. Family history was unremarkable. Distinct facial anomalies included microcephaly, high frontal hairline, blond thin hair, bilateral blepharophimosis and palpebral ptosis, short nose, everted upper lip, cleft palate, micrognathia, cupped antverted ears. He had also hypoplastic distal phalanges and bilateral inguinal hernia. Pulmonary hypertension with tricuspidal regurgitation and caverous liver hemangioma were found in our patient. Subtelomeric analysis by Multiplex Ligation-dependent Probe Amplification (MLPA) technique (a set of probes for testing subtelomeric imbalances in the SALSA P070 and P036B human telomere test kits, MRC-Holland, Amsterdam, Netherlands) demonstrated a duplication of the subtelomeric region of chromosome 16p and a deletion of the subtelomeric region of chromosome 4q, suggesting a translocation between 4q and 16p. A duplication of the subtelomeric region of 16p in the parents was excluded by MLPA technique. The imbalance of our patient resulted de novo. In conclusion, we have confirmed the clinical features of patients with dup16p, involving the terminal 16p13.1-p13.3 region. Vascular anomalies have been previously described in association with dup16p. Thus, pulmonary vascular disease and other vascular anomalies can be a feature of dup16p, suggesting that this subtelomeric region in some patients could be related to vascular anomalies.

J03.17
Cytogenetic effects in Chernobyl accident liquidators in delayed terms following radiation exposure
A. R. Shorina, M. A. Pilipchuk;
National Research Centre of Radiation Medicine, Kijiv, Ukraine.

Genome response to radiation exposure caused by mutagenic effects both in the exposed targeted cells as well as in the unexposed bystander cells. In delayed terms following radiation exposure during cytogenetic examination of Chernobyl accident liquidators the frequency of all types of chromosome aberrations in their lymphocytes with the help of G-banding chromosomes staining had been established. The elevated chromosome aberrations frequency in Chernobyl accident liquidators lymphocytes exposed in doses 270-690 mGy formed due to translocations that are stored in the generations of irradiated target cells and chromatic breaks induced by bystander-type effect in the untreated cells had been established. The frequency of deletions, dicentrics and centric rings had no significant difference from control that was result of their elimination in time. In lymphocytes of Chernobyl accident liquidators lymphocytes exposed in doses 270-690 mGy the level of chromosome aberrations exceeded the population’s one at the expense of high frequency of stable cytogenetic markers of radiation exposure, rings chromosomes and chromatid breaks. The results obtained confirmed the persistence of bystander-type cytogenetic effects in somatic cells of exposed persons for many years following radiation exposure. Our data confirm the need to assess the frequency of stable chromosome aberrations as basic cytogenetic markers of radiation exposure under the cytogenetic dosimetry in the late terms following human irradiation and incorrect using such indicators as the frequency of aberrant cells and “mean level of chromosome aberrations” that may be overestimated because of chromosome instability markers (chromatid type aberrations) due to the induction of bystander-type effect.
J03.18
Clinical characterization of five patients with microdeletion 15q13.2-q13.3
K. Dunov1,2, P. Kukk1, T. Aavasalu1, K. Vaidla2, A. Reinmaa1,2,3
1. Tartu University Hospital, Department of Genetics, Tartu, Estonia; 2. Department of
Pediatrics, University of Tartu, Tartu, Estonia; 3. Tartu University Hospital, Children’s
Clinic, Tartu, Estonia, 1-2,3 Department of Biotechnology, Institute of Cell and Molecular
Biology, University of Tartu, Tartu, Estonia.

Individuals with 15q13.3 microdeletion may have wide range of clinical manifestations including intellectual disability (ID), cardiac malformations, seizures, autism and schizophrenia. Deletion of CHRNA7 gene in this region is causative for the majority of neurodevelopmental phenotypes in the 15q13.3 microdeletion syndrome. Subsets of persons with the deletion have no obvious clinical findings. During 2009-2011 the chromosomal microarray analysis (CMA) was performed in 596 individuals due to their clinical indications. In four individuals 15q13.3 microdeletion was found. In one patient 15q13.2-q13.3 microdeletion was diagnosed previously during research study of the children with ID. Here we present the clinical features of five patients with 15q13.2-q13.3 microdeletion.

All our patients (aged 6-17 years, among them two sibs) had normal growth parameters, except one boy with larger deletion 15q13.2-q13.3 who had short stature and microcephaly. Mild or unspecified ID, speech delay and mild facial dysmorphism was noticed in all patients. Abnormal EEG was found in three of them (60%) and one boy has severe treatment resistant generalized epilepsy (20%). Positive family history for epilepsy was documented in two families. Therefore, it is highly possible that their epilepsy may be also caused by 15q13.3 microdeletion (not investigated yet) as it is 1-2% of individuals with generalized epilepsy 15q13.3 microdeletion is found. Cardiac anomaly was occurred in three children (60%).

Microdeletion 15q13.3 is one of the most common microdeletions found in persons exposed to long-term occupational irradiation (Microarray – based Comparative Genomic Hybridization (a-CGH) has enabled wide investigation of the genome at high resolution and has been implemented in different centers as a clinical diagnostic tool. Chromosomal imbalances are implicated in the etiology of Developmental Delay (DD)/Mental Retardation (MR). However, most of these cases could not be diagnosed by conventional cytogenetic techniques. We aimed to establish (a-CGH) technique and assess its potential as a diagnostic tool of chromosomal imbalances and to detect chromosomal aberrations in patients with DD/ MR. Subjects & Methods: A cohort of 47 patients diagnosed as having DD/ MR with or without congenital malformations were referred to the CEGMR for cytogenetic analyses. We used both conventional cytogenetic G-bandning and Fluorescent in-situ hybridization techniques, besides we applied (a-CGH) high resolution Agilent scanner with 1X44 K array format, and Affymetrix 2.7 M cytogenetic array. Chromosomal aberrations could be detected in 6/47 (13%) patients by G-banding technique and 4/47 (8%) by FISH technique, however, 14/47 (30%) were diagnosed by a-CGH techniques. The following microdeletion syndromes were detected: (Del 15 (q11.2)); Del 15 (q13.1-4); Del 22 (q11.2); Del 7 (q1.23); Del 18 (q21.23); Del 1 (p36); and duplications: dup 1p8 (tetrasomy); dup 15 (q11.23); dup 18 (q23). We noticed the increased number of CNVs detected by a-CGH which need further investigation for contribution to phenotypes. Our results indicate the strength of high resolution genomic arrays in diagnosing cases of unknown etiology and in detection of contiguous genomic alterations in the wide spectrum of cases with DD/mental retardation.

J03.21
Clinical correlation of mentally retarded individuals suffering from pervasive developmental disorders (PDDs) in South Indian population
S. Rajiv1, V. G. Abishash1, M. Papamariotta1, M. Murugan1;
1. Universiti VELLORIE, Vellore, India; 2. Rama Rau Polyclinic, Chennai, India.

Aim and objective: To clinically correlate and analyse the relation between mentally retarded individuals suffering from PDDs. Methodology: From 130 cases suffering with PDDs a sample of 30 individuals showing MR were chosen according to diagnostic and statistical manual of mental disorders (DSM-IV). We performed cytogenetic analysis by measuring the extent of chromosomal aberrations (CA) along with cytokinesis-block micronucleus (CBM) assay in human leucocytes. This assay was performed to measure more specifically the DNA damage occurring in peripheral blood leucocytes. Buccal cells were collected and analysed for measuring DNA damage using micronucleus assay. We also checked three genes namely CNTNAP2, SHANK3 and MECP2 for mutations and its association with MR through molecular analysis by Polymerase Chain Reaction (PCR), Single Stranded Confirmation Polymorphism (SSCP) and sequencing. Result: Cytogenetic analysis (ie) chromosomal aberrations study, CBM assay in leucocytes and micronucleus assay using buccal cells showed significant variations in all MR cases, when compared with control samples. Molecular analysis revealed mutations in CNTNAP2, SHANK3 and MECP2 through PCR, SSCP and Sequencing. Conclusion: The study showed a variety of cytogenetic abnormality along with significant changes in base pair content in the three genes considered for the study in the MR individuals. More number of these studies with a much larger sample size has to be conducted. So that it helps in biomonitoring and creating awareness in the population. Such studies will help in developing a simpler diagnostic method that can help identify the prevalence of MR in PDDs.
In molecular analysis, DNA was extracted from the blood samples followed by PCR amplification with primers specific for the cyp1a1 gene (Exon-1). The PCR amplification product was determined by 1% agarose gel electrophoresis, then SSCP (Single Strand Conformational Polymorphism) was carried out to detect mutation by deletion or addition in bands. In this study 3 deletions were observed out of 10 blood workers when compared with control.

J03.23

Study of methylparathion on bone marrow cells from mice, in vivo: Micronucleus assay

I. P. Aramha;
Dept. Genetica, IBRAG, Univ. do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.

Methylparathion is a largely used pesticide. To exert its biological effect it must be biotransformed into methylparaoxon. Previous work in our laboratory, using the chromosome aberrations assay in human lymphocytes in vitro has shown that while methylparathion had no clatogenic or aneugenic effect on chromosomes, methylparaoxon was responsible for the alterations in structure observed. The objective of the present work was to study the effect of methylparathion on chromosomes of mice bone marrow in vivo, using the micronucleus assay. Animals were separated into four groups. In the first group, 6 animals received methylparathion intraperitoneally during five consecutive days in a concentration equivalent to 25% of the LD50. In the 6th day, animals were sacrificed, their femurs removed, the bone marrows collected and smears were made for slides preparation. After 24h cells were stained with Giemsa Gurr (2%) and analyzed under optical microscope. As positive control, 6 animals received cyclophosphamide (50mg/ml) once. Six animals were injected intraperitoneally with the solvent (corn oil) and 6 animals not exposed to any drug served as negative control for the experiment. In the test group, 12000 cells were observed and 199 showed micronuclei. In the control group, 12000 cells were analyzed and none had micronucleus. In the positive control group, 12000 cells were observed and 102 had micronucleus. In the negative control group, of 12000 none had micronucleus. In the group exposed to the solvent, 12000 cells were analyzed and 102 had micronuclei and in the negative control group, of 12000 none had micronucleus. In the test group, 12000 cells were observed and 199 showed micronuclei. In the control group, 12000 cells were analyzed and none had micronucleus. In the positive control group, 12000 cells were observed and 102 had micronucleus and in the negative control group, of 12000 cells observed, none had micronucleus. The chi-square test for independence showed that our results were extremely significant (P<0.0001). They suggest that methylparathion is responsible for the micronuclei observed.

J04.02

Frequency of mutation FV Leiden among the women of reproductive age living in the Novosibirsk region, and communication of this mutation with reproductive losses

L. F. Mitrohina1, A. B. Maslennikov2, A. R. Sharina1, E. V. Maslova;
1State Novosibirsk Regional Clinical Diagnostic Center, Novosibirsk, Russian Federation;
2Scientific research institute of molecular biology and biophysics of the Siberian branch of the Russian Academy of Medical Science, Novosibirsk, Russian Federation.

Factor FV Leiden mutation (replacement G on A at nucleotide position 1691 gene F5) is the autosomal dominant disorder that predisposes affected persons to venous thromboses and may have an increase risk for pregnancy-related venous thromboembolism finally leads to pregnancy loss. In control group of 238 women of genital age with the normal obstetric anamnesis, living in the Novosibirsk region and selected by epidemiological criteria, frequency of 1691A gene F5 has made 0.0044 (in the absence of homozygous genotypes). Results of inspection of 303 women, which anamnesis has been burdened by spontaneous interruption of pregnancy on term till 24 weeks, testify about authentic to higher frequency of 1691A gene F5. In this group its frequency has made 0.0396, thus two women have homozygous genotypes. The received results confirm the importance replacement G on A at nucleotide position 1691 gene F5 as one of genetic factors contributing to early reproductive losses and confirm the big prognostic value of molecular/no-geno genetic testing of the FV Leiden mutation at mediiko-genetic consultation of families in which there were early reproductive losses, and families which plan pregnancy.

J03.03

Study of Oct4 and Sox2 Genes expression in Haematopoietic Stem Cells

S. Sajadi1, M. Hashemi1, M. Soleimani2;
1Islamic Azad University,Tehran Medical Branch, Tehran, Islamic Republic of Iran,
2Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.

Every tissue in body needs to regenerate itself after injury. Stem cells because of their abilities of differentiation and self-renewal can expand and give cells to the tissues. Stem cells have various types; one of them is hematopoietic stem cells; in addition to differentiation of hematopoietic cells hscc can also differentiate in to neural, muscular, and cartilage cells. This unique possibility can help us in investigation of new treatments for cancers. So recognition of mechanisms in this process has multipular importance. In the present study expression of sox2 and oct4 genes -known as main genes in self renewal- were considered with RT-PCR from cord blood CD133+ cells. Our results show that both genes expressed in the first and 8th day of expansion but at 12th day despite of sox2 expression; oct4 was not expressed. Because of necessity of oct4 for keeping multipotency; loss of expression will be a diferentiation in to hematopoietic cells to appear after 12th day our study demonstrated that mechanism of self-renewal in CD133+ cells are similar to embryonic stem cells or embryonic carcinoma cells and different with mesenchyme CD105+34-.

J04.04

The role of the genetic factors in the recurrent miscarriage

I. Sultanov1, N. S. Osnovskaya2;
1St.Petersburg State University, St.Petersburg, Russian Federation, 2Un’s Institute of Obstetrics and Gynecology, St.Petersburg, Russian Federation.

Recurrent miscarriage (RM) is a serious problem of the modern obstetrics. Adrenal hyperandrogenism, which come from congenital adrenal hyperplasia (CAH), is one of the common reasons of RM. We analyzed 10 mutations of the CYP21A2 gene (P301, I2spice, del18bp, I72N, V236E, V281L, Q318X, R356W, P45 S35, del2A) and the presence of two types of chimeric genes in two groups of women. The population group (1st group), consisted of 82 women, and the second one included 102 women with RM. Mutations in the 21-hydroxylase gene were detected in 15.5% (17/102) of women with RM and in 2.5% (2/80) of women from population group (p = 0.0013). The chimeric genes were identified in 25% (25/102) of women in the second group and in 8.5% (7/80) of women in the first group (p = 0.0093). We have studied 76 women of population group and 73 women with RM by means of the Real time-PCR method, in order to detect the CYP21A2 gene and CYP21A1P pseudogene copies. We found a statistically significant difference between both groups in gene duplications and deletions of pseudogene (p = 0.0235, p = 0.0345, respectively).

Thus the presence of mutations in CYP21A2 gene and chimeric genes has a substantial impact on development of recurrent miscarriage. It is notable that both studied groups differ from each other by the number of pseudoge...
ne copies, that might be due to the presence of unknown mutations. Further studies are needed to clarify the role of CYP21A2 gene in the development of RM.

J04.05 Interaction between maternal KIR and fetal HLA-C in success of pregnancy
M. Khosravijarid, M. Samati, H. Gourabi, R. Hafizi, N. Chopravazadeh; 1- Department of Genetics, Reproductive Biomedicine Center, Ruyan Institute for Reproductive Biomedicine, ACECR, Tehran, Islamic Republic of Iran; 2- Department of Biology, Faculty of Science, Azerbaijan University of Tabriz Moallem, Tabriz, Islamic Republic of Iran.

Introduction: Killer-cell Immunoglobulin-like receptors (KIR) expressed by natural killer (NK) cells at the site of placentation, can bind to human leukocyte antigen (HLA-C) molecules on trophoblast cells. Both systems are genetically highly polymorphic, in which their interactions result in release of varieties of cytokines and chemokines. The factors modulate placental relationship between mother and her fetus. Thus, it has been hypothesized that each of the particular maternal KIR/fetal HLA-C genotype combinations have different effect in pregnancy success.

Materials & Methods: The patients were 92 couples and 8 women with three or more recurrent miscarriage (RM) with no physiologic or pathologic reason for their problem. Also, 100 healthy porous women were selected as control group. DNA were isolated from the whole blood specimens and genotyped for HLA-C groups and 5 KIR genes (KIR2DS1, KIR2DS2, KIR2DL1, KIR2DL2, KIR2DL3) using PCR-sequences-specific primer method (SSP).

Results: Statistical analysis shown, that frequency of the HLA-C2 group is raised in the affected female compared with porous women. The frequencies of activating KIRs in the male of partner of RM were similar to controls women while it had been decreased in the affected female compared with porous women although these don’t reach significant.

Conclusion: Our findings support the idea that interaction between maternal KIR on NK cells and paternal HLA-C expressed trophoblast cells, affect the successful placentation.

J04.06 Investigation of association between FABP9 gene mutations and sperm morphological defects in a group of Iranian Men
F. Pourvaremaei, J. Jamshidi; Department of medical genetics, faculty of medicine, Shahid Beheshti university of medical science, Tehran, Islamic Republic of Iran.

Introduction: The male germ cell-specific fatty acid-binding protein 9 (FABP9) is the major constituent of the murine sperm perforatorium and perinuclear theca. Because of its cytoskeletal association and sequence homology to myelin P2 (FABP8), it has been suggested that FABP9 tethers sperm membranes to the underlying cytoskeleton. Furthermore, its upregulation in apoptotic testicular germ cells and its increased phosphorylation status during capacitation suggested multiple important functions for FA-BP9. Also recently it is shown that it can affect sperm morphology in mice.

Methods: Between 02.2010-01.2012 in Oncomed Center we evaluated 104 men with three or more recurrent miscarriage (RM) with no physiologic or pathologic reason for their problem. Also, 100 healthy porous women were selected as control group. DNA were isolated from the whole blood specimens and genotyped for HLA-C groups and 5 KIR genes (KIR2DS1, KIR2DS2, KIR2DL1, KIR2DL2, KIR2DL3) using PCR-sequences-specific primer method (SSP).

Results: Statistical analysis shown, that frequency of the HLA-C2 group is raised in the affected female compared with porous women. The frequencies of activating KIRs in the male of partner of RM were similar to controls women while it had been decreased in the affected female compared with porous women although these don’t reach significant.

Conclusion: Our findings support the idea that interaction between maternal KIR on NK cells and paternal HLA-C expressed trophoblast cells, affect the successful placentation.

J04.07 Human karyotype changes associated with hereditary thrombophilia
R. Miluacar; 1- University of Medicine and Pharmacy, Timisoara, Romania, Timisoara, Romania; 2- University of Medicine and Pharmacy, Timisoara, Romania, Timisoara, Romania; 3- University of Medicine and Pharmacy, Timisoara, Romania, Timisoara, Romania.

Background: Thrombophilia is a inappropriate tendency to thrombus formation. In recent years numerous studies were conducted in the field of thrombophilia, in an attempt to prevent the consequences of thrombotic disease.

Methods: Between 02.2010-01.2012 in Oncomed Center we evaluated 104 patients with thrombophilia. 94 were women and 10 men. In 38 women were conducted karyotype.

Results: The study group showed a rate of 92.1% associated mutations. Only 7.9% of patients had a single form of thrombophilia. Thus, 89.5% showed PAI mutation, MTHFR C677T mutation - 52.6%, A1298C MTHFR mutation - 21.1%, double mutation MTHFR in heterozygous form - 4 patients, factor XIII mutation- 12 patients, fibrinogen mutation in 4 and factor V Leyden, factor II, protein S deficiency and G1PIb / Ila in each 2 patients each.

Of the 38 patients, 28 had different chromosomal polymorphisms. The most common were the presence of satellites in 12 patients: chromosome 13, 21, 14, 15 and 22. The remaining 16 patients had combined changes, both satellites and constituent heterochromatin. Constituent heterochromatin was present on chromosome 1, 9 and 16, all with PAI1 mutation. 26 patients achieved pregnancy. No differences were found between patients without changes in karyotype and those with this chromosomal satellites, but the patients with combined changes, only 6 (37.5%) have achieved pregnancy.

Conclusions: Both chromosomal changes and status of thrombophilia cause repeated reproductive failures. Further studies are needed to specify the combination of mutations at greatest risk and how therapeutic dose should be adjusted to be effective.

J04.08 Detection of AZF Factor of Y Chromosome
B. Kamalyeya, G. Abildinova; National Research Center for Maternal and Child Health, Astana, Kazakhstan.

Molecular genetic study of AZF region deletions of Y chromosome was carried out in order to investigate reproductive disorders in men. The material of the study were 177 men with a history of reproductive disorders (57% astenoteratozoospermia, oligoastenoteratozoospermia in 32% and azoospermia in 11%). Cytogenetic and molecular genetic studies were carried out.

Normal karyotype - 46, XY was diagnosed in 159 cases. The 18 cases (10%) showed chromosomal abnormalities: 16 patients - 47, XXY - Klinefelter's syndrome, in one case - diosomy of Y chromosome-47, XXXY, and one structurally abnormality - 45,XY,del(14,15)[q10]q10. The 88 men with infertility and normal karyotype - 46, XY received molecular genetic study. Genomic DNA was extracted from peripheral blood by Promega set, USA. Multiplex polymerase chain reaction (multiplex PCR) was performed using Taq-polymerase. 9 STS-markers, specific to AZF-locus, were used, the results of amplification were evaluated by electrophoresis in 7% polyacrylamide gel. 7 patients had deletions of AZF factor, of which AZFb in the 15%, AZFa in the 15%, AZF in the 15%, AZFb in the 15%, AZFd in the 55%. The obtained results allowed to establish the genetic cause of the repeated miscarriages.

Conclusions: The patients had different combinations of deletions: AZFa - 1%, AZFb - 1%, AZFc - 1%, AZFa+b - 1%, AZFc - 1%. The 88 men with infertility and normal karyotype - 46, XY received molecular genetic study. Genomic DNA was extracted from peripheral blood by Promega set, USA. Multiplex polymerase chain reaction (multiplex PCR) was performed using Taq-polymerase. 9 STS-markers, specific to AZF-locus, were used, the results of amplification were evaluated by electrophoresis in 7% polyacrylamide gel. 7 patients had deletions of AZF factor, of which AZFb in the 15%, AZFa in the 15%, AZF in the 15%, AZFb in the 15%, AZFd in the 55%. The obtained results allowed to establish the genetic cause of the repeated miscarriages.

J04.09 Use of Y chromosome specific repeat sequencing for sexing by PCR and Single cell PCR
A. Mahjoobi, E. Mahjoobi; Department of Clinical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Islamic Republic of Iran.

Embryo sexing is one of the important ways for sex selection of offspring. This is a potential method to considerably improve animal breeding and the efficiency of dairy and meat production. A novel repeated sequence specific to male cattle has been identified and named S4. S4 is a 1.5 Kb repeating unit to male cattle has been identified and named S4. S4 is a 1.5 Kb repeating unit.
Male infertility is responsible for approximately 50% of infertility in the world. Reactive oxygen species (ROS) is one of the causative agents of infertility in males which effects on sperm quality and function. In this study, the effects of oxidative stress induced by tertiary-butyl hydroperoxide (TBHP) were investigated on sperm quality, testis tissue, and miRNAs expression. Adult male mice strain Balb/c was randomly selected from mouse colony. After a primary study to determine LD_{50}, TBHP was injected at the concentration of 1: 10 LD_{50} for 2 weeks. The mice were sacrificed and their testis tissues were used for cell viability, macroscopic-histopathology analysis, ROS assay and miRNAs expression. Epithilysis was also surveyed for sperm analysis by CASA system.

The sperm motility, count and viability were decreased in the TBHP treated mice in comparison of the control mice. The flow cytometry analysis showed a significant increase in H_{2}O_{2} and O_{2}^{-} levels in both testis and sperm 2 weeks after intra-peritoneal injection. Body weights revealed no treatment-related effects but atrophy of testis and decrease of testis cells viability, the expression of mumu-miR-34a and mumu-miR-181b was observed. Results showed that exposure to TBHP can lead to morphological changes in somniferous tubules.

TBHP-induced oxidative stress caused to decrease in sperm vitality and motility and testis cells viability. Results indicated that oxidative stress induction in testis reduced its normal function. That is due to an increased level of H_{2}O_{2} and O_{2}^{-} in testis and their deleterious effects on genomic levels.

Keywords: male infertility, oxidative stress, miRNA.

J04.11 No association between gr/gr deletions and non-obstructive azoospermian Iranian males

M. Akhondi1,2, H. Soltanghoraee3, H. Zeraati4, H. Edalatkhah1, N. Lakpour2, M. Modarressi1, A. Movafagh1,1

Department of Medical Genetics, Shahid Beheshty University of Medical Sciences, Tehran, Islamic Republic of Iran; 1, FIF Dept, Minz Kouchak Khan Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran; 3, Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran.

Objectives: Genoted located in the azoospermia factor (AZF) region including AZFa, AZFb, AZFc and AZFF located on the long arm of Y chromosome play an important role in spermatogenesis. Microdeletions in these regions have been seen in 10% of infertile males with azoospermia or oligozoospermia. Partial deletions of the AZFc region were also reported to be a significant risk factor for oligo/azoospermia. In this study, we estimated the frequency of partial AZFc microdeletions in Iranian azoospermic men with spermatogenic failure and in fertile controls.

Methods: A total of 150 Iranian azoospermic infertile men were selected for the molecular study of Y chromosome microdeletions. Patients without classical AZFa, AZFb and AZFc deletions and with elevated serum FSH levels were analyzed for partial deletions of the AZFc region. 100 fertile men were also studied as the control group.

The presence or absence of the AZF gr/gr subdeletion in all subjects was tested by multiplex PCR using sy1191, sy1201, sy1206, sy1201, sy142, sy1258, sy1197, sy1101, sy1151 and sy1161 STS markers. The unique absence of sy1291 product was considered as a gr/gr deletion.

Results: The prevalence of gr/gr deletions in patients and controls were 8.45% (12/142 cases) and 10% (10/100 cases) respectively. Statistical analysis showed no significant differences in the frequency of gr/gr deletions between the patient and control groups (p>0.05).

Conclusion: The present study revealed no evidence of association between the occurrence of gr/gr deletion and male infertility in Iranian azoospermic infertile men.

J04.12 Genetic polymorphisms and predisposition to a polycystic ovary syndrome

T. Hristova; National Genetic Laboratory, Sofia, Bulgaria.

Background: Polycystic ovary syndrome (PCOS) is one of the most common reproductive health problems of women. It is characterized by hyperandro- genism, oligo-ovulation or anovulation and polycystic ovaries. Although a major genetic contribution is suspected, no particular genes or family of genes have been confirmed to be causal for PCOS.

Methods: 34 women with PCOS and 32 healthy female controls were genotyped by RFLP and SSPC techniques for polymorphisms PvuII T/C and XbaI A/G and (TA)n repeats in ERa gene; G polymorphism in STK11 gene; RsalG/A - in ERβ gene, and Asn680Ser and Thr307Ala in FSHR genes, respectively. Both selected groups (clinical and control) meet all requirements for conducting associative studies.

Results: No differences were found between the alleles distribution in patients and controls for PvuII T/C in ERα, Rsal G/A in ERβ, Asn680Ser and Thr307Ala polymorphisms in FSHR, XbaI A/G and Polymorphism in ER γ were related to a higher risk for PCOS since the prevalence of A alleles was 67.2% in PCOS group vs. 46.9% in the controls (p = 0.032). Women with shorter (TA)n alleles in the ERα gene were found more often among PCOS patients in comparison to healthy women (44.1% vs. 26.6% respectively).

Conclusions: Our study suggested that the XbaI A/G and (TA)n polymorphisms of the ERα gene could be related to the development and clinical features of PCOS. Larger studies in different ethnic groups are needed to establish the precise role of the estrogen receptor polymorphisms for the ovarian function.

In Non-Obstructive Azoospermic (NOA) men, evaluation of spermatogenesis is performed with histopathological techniques as a gold standard. Pathological assessment of testes could be imprecise due to randomized biopsy and presence of focal spermatogenesis. NOA men showed a variety of defects in spermatogenesis stages, therefore molecular analysis of the stage-specific gene expression in the testis could be confirmatory of histopathological techniques in evaluation of spermatogenesis in NOA men.

In this study, spermatogenesis status evaluated through expression of germ cell specific genes (DAZ, TSPY, SPRTX3 and SPRTX1) in testicular tissue of azoospermic men. Histopathological evaluation was performed using H&E routine method. Semi-nested RT-PCR was performed on synthesized cDNA. The molecular results prepared from gene expression were compared with the histopathological findings using Kappa test.

Results: Semi-nested RT-PCR results showed a significant difference (Kappa coefficient>=0.09, P value = 0.894) with the histopathological results. TSPY, DAZ, SPRTX3 and SPRTX1 were expressed in 94%, 94%, 17.6% and 52% respectively in azoospermic men diagnosed as Germ cell aplasia. Detection of DAZ, TSPY1 and SPRTX1 transcripts in testicular tissue can be used to predict the presence of mature spermatid / sperm in the testis especially in men diagnosed as spermatogenesis arrest using histopathological technique and may provide the better chance of finding the mature sperm to use through ART.

J04.13 Comparison between Molecular and Histopathological Methods for Assessment of Spermatogenesis in Non-Obstructive Azoospermic men

M. Eghbali1,2, M. Akhondi1,2, H. Soltanghoraee3, H. Zeraati4, H. Edalatkhah1, N. Lakpour2; 1, Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Science, Tehran, Islamic Republic of Iran; 2, Reproductive Biotechnology Research Center, Ayvonica Research Institute (ARI), ACECR, Tehran, Iran; 3, Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran; 4, Islamic Republic of Iran, Ayvonica Infertility Clinic, Ayvonica Research Institute (ARI), ACECR, Tehran, Iran, Tehran, Islamic Republic of Iran, 1, Epidemiology and Biostatistics Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, Tehran, Islamic Republic of Iran.

Conclusion: The present study revealed no evidence of association between the patient and control groups (p>0.05). Both selected groups (clinical and control) meet all requirements for conducting associative studies. In this study, spermatogenesis status evaluated through expression of germ cell specific genes (DAZ, TSPY1, SPRTX3 and SPRTX1) in testicular tissue of azoospermic men. Histopathological evaluation was performed using H&E routine method. Semi-nested RT-PCR was performed on synthesized cDNA. The molecular results prepared from gene expression were compared with the histopathological findings using Kappa test.

Conclusion: Our study suggested that the XbaI A/G and (TA)n polymorphisms of the ERα gene could be related to the development and clinical features of PCOS. Larger studies in different ethnic groups are needed to establish the precise role of the estrogen receptor polymorphisms for the ovarian function.
In contrast to partial deletions classic AZF deletions no found in KS. No strong genetic and phenotypic correlation was revealed between KS patients with or without Y chromosome microdeletion, normal or high AR CAG-repeats, and random/skewed XCI. However severe oligozoospermia was detected only between KS patients with normal CAG-repeats, not-skewed XCI and without AZF deletion.

J04.15

Male infertility and polymorphisms in CREM, LRP8, ABCA1, SMPD1 genes

1 Institute of Medical Genetics, Dept. of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia, 2 Institute of Medical Genetics, Dept. of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia, 3 Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Ljubljana, Slovenia, 4 Institute of Human Genetics, School of Medicine, University of Belgrade, Belgrade, Serbia.

The lipid metabolism genes play essential role in mouse spermatogenesis, but their role in human infertility has not been fully established. Products of CREM gene are essential for the initiation of spermatid maturation and development. Male lacking CREM gene exhibit specific arrest of round spermatid development, phenotype similar to some human infertility conditions. Few studies have shown that CREM deficiency is associated with spermatogenic disorders in man. ATP-binding cassette transporter 1 (ABCA1) mediates lipid efflux from Sertoli cells and influences male fertility. Apolipoprotein E receptor-2 (LRP8) and acid sphingomyelinase (SMPD1) play important role in sperm development, maturation and function in mice. This case-control study investigated associations between polymorphism in the CREM, LRP8, ABCA1 and SMPD1 genes of lipid metabolism and male infertility.

Screening of eight polymorphisms (CREM: rs1315151, rs17499247, LRP8: rs17108177, rs7357983, ABCA1: rs2230806, rs2066714, SMPD1: rs1542705, rs1050239) was performed in 522 Slovenian and Serbian men with azoospermia and/or oligoasthenospermia and in 445 Slovenian and Serbian controls.

Distribution of genotypes and alleles of investigated polymorphisms were in accordance with Hardy-Weinberg equilibrium in different groups or with the total population. We have found significant differences in genotype frequencies of ABCA1 gene rs2066714 polymorphism (p<0.002) between group of patients with azoospermia and control group. However, no significant differences in genotype frequencies of other tested polymorphisms (CREMLRP8,SMPD1) and male infertility were observed (azoospermia and/or oligoasthenospermia). The ABCA1 gene rs2066714 polymorphism might represent a possible risk factor for infertility susceptibility in Slovenian and Serbian men. Further studies with a larger sample size are needed to confirm these findings.

J04.16

A novel nonsense mutation in HSD17B3 gene in a Tunisian patient with sexual ambiguity

B Ben Rhouma1, N. Belguith1,2, M. Mnif3, T. Kamoun4.

1, 2 Faculty of Medicine, Sfax University, Sfax, Tunisia, 3 Department of Medical Genetics, Hedi Chaker Hospital, Sfax, Tunisia, 4 Department of Endocrinology, Hedi Chaker Hospital, Sfax, Tunisia, 5 Department of Pediatrics, Hedi Chaker Hospital, Sfax, Tunisia.

17 β-hydroxysteroid dehydrogenase type 3 isoenzyme (HSD17B3) is present almost exclusively in the testes and converts delta 4 androstenedione (Δ4 androstenedione) to testosterone. Mutations in the HSD17B3 gene cause HSD17B3 deficiency and result in 46 XY disorders of sex development (DSD).

The present paper is the first to report on 46,XY DSD case due to HSD17B3 deficiency in Tunisia. The two years old patient belongs to a consanguineous family. Her clinical presentation and endocrinology evaluation showed a sexual ambiguity (Prader IV) and testosterone/Δ4 androstenedione ratio equal to 0.16, reflecting a defect in HSD17B3 enzyme activity (normal range is>0.8). The karyotype was realized by standard G banding technique and was 46,XY and the mutational analysis identified a novel homozygous nonsense mutation leading to a 17βHSD3 deficiency in a Tunisian patient. Based on the present data, the screening of this mutation could help contribute to the rapid diagnosis of HSD17B3 deficiency. The genetic confirmation of mutation in HSD17B3 gene provides crucial information for genetic counseling and prenatal diagnosis.

J04.17

Genetic investigation of mov10L1 gene in azoospermic men with complete maturation arrest

H. Sarkardeh1, H. Gourabi1, M. Totonchi1, M. Sadighi Gillani2, N. Almadani1, P. Borjany1.

1 Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Islamic Republic of Iran, 2 Department of Andrology, Cell Science Research Center, Royan Institute, ACECR, Tehran, Islamic Republic of Iran.

Thousands of genes are involved in spermatogenesis. Alterations in any of these genes could be one cause of infertility in men. Mov10L1 gene is one of the genes that are expressed specifically in germ cells. Genetic disruption of this gene in mouse stops spermatogenesis during Meiosis I and causes Azoosperma.

In this study, the genetic changes of mov10L1 gene analyzed in a population of 30 infertile patients with a complete cessation of spermatogenesis as the patient group and 70 fertile men who had at least one child as the control group.

After DNA extraction from blood samples of selected individuals, PCR-SSCP method was done to classify individuals and ultimately sequencing was used to confirm genetic changes of the mentioned area.

Analyzing the data shows, from 30 azoospermic patients, 6 patients had (G25A) and (A101G) changes in exon 1 and also (G105A) change in exon 18 was seen in only three of patients. Change (A101G) causes the Arginine amino acid convert to Glutamine at its protein level, while the other two changes are nonsense polymorphisms. The changes were not observed in the control group.

Based on the results, it is expected that mutations and polymorphisms in mov10L1 gene could be a genetic factor in the incidence of infertility in men which requires further studies.
with more than 1800 affected individuals, represents one of the areas in the world with an unusually high prevalence of beta thalassemia.

Material and Method

Couples of beta-thalassemia were referred to Pasteur Institute of Iran from Primary Health Care (PHC) centers. Fetal samples of chronic villous were collected according to the gestational age. DNA extraction was performed according to standard methods by Roche kit. We used PCR-ARMS and RFLP and direct sequencing technologies, for detection mutations of fetuses.

Result

We detected mutations from 360 couples who were beta thalassemia carriers. 192 of these couples referred for prenatal diagnosis. 28% had more than one pregnancy. The result of our study shown that 25.2% of fetuses were affected. 24.8% were normal and remained were carrier. 60% of fetuses were compound heterozygous and 40% were compound homozygous. The expected compound homozygous were (IVS II-1/ IVS II-1) & (IVS I-5/ IVS I-5) and the expected compound heterozygous were (IVS II-1/ IVS II-1), (IVS II-1/ IVS I-5), (IVS II-1/ CD 8/9), (IVS II-1/ CD 30).

Discussion

Since the Iranian population is mixture of different ethnic group, it is necessary to determine the frequency and distribution of mutations. It helps us to diagnosis prenatal and preventing to birth of affected fetus in couples at risk of having an affected child.

J05.03

Detection of Fragile X chromosome mutation in males with developmental delay / mental retardation

A. Erjavc Skenget1, V. Kuncnik2, Š. Stangler Herodet1, R. Zagradništ1, A. Zagorac1, N. Kohler3, Vokat1,2
1University Medical Centre Maribor, Maribor, Slovenia; 2University Medical Centre Maribor, Ljubljana, Slovenia

The fragile X syndrome gene (FMR1) contains a highly variable repeat of the nucleotide triplet (CGG). A variety of clinical conditions is associated with the expanded allele sizes that predominantly affect males. Fragile X syndrome is caused by a large expansion of CGG repeat (full mutation) which silences the FMR1 gene and stops the protein (FMRP) production. An important feature of the syndrome is mental impairment which may include mental retardation, autism, etc. It is therefore important to exclude FXS whenever patients are in diagnostic procedure for developmental delay affecting mental capabilities.

For the detection of the FXS patients, a PCR-based technique, designed as an exclusion test, was used. This technique is useful for the detection of normal variants of the CGG repeat number in males and heterozygous females. The definitive diagnosis of FXS based on molecular genetic analysis, Southern blot technique, which is labour intensive and time consuming.

We analyzed DNA samples from 97 male subjects from North Eastern Slovenia referred for genetic testing because of developmental delay / mental retardation. The PCR amplification for FXS was successful in 92 patients out of 97 (94.8%). The presence of normal CGG sequence variations was detected in 91 subjects; in one patient (1.08%, 1/92) FXS was suspected and subsequently confirmed by Southern blot analysis.

Presented methodology, based only on PCR assay as screening test, is suitable as a preliminary test to exclude FXS in males or heterozygous females. With this approach we detected full mutation in 1.08% of males.

J05.04

Prenatal invasive diagnostics chromosomal pathology

M. Bayanova, C. Aldibnowa, A. Kostina, E. Moldagulova
National Research Center for Maternal and Child Health, Astana, Kazakhstan

The prime value among actions for the prevention of a birth of children with a hereditary pathology belongs to prenatal diagnostics the leading part in which is taken away to invasive methods.

In 3432 cases for the purpose of diagnostics of a chromosomal pathology at a fetus in the first and second trimesters of pregnancy for prenatal karyotyping Indications for prenatal research were the age of the pregnant woman of 35 years also is more senior, a deviation of indicators of the biochemical serum markers, ultrasonic markers of a chromosomal pathology at a fetus. In 95 cases (3360) have defined the normal karyotype - 46, 46, has been diagnosed. Percent of detestability of chromosomal aberrations - 5.0%. At prenatal diagnostics of a fetus it has been taped - 172 cases of a pathology. From them 83.1% cases of aneuploidy (143), the 16.9% structural aberrations: translocations, duplications, inversions (29).

Structure of a chromosomal pathology: the Down’s syndrome - 47.5% (68), Edwards’s syndrome - 20.3% (29), the Patau’s syndrome - 6.3% (9), the Turner’s syndrome - 8.4% (12), the Klainfelter’s syndrome - 3.5% (5), trisomy X - 4.9% (7), the other aneuploidy - 9.1% (13).

J05.05

Quantitative Real-time PCR for non-invasive rapid and reliable diagnosis of Turner Syndrome

J. Ezzati1, M. Nashemi2, R. Mohdani3
1Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran; 2Islamic Azad University, Tehran, Islamic Republic of Iran 3Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran

The aim of the study is a method of non-invasive for prenatal diagnosis, which is based on quantitatieve real-time PCR. Materials and Method: Ge- netic material was extracted from blood samples of mother and Turner syndrome subjects (n=15), and normal controls (n=10) that were tested by quantitative real-time PCR. This technique was applied by a MGB TaqMan probe based real-time PCR assay for rapid diagnosis of monosomy X-linked status in Turner syndrome. In the present study, we have measured and determined the gene dosage of FVIII (target gene on X chromosome) relative to PMP22 (reference gene on 17p11.2). Results: The formula ratio = 2-ΔΔCt applied for the calculation of the FVIII/PMP22 ratio. The gene dosage ratio was q=1,005±0,00342 and 0,486±0,00797 for normal individuals and Turner syndrome, respectively. Conclusion: This technique, including quantitative real-time PCR can be used as a rapid and standard and reliable method for rapid prenatal diagnosis of monosomy X-linked.

J05.06

Investigation of Hb variants among patients referred to Pasteur institute of Iran

Pasteur Institute of Iran, Tehran, Islamic Republic of Iran

Background and Objective: More than 700 hemoglobin variants have been described, of which clinically most important ones requiring diagnosis are Hb S, Hb C, Hb E, and Hb D Panjab and Hb O Arab. Here We have investigated the frequency and type of Hb variants in β-globin gene among patients referred from primary health care to Pasteur institute of Iran.

Materials and methods: After obtaining informed consent, the blood samples were collected in tubes containing EDTA. Genomic DNA was extracted using the salting out method. ARMS - PCR was used for molecular characterization of Hb S. The region containing exon 3 was amplified for HbD and the PCR product of this amplicon was digested by EcoRI restriction enzyme. DNA sequencing techniques were used to analyze samples for finding any mutations.

Results and discussion: In this study, we showed that Hb D was the most common Hb variant with(50%) and after that Hb S with (36%), in order of frequency by Hb types.

J05.07

The relationship between polymorphisms & sites of beta-globin gene

Pasteur Institute of Iran, Tehran, Islamic Republic of Iran

Introduction

The thalassemia syndrome is the most common monogenic disorders in the world. Polymorphism in biology occurs when two or more clearly different phenotypes exist in the same population of a species. The term is also used somewhat differently by molecular biologists to describe certain point mutations in the genotype, such as SNPs (IVSII-666, C2D2−). JSVII-666 and C2D2 are located in the second intron and first exon of the β-globin gene respectively. In this research we investigated relationship between polymorphisms and haplotypes.

Materials & Method:

Informed consent was obtained in all cases before the collection of blood samples. DNA extraction was performed by salting out method. 175 unrelated families of heterozygous thalassemia that referred to Pasteur Institute of Iran including carrier of α and β-thalassemia that didn’t find any mutation was investigated. We were determined by direct sequencing using Big Dye

www.eshg.org
from ABL. With RFLP was studied at 3 sites within the beta-globin gene cluster, including 3' HincII, BstAvII, and HinfI.

Results: total of them 20% had different polymorphisms there were relationship between JSVI-666 and CD2 polymorphisms with three sites within the β-globin gene cluster. This results were shown that about 90% pattern of Avell/β site in JSVI-666, CD2 was -/+ and about 70% pattern of 3'HincII/β site in JSVI-666, CD2 was -/+ and in HinfI/β was +/+.

Discussion: With sequencing method we found pattern of 3 sites in the cluster of beta globin. So, These relations can help us in Prenatal Diagnostic.

Two cases of 22q11 deletion syndrome prenatal detection Y. Kozlova, N. Shilo, M. Luchkov, A. Polialov; Research Center for Medical Genetics, Moscow, Russian Federation.

22q11 deletion syndrome (22q11DSD) is a well known syndrome with the occurrence of 1 in 4000 life births. Up to 75% of 22q11DS detected due to presence of congenital heart defect (CHD), mostly conotruncal. It is widely described and detected in pre- and postnatal diagnosis. Despite ultrasound (US) and chromosomal geneticists' awareness of the possible fetal phenotype suggestive for this deletion, 22q11DS prenatal diagnosis remains complicated because of atypical phenotype that may present and difficulties of the syndrome's earliest detection. We evaluated two groups of pregnant women referred to invasive procedures in 1st (22 cases) and 2nd (27 cases) trimesters due to US findings. Two fetuses were found to carry 22q11 deletion. Indications of the 1st trimester were increased nuchal translucency (NT), increased nuchal translucency (NT) and lymphatic formations in the neck area - 3 (1 detected). In the 2nd trimester one of 20 fetuses with CHD had 22q11 deletion and none of 7 with intratracheal growth retardation and/or palatal malformations was found to carry 22q11 deletion. 22q11DS prenatal diagnosis in 2nd trimester could be proposed when US reveals CHD, e.g. conotruncal, while in 1st trimester the main US-findings are increased NT, lymphatic malformations (genital, oral), which may later transform to CHD. For now isolated NT was admitted as unreliable US-key for 22q11DS, so we suppose that such a rare symptom as lymphatic formations could be another indication for 22q11DS investigation in early diagnostics. Further elaboration of diagnostic criteria for early deletion detection can help genetic consultation of these families.

Prenatal case of Pallister-Killian syndrome in conjuction with unbalanced t(15;18) K. K. Khilova, V. O. Kozlova, M. E. Minzhenkova, E. V. Vudina, Z. G. Markova, T. V. Zolotukhina; Federal State Budgetary Institution "Research Centre for Medical Genetics" under the Russian Academy of Medical Sciences, Moscow, Russian Federation.

A 28-year-old primigravida was carried cordocentesis after an expert fetal ultrasound at 22 weeks of gestation which revealed increased nuchal translucency, hypoplasia of nasal bone, smooth profile, intratracheal growth retardation (2-3 weeks), microelia of predominantly rhizomelic type, a left severe congenital diaphragmatic hernia, right-sided displacement of the heart, hypoplasia of the left lung, small for the gestation age ears. GTG-banding karyotype in cultured fetal blood lymphocytes showed 46,XX,der(15). nMISH (24Xhecy, Metasystems) revealed an additional material of chromosome 18 on q-arm of chromosome 15. FISH with subtelomere 18p/q DNA-probes (Vysis, Abbott) showed presence of 18q-material. Paternal karyotype was normal and mother was found to have balanced translocation 46,XX,X(q15;18)(q24;q21). Since ultrasound phenotype was also rather suggestive for Pallister-Killian syndrome (PKS), FISH-analysis was performed with CEPI2 DNA-probe (Vysis, Abbott) on non-cultured fetal blood. Three copies of D1Z2 loci were revealed in 10% of cells. Two metaphase spreads with supernumerary (12)(p10) also were found by FISH-analysis of cultured lymphocytes with XCAP 12 short DNA-probe (MetaSytems). Thus fetal karyotype was determined as 46,XX,der(15)(15;18)(q24;q21) mat[5]/47,XX.der(15)(15;18)(q24;q21)mat,+[1/(2)(p10)]. Considering severe life prognosis, the family opted for termination of pregnancy after genetic counseling. Postmortem examination corroborated ultrasound findings. Prenatal detection of PKS remains significant and also complicated because of small tissue size and low presence of additional isochromosome 12p in cultured lymphocytes. Thus, if fetal phenotype is suspected of PKS, despite of normal karyotype in cultured lymphocytes, it is necessary to use FISH with chromosome-specific 12 DNA-probes on direct blood samples or another fetal tissues.

Mutation spectrum of CD40LG gene in Russian families with X-linked HIGM I. Sermyagina, V. Zabnenkova, A. Politov; Research Center for Medical Genetics, Moscow, Russian Federation.

Defects in CD40LG gene are the cause of X-linked immunodeficiency with hyper-IgM type 1 (HIGM1). HIGM1 characterized high or normal by levels lgM and low IgA, IgG and IgE concentrations. The clinical manifestations of HIGM1 include current infection of respiratory ways, an intermediate pneumonia, a chronic diarrhea, oral ulcers, sclerosing cholangitis and a hepatitis. Gene CD40LG includes 5 exons, 4 introns, and mapped to Xq26. In the given work we describe nine patients of a various family tree which have various mutations in CD40LG gene. A search of mutations was performed by direct DNA sequencing analysis of all exons and exon-intron junctions and PCR-RFLP. The mutations identified in this research include one combined mutation (c.[744C>A;745C>A]), two splice site mutations (c.156+2T>C, c.346+1G>A), and four deletions/insertions defects (c.13,14delTA, c.158,161delTAGA, c.207_208insA, c.532delT). Two additional patients with the large deletions included exons 1-2 and exons 4-5, but exact borders of defects are not defined. As a whole, this supervision confirm heterogeneity of mutations in HIGM1. The splice site mutation c.346+1G>A and deletion c.158,161delTAGA are in hotspot for these mutations in CD40LG. Mothers of all patients were heterozygous for a mutations. Also, seven prenatal diagnostics of HIGM1 have been made.

Unbalanced translocation with two partial monosomies in fetuses with 45 chromosomes S. Mandal, B. B. Ganguly, N. N. Kodam, N. M. Oza; 1MGM Centre for Genetic Research & Diagnos, Navi Mumbai, India, 2Oza's Maternity Hospital, Navi Mumbai, India.

Constitutive unbalanced translocations are generally inherited from one parent carrying balanced translocation, and described as derivative or re-combinant chromosome carrying partial monosomy of one and partial tri-somy of the other chromosome. However, transmission of partial monosomy of both chromosomes of a parental balanced translocation is a very rare phenomenon. In the present case, increased frontal-nasal angle detected through routine ultrasound imaging as a measure of antenatal screening was the only deformity to consider fetal karyotyping. FISH test was also performed for quick testing of the numerical status of chromosomes 13, 18, 21, X and Y, which appeared normal. However, conventional G-banding karyotype appeared with 45 chromosomes and monosomy 21. Since interphase FISH presented two normal signals of 21, a critical analysis following high resolution banding was performed and could trace the second 21 rearranged on 9p. Therefore, the fetus was carrying 45XX,der(9)(p22;q11.2) karyotype with a constitutive abnormality. Subsequently parental karyotyping confirmed mother being the carrier of (9)(p22;q11.2) transmitted the unbalanced translocation. The present fetus had 45 chromosomes without the other derivative chromosome resulting in partial monosomy of both chromosomes. Therefore, it is apparent that meiotic nondisjunction, most likely maternal, resulted in aneuploid condition. Had the child inherited the normal 21 from the mother, the child would have had partial trisomy 21q which might have produced clinical expressions of Down syndrome. This is the first case to describe two partial monosomies in an aneuploid fetus with 45XX,der(9)(p22;q11.2). The study also describes the complementation of FISH and G-banding techniques in prenatal diagnosis.

Gene expression profile as a prenatal test for Down syndrome M. Volk, A. Mayer, L. Lovrecić, B. Peterlin; Clinical Institute of Medical Genetics, UMC Ljubljana, Ljubljana, Slovenia.

The effect of supernumerary chromosome 21 in Down syndrome (DS) on global profile of gene expression in various cell types has been demonstrated in several previously performed studies. However, diagnostic utility of these transcriptional alterations has been poorly studied. For this reason, we performed global expression profiling to find differentially expressed genes (DEG) and subsequently performed targeted validation and diagnostic performance evaluation on a larger group of case and control samples. Initially, transcriptomic profiles of amniocytes from 10 fetuses with trisomy 21 and 9 euploid fetuses were determined using Agilent 4x44K expression microarrays. DEG were discovered using linear regression modelling appropriate classification kernel and evaluated using leave-one-out cross validation approach. Subsequently top DEG were validated using RT-PCR quantitation on independent sample of 16 cases with DS and 32 controls. The classification was performed using support vector machine classification kernel and evaluated using leave-one-out cross validation approach.
J05.13 The impact of gene-gene interaction in the development of necrotizing enterocolitis in the neonates
N. Gorovenko1, Z. Rossokha2, S. Kryvachenko2;

Background: Necrotizing enterocolitis (NEC) is a widespread disability in the neonates but its developing mechanism is not completely investigated. The aim of our study was to evaluate gene-gene interaction in the development of NEC in the neonates.

Methods: We conducted a case-control study of 69 neonates with NEC and 110 healthy neonates (control group). The ID/ID, A1166G, G308A, C677T polymorphism of ACE, AT2R1, TNF-a, MTHFR genes were detected using PCR and RFLP analysis. Statistical analysis was performed to assess the effects of all analyzed genes and their combinations (Statistica 6.0) and MDR model (MDR 2.0).

Results: We observed significant differences of several investigated genotypes between neonates with NEC and neonates from control group [table 1]. The statistical model including all investigated genes had the highest predictive value (Percentage Correct=69.3, p <0.0001), but we found no additive interaction between investigated genes.

Table 1. Results of statistical analyses

<table>
<thead>
<tr>
<th>Gene (genotype)</th>
<th>x²</th>
<th>P OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE (ID)</td>
<td></td>
<td></td>
<td>2.54</td>
</tr>
<tr>
<td>ACE (DD)</td>
<td></td>
<td>>0.05</td>
<td>1.64</td>
</tr>
<tr>
<td>TNF-a (AG)</td>
<td></td>
<td></td>
<td>5.37</td>
</tr>
<tr>
<td>TNF-a (AA)</td>
<td></td>
<td><0.05</td>
<td>1.22</td>
</tr>
<tr>
<td>MTHFR (CT)</td>
<td></td>
<td></td>
<td>10.2</td>
</tr>
<tr>
<td>MTHFR (TT)</td>
<td></td>
<td><0.05</td>
<td>3.15</td>
</tr>
<tr>
<td>AT2R1 (AC)</td>
<td></td>
<td><0.05</td>
<td>1.67</td>
</tr>
<tr>
<td>AT2R1 (CC)</td>
<td></td>
<td>>0.05</td>
<td>6.11</td>
</tr>
</tbody>
</table>

Conclusion: DD genotype of ACE gene, CC genotype of AT2R1 gene, AG, AA genotypes of TNF-a gene, TT, CT genotypes of MTHFR gene in the neonates is independent risk factors with high predictive value for the NEC development. Further research with including other prognostic factors may be useful for new approaches to early diagnostics.

J06.01 Association of 3a4 *1g gene Polymorphism in the development of Acute Leukemia
S. Yurie, A. C. N. Duna, V. Satti;
Department of Genetics, Hyderabad, India.

Acute Leukemia is a progressive malignant disease of the blood-forming organs, marked by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Human cytochrome P450 3A enzyme catalyzes the metabolism of exogenous and endogenous compounds. SNPs in the gene encoding this enzyme are known to be associated with altered expression and function. Hence the genetic variation within the CYP3A4 gene may contribute to interindividual variability in drug metabolism.

The present study consists of 392 acute leukemia cases collected from MNJ Regional Cancer Institute and Nizam institute of Medical Sciences, Hyderabad as well as 264 age and sex matched healthy controls. The CYP 3A4 *1G polymorphism was analyzed by PCR-RFLP technique.

Heterozygous GA genotype frequency was slightly elevated in acute leukemia patients (54.0%) when compared with controls (49.0%) indicating the presence of G allele might predispose to acute leukemia. When the data was stratified with respect to type if leukemia, the elevation GA genotype frequency was observed only in AML group.

Attempt was also made to evaluate the interaction of genotype with confounding epidemiological variables like age at onset, occupation, habits and area of living as well with clinical variables like WBC count, Platelet count and complete remission rate.

J06.02 Antimutation and anticancer effects of Morin in human cutaneous T cell lymphoma
M. Khadem1, R. Karimi2, M. Hashemi3, K. Parivar3;
1Islamic Azad University, Tehran medical Branch, Tehran, Islamic Republic of Iran, 2Islamic Azad University,Science and Research Branch, Tehran, Islamic Republic of Iran.

At present cancer is one of the mortality factors in the world and treating it debilitates the patient. Therefore prevention can be considered as important as treatment in cancer. Diet can play a vital role in cancer prevention. Nowadays the scientists are looking for natural food which can prevent the cancer occurrence. The purpose of this research is to examine antimutagenicity and anticancer effects of morin in Cutaneous Human T cell Lymphoma (Sezary syndrome).

In this experimental study HUT-78 cell line were cultured in %90 RPMI1640 , supplemented with 10%fetal calf serum,1g-glutamine,penicilne,streptomyc in and then incubated at 37°C for 2 days. The cancer cell line was treated by different morin concentrations and cellular vital capacity was determined by MTT. The morin was subsequently evaluated in terms of antimutagenicity and anti cancer properties by a standard reverse mutation assay (Ames test).

This was performed with histidine auxotroph strain of Salmonella typhimurium[TA100] Thus, it requires histidine from a foreign supply to ensure its growth. The aforementioned strain gives rise to reverted colonies when expose to carcinogen substance [Sodium Azide]. During MTT,Cell lymphoma cancerous cells revealed to have a meaningful cell death when compared with controls(p<0.001).In Ames test morin prevented the reverted mutations and the hindrance percent of morin was 98.16 % this value in anticancer test was 99.23 %. These results have revealed morin has anticancer and antimutagenic effects.
Background: Although arsenic trioxide was shown to be a potential drug in the treatment of APL, most notably in patients with relapsed APL, the underlying mechanisms remains unclear. In this study, the cytotoxicity effect of ATO on APL cells was evaluated.

Material and methods: In this basic-applied study, the human leukemia (NB4) cell line was used as a model to evaluate the cytotoxicity effects of arsenic trioxide in APL cells. NB4 cells were exposed to different concentrations of ATO (0.5, 1, 2 µM) for 2, 4 and 6 days and dimethylthiazol diphenyl tetrazolium bromide (MTT) assay was applied on them.

Results: Data obtained from this assay indicated that arsenic trioxide significantly reduced the viability of NB4 cells and inhibited cell growth in a time and dose dependent manner.

Conclusion: Findings from the present study indicate that arsenic trioxide is highly cytotoxic to human leukemia cells, supporting its use as an effective therapeutic agent in the management of acute promyelocytic leukemia.

J06.04
Is The BCL-2 Prompter (-938C>A) Polymorphism Associate with Iranian Breast Cancer Patients Susceptibility?

B. Motahari1, M. Ghaffarpour2,3,4, F. Fereidooni1, G. Javadip, M. Houshmand2,5,6; 1Dept of Biology,Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran, 2Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran, 3Iranian Research Organization for Science and Technology (IROST), Tehran, Islamic Republic of Iran, 4Special Medical Center, Tehran, Islamic Republic of Iran, 5The Cancer Institute of Iran, Imam Khomeini Hospital Complex, Tehran University of Medical Science, Tehran, Islamic Republic of Iran.

Background and aim: Breast cancer is the first most common cancer among the females in Iranian cancer patients. Apoptosis and cellular proliferation play an important role during normal mammary develop-ment &carcinogenesis of the mammary gland. Bcl-2 is one of the most important anti apoptotic genes.Bcl-2 gene has been demonstrated with breast cancer development and a single nucleotide polymorphism (SNP-938C >A) has been identified recently. The aim of this study was to identify whether Bcl-2(-938C>A) polymorphism which is located in the inhibitory P2 promoter of Bcl-2 is associate with breast cancer, as well as clinicopathological characteristics. Materials and method: patients and tissue specimens: tissue samples were obtained from 34 consecutive patients with BC from IRANIAN National Tumor Bank, National Cancer Institute, Imam Khomeini Hospital Complex, Medical Tehran University, Tehran, Iran. Histopathological examinations were performed, and all tumors were confirmed as adenocarcinoma. Muta-tional analysis of Bcl-2 (-938C>A) in tumor samples: fresh tumours and their adjacent were extracted for genomic DNA using the QI Amp Mini Kit and PCR sequencing methods.

We searched for -938C>A in this gene. The Bcl-2 (-938C>A) analysis were made by means of PCR sequencing. Result and conclusion: 10 of 34 (29%) samples were analyzed. The frequency of polymorphism in Bcl-2 (-938C>A) was not present in the samples (0%). It also was not a significant associated with histopathological grade, age or cancer stage in Iranian Breast Cancer Patients. Although some study have been shown in Bcl-2 (-938C>A) polymorphism, our study was not shown and more investigation needs to prove it.

J06.05
High prevalence of A15326G alteration in mitochondrial complex III in Iranian breast cancer patients.

M. Arabzadeh1, S. Eslamizadeh2, M. Ghaffarpour2, A. Arastehkani3, V. GhdosinejadKalashroudi4, S. Rahmani5, M. Houshmand6; 1Islamic Azad University, Ahar, Tabriz, Islamic Republic of Iran, 2National Institute of Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran, 3Special Medical Center, Tehran, Islamic Republic of Iran.

Mitochondria play a decisive role in the regulation of apoptosis and thereby exhibiting major changes in their structure and function. A decrease in mitochondrial membrane potential is an early universal event of apoptosis. Numerous somatic mitochondrial DNA (mtDNA) mutations have been found in various types of neoplasms, including breast cancer. Cytochrome b (Cytb) of mitochondrial electron transport complex III is encoded in mtDNA 14747-14750. This region has been subject to extensive study in breast cancer and estimate effects of resulting amino acid changes on mitochondrial protein function. Ato T14783C, T14798C, A14820C, G14831A, C14872T, C14929T, C14953T, G15043A, G15110A, T15115C, G15148A, A15159G, A15203G, A15283G, G15301A, A15452A, A15488T, T15514C, G15617A, G15768A, T15793C polymorphisms were found in cyt b. The polymorphism A15326G resulting in the change of T194A in the Cytb protein was found in the large majority (>95%) of patients. So we think this polymorphism may use as biomarker in breast cancer but more investigation needs to prove it.

J06.06
C14766T polymorphism in mitochondrial complex III as biomarker in Iranian breast cancer patients?

V. Safarpour1, M. Aratzadeh2, S. Esalamizadeh2, M. Ghaffarpour1, V. GhdosinejadKalashroudi3, A. Arastehkani4, M. Houshmand5; 1Islamic Azad University, Dezfoul, Islamic Republic of Iran, 2Special Medical Center, Tehran, Islamic Republic of Iran, 3National Institute of Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran.

In most pathways of apoptosis, the release of mitochondrial cytochrome c and apopto-sis-inducing factor are also key events in initiating the cascade of reactions leading to apoptotic cell death. Mitochondria play a decisive role in the regulation of apoptosis. Mitochondrial dysfunction is relevant to the genesis of many types of cancers, including breast cancer. Numerous somatic mitochondrial DNA (mtDNA) mutations have been found in various types of neoplasms, including breast cancer. Cytochrome b (Cytb) of mitochondrial electron transport complex III has been reported mutated in a large variety of human tumors as breast cancer. Mitochondrial DNA of 24 patients comprising the C14766T was analyzed by PCR-sequencing methods. The aim of this study is to summarize data on mtDNA mutation involvement in breast cancer and estimate effects of resulting amino acid changes on mitochondrial protein function. Amongst patients with breast cancer, this alteration is present in 33.3% of affected females. The polymorphism C14766T resulting in the change of Threonine to Isoleucine missense mutation in the Cytb protein was found in the large majority (33.3%) of patients. It is therefore possible that the C14766T SNP constitutes an inherited predisposition factor for the development of breast cancer. So we think this polymorphism may use as biomarker in breast cancer but more investigation needs to prove it.

J06.07
A12308G alteration in trnA Leu(CUN) as a biomarker or usual polymorphism in Iranian breast cancer patients?

S. Esalamizadeh2, M. Aratzadeh2, M. Ghaffarpour1, V. GhdosinejadKalashroudi3, A. Arastehkani4, S. Rahmani5, M. Houshmand6; 1Islamic Azad University, Ahar, Tabriz, Islamic Republic of Iran, 2Special Medical Center, Tehran, Islamic Republic of Iran.

Mitochondrial dysfunction is relevant to the genesis of many types of cancers, including breast cancer: mitochondrial tRNA genes perform several functions including processing and translation and are essential components of mitochondrial protein synthesis. Until now only few somatic mitochondrial tRNA mutations have been reported in cancer cells. In this study all 22 tRNA genes in 24 Iranian females with breast cancer were investigated by PCR-Sequencing methods. A novel homoplasmic C12187T mutation was located at the Tloop site for the tRNAHis and A12308G, G12192A, T15968C polymorphisms in TrnALeu, tRNAHis and tRNAPro were found respectively. The mtDNA A12308G polymorphism is highly conserved between species due to mutation and also substitutes for the most representative amino acid in the oxidative phosphorylation, suggesting a key role of this tRNA in mtDNA-coded OXPHOS subunits. In addition, recently have been shown that breast cancer cells line with the higher mutation frequency of A12308G are highly metastatic. Amongst our Iranian patients with breast cancer; this alteration is present in 23% of affected females. This SNP has been also reported in many types of disease as Alzheimer, Ataxia, CPEO, LHON, MERRF, MELAS and...
Cisplatin and MNPs(Fe₃O₄) Synergistically Alter Apoptotic Genes Expression

Z. Hosseini1, A. Akbarzadeh2, M. Mohktari3, M. Taghavi3, M. Hashemi1,
1Islamic Azad University, Tehran, Islamic Republic of Iran, 2Pasteur Institute of Iran, Tehran, Islamic Republic of Iran.

Breast cancer is a common cancer in women. Cisplatin is an anticancer drug. There is high rate of cisplatin resistance in breast cancers, therefore cisplatin is not the first choice in treatment of breast cancer. The mechanism of cisplatin is interaction with DNA and induction of apoptosis. Apoptosis is a common pathway that finally mediates the killing functions of cisplatin anticancer drug. In order to induce apoptosis, many gene functions must be altered. In this study, MCF-7 breast cancer cell line was used. The aim of this study was investigate the potential benefit of combination therapy with magnetic nanoparticles of Fe₃O₄ (MNPs(Fe₃O₄)) and cisplatin. Viability of the cell was studied by MTT assay and gene expression was studied by RT-PCR. Analysis of viability percentage and apoptotic genes expression alteration showed that combination of cisplatin and MNPs(Fe₃O₄) have a potent cytotoxic effect on MCF-7 breast cancer cell lines. Combination of cisplatin and MNPs(Fe₃O₄) reduced IC50 of drug in 24 h from 42 μM to 10.35 μM in MCF-7 cell lines. MNPs(Fe₃O₄) and cisplatin can synergistically enhance induction of apoptosis. Cisplatin by itself can not change BCL2 expression in MCF-7 cell line, but combination of MNPs(Fe₃O₄) and cisplatin can reduce expression of an antiapoptotic gene, BCL2, after 48 h and 72 h. Thus cisplatin therapeutical dose can be reduced and consequently cisplatin side effects can be decreased. Thus our in vitro data strongly suggest a potential application of a combination of MNPs(Fe₃O₄) and cisplatin for treatment of breast cancer cell lines.

Up regulation of NM23H1 a metastasis suppressor gene in the MCF-7 breast cancer cell line treated by cisplatin

M. Hashemi1, M. Mohktari3, A. Akbarzadeh2, R. Mahdiani3,
1Islamic Azad University,Tehran Medical Branch, Tehran, Islamic Republic of Iran, 2Pasteur Institute of Iran, Tehran, Islamic Republic of Iran, 3Pilot Biotechnology department, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran, 4Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran.

Breast cancer is one of the most common cancers in developed countries. Most of cancer deaths are due to the development of metastasis. Nm23-H1 gene is an anti metastatic factor whose expression is correlated inversely with tumour metastatic potential in breast. Nm 23-H1 encodes nucleoside diphosphate kinase A, which is responsible for the synthesis of most non-ATP nucleoside triphosphates, suggesting that this protein might be involved in a wide variety of biological phenomena in the cell. Cisplatin is the key anticancer drug of a wide spectrum of cancers. In the present study, the expression of Nm23-H1 gene in MCF-7 cells treated with different concentrations of cisplatin at 24h was evaluated. In this study, MCF-7 cells were treated with different concentrations of cisplatin at different times. The IC50 was determined. RNA was extracted by RNX Solution. Then cDNA was synthesized. Precise primers were designed for Nm23-H1 and TBP genes by specific software. Quantity of Nm23-H1 gene expression compared to TBP gene in different concentrations of cisplatin was analyzed using very sensitive quantitative Real-time PCR. Nm23-H1 gene expression in MCF-7 cells treated by different concentrations of cisplatin at 24h was increased. The results of quantitative Real-time PCR indicated that cisplatin can probably decrease metastasis, by up-expression of Nm23-H1 metastasis suppressor gene in MCF-7 cells.

Quantitative detection of Major BCR-ABL gene transcripts by competitive RT-PCR in chronic myeloid leukemia(CML) patients

A. Nazeri1, M. Hashemi2,
1Islamic Azad University,Tonekabon Branch, Tonekabon, Islamic Republic of Iran, 2Islamic Azad University,Tehran medical Branch, Tehran, Islamic Republic of Iran.

Chronic Myeloid Leukemia (CML) is a form of leukemia with chromosomal translocation and fusion bcr/abl genes. The purpose of this study is development of a simple and low-cost technique for quantitative detection bcr/abl transcripts in CML patients.
IgY production against 3 epitope of the hauman DR5

M. Senet1, E. Kasap1, S. Orenay Bogacioglu1, M. Korkmaz1, E. Kahraman1, B. Uzun1, E. Saritas Yuksel1, H. Yuceyar2; 1Celal Bayar University Medical High School, Manisa, Turkey, 2Celal Bayar University Medical High School Gastroenterology Department, Manisa, Turkey. Background /Aim: Gastric cancer (GC) is the second most common malignant cancers in the world. MicroRNAs (miRNA), are single strand non-coding RNA molecules with the length of 18-25 nucleotides. They are amplified DNA and cDNA (RNA) were used for analysis of SNPs with the following primers:

- rs643732 (ABCC2), rs4623993 (k-Ras), rs1050008 (MX1), rs569421 (GATA3), and rs529359 (PGR). MDR gene expression acts as indispensable hallmark of cancer. Similar to the SNP results, their expression was significantly differed between two the studied types of morphological structures and their microenvironment. The differences were displayed in both number (type) of expressing genes and level of expression.

Conclusion: Data obtained here show that the different types of morphological structures of breast tumor may be independent tumor clones with own specific microenvironment.

The study was supported by the Russian Federation President grant (MK-1259/2011-27).

GTPase 1 gene methylation profile in Helicobacter pylori (+) and (-) antral intestinal metaplasia and distal gastric tumour patients in Turkish population

G. Sen1, E. Kasap1, S. Orenay Bogacioglu1, M. Korkmaz1, E. Kahraman1, B. Uzun1, E. Saritas Yuksel1, H. Yuceyar2; 1Celal Bayar University Medical High School, Manisa, Turkey, 2Celal Bayar University Medical High School Gastroenterology Department, Manisa, Turkey. Background /Aim: Gastric cancer (GC) is the second most common malignant cancer worldwide, with a high mortality rate. The incidence of GC has declined in the western countries during the last decades. The Glutathione S-transferases comprise a group of enzymes that are critical in the detoxification of carcinogens. In this study we aimed the relationship between H. pylori and GSTP1 methylation profile, there was no significant difference in the methylation profile between the studied types of morphological structures and their local microenvironment. In particular, the genotype variations affected rs6179 (GHR gene), rs3740616 (LMO2), rs171620 (ABCC2), rs4623993 (k-Ras), rs1050008 (MX1), rs569421 (GATA3), and rs529359 (PGR). MDR gene expression acts as indispensable hallmark of cancer.

Primary multifocality is a common phenomenon in superficial bladder cancer (SBC). According the monoclonal theory, coexisting primary tumors arise from a single malignant transformed cell, which proliferates and spreads throughout the urothelium or might be spread during the intravesical manipulations. Another theory explains multifocality as subsequent events secondary to a field-cancerization effect, so tumors are expected to be genetically non-identical. The question whether coexisting tumors arise from the same tumor clone or develop independently has a great clinical relevance to surgery and treatment approaches. Molecular analysis of alterations patterns in each of coexisting tumors may give us an answer.

We examined tumor samples from 22 patients with primary multiple SBC (PMSC) (2-5 tumors/patient). Genomic DNA samples were prepared from formalin-fixed, paraffin-embedded sections. Our panel included LOH analysis of 12 markers in 17p13 (microsatellite assay).

Three out of 22 (13.6%) patients had non-informative state of microsatellite markers. In nine out of 22 patients (40.9%) was shown concordant pattern of LOH in at least one of loci. In ten out of 22 (45.5%) patients we showed discordant patterns of allelic alterations. Moreover, in 5 of these 10 cases (50%) tumors of the same patient differed from each other by presence or absence of allelic imbalance, while in other 5 cases (50%) LOH of different allele in tumors of the same patient were revealed. Our results show that coexisting multiple tumors show in almost equal proportion either concordant or discordant pattern of molecular alterations, which might mean monoclonal or oligoclonal origin correspondently.

Origin and clonality of primary multiple superficial bladder cancers

A. Babayan1,2, Y. Andreescu2, D. Zlatevska2, M. Rentsov2, V. M. Perelmuter1,2, Zavyalova1,2, V. M. Perelmuter1,2, Zavyalova1,2, V. M. Perelmuter1,2. 1Research Institute for Molecular Medicine, Moscow, Russian Federation, 2Institute of Tumor Biology, University Medical Center Hamburg Eppendorf, Hamburg, Germany, 3Moscow Herzen Oncological Research Institute, Moscow, Russian Federation, 4Sechenov Moscow Medical Academy, Moscow, Russian Federation.

Primary multifocality is a common phenomenon in superficial bladder cancer (SBC). According the monoclonal theory, coexisting primary tumors arise from a single malignant transformed cell, which proliferates and spreads throughout the urothelium or might be spread during the intravesical manipulations. Another theory explains multifocality as subsequent events secondary to a field-cancerization effect, so tumors are expected to be genetically non-identical. The question whether coexisting tumors arise from the same tumor clone or develop independently has a great clinical relevance to surgery and treatment approaches. Molecular analysis of alterations patterns in each of coexisting tumors may give us an answer.

We examined tumor samples from 22 patients with primary multiple SBC (PMSC) (2-5 tumors/patient). Genomic DNA samples were prepared from formalin-fixed, paraffin-embedded sections. Our panel included LOH analysis of 12 markers in 17p13 (microsatellite assay).

Three out of 22 (13.6%) patients had non-informative state of microsatellite markers. In nine out of 22 patients (40.9%) was shown concordant pattern of LOH in at least one of loci. In ten out of 22 (45.5%) patients we showed discordant patterns of allelic alterations. Moreover, in 5 of these 10 cases (50%) tumors of the same patient differed from each other by presence or absence of allelic imbalance, while in other 5 cases (50%) LOH of different allele in tumors of the same patient were revealed. Our results show that coexisting multiple tumors show in almost equal proportion either concordant or discordant pattern of molecular alterations, which might mean monoclonal or oligoclonal origin correspondently.

Molecular genetic characterization of intratumoral heterogeneity in invasive ductal NOS breast carcinoma

E. V. Denisov1, A. L. Tashireva1, T. S. Dultseva2, M. M. Tyagyova1, N. V. Lutikova2, M. V. Zavyalova1, V. M. Perelmuter2, N. V. Cheryshnava1; 1Cancer Research Institute, Tomsk, Russian Federation, 2Siberian State Medical University, Tomsk, Russian Federation. Aim: To characterize the different types of morphological structures, previously demonstrated in tumors of invasive ductal breast carcinoma not otherwise specified, NOS (Zavyalova et al., 2011), and their local microenvironment with cancer-associated SNPs and expression of multidrug resistance (MDR) genes. Materials and methods: Tubular, alveolar, trabecular morphological structures and their local microenvironment were isolated by laser microdissection from the formalin-fixed tissue of breast tumor. The isolated and whole amplified DNA and cDNA (RNA) were used for analysis of SNPs with the Cancer SNP Panel (Illumina) and assessment of expression of MDR genes: ABCC1, ABCG1, ABCB1, ABCG2, ABCC5, GTPase 1, and MVP. Results: SNP array emerged as an effective tool to detect somatic alterations. Despite of low microarray call rate, probably caused by degradation of DNA during formalin fixation, the Cancer SNP Panel demonstrated significant differences in genotypes both among the different types of morphological structures and their local microenvironment. In particular, the genotype variations affected rs6179 (GHR gene), rs3740616 (LMO2), rs171620 (ABCC2), rs4623993 (k-Ras), rs1050008 (MX1), rs569421 (GATA3), and rs529359 (PGR). MDR gene expression acts as indispensable hallmark of cancer. Similar to the SNP results, their expression was significantly differed between two the studied types of morphological structures and their microenvironment. The differences were displayed in both number (type) of expressing genes and level of expression.

Conclusion: Data obtained here show that the different types of morphological structures of breast tumor may be independent tumor clones with own specific microenvironment.

The study was supported by the Russian Federation President grant (MK-1259/2011-27).

Investigation of microRNA expression changes in HepG2 cell line in presence of UR4G/URGCP and in the absence of UR4G/URGCP suppressed by RNA interference

Y. Dodurga, N. G. Yonguc1, C. Birip Jeci, B. Bagel, C. Gunduz1, L. N. Satrioglu-Tufan1; 1Pamukkale University School of Medicine Department of Medical Biology, Denizli, Turkey, 2Pamukkale University School of Medicine Department of Anatomy, Denizli, Turkey, 3Ege University School of Medicine Department of Medical Biology, Izmir, Turkey, 4Pamukkale University School of Medicine Department of Genetics, Denizli, Turkey.

Hepatocellular carcinoma (HCC) originates from liver cells and is one of the most common malignant tumors in the world. MicroRNAs (miRNA), are single strand non-coding RNA molecules with the length of 18-25 nucleotides. miRNAs play an important role in the development of HCC, briefly miRNAs have a significant impact on multistep hepatocellular carcinogenesis including cellular migration and invasion. UR4G/URGCP (Up-regulated gene-4/ Upregulator of cell proliferation) is up-regulated in the presence of HBSAg and has been identified and characterized by Satrioglu-Tufan et al. The full-
length URG4/URGCP clone is 3.607 kb. Overexpression of URG4/URGCP in the presence of HBV X protein may function as a putative oncogene that contributes importantly to multi-step hepatocarcinogenesis. In this study, we aimed to investigate potential miRNA expression changes in HepG2 cell line model system in the presence of URG4/URGCP and in the absence of URG4/URGCP which was suppressed by RNA interference. To functionally characterize URG4/URGCP, independent cultures of HepG2 cells were stably transfected with pcDNA3 or pcDNA3-URG4/URGCP. Relative quantification of whole genome miRNAs was analyzed by Light Cycler 480 Real Time PCR using Human Whole Genome miRNA qPCR Profiling Kits. Among the 1034 human miRNAs investigated by the arrays, 77 miRNAs were up-regulated and 19 miRNAs were down-regulated in the presence of URG4/URGCP. In conclusion, we have comprehensively analyzed miRNA profiles in the HepG2 cells with the presence or absence of URG4/URGCP gene. Some of these miRNAs may play roles in the URG4/URGCP gene related disease development through the regulation of different signaling pathways.

J06.18

Differentially methylated genes in breast cancer

N. A. Skyrabin, I. N. Lebedev, N. V. Cherdynets

Institute of Medical Genetics, Tomsk, Russian Federation; Institute of Oncology, Tomsk, Russian Federation.

Breast cancer (BC) is characterized by abnormal DNA methylation. To date the methylation status of many oncogenes and tumor suppressor genes has been investigated. However the genome-wide analysis of methylation status of many genes is necessary for identification of pathogenetic pathways of cancer development. This study was aimed to identify the functional groups of genes abnormally methylated in BC. We analyzed 16 samples with BC and 6 samples with a histologically normal epithelium samples from women with BC using Illumina GoldenGate Cancer Panel 1 (Illumina, USA). Differential methylation was observed at 318 CpG sites. Among them 252 (79.2%) were hypermethylated and 66 (20.8%) were hypomethylated. The identified differentially methylated genes were analyzed using Gene Ontology Enrichment Analysis. Hypermethylated genes belong to two functional groups: positive regulation of cell differentiation (n=8) and regulation of cell proliferation (n=12). Hypomethylated genes belong to two groups as well: cell migration (n=2) and the protein amino acid phosphorylation (n=3). Hypermethylation of genes involved in positive regulation of cell differentiation and proliferation may indicate the important role of their epigenetic inactivation in BC development. Hypermethylation of genes involved in cell migration and phosphorylation of proteins may promote invasiveness, metastasis of cancer cells, and inhibition of tumor suppressor proteins by phosphorylation. Thus, the abnormal methylation status of these functional groups of genes may play a significant role in breast cancer development.

J06.19

Elucidation of SALL4 oncogenic role in colorectal cancer: the first report

M. M. Forghanifard, R. Raeisossadati, M. Moghieib, A. Tavassoli, M. Montazer, M. Gholamteir, M. R. Abbaszadegan

Department of Biology, Mashhad Branch, Islamic Azad University, mashhad, Islamic Republic of Iran; Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, mashhad, Islamic Republic of Iran; Endoscopic and Minimally Invasive Research Center, Queen Hospital, mashhad, Islamic Republic of Iran; Department of Pathology, Omid Hospital, Mashhad University of Medical Sciences, mashhad, Islamic Republic of Iran; Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.

Human cancer cells resemble stem cells in expression signatures leading to shared some features notably self-renewal. A complex network of transcription factors and signaling molecules are required to continue of this trait. SALL4 is zinc finger transcriptional activator crucial for maintenance of self-renewal in stem cells which its expression rate is not yet elucidates in colorectal tumor cells. To clarify this rate and probable clinicopathological consequences, an expression analysis was performed. Freshly tumoral and distant tumor-free tissues of thirty eight colorectal samples were enrolled to comparatively examine the expression level of SALL4 by real-time PCR. Compare to normal tissues, greater than two-fold expression of SALL4 was confirmed in moderately differentiated tumor samples which might enlighten new approaches for cancer therapy.

J06.20

Gene-gene interaction predicts chemotherapy response in multiple myeloma patients

Z. Rossokha, S. Kryuchenko, N. Kostavula, S. Vdybohrets, N. Gorovenko;
National Medical Academy of Post-Graduate Education, Kyiv, Ukraine.

Background. Multiple myeloma (MM) is plasma cell neoplasm with low sensitivity to alkylating agent-based chemotherapy. The aim of study was to evaluate gene-gene interaction in the development of drug resistant cases. Methods. We examined 51 newly diagnosed patients treated alkylating agent-based chemotherapy. 50 patients had clinical response and 21 patients had no response. The deletion polymorphism of GSTT1, GSTM1 genes and A313G of GSTP1, C3435T of MDR1 genes polymorphism were detected using PCR and RFLP analysis. Statistical analysis was performed to investigate the influence of all analyzed genes and their combinations (MDR, 2.0 Programme).

Results. The main effect was found for GSTM1 deletion polymorphism (Table 1). The interaction model including GSTT1, GSTM1, MDR1 genes had higher Testing Balance Accuracy - 83.10).

Table 1. Testing balanced accuracy and cross validation consistency for the best MDR models for the prediction of chemotherapy resistance

<table>
<thead>
<tr>
<th>Gene combination</th>
<th>Testing Bal. Acc.</th>
<th>Permutation test</th>
<th>CV consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTT1/GSTM1</td>
<td>0.8286</td>
<td>0.001</td>
<td>10/10</td>
</tr>
<tr>
<td>GSTT1/GSTM1/MDR1</td>
<td>0.7476</td>
<td>0.05</td>
<td>8/10</td>
</tr>
<tr>
<td>GSTT1/GSTM1/MDR1</td>
<td>0.8310</td>
<td>0.001</td>
<td>10/10</td>
</tr>
<tr>
<td>GSTT1/GSTM1/MDR1</td>
<td>0.7918</td>
<td>0.05</td>
<td>10/10</td>
</tr>
</tbody>
</table>

Conclusion: We propose to evaluate gene-gene interaction for drug resistance prediction in MM patients. Further research may develop new methods of chemotherapy resistance prevention.

J06.21

Examination of UVR-Induced DNA damage and repair and its association with apoptosis in human keratinocytes and fibroblasts

M. Karbaschi, M. D. Evans, S. Macici, M. S. Cooke

Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom; Department of Biochemistry, University of Leicester, Leicester, United Kingdom.

Skin cancer has an increasing incidence in countries with large populations of white-skinned individuals. UVR, by initiating the DNA damage, can lead to mutations and is regarded as the prime cause of most skin cancers. As a result, UVR protection is of primary importance to prevent UVR-induced skin cancers. Cyclobutane pyrimidine dimers (CPD) are an important form of DNA damage induced by both UVA and UVB and removed by nucleotide excision repair. The persistence of CPDs, compared to other forms of DNA damage, is understood to be a major contributory factor to their mutagenicity. Using the T4endonuclease V-modified comet assay on human keratinocytes and fibroblasts, we noted that there was rapid initial repair of CPDs over the first 6th post-irradiation, following either UVA or UVB treatments, but whilst this slowed significantly in the UVB-irradiated cells, it continued to be rapid in the UVA-treated cells with levels approaching baseline within 36h. This confirmed the widely accepted slow repair of UVR-induced cyclobutane thymine dimers, but we uniquely noted far more rapid repair of UVA-induced cyclobutane thymine dimers. There were no significant differences in cell viability between the two treatments over the first 6th post-irradiation, but at 24th post-irradiation viability had decreased significantly only in the UVB-irradiated cells. These data suggest that for at least the first six hours following UVR irradiation, the majority of cells were viable and capable of repair, after that time increasing numbers of cells enter apoptosis, and therefore fail to repair the damage.
J07.02 Complex chromosomal clones in hematological malignancies: Study on 50 cases
B. R. Ganguly
Genetics Center, Navi Mumbai, India.

Hematological malignancies are well understood with the consequences of chromosomal alterations and likelihood of treatment outcome. Employment of advanced technologies in the field facilitates better understanding of diseases with an aim in drug development. However, conventional cytogenetics plays an important role for primary diagnosis, monitoring and relapse management. During January 2012, chromosomal analysis was carried out on 50 cases with leukemia and myelodysplastic syndrome by employing conventional bone marrow culture and G-banding. Karyotypic analysis by using conventional bone marrow culture and G-banding. Karyotypic analysis by using

<table>
<thead>
<tr>
<th>Case-wise chromosomal data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple clonal abnormalities with 31%: 40; 22%: 51, 47%: 46,XXder14</td>
</tr>
<tr>
<td>80%; complex rearrangements & 39–46 chromosomes</td>
</tr>
</tbody>
</table>

Table: Data on chromosomal analysis on 50 leukemia cases
Likely, the homozygous mutation was not detected since bone marrow with low level of leukemic cells was used for analysis. The chromosome analysis on BM and peripheral blood showed 46,XY(11;16)(p15;q23)/46,XY karyotype. FISH analysis with specific probes for NUP98 gene (11p15) excluded the involvement of this gene in the breakpoint. The cases of JMML characterized by chromosomal translocations as sole cytogenetic abnormality are rare and described in individual cases. The importance of CBL in hematopoiesis has been demonstrated, however the effect of this chromosomal rearrangement on the propensity to develop JMML has to be clarified.

J08.02 Study for association between the polymorphism rs10046 of the gene CYP19 A1 and the risk of premature coronary artery disease

K. Babali, M. Georgostou1, D. Babalis, A. Mouzarou1, K. Agiannitopoulos1, K. Lamnisou1

1Department of Genetics & Biotechnology, Faculty of Biology, University of Athens, Athens, Greece, 2IKAT General Hospital, Athens, Greece.

Objective: It is well documented that sex hormones influence the risk of developing cardiovascular disease. Several genes are involved in the synthesis of sex hormones. The CYP19A1 gene encodes the enzyme aromatase (P450aro) that is involved in the production of oestrogens from androgens. In the present study, we investigated whether the rs10046 single nucleotide polymorphism (SNP) of the CYP19A1 gene is associated with developing premature coronary artery disease (CAD).

Methods: A total of 168 Caucasian CAD patients, documented by coronary angiography, aged less than 58 years and 120 healthy controls were studied. All cohort were Greeks. The PCR-RFLP method was used in order to genotype the subjects.

Results: The frequencies of CC, CT, TT genotypes were 0.275, 0.500, 0.225, respectively, in the patient group and 0.262, 0.532, 0.206, respectively, in the control group. The allele frequencies were 0.525 and 0.475 for C and T, respectively, in the patient group and 0.262, 0.532, 0.206, respectively, in the control group. The frequencies of T and C alleles were 0.518 and 0.481 in the patient group and 0.527 and 0.473 in the control group. Statistical analysis indicated no significant differences in genotype or in allele frequencies between the patient and the control group.

Conclusion: The results of this study suggest that there is no association of the rs10046 polymorphism of the CYP19A1 gene with the risk of developing premature coronary artery disease. Therefore, we may conclude that this polymorphism cannot be used as genetic marker for CAD risk assessment in our Caucasian population.

J08.03 Investigation and validation of five different microsatellites in HLA-DRB1 region in the Iranian population

M. Shayanhosseinal Esfahani, S. Vallian Brojeni, University of Isfahan, Isfahan, Islamic Republic of Iran.

Association between HLA-DRB1 and a large number of diseases such as multiple sclerosis and rheumatoid arthritis has been demonstrated. In the present study, we attempted to identify and characterize some potential microsatellites in HLA-DRB1 gene region with the aim of identification of specific markers for this gene. STR markers located next to or within HLA-DRB1 including M2_3_22, M2_2_36, D6S2878, D6S2805, D6S2879 and D6S2880 were selected from Major Histocompatibility Complex database (dbMHC). In silico analysis is revealed that among all investigated markers, only M2_3_22 was specific for HLA-DRB1. M2_3_22 existed as single copy in all MHC haplotype sequences and located next to the HLA-DRB1. The presented primers for this STR marker at dbMHC and unistS were not compatible with some of the last published MHC haplotype sequences. Therefore, a new set of primer pair was designed and used to amplify this marker in 164 DNA samples obtained from Iranian unrelated individuals. M2_3_22 was successfully amplified in all DNA samples, and three different alleles were identified. The marker was found in Hardy-Weinberg equilibrium (P > 0.05) in the studied population. Together, the findings suggested that M2_3_22 could be introduced as a specific locus among all the markers present in the HLA-DRB1 gene region for linkage analysis and disease association investigations.

J08.04 Genetic variation in the CYP19 gene and recurrent spontaneous abortions

C. Koutsathanos1, K. Agiannitopoulos1, D. Pantor1, K. Lamnisou1

1Dept of Genetics & Biotechnology, Faculty of Biology, University of Athens, Athens, Greece, 2Genesis Athens Clinic, Center for Human Reproduction, Athens, Greece.

Background. The CYP19 gene encodes aromatase, a key cytochrome P450 enzyme that converts androgens to estrogens in the ovarian tissues of premenopausal women. Polymorphic variations in the CYP19 gene result in modified estrogen levels through augment aromatase activity. In the present study, we investigated the association between the C/T single nucleotide polymorphism (SNP) of the CYP19 gene and the risk of recurrent spontaneous abortions (RSA).

Methods: In this prospective case-control study 120 RSA patients and 100 healthy controls were studied. All cohorts were Greeks. The PCR-RFLP method was used in order to genotype the subjects.

Results: The frequencies of CC, CT, TT genotypes were 0.275, 0.500, 0.225, respectively, in the patient group and 0.262, 0.532, 0.206, respectively, in the control group. The allele frequencies were 0.525 and 0.475 for C and T, respectively, in the patient group and 0.527 and 0.473 in the control group. Statistical analysis revealed that among all investigated markers, only C/T polymorphism could not be used as genetic marker for RSA risk assessment in our Caucasian population.

J08.05 Association analysis of the Alu-element YaSNBC51 with the level IL1Ra of serum

I. Nikolaev, E. Vasilieva, E. Vorobyeva, Y. Garbunowa; Bashkir State Pedagogical University name of M.Akmulla, Ufa, Russian Federation.

INTRODUCTION: Cytokine System is one of the major body systems. Alu-element YaSNBC51 localized in the third intron of the gene interleukin-1 receptor accessory protein IL1RAP. This protein serves as a coreceptor of proinflammatory cytokines, forming, together with IL1R receptor complex. MATERIALS AND METHODS: We studied DNA samples from 178 people aged 18-65 years living in the Republic of Bashkortostan. ELISA was performed for IL1Ra level in blood serum. Analysis of gene polymorphisms was performed using polymerase chain reaction (PCR). Assessing the impact of Alu-insertion in a gene on the data IL1Ra linked ELISA was performed using ANOVA.

RESULTS: Genotype II1RAP *1/*1 is associated with increased levels of serum IL1Ra and allele II1RAP*D with decreased (F = 4.60, p = 0.032). Thus, Alu-element in IL1RAP gene associated with susceptibility to inflammation.
J08.06
Association of vitamin D receptor gene BsmI polymorphisms with bone mineral density in a population of Iranian women
J. Javadi, F. Farzamkhah
Department of medical genetics, faculty of medicine, Shahid Beheshti university of medical science, Tehran, Islamic Republic of Iran.

OBJECTIVE: To investigate the association of vitamin D receptor (VDR) gene BsmI (rs1544410) polymorphisms with bone mineral density (BMD) in a population of Iranian women. METHODS: Blood samples were obtained from 146 pre- and/or postmenopausal Iranian women, aged 35-80 years, stratified for BMD into normal and osteoporotic groups. Anthropometric parameters including age, body height and weight were all recorded. BMD of the lumbar spine (L1-4) and femoral neck were measured using dual energy x-ray absorptiometry. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used to detect and analyze VDR gene BsmI polymorphisms' distributions of our study groups. RESULTS: The frequency of AA and GG genotypes were significantly different in normal and osteoporotic groups (P < 0.05), frequency of AA was higher in patients and GG was higher in normal group. Also the GG genotype was significantly associated with increased BMD in the lumbar spine (P < 0.05). This association was not significant in femoral neck (P = 0.05). CONCLUSION: VDR gene polymorphisms have an association with the BMD in lumbar spine and may have a less effect on proximal femur BMD in women.

J09.03
Apolipoprotein E polymorphism in rheumatoid arthritis patients
M. Siniauskay, S. Vakyl, S. Shagtynor, L. Maslinskaya, T. Tyutyuk, O. Danydenko1
1Institute of Genetics and Cytology, National Academy of Sciences Belarus, Minsk, Belarus, 2Belarusian Medical State University, Minsk, Belarus.

Objective: Many studies indicate the importance of genetic polymorphism as factor predisposing for cardiovascular diseases and rheumatoid arthritis. Cardiovascular complications associated with atherosclerotic vessel lesions - one of the leading reason of life-time shortening in RA. ApoE allele types determine plasma lipid levels and could be the factor of relative atherosclerosis risk, also facts testified the importance ApoE alleles in Alzheimer's disease (AD) and immunoregulation. So possibly ApoE isoforms could influence disease progress in RA and also could serve as predisposing marker for further atherosclerosis development.

Method: 74 rheumatoid arthritis patients and 107 healthy control were included in research. PCR-RFLP was carried out in order to check allelic frequencies investigated gene polymorphism.

Results: ApoE E3/E3 genotype was less common in RA group comparing to control - 57.5% and 72 % correspondingly (P<0.05). ApoE E2/E3 together with E2 allele composed 28.7% in RA patient group, whereas in controls - 17.9% (P=0.05).

Conclusions: It should be some link between key genes in RA and cardiovascular disease, so separation of some loci could help in subdividing special patient group more sensitive for cardiovascular disease- it will be the purpose of future work.

J09.04
TNF-alpha gene promoter polymorphisms: lack of association with susceptibility to asthma in Romania
O. M. Popa, C. E. Berghea1
1University of Medicine and Pharmacy, Bucharest, Romania, 2National Institute of Blood Transfusion, Bucharest, Romania, 3University of Bucharest, Bucharest, Romania, 4Grigore Antipa National Museum of Natural History, Bucharest, Romania.

Asthma is a complex disease characterized by chronic airway inflammation and bronchial hyper-responsiveness. Tumor necrosis factor (TNF)-alpha is a pro-inflammatory cytokine that has been implicated in many aspects of the pathology in asthma, but a clear understanding of the exact role in asthmatic patients is yet to be determined.

Objectives: The aim of this study was to investigate the association of TNF-alpha gene single nucleotide polymorphisms (SNPs) with susceptibility to asthma in Romania.

Methods: Three SNPs from TNF-alpha gene promoter (-308G/A, -238G/A and -1031C/T) were examined for association and linkage disequilibrium in a sample of 106 Romanian asthmatic patients and 147 ethnically match healthy controls. The genotyping method was TaqMan Allelic Discrimination with SNP Genotyping Assays C, T514879_10, C, 2125707_10 and C, 11918223_10 (Applied Biosystems, USA). All the statistic tests were performed with the software package PLINK v 1.07.

Results: Patients and controls groups were in Hardy-Weinberg equilibrium for all polymorphisms. The minor allele 857*T was overrepresented in patients versus controls (23.1% vs 19%), but not statistically significant (p=0.2). Three main haplotypes were constructed based on the studied SNPs, the most frequent being 857C/308G/238G, 58% in patients versus 64% in controls. We found that neither alleles or genotypes among all three SNPs nor reconstructed haplotypes were associated with susceptibility to asthma in our population.

Conclusion: TNF-alpha gene promoter polymorphisms are not a risk factor for asthma in the Romanian studied population.

J09.05
Study of clinical significance of genetic variant c.2808G>T in CFH gene in Russian population
E. V. Mymrikov, N. N. Babenko1, M. M. Kaabak1, E. V. Zahlyazminskaya1
1Russian Research Centre of Surgery named by Petrovsky, Moscow, Russian Federation, 2Rossiya State University, School of Biology, Department of Biochemistry, Moscow, Russian Federation.

Abstracts - European Human Genetics Conference 2012
www.eshg.org
Background. Atypical hemolytic-uremic syndrome (aHUS) is a rare inherited disease characterized by progressive renal failure requiring renal transplantation, thrombocytopenia, and microangiopathic hemolytic anemia. Number of genes is linked with this syndrome, but the most common genetic variant involved into aHUS pathogenesis is CFI, CPI, and MCP genes. Mutation detection in responsible genes predisposes to higher risk of transplant dysfunction and should be taken into account in making decision related with transplantation.

Methods: Sequencing of coding and contiguous intronic areas of CFLI, CFI, and MCP genes of patients with aHUS. Detection of SPNs of interest in 103 adult healthy individuals by allele-specific PCR.

Results: We did perform screening of these three genes in 102 patients with clinical manifestation of aHUS. We revealed the same genetic variant in both patients in 19th exon of CFI gene (rs1065499, NM_000186.3:c.2808G>T) leading to p.E936D substitution. None of genetic variants of apparent or unclear clinical significance were found in three major genes. One patient was heterozygote, and another one was homozygote carrier of this missense variant. This SNP was previously described in UniProt database as a polymorphism associated with aHUS and basilar laminar drusen. To elucidate the clinical significance of this genetic variant we screened 103 healthy adult Russian individuals without any signs of renal pathology (206 chromosomes). We detected 31 heterozygous (G/T) and 3 homozygous (T/T) carriers. The frequency of minor allele (c.2808T) was 18%. We suspect that means that clinical significance of missense variant c.2808G>T in aHUS developing is low, at least in Russian population.

J09.06
Association analysis schizophrenia, Alzheimer’s disease and alcoholism susceptibility gene polymorphisms relationship to psychodiagnostic traits in the Western Siberian population
A. V. Marusin1, A. N. Kornetov, M. G. Svarovskaya1, K. V. Simonova, E. S. Pavlyuchen'k1, V.A. Stepanov2.

1Institute for Medical Genetics, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk, Russian Federation, 2Siberian State Medical University, Tomsk, Russian Federation.

Natural selection plays an important role in maintaining genetic variation for mental constitution. Currently, the behavior genetic variability remains poorly understood. The purpose of this study: association analysis of Alzheimer’s disease, schizophrenia and alcoholism susceptibility genes polymorphism with psychodiagnostic traits, intelligence and anxiety. The effect of the GAB2, CLU, PICAM, DISC1, rs1321952, ZNF804A, GABRA2, SLCA6A4, ADCY3, MIR9-2, CBX7 loci polymorphisms on psychodiagnostic traits was investigated in students of Siberian State Medical University (Tomsk). All individuals (n=141) completed IQ, Cattell’s, Spielberger anxiety scale, Leonhard personality inventory tests. GABRA2 and GAB2 gene polymorphisms were associated with "histrionic" on the Leonhard personality inventory. SLCA6A4 locus revealed the relationship with the scale "E", GABRA2 with the scale "E", PICAM and CLU with "Q4" and "Q3" scales and the CBX7 gene polymorphism was associated with the "A" scale by Cattell’s test. For the ZNF804A locus we identified associations with the "emotiveness" [high, excessive emotionality], "histrionic" and "disociality" accordingly to Leonhard personality questionnaire. For the same test the relationship of PICAM with the "disociality" and DISC1 polymorphisms with the "excitability" was revealed. The greatest number of statistically significant associations were observed for MIR9-2 polymorphism with the "C", "P", "F", "F2" (Cattel’s scales, "hyperthymia" and "dysthymia" on Leonhard personality inventory, personal and situational anxiety on Spielberger test. Possibly the identified associations suggest substantial contribution of genetic variability in individual mental constitution.

Conclusion. Analysis of MDR1, ADRB2, IL4 and IL13 polymorphisms is useful for both preventive care (revealing subjects with increased predisposition to BA) and BA treatment (pharmacotherapy optimization due to prediction of BA severity at the beginning of disease).

J09.07
Association of MDR1, ADRB2, IL4 and IL13 polymorphisms with therapy-resistant bronchial asthma in Russian patients
A. S. Ulitina1, 2, Z. A. Mironova1, V. I. Trofimov1, M. V. Dubina1, E. D. Yanchina1, V.A. Pavlyuchen'k1, V.A. Stepanov2, 1Obninsk Scientific Centre, Russian Academy of Medical Sciences, Tomsk, Russian Federation, 2Institute for Medical Genetics, Siberian Branch of the Russian Academy of Medical Sciences, Tomsk, Russian Federation.

Background. Bronchial asthma (BA) is a wide-spread polygenic disease. Aim. To assess severity of BA and effectiveness of BA pharmacotherapy (glucocorticosteroids, beta-2-adrenergic agonists) in patients with different genetic background.

Methods. Genomic DNA was extracted from peripheral leukocytes. We investigated 5 SNP by PCR-RFLP in 122 BA patients and in 103 healthy controls.

<table>
<thead>
<tr>
<th>Allelic variant</th>
<th>Clinical finding</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>3435CC</td>
<td>Increased risk of BA</td>
<td>OR=3.35 (95%CI 1.74-7.47)</td>
</tr>
<tr>
<td>3435CC</td>
<td>Increased risk of severe BA</td>
<td>OR=2.09 (95%CI 1.01-4.30)</td>
</tr>
<tr>
<td>3435CC</td>
<td>Increased risk of therapy-resistant BA</td>
<td>OR=2.09 (95%CI 1.01-4.30)</td>
</tr>
</tbody>
</table>

Conclusion. Analysis of MDR1, ADRB2, IL4 and IL13 polymorphisms is useful for both preventive care (revealing subjects with increased predisposition to BA) and BA treatment (pharmacotherapy optimization due to prediction of BA severity at the beginning of disease).

J09.08
Calretulin mutations in major psychiatric disorders
M. Ohadi, A. Mirzabzadeh, S. Farashi.

Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran.

Development- and tissue-specific expression of the calretulin (CALR) gene in the gray matter in late adolescence and early adulthood coincides with the expression of psychosis. To identify novel mutations in the regulatory regions of the CALR gene in major psychiatric disorders, we report novel low frequency mutations in the CALR promoter and intronic sequence that co-occur with the spectrum of major psychiatric disorders including schizophrenia, schizoaffective disorder and bipolar disorder type I, which did not exist in the control pool. A novel 1-bp insertion was also detected in intron 1 at IVS1-310, in a case of amphetamine-induced psychosis. As for the psychosis-linked CALR promoter mutations identified to-date, the IVS1 mutation was not detected in the control pool. This mutation creates a RREB-1 transcription factor binding site within the first intron. We propose that major psychiatric mutations are, at least in part, a collection of low frequency mutations with possibly large effect, each contributing a small fraction of the disorders. Re-sequencing of the candidate gene regulatory regions will further clarify this model.

J09.09
Study of gene Caveolin3 in Latvian population.

A research was carried out in order to find out more about neuromuscular disease in Latvia. As a part of this project a certain gene - CAV3 was researched in Latvian control population of one hundred seemingly healthy people. The particular gene was never before researched in any of Baltic states. Methods of genomic sequencing were being used. Since gene is conservative, changes in the nucleotide sequence are quite rare, but can cause severe muscular diseases, like limb girdle muscular dystrophy - LGMD 1C, isolated Hereditary muscle cramps - HCM, familial muscle disease - FMD and Distal myopathy - DM.

The results found were quite interesting. Six polymorphisms (rs1974763,
The polymorphism of hemostasis system genes in newborns with neurologic abnormalities from Russia.

O. E. Gromyko1, E. N. Arseniova2, N. V. Zhavora2, O. B. Kondakov2, A. N. Evdokimova2, G. V. Yatsyk1, L. A. Belyaeva2, V. G. Pinelis2, A. Y. Asanov2*;

1Scientific center of Children’s Health, Russian Academy of Medical Sciences, Moscow, Russian Federation;
2L.M. Schenkov First Moscow State Medical University, Moscow, Russian Federation.

Neurolologic abnormalities in newborns with cerebral ischemia (CI) including intraventricular hemorrhages and thrombosis have become a focus of attention, as it is associated with neurodevelopmental disabilities and mortality. There are data on the predisposing risk factors of the neurologic abnormalities in newborns regarding an influence of the polymorphism of hemostasis system genes on its development. In present work the allele and genotype frequencies of polymorphisms of six genes (-455G>A of FBF, G20210A of FII, G1691A of FV, T1565C of GPlIa, 4G/5G of PAI-1 and C677T in MTHFR) were studied in newborns with CI.

The total of 50 patients with CI including 28 newborns with thrombosis and hemorrhages (group I) and 22 newborns having no hemorrhages and thrombosis (group II) and 50 healthy controls were followed. DNA was extracted from peripheral blood samples and hybridization with biosips was performed for the detection of each polymorphism.

Significant differences in the allele frequencies between the group I and controls were found for FV Leiden mutation (0.540 versus 0.000, respectively; p=0.019). The frequency of MTHFR 677C allele was higher in the group I compared to the group II (0.286 versus 0.125, respectively; p=0.045), but not significantly higher compared to the controls (p=0.123). The distribution of genotypes and alleles for other gene polymorphisms were not significantly different between studied groups and controls.

Thus our data obtained that 1691A of FV and 677T of MTHFR alleles may contribute to the higher risk of intraventricular hemorrhages and thrombosis development in newborns with CI.

The polymorphism of the FAS gene rs1800682 (-670 A>G) is a common SNP with a MAF of 0.4777. The G allele was shown to be associated with preeclampsia. Within the 100 bp region surrounding rs1800682, there are three rare SNPs - rs150130637, rs2234768 and rs34995925, which is 8 bp upstream. The aim of the study is the analysis of possible additional effect of rare variants pooled with common variant on genetic predisposition to preeclampsia. The study cohort was made up of 112 patients with preeclampsia and 90 from women with physiological pregnancy. For genotype analyses, the HRMA and dideoxysequencing were performed on DNA extracted from peripheral blood. For FAS expression, RNA was extracted from 19 placental tissues and the deltaladder method was applied. The presence of G allele was observed in 89 patients (78.66%) compared to the 63 (70%) individuals from control group. The OR for subjects carrying genotypes GG and GA was 1.5417 (95%CI 0.830-2.974). The preliminary sequencing dataset of 37 preeclamptic and 45 control samples confirmed the HRMA results for rs1800682. Additionally, two preeclamptic patients with rs1800682 AA alleles were heterozygous for rs34995925 and none in the control group. The relative gene expression in placental samples showed none association with rs1800682 genotypes. We have detected rare alleles in preeclamptic women close to the STAT1 binding site with possible additional effect on predisposition to preeclampsia. Following this we plan to perform allele-specific transcript analyses to study the effect of these rsSNPs in placental tissue.

J09.13 Angiotensin-converting enzyme gene I/D polymorphism and fibromyalgia in a Turkish population

N. Karaku1, A. Imam2, S. Yigit2, S. Imam2, S. Okan2, A. Rustemoglu2*;
1Ondokuz Mayis University, Faculty of Medicine, Department of Medical Biology, and Genetics, Samsun, Turkey;
2Gaziosmanpasa University, Medical Faculty, Department of Physical Medicine and Rehabilitation, Tokat, Turkey.

Fibromyalgia (FM) is a multifactorial disease, characterized by a clinical history of generalized muscle pain for more than three months and by specific tender points. The purpose of the present study was to examine the possible role of angiotensin-converting enzyme (ACE) insertion/deletion (I/D) gene polymorphism as a risk factor in the development of FM. This study comprised 150 FM patients, 137 females and 13 males, and 199 healthy controls, 127 females and 72 males. Peripheral blood samples were genotyped using polymerase chain reaction (PCR) analysis. The frequency of D allele was 60.6% in patients and 55.5% in controls (x2=1.65, p=0.19). The distribution of ACE DD, ID, and II genotypes in FM patients were 40; 41.3 and 18.7%, respectively; the corresponding numbers for the control group were 29.1; 52.8 and 18.1%, respectively. The distribution of the ACE gene genotypes frequencies didn’t statistically significantly between patient and controls groups (x2=5.33, p=0.07). But the percentage of DD genotype is relatively higher in patient group than control group. Most studies showed that the ID and DD polymorphism is strongly associated with the increased plasma or serum ACE levels. Thus the ID and DD polymorphism favors high ACE expression and activity, hence may predispose individuals to FM and its complications. In this study we have demonstrated that genotype and allele frequencies of ACE gene I/D polymorphism were not statistically association with FM. Further studies with a larger number of patients are needed.
J09.14 Association of the TPO gene in petrochemical women workers with autoimmune thyroid diseases

O. Kharkova, T. Viktorova, Institute of Biochemistry and Genetics, Ufa, Russian Federation.

Autoimmune thyroid diseases (AIDTD) are common, with important epidemiological data supporting a strong genetic background on the etiology of AIDTD. It is known that the formation of the AIT affects toxic substances. The aim of this study was to assess the relationship between two polymorphisms of Thyroid Peroxidase gene (TPO) serum level of Anti-TPO titer and serum level of hormones T3 and T4 in petrochemical women workers. A sample of 159 participants from the “Gazprom neftekhim Salavat” plant was selected as the case group (N=61) and control healthy women (N=98). Inclusion criteria for cases were Anti-TPO > 300 IU/L with a history of hypothyroidism. Anti-TPO level in subjects was measured by the ELISA kit. Genomic DNA was extracted using Salting-out/Proteinase K method. Two single nucleotide polymorphisms (SNPs) (rs4927611 and rs732609) were tested in TPO. These two markers were chosen considering that the polymorphism changes the encoded amino-acid and a minor allele frequency, MAI, ±0.3. SNP typing was carried out by means of PCR-RFLP and ARMS-PCR methods. Deviations from the HWE were not observed. D=0.36, r=0.11. Association of frequent variant AA polymorphic locus rs732609 C>A TPO gene with AITD occurred only at over weight women p interact=0.044. Variant CC was associated with increased levels of anti-TPO (TT 173±288.4 pmol/L; vs. CC 374.6±407.4 pmol/L; P = 0.029) and increased levels of T4 (TT 14.9±2.77 vs. CC 15.7±4.23 pmol/L; P = 0.027). The selected polymorphism of exon 7 has no effect on increased levels of Anti-TPO and hormones.

J09.15 Association of a single nucleotide polymorphism in the adiponectin gene (ADIPQO) with gestational diabetes mellitus in Bulgarian population

O. Belcheva, M. Boyadzhieva, I. Atanasova, O. Angelova, R. Kanova, V. Minev; 1Medical Center, Dept. of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria, 2University Hospital of Endocrinology, 3BGLEAC Academy, 4Pentchev, Medical University-Sofia, Sofia, Bulgaria.

Gestational diabetes mellitus (GDM) is characterized with impaired glucose tolerance with onset during pregnancy. It is a multifactorial disease, which affects between 3% and 10% of all pregnant women (data from different surveys). GDM is associated with adverse health outcomes for both mother and baby - newborns larger than normal for their gestational age, pre-eclampsia, higher risk of developing diabetes following the pregnancy, etc.

There is accumulating evidence that adiponectin plays a role in the pathophysiology of diabetes. In patients with type 2 and gestational diabetes lower levels of the protein have been observed. Several common single nucleotide polymorphisms (SNP) in the adiponectin gene (ADIPOQ) have been associated with predisposition to type 2 diabetes. One of these, rs266729 in the promoter region has been proposed to affect its transcription. The aim of the present study was to check if this variant was associated with GDM in Bulgarian population.

The study involved 260 pregnant women, 130 with GDM and 130 controls, recruited from local antenatal clinics in Sofia, Bulgaria. Genotyping was carried out using TaqMan assay and statistical analysis with Plink. The genotype frequencies of these genes in the studied groups (X²<1.64, p>0.43). Different metabolic pathway in infant and adult hypertension syndrome could be suspected.

J09.16 Differences in IL2B promoter region rs12979860 variants in healthy Hungarian Caucasian and healthy Hungarian Roma patients versus with Hepatitis C Virus infected ones.

P. Kisfalvi, B. Buga, G. Pári, B. I. Melegh, A. Pári, B. Melegh; 1Department of Medical Genetics and Child Development, Pécs, Hungary, 2Institute of Internal Medicine, University of Pécs, Pécs, Hungary.

It is estimated that about 3% of the world’s population is living with chronic HCV (hepatitis C virus). HCV infection may cause acute hepatitis, which is self-resolving in 20 to 50% of cases but does not confer permanent immunity. In 50 to 80% of cases, HCV infection becomes chronic and might result in chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Recently rs12979860 in the 19q13 region has been shown to have impact on sustained virological response (SVR) following peginterferon alfa-2a and ribavirin (PEG-IFNα2a+RBV) therapy and the wild TT genotype at rs12979860 is a negative predictor of response to PEG-IFNα2a+RBV therapy. A similarly unexpected observation is that a T allele at rs12979860 is more common in HCV infected patients.

We analyzed total of 475 Roma, 453 healthy control and 853 HCV patients by Taqman SNP Genotyping Assay. Total of 393 HCV patients have been treated with PEG-IFNα2a+RBV for at least 24 weeks. The rs12980275 CC genotype in HCV patients occurred with lower frequency than in healthy controls (24.6% vs. 49.2%; OR=2.56; p=0.0025). Treated patients with the CC genotype achieved SVR in higher rate, than those who have TT alleles (56.9% vs. 36.6%; OR=2.57; p=0.0482). The Roma and Caucasian population show similar genotype distribution.

As the IL28B polymorphisms are one of the essential contributing factors for high SVR in chronic HCV patients, genetic data may be used to select the optimal treatment regimes in IFN-based therapy.

J09.17 The search for new candidate genes associated with hypertension advancement in children of Northwest Russia

M. Kanarova1, A. Glotov1,2; 1Perm State University, Perm, Russia, 2Research Institute of Obstetrics and Gynecology, Saint-Petersburg, Russian Federation.

The risk of hypertension in children is associated with renin-angiotensinogenetic system as was earlier demonstrated in our studies. In the present study 7 other polymorphic genetic markers were analyzed in group of children with hypertension (100 samples) and in the control group of children (100 samples). The frequencies of genotypes and alleles have been recorded for 3 genes involved in arachidonic acid turnover - biologically active substances possessing both vasodilatation & vasoconstriction properties and thus most probably involved in hypertension progression. The following SNPs of relevant genes were studied: CYP4A11 (rs1126742 T>C), CYP212 (rs909293 G>T) and prostataglin-D1 synthase (rs6090996 G>A). Comparative analysis did not reveal any significant differences between genotypes or alleles frequencies of these genes in the studied groups (X²<2.44, p>0.29). Different metabolic pathway in infant and adult hypertension syndrome could be suspected.

J09.18 Prevalence and spectrum of MYBPC3 gene mutations in patients with hypertrophic cardiomyopathy from north-west of Iran

M. Mehdadis Ardohil1, A. Emteh1, M. Trajan Tabriz1, J. Chereemusar1; 1Department of Genetic,Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Islamic Republic of Iran, 2Cardiovascular Research Center of Madani Hospital,Tabriz University of Medical Science, Tabriz, Islamic Republic of Iran.

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease with a prevalence of 1 in 500 normal populations. The disease is the major cause of sudden cardiac death in the young and morbidity in the elderly individuals. HCM is inherited as an autosomal dominant single gene disease, characterized by unexplained ventricular myocardial hypertrophy. MYBPC3 is a sarcromeric thick filament protein that interacts with titin, myosin and actin to regulate sarcomeric assembly. Mutations in MYBPC3 gene are one of the most frequent genetic causes of the HCM disease. The aim of the present study was to investigate the frequency and kind of MYBPC3 gene mutations in the north-west of Iran. DNA was extracted from 60 HCM patients by salting out method. All exons and ex-on-intron flaming regions of MYBPC3 gene were evaluated by PCR-SSCP assay. It is, however, apparent that further expression and genetic association work is necessary to try and clarify the mixed findings that have been reported until now.

J09.19 IL1B and IL8 polymorphisms involvement in recurrent corneal erosion in patients with hereditary stromal corneal dystrophies

A. Kucherenko1,2, Y. Vampulkov1, G. Drozhina1, R. Galuskovy1, L. L. Lavziht1; 1Institute of Biology, Kyiv, Ukraine, 2Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, 3Institute of Eye Diseases and Tissue Therapy, AMS of Ukraine, Odessa, Ukraine.

Deposits accumulation in patients with hereditary stromal corneal dystrophies (HSCD) leads to impaired attachment of epitheliocytes to basement membrane - corneal erosion. Poinflammatory microenvironment in the
region of wound is crucial for its healing, inducing cell migration, neutrophils attraction etc. Two main inflammatory cytokines genes IL1B and IL8 are upregulated in injured corneal epithelium. IL1 gene -511 / and IL8 gene -781C/T variants influence these genes expression in epithelium.

To determine the effect of IL1B and -781C/T polymorphisms in corneal erosion development we investigated them in 2 groups. Case group - lattice HSCD typed (n=46) and IIIA (n=23) patients with confirmed presence of TGFBI Arg124Cys or Hys262Arg mutations respectively. This group consisted of individuals with history recurrent erosion (n=56) and without it (n=13). Control group - healthy individuals (n=105) from Ukraine. Genotyping for both studied polymorphisms and TGFBI mutations was performed by PCR followed by RFLP analysis.

No significant differences in IL1B -511 /T genotype or allelic frequencies between patients with erosion and without it were found. Whereas a trend to decrease of -511 TT genotype frequency in group with erosion (3.7%) compared to control (6.7%) was observed.

Frequency of IL8 -781TT genotype was significantly (P<0.05) lower in group with erosion (10.7%) compared to patients without erosion (30.8%) and control (25%).

Our results revealed possible involvement of IL8-781C/T polymorphism in corneal erosion development. IL8-781TT genotype is associated with negative prognosis for recurrent erosion in patients with HSCD.

J09.20
Genetic Polymorphism TNF-α 308G>A and Ischemic Stroke in Northern Romania

R. M. Petrisor;
Department of Medical Genetics U.M.F Tâlău Hatieganu, Chiajna, Romania, Chiajna, Romania.

Background. TNF-alpha is a proinflammatory cytokine. Evidence in support for a role in TNF-alpha in this respect is emerging as evidence on de novo upregulation of TNF-alpha following ischemia is now well established.

Objectives. The aim of the present study is to evaluate the connection between TNF-alpha polymorphism and ischemic stroke in a group population from Northern Romania and to determine whether it has an influence on the risk of cerebral events.

This is a cross-sectional, randomized, case-control study for the evaluation of the frequency of TNF-α 308G>A polymorphism alleles among patients with ischemic stroke.

Material and methods. The study included 100 cases of patients diagnosed with ischemic stroke (neurological and CT scan examination), and 86 healthy unrelated controls.

TNF-α 308G>A genotyping was carried out using PCR amplification of relevant gene fragment followed by restriction enzyme digestion. Detection of TNFs 308G>A alleles was determined through analysis of resulting restriction fragment length polymorphism (RFLP) followed by gel electrophoresis.

Results. Molecular analysis did not reveal an increased frequency of GA mutant genotype in the study group compared to the control group (p = 0.744, OR = 1.174, CI = 0.6183 - 2.229). The AA genotype was not present in any subjects, probably because of the smaller number of AA carriers present in the population, since the A allele is very rare.

Conclusions. We found no significant difference in distribution of the TNF-α 308G>A polymorphism between the ischemic stroke and control groups.

J09.21
Investigation of the Asp9 gene polymorphism as a risk factor for knee osteoarthritis in Iran

B. Jazayeri1, S. Qoroshis2, M. Babanejad3, H. Seyed Hoseinzadeh3, H. Najmabadi3, S. Jazayeri3;
1. Genetics Research Center, University of Sassual Welfare and Rehabilitation Science, Tehran, Islamic Republic of Iran; 2. Medical School, Shahid Beheshti University of Medical Sciences & Health Sciences, Orthopedic Surgery Center of Excellence, Health Services & Medical Education of Akhter Hospital, Tehran, Islamic Republic of Iran.

Osteoarthritis (OA) is a degenerative disease of the joints characterized by degradation of the hyaline articular cartilage and remodeling of the subchondral bone with sclerosis. Asporin (ASPN) gene encodes a cartilage extracellular protein that is member of the small leucine-rich proteoglycan family. Polymorphisms in the aspartic acid repeat region in the second exon of this gene, 35 of GAT repeats, are associated with a susceptibility to osteoarthritis. The D14 allele (an allele containing 14 D repeats) is associated with increased OA susceptibility in Japanese and Han Chinese, but is not an important factor in OA etiology among Caucasians, although the D15 allele is considered a risk allele for Greek population. To apprise the possible association, that seems controversially, we explored the ASPN effect in Iranian patients with knee OA. The D repeat polymorphism was genotyped in 100 knee OA patients and 100 control subjects, and the allelic association of the D repeat was examined. Our data suggest that the D15 allele could be considered a risk allele significant only for females (P=0.045) of Iranian population. This association is partially similar to Greeks, that D15 allele was considered a risk allele.

J09.22
Interleukin-1 β Gene Polymorphisms in Iranian Patients With Uterine Fibroid, A Case-Control Study

f. taghizade mortezai, s. Mirai, M. Hashemzade Chalestehri, E. Farrokhii, S. Khairi; Cellular and Molecular Research Center, Shahrekord Univ. of Med. Sci, Shahrekord Iran, shahrekord, Islamic Republic of Iran.

Background and objective: Uterine leiomyoma or fibroid is currently the most common estrogen-dependent reproductive system tumor. Almost a quarter of women of reproductive age are affected with this benign tumor. These tumors are the most common reason of hysterectomy and women surgery and seriously affect women health. The aim of this study is investigation of IL-1β-511 and IL-1β 3954 Polymorphisms association with uterine leiomyoma between in Iranian women of Charmahal & bakhtiari province.

Method of investigation: In this study, 276 patients with uterine leiomyoma and 157 healthy women as control were studied. The genetic polymorphisms for IL-1β-511 and IL-1β 3954 were analyzed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP), and the results analyzed with SPSS software and χ2 test.

Finding: genotypes and allelic frequencies compared are two groups. A significant difference in the allele frequencies of the IL-1 β-511 C>T polymorphism in leiomyoma groups and normal controls was found (P < 0.05). No difference was found in the IL-1 β-3954 polymorphism in studied cases.

Conclusion: Our findings indicated that there is a significant association between IL-1 β-511 C>T promoter Polymorphism and risk increase of uterine leiomyoma on the women of our study and this polymorphism might participate in developed this disease.

Keyword: leiomyoma, polymorphism, IL-1β.

J09.23
Association between MDR1 gene polymorphisms and its expression in Iranian CRC patients

S. Samanian1, F. Mahjoubi2, B. Mahjoobi3, R. Mirzaee4; 1. Department of Clinical Genetic, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Islamic Republic of Iran, 2. DHAZRAT RASOOL Hospital, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran, 3. DHAZRAT RASOOL Hospital, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran.

Increase expression of multidrug resistance gene (MDR1) gene is one of the mechanisms responsible for drug resistant to chemotherapy. There are different mechanisms such as polymorphism that result in MDR1 over expression.

It has been reported that the CI2367T and C3435T polymorphisms of the MDR1 gene have substantial impact on expression or activity of P-glycoprotein (Pgp). In this study, we investigated the possible association between MDR1 gene C3435T and CI2367T polymorphisms and its expression in Iranian CRC patients.

ARMS and RFLP PCR were used for the detection of this single nucleotide polymorphism in 60 CRC patients and 60 healthy individuals. We concluded that there was no significant association between MDR1 expression and polymorphism in patients; the results of the present study demonstrate that these polymorphisms may not play a role in inducing drug resistance by altering the expression level of MDR1 gene.

J09.24
Current experiences with newborn screening & case finding in Iran

S. Farshidi, S. Gafari, B. Farrokh; Hope gene center, Tehran, Islamic Republic of Iran.

This review presents the current experiences with newborn screening & case finding in Iran. Iranian population is about 70 million, with high birth rate and an estimated 1 million per year. The population is characterized by a high consanguinity (25-70%). Inherited metabolic disorders common among the population. Although research spending is rather soft in the region, there are numerous pilot studies that highlighted the high incidence of genetic defects and the need for newborn screening programmers.

1. we searched for IEM in ill infant & children admitted in clinics or hospitals (2007-2010).

Mass screening using tandem mass spectrometry (MS/MS) and selected-
sting was initiated to determine IEM. From April 2007 to March 2010, 13,500 infants and children were screened for organic, amino and fatty acid metabolism disorders and aminoacidopathies. In these groups we had 2% positive result (264). Out of 264 patients, the spectrum included OA (98), aminoacidopathies (78), JUD (54), neurotransmitter conditions (12) and lysosomal disorders mainly MPS (14), with a sensitivity of 97.65%, a specificity of 99.28%.

2: searched for IEM in 5000 newborns (2009-2010), by Tandem mass spectrometry (MS/MS) for >20 markers of disease in a single assay. Limited information is available for setting the marker cutoffs and for the resulting positive predictive values.

We identified 22 babies with aminoacidopathies (5), OA (10) and FAO(7).

J09.25

The Future of Migraine Genetics
L. A. Budkiopeje"a1, A. Esserlind1, J. Oleare1;
1Danish Headache Center, Department of Neurology, Glostrup, Denmark; 2Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.

Background
Migraine is a commonly occurring, neurological disorder with a substantial genetic component. With the exception of the rare monogenic forms of migraine, current technology has not proved efficient in revealing the underlying genetics of migraine. Recent genome-wide association studies (GWAS) have identified four single nucleotide polymorphisms significantly related to migraine. However, these polymorphisms explain only a small part of the heritability. The missing heritability might be hidden in rare variants, calling for a more detailed sequencing to be applied and developed. Sequencing the entire genome by exome sequencing and whole genome sequencing (WGS) for a more detailed sequencing to be applied and developed. Sequencing the entire genome by exome sequencing and whole genome sequencing (WGS) for a more detailed sequencing to be applied and developed. Sequencing the entire genome by exome sequencing and whole genome sequencing (WGS).

Methods
We evaluated studies regarding migraine genetic and next generation sequencing, which were identified using PubMed search.

Conclusion
The future research in migraine genetics will be dominated by the next generation sequencing. However, at the present time, prices and analyzing tools limit its use, and in cases with sporadic migraine, GWAS appear to be the best choice. Conversely, in cases with familial migraine, exome or whole genome sequencing will be the preferred choice. In order to gain insight in the heritability of migraine, studies in the upcoming years will require large sample sizes and cooperation between migraine genetic consortia.

J09.26

May quantity of low functionality alleles of folic acid metabolism genes be important?
H. Makukh, L. Chorna, H. Aloyyan, D. Zastavna, O. Hnateyko;
State institution "Institute of Hereditary Pathology of Academy of Medical Science of Ukraine", Lviv, Ukraine.

MTHFR, MTRR and MTR genes SNPs polymorphisms have been associated with many disorders, however, findings have been inconsistent. DNA of 274 studied cases (55 female with neural tube defect fetuses (MNTD), 35 mother children with Down syndrome (MDS), 35 mother children with cleft lip and/or palate (MCL/P), 84 women with RSA (recurrent spontaneous abortion), 35 CL/P patients, 35 chorion villi from miscarriages (CV)) and 225 control subjects was isolated using the salting out method and the analysis of SNPs polymorphisms was performed by PCR-RFLP assay. The differences of the MTHFR 677C→T and 1298A→C, MTR 2756A→G and MTRR 66A→G allele and genotype frequencies between studied and control groups were not significant besides higher incidence of MTRR 66G allele in MDS group (p=0.009; OR=2.10; CI:1.20 - 3.70).

As all the studied conditions are polygenic we attempted to calculate the quantity of MTHFR 677T , 1298C, MTR 2756G and MTRR 66G as low functionality alleles. We speculate that accordingly to obtained results for four analyzed loci person could have from 0 to 8 low functionality alleles. Interestingly, no one case with the presence more that six low functionality alleles was detected.

The accumulation in the female genotype of 5/8 alleles: MTHFR 677T MTHFR 1298C, MTR 2756G and MTRR 66G in homo-/heterozygous state is associated with significantly increased risk of delivering child with NTD (OR=5.90; CI:1.11 - 31.43, p=0.032); CL/P (OR=9.08; CI:1.58 - 52.2, p=0.014) and RSA (OR = 9.83; CL:2.14 - 45.20, p=0.0004). These observations were not found in MDS, CL/P and CV groups.

J09.27

Replication of the results of genome-wide association study for Parkinson's disease in patients and controls from Bashkortostan Republic of Russia
G. Akhmadiev1, J. Khidiatova1, J. Gilyafova1, A. Safullina2, D. Baizigitov1, E. Khusnutdinova1;
1Institute of biochemistry and genetics Ufa Scientific Centre RAS, Ufa, Russian Federation, 2Bashkor State University, Ufa, Russian Federation.

The purpose of the investigation was to replicate the results of the previous study. The results of the previous study were the analysis of alpha-synuclein (SNCA) gene polymorphisms at three loci (rs356219, rs356165, rs2737020) in 382 PD patients (143 - Russians, 157 - Tatars, 72 - Bashkirs, 10 - other ethnic origin) and 530 healthy individuals, matched for sex and age (133 - Russians, 307 - Tatars, 88 - Bashkirs, 2 - other ethnic origin) was performed. The association with PD development was found for SNCA-1 rs356165 and rs356219. A comparison of total cohorts of patients and controls revealed genotypes and alleles associated with the disease in each locus: the genetic marker of the increased risk for PD development at rs356219 was allele *G (OR=2.02), the frequency of which was 0.45 and 0.39 in patients and controls, respectively; the protective markers for PD development were genotype *A*A (OR = 0.71) and allele *A* (OR = 0.73); at rs356165 - allele *G (OR = 1.36) and genotype *G*G (OR = 1.51) increased and allele *A (OR = 0.73) decreased risk of PD development. The comparison of ethnically devided PD patients samples and controls demonstrated similar statistically significant associations (p <0.05) only in Bashkirs, while Russians and Tatars showed only a trend of such associations.

J09.28

Analysis of LRRK2 and parkin gene mutations in Slovak Parkinson disease patients
C. Bognár1, M. Baldovic1, A. Zatkova1, L. Kada2;
1Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia, 2Institute of Molecular Physiology and Genetics, SAS, Bratislava, Slovakia.

The Parkinson's disease (PD) is the second most common progressive neurodegenerative brain disorder caused by loss of nigrostriatal dopaminergic neurons, which affect the control of body movements, with inclusion formation (Lewy bodies) in surviving neurons. It affects 1-2% of the global population above 65 years and its prevalence increases to approximately 4% in those above 85 years. Parkinson’s disease is a complex neurodegenerative movement disorder characterized by bradykinesia, resting tremor, rigidity and postural instability.

To detect the most common mutations in selected exons of LRRK2 and parkin genes responsible for late and early onset form of disease, we applied a gene scanning approach using DHPLC method. In this study, we evaluated the prevalence of LRK2 mutations in exons 31, 35, 41, 48 and of parkin (PARK2) mutation in exons 2, 6 and 7 in a cohort of 216 consecutive, unrelated Slovakian patients with familial or sporadic PD, including early and late onset patients.

We have found one exonic, eight intronic polymorphisms and a heterozygous point mutation s. Arg275 Gly. In this study, we evaluated the prevalence of LRRK2 mutations in exons 2, 3, 5, 6, 7, 8 and 9 with a total of 216 patients and controls - residents of Bashkortostan Republic. The analysis of alpha-synuclein (SNCA) gene polymorphisms at three loci (rs356219, rs356165, rs2737020) in 382 PD patients (143 - Russians, 157 - Tatars, 72 - Bashkirs, 10 - other ethnic origin) and 530 healthy individuals, matched for sex and age (133 - Russians, 307 - Tatars, 88 - Bashkirs, 2 - other ethnic origin) was performed. The association with PD development was found for SNCA-1 rs356165 and rs356219. A comparison of total cohorts of patients and controls revealed genotypes and alleles associated with the disease in each locus: the genetic marker of the increased risk for PD development at rs356219 was allele *G (OR=2.02), the frequency of which was 0.45 and 0.39 in patients and controls, respectively; the protective markers for PD development were genotype *A*A (OR = 0.71) and allele *A* (OR = 0.73); at rs356165 - allele *G (OR = 1.36) and genotype *G*G (OR = 1.51) increased and allele *A (OR = 0.73) decreased risk of PD development. The comparison of ethnically devided PD patients samples and controls demonstrated similar statistically significant associations (p <0.05) only in Bashkirs, while Russians and Tatars showed only a trend of such associations.

J09.29

Tumor Necrosis Factor Alpha, Interleukin-2 and Interleukin-2 Receptor Beta Gene Polymorphisms in Patients with Psoriasis and Psoriatic Arthritis
A. Galev1, H. S. Inaloz1, S. Pehlivan2, T. Sever1;
1University of Gaziantep, Faculty of Medicine, Department of Dermatology, Gaziantep, Turkey, 2University of Gaziantep, Faculty of Medicine, Department of Medical Biology and Genetics, Gaziantep, Turkey.

In this study, our aim is to investigate association between TNF-α, IL-2 and IL-2RB gene polymorphisms/expressions and susceptibility for psoriasis and psoriatic arthritis.

Seventy four patients with psoriasis and 74 healthy volunteers were enrolled in the study. In all study subjects, the genes analyzed by PCR-RFLP method. Then, data compared between the study groups. AA genotype in TNF-α(-308) (high expression), AA genotype in TNF-α(-238) and GG, TT genotypes in IL-2(-2)- (330) are significantly increased in patients with psoriasis in comparison with control group. However, GG genotype in TNF-α(-238) and GT genotype in IL-2(-2) are significantly decreased in patients with psoriasis in comparison with control group. Also gene polymorphis-
RESULT: Statistically significant differences found between ACE II genotypes: 26.8% II in patients versus 15% II in controls. There were a high frequency of AA genotype and very low frequency of CC genotype in both groups for the AGTR. There was no correlation between Factor V, Factor II variations in case and control groups.

Conclusion: Statistically significant different was found between ACE II genotype in both groups (p<0.05). Our results suggest that ACE II genotype is responsible for stroke susceptibility in Persian Population. We report that Insertion/Insertion genotype of ACE gene was an independent risk factor for Persian stroke patients in contrast to verified studies.

J09.32
Estrogen receptor α gene polymorphisms and reproductive history in women with systemic lupus erythematosus
S. Andonova1, R. Bobev2, D. Tanev2, M. Nalova1, M. Soycheva1, A. Tomova1, P. Kumanov2, R. Rashkov1, A. Savov1, Z. Kalorov1
1National Genetic Laboratory, Sofia, Bulgaria, 2Clinical Center of Endocrinology and Gerontology, Medical University, Sofia, Bulgaria, 3Clinic of Rheumatology, Medical University, Sofia, Bulgaria, 4Department of Social Medicine and Health Management, Medical University, Sofia, Bulgaria.

Background: Systemic lupus erythematosus (SLE) is an autoimmune disease that affects predominantly females. Estrogens could modulate the immune system functions through an estrogen receptor dependent mechanisms. However, the influence of the estrogen receptor alpha (ERα) gene polymorphisms on the reproductive function in autoimmune disorders (and especially in women with SLE) is not clarified.

Objectives: The aim of the study was to investigate whether two ERα-gene polymorphisms were related the reproductive history in SLE women.

Methods: A total of 103 women with SLE were genotyped for ERα polymorphisms PvuII/T/C and XbaI/A/G by RFLP analysis. The absence of PvuII and XbaI restriction sites were indicated by “P” and “X” and their presence by “p” and “x”, respectively. The presence of menstrual disorders, pregnancies, miscarriages and live births as well as the age of menarche were recorded in all women.

Results: XbaI/A/G and PvuII/T/C polymorphisms were not significantly related to the frequency of pregnancies, miscarriages or live births in SLE patients compared to normal individuals (p>0.05). Menstrual disturbances were reported less frequently by women with Xx genotype than by patients with XX or xx genotypes (8% vs. 24.5%, p=0.033). The age of menarche was not influenced by the ERα polymorphisms (p=0.05).

Conclusion: XbaI/A/G and PvuII/T/C polymorphisms of the ERα-gene were not related to the reproductive outcome in women with lupus. Further studies are needed to confirm and explain the relationships between the XbaI/A/G polymorphism and menstrual disorders in women with lupus and other autoimmune diseases.

The study was granted by research grant 26/2010 from MU-Sofia, Bulgaria.

J09.33
Attitude and controversial aspects in systemic lupus erythematosus onset
C. Daescu1,2, O. Belei1,2, D. Chiru1,2, M. Puiu1,2, O. Margineanu1,2, T. Marcovici1,2, M. Pui1,2,3, O. Turcanu1,2
1Turcanu“ Children’s Emergency Hospital, Timisoara, Romania, 2Craciun1,2, O. Belei1,2, D. Chiru1,2, M. Puiu1,2,3; 3Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania.

Introduction: Systemic lupus erythematosus (SLE) is a multi-organic autoimmune disease with numerous immunological and clinical manifestations. A genetic predisposition in SLE disease is well documented. Material and method: We present a 12 years old girl referred to our hospital for SLE as presumptive diagnosis. Results: The patient’s family history is highly significant for SLE: a maternal aunt died at age 26, due to SLE complications. Her daughter’s (patient’s cousin) was also diagnosed with SLE. Her evolution was unfavorable, despite extra-renal epuration. She presented important cardiovascular comorbidities, but the cause of death was renal failure, at 16 years. In these circumstances, the onset of malar rash and photosensitivity demands further evaluation of other markers of SLE, in our case. Complete blood count (CBC), test for ANA, anti-DNA, anti-Smith, anti-Sm, anti-RNP, anti-U1RNP, anti-Ro/SSA, anti-La/SSB, anti-Histone, oral ulceration, arthralgia, hematological disorders, renal involvement, anti-nuclear antibodies, immunologic phenomena, and neurological pathology. Two out of the eleven diagnostic criteria were serially present during follow-up. Discussion: The presence of HLA-A1, B8, DR, the null complement alleles and congenital deficiencies of complement (especially C4, C2, and other early components) increase the risk of SLE in this case. If a mother has SLE, her daughter’s risk of developing the disease is estimated at 1:40. For this girl,
the risk is even higher, due to SLE family aggregation. Conclusions: Genetic testing should be performed to clarify the diagnosis of SLE in this case. Psychosocial aspects and genetic counseling can influence patient and family quality of life.

J09.34
The prevalence of genes HLA-DQ in children with diabetes type 1 of Krasnodar region

K. V. Tursunova, E. I. Kondrat’cevo, I. J. Chernjak;
1State Research Institute of Medical Genetics, Tomsk, Russian Federation, 2GBOU VPO KaltGMU Minzavrossvyatya Rossii, Krasnodar, Russian Federation, 3Children’s Regional Clinic, Krasnodar, Russian Federation.

Objective: study of the frequency of polymorphic genes alleles HLA-DQA1 and HLA-DQB1 in children and adolescents with type-1 diabetes (T1D) in the Russian population living in the Krasnodar region.

Methods: examination of 110 patients with T1D and 34 healthy siblings. Defining gene alleles HLA-DQA1 (8 specificities) and HLA-DQB1 (12 specificities) was performed using sets of DNA-Technology.

Results: the data were analyzed protecting and predisposing alleles for T1D for the genes HLA-DQA1 (*0301, *0501, *0102, *0103, *0201) and HLA-DQB1 (*0201, *0302, *0304, *0401, *0301, *0602). Patients with T1D revealed the following relationship of diabetogenic alleles: the presence of four predisposing alleles HLA-DQ was observed in 39% of patients with T1D; 2 to 3 alleles was observed in 42%, and <1 allele was detected in 19%. In healthy siblings we observed the following: 4%: 6%, 2-3: 50%, and <1: 44%. The most common haplotype, which includes four predisposing alleles was observed in 42%, and <1 allele was detected in 19%. In healthy siblings we observed the following: 4%: 6%, 2-3: 50%, and <1: 44%. The most common haplotype, which includes four predisposing alleles was encountered in 72% of T1D. Haplotype DQA1*0301-DQB1*0201 was observed in 43% of patients, haplotype DQA1*0501-DQB1*0201 was observed in 51%. Preventing alleles were observed in 41% of patients with T1D, of which 8% had the combination of alleles DQA1*0102 and DQB1*0602. In 74% of healthy siblings we identified protecting alleles, of which haplotype DQA1*0102-DQB1*0602 was observed in 18%.

Conclusions: T1D patients in the Russian population of the Krasnodar region are characterized by a “classic” for European populations, protecting and predisposing for T1D alleles HLA-DQ genes.

J09.35
Association of two IL-23R gene variations with ulcerative colitis in Iran

N. Naderi, A. Farnood, T. Dadaei, H. Balavi, M. Habibi, H. Mir Talebi, M. Zali;
1Research Center for Gastroenterology and Liver Disease, Shahid Beheshti M.C, Tehran, Islamic Republic of Iran, 2Imam khomeini Hospital, Keshavarz Blvd, Tehran, Islamic Republic of Iran.

Background and aim: Ulcerative colitis (UC), a chronic inflammatory bowel disease, occurs in genetically susceptible individuals who mount inappropriate immune responses to endo-luminal antigens. Interleukin 23 receptor (IL23R) gene has been reported as a genetic factor associated with ulcerative colitis and other autoimmune-mediated diseases. This study was performed to evaluate two interleukin-23 receptor (IL23R) polymorphisms association with UC in Iranian patients.

Material and methods: a cohort of 102 patients with ulcerative colitis and 156 sex- and age-matched healthy controls from the same origin were participated. The PCR-RFLP method was used to evaluate IL23 R SNPs, rs10889677 (Exon-3’ UTR) and rs1120926 (Arg 381 Gln), of IL23R gene in our population.

Results: The frequency of mutant allele of rs10889677 was 46.5% in UC and 45.7% in controls. The frequency of rs1120926 mutant allele was 29% and 5.2% in UC and controls, respectively. None of the evaluated polymorphisms of IL23R gene were more frequent in UC patients, compared to healthy controls.

Conclusions: Our results demonstrated that rs10889677 and rs1120926 mutations of IL23R are not associated with UC in Iranian patients. Additional variants in this gene might play a role in UC disease susceptibility in Iran.

J09.36
Evaluation of inherited venous thromboembolism risk within two clinically unrelated populations

N. Lojo - Kadric, L. Kapur - Popich, J. Ramic, K. Radic, K. Bajrovic;
Institute for genetic engineering and biotechnology, Sarajevo, Bosnia and Herzegovina.

Venous thromboembolism is disease where a blood clot is formed in human venous system. This disease includes deep venous thrombosis (DVT) and pulmonary embolism (PE). Venous thromboembolism results as a combination of hereditary and acquired factors. Acquired factors include surgery, trauma, cancer etc, while common hereditary factors are F5 (coagulation factor V Leiden) 1691G-A gene mutation, F2 (coagulation factor II, prothrombin) 20210G-A gene mutation and MTHFR (methyleneetetrahydrofolate reductase) thermolabile polymorphism (677C>T mutation).

In this study, 100 individuals were genotyped: 70 grouped by their clinical background (40 individuals on hemodialysis (HP) and 30 individual with breast cancer (BC), and 30 healthy volunteers with no clinical background as control group. All samples were genotyped for MTHFR 676C>T, F2 20120G-A and F5 1691G-A mutation using in-house optimized Sybr® green method. In all three groups we found one heterozygote (GA) for F5 Leiden mutation. All other samples had wild type genotype. Only in control group we found one homozygote (AA) for F2 20120G-A mutation, and one heterozygote (GA). We also found one heterozygote in HP group and two in BC group. MTHFR genotypes in HP group are 45% of CC - wild type genotype, 37.5% of CT genotype and 17.5% of TT genotype. BC and control group had the same percentage - 60% of GC, 37% of CT and 3% of TT genotype.

J09.37
The association between VEGF -2578C/A polymorphism and amyotrophic lateral sclerosis in Russian population

E. V. Lyssorgorskaya, N. I. Abramycheva, M. N. Zakharenova, S. N. Il’yashtchik;
Research Center of Neurology, Russian Academy of Medical Sciences, Moscow, Russian Federation.

Background. The association of -2578C/A, -1154G/A, and -634C/G SNPs with ALS was found in some European populations (Lambrechts et al., 2003). However, there was no such association in different populations (Brockington et al., 2005; Del Bo et al., 2006; Van Vught et al., 2005; Zhang et al., 2006). We suppose the important role of VEGF in ALS pathogenesis. The aim of this study was to investigate the association between VEGF -2578C/A polymorphism and ALS in Russian population.

Methods. The peripheral blood was extracted from 197 patients with ALS and 156 controls. The ALS group included 54% (107/197) males and 46% (90/197) females aged from 20 to 83 years (51.2 ±13.4) and was comparable with controls. All of persons were the Slavs. TaqMan PCR was used for detection of -2578C/A SNP.

Results. The significant difference of the distribution of -2578A allele in ALS cases and controls was observed (p=0.014). The VEGF -2578A genotype increased ALS risk to an adjusted odd of 1.58 (95% CI, 0.04-0.95). There was no increased risk for males (OR=1.84, 95% CI, 0.06-1.27). The association between V2EGF genotype and clinical characteristics of ALS wasn’t detected. But the patients before 45 years old had a weakly increased risk of ALS (OR=1.27, 95% CI, 0.47-0.95).

Conclusions. Our data showed that VEGF genotype isn’t a major cause of motor neuron degeneration in ALS, but it can modulate the risk of ALS in Russian population. Thereby VEGF genotype could be useful in choice of ALS pathogenetic therapy.

J09.38
Investigation of mitochondrial tRNA™ and tRNA™ genes mutations in autism

F. Pirjanei, M. Houshmand, Z. Pirjanei;
National Institute of Genetics Engineering and Biotechnology, Tehran, Islamic Republic of Iran.

Objectives: Autism as one of three recognized condition in the autism spectrum disorders (ASDs) is a neurodevelopmental, multifactorial disorder. Autism is noticeably reported to be affected by mitochondrial dysfunction which impairs energy metabolism. mtDNA encodes 22 tRNA working as amino acid transporters for synthesis of the respiratory chain enzymes. Involvement of mutations within tRNA genes have been well documented in mitochondrial disorders. In this study, tRNA™ and tRNA™ were investigated to find mutations which are related to autism pathogenesis, as these two genes mutations have been reported to be involved in some neurological disorders.

Methods: in this study, a cohort of 24 unrelated idiopathic patients and 100 ethnically-matched Persian control individuals were obtained. PCR sequencing of mtDNA fragments was employed to investigate the involvement of mitochondrial variations in autism.

Results: A substitution, G1.5928A, was identified in two groups without a significant difference (P=0.179, P>0.05). A new homoplasmic substitution, A15973G, was identified within the T-loop of tRNA™ gene in 1 patient as it had not been reported before. This variation is moderately conserved (75%) among species and also, was not detected in blood sample from the patient’s mother.

Conclusion: Investigation of mitochondrial variations may strengthen the role of genetics in association with autism. To reveal the relation of A15973G
and autism, more delicate molecular methods could be done for determining the percentage of heteroplasmic mtDNA in mother’s sample of the patient.

J09.39

The BDKRB2 gene I/D polymorphism in Russian athletes

L. J. Mustafina1, V. I. Timoshina1, I. V. Astrastranenkova1, I. I. Ahmetov2; 1Kazan State Medical University, Kazan, Russian Federation; 2Sht Petersburg Research Institute of Physiological Culture, St Petersburg, Russian Federation.

Background

Bradykinin is a potent endothelium-dependent vasodilator and acts via the bradykinin B2 receptor (encoded by BDKRB2). The absence (-9), rather than the presence (+9), of a 9 bp repeat sequence in exon 1 has previously been shown to be associated with increased gene transcription, higher BDKRB2 mRNA expression and higher efficiency of muscular contraction (Williams et al. 2004). Studies suggest that insertion-deletion (I/D) polymorphism in BDKRB2 gene is associated with aerobic capacity and elite endurance athlete status. The aim of our study was to investigate the association between the BDKRB2 -9/+9 polymorphism and athlete status in Russians.

Methods

One thousand and three hundred and seventy nine athletes from different sporting disciplines and 507 controls were involved in the study. The athletes were prospectively stratified into 5 groups according to the event duration and included covering a spectrum from the more endurance-oriented to the more power oriented. Genotyping was performed by PCR.

Results

Analysis of distribution of allele frequencies revealed no significant differences between a whole group of athletes and the control group (-9 allele: 47.8 vs 45.9%; P=0.319). However, the frequency of the -9 allele was significantly higher among endurance-oriented athletes and athletes with mixed activity (endurance, power/strength): long running distance running (P=0.014) and long distance swimming (P=0.022), wrestling (P=0.009) and archery (P=0.002).

In conclusion, our results are in agreement with the previous studies and indicate that the BDKRB2 -9 allele is favourable for endurance performance.

J09.40

The PPARG gene Pro12Ala polymorphism is associated with power athlete status

E. S. Nasibulina1, A. A. Arkhipova1, A. V. Razmetsova1, A. V. Bortsov1, I. I. Ahmetov1; Kazan State Medical University, Kazan, Russian Federation.

Peroxisome proliferator activator receptor gamma (PPARG) gene regulates the expression of genes involved in lipid and carbohydrate metabolism, differentiation of adipocytes and myoblasts, insulin sensitivity and glucose homeostasis. The 12Ala variant of the PPARG gene Pro12Ala polymorphism is associated with decreased receptor activity [Deeb et al., 1998], leading to insulin hypersensitivity and enhanced glucose utilization [Elk et al., 2001]. As a consequence, the carriers of the 12Ala allele show better glycemic response to exercise training [Adamo et al., 2005], higher rates of skeletal muscle glucose uptake [Vantinnet et al., 2005] and greater cross-sectional area of muscle fibers [Ahmetov et al., 2008]. In a study of Russian power-oriented athletes a higher frequency (23.8 vs. 15.1%, P < 0.0001) of the PPARG 12Ala allele compared with controls has been reported [Ahmetov et al., 2008]. The aim of the present study was to investigate the association of the PPARG Pro12Ala polymorphism and athlete status in an independent cohort of Russian athletes. Two hundred and fifty eight athletes and 1174 controls were involved in the study. The frequency of the 12Ala allele was not significantly different between a whole cohort of athletes and controls. However, in accordance with the previous study, we found statistically significant differences in genotype distribution (weightlifters: Pro/Pro - 71.2%, Pro/Ala - 22.0%, Ala/Ala - 6.8%; controls: Pro/Pro - 72.1%, Pro/Ala - 26.0%, Ala/Ala - 1.9%; P = 0.043) and Ala/Ala frequency (P = 0.013) between weightlifters and controls. Thus, the PPARG gene Pro12Ala polymorphism is associated with power athlete status.

J09.41

Apolipoprotein E polymorphisms statuses in Iranian patients with Multiple Sclerosis

M. Rafie1, M. Zaref Yeganeh1, S. Sheikhol Esfami1, E. Gozalpour2, M. Hedayati3; 1Reference Health Laboratory, Ministry of Health and Medical Education, Tehran, Iran, Tehran, Islamic Republic of Iran; 2Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of, Tehran, Islamic Republic of Iran; 3Dep of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, The Netherlands, Nijmegen, Netherlands.

Background

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder in the central nervous system. Evidence linking Apolipoproteins in E (APOE) to myelin repair, neuronal plasticity, and cerebral inflammatory processes suggest that it may be relevant in MS. The main goal of this study was to determine whether the APOE genotypes and alleles are associated with MS patients.

Materials and Methods

Totally, 147 MS cases and 168 control subjects from Iranian population were genotyped for APOE gene using PCR-RFLP method. Genotype and allele frequencies for APOE gene were calculated and compared between MS cases and control subjects by Chi2 or Fisher’s exact test.

Results

The frequency of APOE-ε2ε3 genotype was significantly higher in control subjects than MS patients (14.3% vs.6.1%, OR=0.09, P=0.39) whereas APOE-ε3ε4 genotype frequency was significantly higher in MS cases (8.2% vs.3.6%, P=0.03, OR=2.4). APOE-ε2 allele frequency in cases was significantly lower than that of control subjects (4.4% vs.8.0%, P=0.03, OR=0.52). Also male controls were significantly more likely to have APOE-ε2 allele (7.8% vs.1%, P=0.01, OR=11). APOE-ε4 allele frequency in cases was significantly higher than control group (4.8% vs.2.1%, P=0.03, OR=2.35).

Conclusion

The allele frequency of APOE-ε4 in our population is lower than the general population (3.5% vs.15-20%). It seems that individuals carrying APOE-ε4 allele and/or APOE-ε3ε4 genotype develop MS two times more than non-carriers. Also APOE-ε2ε3 genotype or APOE-ε2 allele may have a protective role against MS development in Iranian population. Further investigation would be warranted to understand the role of APOE alleles and genotypes and risk of MS.

J09.42

Research association of polymorphic markers of candidate genes with ischemic heart disease with the development of oxidative stress in elderly and senile patients living in the Rostov region

T. Nguyen; Southern Federal University, Rostov on Don, Russian Federation.

The study selected patients with ischemic heart disease (n = 300). The control group (n = 280) consisted of a random sample of both sexes with no significant signs of ischemic heart disease. It was found that the development of coronary heart disease in elderly and senile patients living in the Rostov region, increases the rate of production of activated oxygen species, nitric oxide metabolite level, the intensity of lipid peroxidation in plasma and red blood cells, reduces the activity of the enzymes superoxide dismutase, catalase in erythrocytes increases the oxidative activity of ceruloplasmin in the blood plasma and violates the stability and the structural organization of erythrocyte membranes. It was also found that residents of elderly, a manifestation of coronary artery disease is associated with polymorphic markers T174M gene AGT; L33P gene ITGB3; L28P gene APOE; C3238G APOC3 gene and the C786T gene eNOS. It is more common combination of two or more polymorphic alleles in the heterozygous and homozygous states. Identified polymorphisms in genes that regulate hemoxygen and endothelial function are associated with the development of oxidative stress and impaired structural homeostasis of erythrocyte membranes.
volving rs4073 (A/T), rs2227306 (C/T), rs2227346 (C/T) and rs1126647 (A/T): A-FFT (p-value: 2.08*10^-9; OR: 1.68 [1.43-1.97]) and T-C-C-A (p-value: 7.07*10^-11; OR: 0.60 [0.51-0.70]). Expression analysis on RNA extracted from whole blood of 50 donors failed to reveal evidence of correlation between genotype haplotype and RNA expression. Our results suggest the association between IL-8 gene and the development of the disease, although further studies should be encouraged to clarify the functional effects as well as the causative variants.

J09.44
Influence of metabolic gene polymorphisms on athletic performance

O. N. Fedotovskaya, B. V. Popov, E. V. Lyubova,
I. J. Mustafina, O. L. Vinogradova, I. I. Ahmetov

- Saint-Petersburg Institute of Physical Culture, Saint-Petersburg, Russia
- Russian Federation
- Institute for Biomedical Problems of the Russian Academy of Sciences, Moscow, Russian Federation
- Kazan State Medical University, Kazan, Russian Federation.

Genetic factors play important role in determination of functional physiological, biochemical characteristics and athletic performance. Regular intensive training helps elite athletes to be at the peak of human physical performance, which makes them the best objects for studying molecular mechanisms of muscular activity. The aim of this study was to discover whether polymorphisms of genes involved in metabolic pathways (AMPD1, CKMM, G6PC2, PCK1) are associated with elite athlete status and common phenotypes among sports performance. DNA samples of 996 Russian athletes and 1389 non-athletic Russian controls were analyzed for four gene polymorphisms by PCR-RFLP analysis. Sporting intermediate phenotypes were analyzed in subgroups of athletes by measuring of aerobic capacity, strength, anthropometric parameters, muscle fiber characteristics, blood lactate and glucose concentrations. Four ‘endurance alleles’ were overrepresented in a group of endurance athletes compared with controls: AMPD1 C (P=0.01), CKMM A (P=0.001), G6PC2 G (P=0.004), MCT1 A (P=0.0001). The frequency of four ‘power alleles’ was higher in strength/power athletes compared with controls: AMPD1 C (P=0.001), CKMM A (P=0.0001), G6PC2 G (P=0.014), MCT1 A (P=0.004). Associations of polymorphic variants with disposition to certain types of physical activity (endurance and strength/power) were consistent with results of correlation analysis of these polymorphisms with measured physiological, morphometric and biochemical parameters of skeletal muscle. Thus, AMPD1, CKMM, G6PC2 and MCT1 gene variants are associated with sporting intermediate phenotypes as well as with athletic status.

J09.45
No major clinical impact of a common variant in Toll-like receptor 4 gene on Temporal Lobe Epilepsy.

I. Manna, A. Labate, L. Mummoli, G. Palamara, E. Ferlazzo, A. Gambardella

- Institute of Neurology - CNR, Mangone (CS), Italy
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
- Regional Epilepsy Centre, Hospital of Reggio Calabria, Reggio Calabria, Italy.

Evidences support the hypothesis that inflammation and neurogenesis play an important role in the pathogenesis of temporal lobe epilepsy (TLE). Coding variants in Toll-like receptor 4 (TLR4) gene have been reported to be associated with inflammatory diseases, so TLR4 may represent a reasonable functional candidate gene for TLE. The aim of this study was to determine whether a functional single nucleotide polymorphisms (SNPs), an A>G base transition at position 896 from the transcriptional start site of TLR4 (referred to as Asp299Gly), contributes to TLE. We also investigated whether this variant may influence the TLE phenotype. We used a case-control approach comparing the frequencies of Asp299Gly polymorphism between unrelated TLE patients and matched controls. In the second step, we evaluated the patient group in terms of the major clinical variables related to the epileptogenic process. The study group included 345 patients (189 women and 156 men; mean ± SD age: 47.43±18.24) with a diagnosis of non-lesional TLE, based on comprehensive clinical, electroencephalographic, and magnetic resonance evaluations, and 370 (186 women and 184 men; mean ± SD age: 48.46±20.96) healthy controls. All individuals were genotyped for the SNP Asp299Gly in the TLR4 gene using a TaqMan® SNP allele discrimination assay. Analysis of genotype and allelic frequencies between patients and controls showed no statistically significant difference. Moreover, the Asp299Gly variant did not influence age of epilepsy onset, duration of epilepsy, and response to medication. Our results illustrate that a major clinical impact of variant as a disease modifier in TLE is probably unlikely.

J09.46
Extensive mutational analysis of CD5K and CDKSR1 in patients with non-syndromic mental retardation reveals novel variants in CDKSR1 3'-UTR

S. Moncion1, P. Castronovo, A. Muraglia, S. Russo, M. F. Badescu, P. Riva1, M. Venturin1

1University of Milan, Milan, Italy.
2University of Padua, Padua, Italy.
3Institute Auxologico Italiano, Milan, Italy.
4Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy.

CDK5 and its activator p35, encoded by CDKSR1 gene, are highly expressed in CNS where they have a fundamental role in neuronal migration and differentiation during CNS development. Their fundamental role in CNS development and function, and their involvement in the pathogenesis of neurodegenerative disorders makes CDK5 and CDKSR1 strong candidate genes for the onset of mental retardation. We carried out the mutational screening of CDK5 and CDKSR1 coding regions, as well as of CDKSR1 3'-UTR, on a cohort of 34 patients with non-syndromic mental retardation (NS-MR). In fact, we recently demonstrated that 3'-UTR has a key role in the post-transcriptional regulation of CDKSR1 expression, through the binding of protein factors and microRNAs belonging to miR-15/1/107 family, and this evidence prompted us to include this region in the mutational analysis. We found one silent mutation in CDK5, and three silent and two missense conservative mutations in CDKSR1 coding region. Four novel variations in intronic regions of CDK5 were found but never predicted to cause splicing defects. Interestingly, we found nine heterozygous variations in CDKSR1 3'-UTR: among these, six were single base substitutions and three were small deletions. None of these variations was present in 450 healthy controls. Of particular interest is the deletion of one predicted miR-15/1/107 family binding site, found in one patient. Luciferase constructs containing the mutations observed in CDKSR1 3'-UTR will be used to verify if these variations have an effect on CDKSR1 expression levels and therefore constitute susceptibility variants for NS-MR.

J09.47
Analysis of polygenic hypercholesterolemia candidate gene variants

I. Del Castro-Gros1, M. Solanas2, M. León1,3, M. Goñalés1, J. A. Casasovano2, J. C. Rodríguez-Rey1, E. Rov1, F. Civeira1,2,3, M. Pacovi1,2,4

1CRECA, Dpto. Bioquímica y Biología Molecular y Celular. Universidad de Zaragoza. (CRECA), Zaragoza, Spain.
2Instituto Aragonés de Ciencias de la Salud (I+CS), Zaragoza, Spain.
3CRECA, Unidad de Lipidos. Laboratorio de Investigación Molecular, Hospital Universitario Miguel Servet, Zaragoza, Spain.
4Aragon Working Health Study, Zaragoza, Spain.
5Institut de Lípidos, Servei d’Endocrinologia i Nutrició, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Barcelona, Spain.
6Instituto de Formación e Investigación Marqués de Valdecilla (IFIMAV), Santander, Spain.
7Instituto Aragonés de Ciencias de la Salud (I+CS), Zaragoza, Austria.

Introduction: The main factor for atherosclerosis development is high LDL cholesterol (LDLc) levels. Most cases of hypercholesterolaemia are due to complex interactions gene-environment being the most common cause the polygenic hypercholesterolemia (PH). Aim: Our objective was to identify candidate gene variants as contributors to genetic cause of PH. Methodology: 378 unrelated subjects, without mutations in LDLR and APOB genes, were selected according to the following criteria: LDLc ≥ 90 percentile and Tryglyceride levels ≤ 200 mg/dl. Moreover, a control group of 525 normolipemic subjects from the Aragon Working Health Study (AWHS) was analysed. All subjects were genotyped using Solaeca (Illumina®) technology for 18 SNPs located in 5 STR region of the APOE, APOB, PCSK9, NRAS2, SREBF1 and LDLR genes. Results: We have observed different allelic distribution between the PH population and the normolipemic controls in 5 gene variants. Our results have shown a higher frequency of the minor allele in PH versus control population of the APOB SNPs: rs51235 (0.497 vs 0.444, p=0.0250), rs176314 (0.333 vs 0.272, p=0.0055) and rs6429712 (0.092 vs 0.027, p=0.0001); while a lower frequency was observed in the PH group for the NRAS2 polymorphism rs9427440 (0.260 vs 0.387, p<0.0001) and the LDLR variant rs17248720 (0.097 vs 0.164, p<0.0001), are inversely related to PH. Conclusion: We have identified 5 SNPs associated with the phenotypic expression of PH disease. The 3 APOB SNPs directly related to PH phenotype while the LDLR and NRAS2 polymorphisms seem to be protective to the hypercholesterolemia development.
J10. Evolutionary population genetics, and Genetic epidemiology

J10.02 Monitoring of congenital malformations in population of Republic of Moldova

V. V. Egorov, N. Barboun, M. Stratulat, E. A. Hahlabedenco;
National Center of Human Reproduction and Medical Genetics, Chisinau, Republic of Moldova.

In Republic of Moldova congenital malformations (CM) occupies second place in structure of infantile mortality. Monitoring of CM in our country acts since 1991, and since 2009 they carry out work jointly with EUROCAT. The aim of present study was evaluation of prevalence and structure of CM in Republic of Moldova based on genetic monitoring during the period 2006 - 2010. The system of genetic monitoring in Moldova based on registration of all the range of congenital pathologies in live newborns, stillborn and children dead after birth with weight less than 500 g, on term of 22 weeks and more. CM registered in children during first year of life.

In the territory of Moldova during the period 2006 - 2010 was born 195837 children, including 3562 with CM. During this period there were 144 pregnancies terminated conform medical indications due to congenital or hereditary pathology (such as CM, chromosomal aberrations), revealed prenatal before 22 weeks of gestation. Overall prevalence of CM was 18/92 for 1000 newborns. Maximal prevalence of CM was in 2006 - 22,19 for 1000 and minimal in 2007 - 16,58 for 1000. In structure of CM in Moldova first place occupies anomalies of musculo-skeletal anomalies, cardio-vascular and multiple anomalies. The prevalence of individual forms of CM (esophageal atresia, palate/flip clefts, omphalocele, Down syndrome) corresponds to indexes of EUROCAT.

J10.03 A combined influence of TNFα and GSTs genetic variants in pathogenesis of COPD

1Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia; 2Zvezdara University Medical Center, Belgrade, Serbia; 3Institute for Tuberculosis and Lung Disease, Belgrade, Serbia.

The etiology of chronic obstructive pulmonary disease (COPD) is multifactorial, including genetic and environmental factors, as well their interactions. Increased inflammation and oxidative stress are the most prominent features of COPD. Since that, variants of genes involved in inflammatory response and protection from oxidative stress, which may alter these processes, might initiate and/or progress COPD.

We performed a case-control study in order to examine the role of functional variants of tumor necrosis factor α (TNFα) and glutathione-S-transferases (GSTs) in. In total number of 86 COPD patients and 100 controls were genotyped for TNFα-308GG genotype (82.5% vs 69%, OR=2.13, p<0.04) in COPD vs controls. The statistically significant results were also obtained for combination of TNFα -308GG and GSTM1 null (48.8% vs 31.0%, OR=2.12, p=0.016), as well for combination of TNFα -308GG, GSTM1 null and GSTP1 105Val/Val (30.2% vs. 15.0%, OR=2.46, p=0.014).

This is the first study in which TNFα -308GG genotype was associated with pathogenesis of COPD. In addition, TNFα -308GG genotype in combination with GSTM1 null and GSTP1 105Val/Val was associated with the disease, that further confirmed importance of -308GG genotype for COPD pathogenesis.

Single and complex genotypes revealed in this study indicate the importance of larger number of candidate genes which might contribute to elucidation of COPD pathogenesis and might be valuable in prevention of the disease.
The results are promising and continuing the study will make possible the construction of a database regarding hearing loss in Romanian population. Molecular diagnosis will also allow timely intervention at children with hearing impairment.

J10.06 Uninterrupted CCTG tracts in the myotonic dystrophy type 2 associated locus - are they really rare? J. Rudovský, L. Káčik
1Institute of Molecular Physiology and Genetics, SAS, Bratislava, Slovakia; 2Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.

Myotonic dystrophy represents the most common form of adult muscular dystrophies. The first genetic form of the disease, myotonic dystrophy type 1 (DM1), is caused by expansion of the (CTG)n repeat tract in the DMPK gene. The second genetic form, myotonic dystrophy type 2 (DM2), is caused by expansion of the (CCTG)n repeat tract in the ZNF9 gene. The CCTG tract is generally interrupted in healthy range alleles and is interrupted in pathologically expanded alleles. Our study reports the variability of the healthy range DM2 alleles found during a population study in Slovakia. In comparison with previous studies, we identified wider range and higher frequency of healthy range alleles containing uninterrupted CCTG tracts. As uninterrupted alleles were so far reported mainly on larger alleles, they were considered as possible DM2 premutations. Our findings, however, suggest that uninterrupted CCTG parts are not restricted to large alleles and can be found continuously throughout the whole range of healthy range alleles, from the smallest up to the largest ones. This emphasizes the need for further studies aimed partially to the better characterisation of boundaries between meiotically and mitotically stable alleles and those which can be considered as unstable DM2 premutation alleles.

J10.07 Development and validation of a methodology to analyze the molecular phylogeny of the family Piperaceae, Piper genus, of species found in the Western Brazilian Amazon
D. Delani
Universidade Federal de Rondônia, Porto Velho, Brazil.

Family Piperaceae, especially Piper genus, presents a fascinating array of plant species for the study of natural products in organic chemistry, pharmaceuticals and ethnobotany. The best use of these species and handling the genre can be provided with the incorporation and association studies of genetic variability. Therefore, knowing the distribution of genetic variability among and within this population is essential for the establishment of appropriate use, as well as better enforcement. Thus, this study aims to evaluate, from the DNA, the genetic structure of natural populations found in the western Brazilian Amazon, with a view to advancing knowledge and manipulation of species, favoring the development of conservation strategies and stimulating the application of a breeding program to actively participate. Preliminary data from our lab established the best methodology to be applied in this analysis. The results show that the method described by Doyle & Doyle (1990) and modified by Falero et al. (2003) was the most efficient in obtaining DNA of better quality and in sufficient concentrations to be used in studies of genetic diversity in plants. To molecular analysis in this population, in a comparison with different techniques, RFLP, RAPD, AFLP and SSR, the results indicates that RAPD (random-amplified polymorphic DNA) can be successfully used (Powell, 1996). This reinforces the use of this technique in studies of genetic variability. It is worth emphasizing that in this work we shall present our findings and especially focus on the recommendations that were the conclusion of this part of the investigation.

J10.08 Distribution of MEFV Gene Mutations among Turkish Patients with Crohn’s Disease and Ulcerative Colitis: Preliminary Results
H. Safioglu, G. Kliceler, M. Karhausci, A. Tunac, Y. Tunca, S. Bagci
1Departments of Medical Genetics, Gulhane Military Medical Academy, School of Medicine, Ankara, Turkey; 2Department of Gastroenterology, Gulhane Military Medical Academy, School of Medicine, Ankara, Turkey.

Inflammatory bowel disease (IBD) and Familial Mediterranean Fever (FMF) may share some clinical and biological features; they are both inflammatory disorders characterized by the same chronic relapsing behaviour, infiltration by neutrophils at the site of injury and abnormal regulation of apoptosis. There is a few studies about Mediterranean Fever (MEFV) gene mutations in Turkish patients with Crohn’s disease (CD) and Ulcerative Colitis (UC). In this study, we aimed to investigate the frequency and distribution of MEFV mutations in Turkish adult patients with IBD. Twenty-two patients with UC and 18 patients with CD (totally 40 patients) included in the study. The most common 10 MEFV mutations detected by using microarray method after PCR amplification of DNA samples. MEFV mutations found in 14 patients. In CD patients EI-484 mutation allele, in UC patients M694V mutation allele was found to be significantly more frequent. In conclusion, this study is important in terms of showing distribution of MEFV allele among Turkish patients with UC and CD. MEFV mutation allele frequency is higher in CD patients than UC patients.

J10.09 Prevention of mutagenic effects in human populations
P. Izhetskij
Burnsany Medical Biophysical Center, Moscow, Russian Federation.

The human genome is constantly exposed to attacks by environmental mutagens. The permissible levels of exposure and the concentration of mutagens are established on the basis of preventing acute effects. It does not take into account of possibility of long-term (stochastic) effects - unfavorable pregnancy outcomes (UPO) in exposed individuals. Requires a quantitative assessment of risk of stochastic effects, and measures for their prevention. To determine the external dose doubling the incidence of UPO’s in the families of exposed persons and the development of preventive measures long-term effects of radiation in human populations. Results: During the years 1985-2006 years based on the data about outcomes of pregnancies and the health of the offspring in populations exposed to ionizing radiation over a wide dose range, defined as follows:1. Frequencies UPO’s in 226 populations exposed to radiation after the Chernobyl accident. Additional to the natural background radiation dose were calculated for the period from 1986 to 1992 ranged from 4 to 152 mSv. 2. The radiation dose, doubling the incidence of UPO’s in the 1st-generation offspring of exposed individuals. 3. The frequency of congenital anomalies among infants in the population and families of personnel of industrial enterprises are constantly contact with mutagens. 4. It is proposed package of measures for prevention UPO’s in the families of personnel continually exposed to mutagens, and the population living near industrial plants - the sources mutagens.

J10.10 Index endogamy in Republic Tatarstan, Russia
G. I. Elchenova, P. S. Igunov, R. A. Zinchenko
Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russian Federation.

In 13 areas of Tatarstan on the basis of total sample of marriage records for 1990-2000 (N=31837 after an exception of marriages of postproductive age and inhabitants of other regions registering marriage on the historical native land) the index endogamy is counted up that appeared to be lowest in the Pest krechinsky area (0,45) like Kazan (between Pestretsky and Kazan there are 28 km), the highest (0,74) - in Aktan (to Kazan 19 km), the most remote from Kazan from all 13 studied areas. We will notice while endogamy index calculating for representatives of various ethnicities occupying these areas, distinctions in migratory activity of representatives of various ethnicities are not revealed. Rural endogamy has appeared low enough - from 0,06 in the Old Drozhzhanoie to 0,25 in Menzinsk. In cartographical extrapolation the minimum values of endogamy are found out near to big cities - Kazan and Nizhnekamsk, and maximum - in marginal areas: Drozhzhanovsky (0,70), Baltasinsky (0,69), Kukmorsky (0,67), Alkeevsky (0,70) and Aktan (0,74). These results show high degree of isolation of rural populations of Russia.

J10.11 Application of 52 Autosomal SNPs (SNPforID) to Forensic Casework in Malaysia
S. Alimat1, W. Goodwin1, 2
1School of Forensic and Investigative Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston, United Kingdom, 2Forensic Division, Department of Chemistry Malaysia (KIMIA), Ministry of Science and Technology, Petaling Jaya, Malaysia.

The analysis of degraded DNA can be problematic. Recent advances in the identification and analysis of single nucleotide polymorphisms (SNPs) have demonstrated the advantage of these markers over short tandem repeats (STRs) in that they only require small amplions. However, before applying to casework, it is important to develop allele frequency databases from three Malaysian major ethnic groups; Malay, Chinese and Indian. In order to genotype the population samples reliably and robustly, four sets of 13-plex SNPs were developed for 52 autosomal SNP markers (that have been identified in the SNPforID project). A total of 150 DNA Malaysian sampil-
les were genotyped using this multiplex assays and full, complete and clear profiles were generated. Data were collected and evaluated statistically. Across the three ethnic groups, few significant departures from HWE were observed in Malay, Chinese and Indian ethnic groups, for example, at marker rs2107612, no heterozygosity was observed in all in Malay group (Hoe=0), but the Indian group showed higher heterozygosity (above 80%). The combined mean match probabilities for the 52 SNPs of Malay, Chinese, and Indian are 2.1974×10−18, 6.0042×10−18 and 1.1756×10−18, corresponding to a combined power of discrimination of > 99.99999999%, respectively. Paired F values obtained in the study suggest that Malay group is closely related to Chinese compared to Malay-Indian or Chinese-Indian. As far as forensic casework, we have demonstrated these multiplexes with the samples that in some instances the SNPs can generate full profiles from DNA extracts that yielded no or partial STR loci.

J10.12 Prevalence and co-infection of 3 human Torque teno viruses in the Romanian population
S. SPANDOLE1, D. Cimponeriu1, N. Panduru1, P. Apostoi1, M. Toma1, M. Stavracchi1, C. Serafinceanu1, A. D. Ion2,1Department of genetics Bucharest, Bucharest, Romania, 2Department of Pathophysiology “ Carol Davila” UMB, Bucharest, Romania, 3NIDNMD N Paulescu, Bucharest, Romania.
The TT viruses (TTVs) recently discover DNA viruses and included in the Anelloviridae family. The strains that infect humans are ‘Torque teno viruses (TTV), Torque teno mid virus (TTMID) and Torque teno mini virus (TTMV)’.
The aim of the study was to determine the prevalence and distribution of the TT viruses, and the co-infection pattern in several human pathologies. Materials and Methods: The viral DNA was studied in the blood of patients with diabetic nephropathy, breast cancer, colorectal cancer, thalassemia, healthy controls and in the saliva of healthy subjects using nested-PCR. The amplification products were analyzed by agarose gel electrophoresis. For additional genotyping, high resolution melting (HRM) was performed. Results: The average frequency of TTV and TTMID was approximately 85% among all the subjects, while for TTMVD was 60%. The average frequency of co-infection was 55% and the highest rate of triple co-infection (80%) was found among the thalassemic patients. The highest frequency of the viruses was also found among the patients with thalassemia. The most commonly found virus was TTV and least common was TTMID. Conclusions: TT viruses’ prevalence is the highest among the patients with thalassemia. The co-infection pattern is not correlated to a specific pathology. The viruses can be easily detected in the subject’s saliva. The estimated frequency is consistent with the values reported in other populations. Acknowledgements: This paper is supported by the Sectoral Operational Programme Human Resources Development, financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/89/1.5/S/64109.

J10.13 Clinical and genetic spectrum of single gene disorders among Saudi Arab
H. Y. Alabdulwahed, N. A. Al Senna; saudi aramco, Dhahran, Saudi Arabia.
The high consanguinity rate had resulted into increased incidence of rare autosomal recessive disorders in The Kingdom of Saudi Arabia. Some of these disorders has been observed to be more specific for certain tribes and families with an evidence of gene founders. This has facilitated providing a selective genetic testing for this population. A retrospective review of 1359 patients with single gene disorders were seen within our medical facility was done. We found that this population has similarities in the disease-causing molecular mutations with nearby Arabian Gulf countries*. However, novel mutations were detected for the following disorders: Arthropathy, Biliary-Renal Dysplasia and Cholestasis syndrome, Hepatitis motor and sensory neuropathy with agenesis of the corpus callosum, Alcapar-Goutieres Syndrome 3, Pelizaeus-Merzbacher-Like Disease 1, Pelizaeus-Merzbacher-Like Disease 1, spondyloocystal dysostosis type 2, h yphophataplasia*, Ganglissodiosis 1, Atkron syndrome, IRAK4 deficiency, Abetalipoproteinemia, Fabry disease and mucopolysaccharidosis type I. We hope that this data will help to guide researchers and medical professionals within the region in molecular diagnosis of their patients.

J10.14 Characteristics of mitochondrial DNA HVS-1 sequence in patients and aborted fetuses with aneuploidy
V. Pankratov, N. Danilenko
Institute of genetics and cytology, Minsk, Belarus.
Background: Aneuploidy is strikingly frequent in humans: up to 20% of all zygotes have an abnormal number of chromosomes. Despite intensive research little is known about the origin of aneuploidy and its risk factors. Here we analyze mitochondrial DNA of aneuploid fetuses and patients to reveal whether certain features of mtDNA of primary oocytes make them more prone to non-disjunction.
Methods: Hypervariable segment 1 of mtDNA was sequenced in 48 patients with Down’s syndrome, 22 aborted fetuses with DS and 2 aborted fetuses with Edward’s syndrome - altogether 72 samples. Previously published HVS-1 sequences of 267 Byelorussians were used as controls.
Results: Attention was focused on frequencies of 16189C and its combination with 16183C as these substitutions create a polyC stretch which interferes with the replication of mitochondrial DNA and is reported to be a risk factor for metabolic syndrome and cancer. 16189C is 1.6 times more frequent in the group of aneuploids compared to the control one (p=0.07), whereas 16183C+16189C haplotype is 3.7 times overrepresented among aneuploids (p=0.005). Another allele, 16309G, shown to be a risk factor for bipolar disorder, was found in 3 cases with DS, although it is absent from the studied population of healthy Byelorussians. 16292T and the CRS haplotype are significantly underrepresented among aneuploids (p<0.05).
Conclusions: 16189C (and its combination with 16183C) and 16309G in mother’s mtDNA may be a risk factor for aneuploid conceptions. 16292T and the CRS haplotype may be linked with some protective SNPs in the coding region of mtDNA.

J10.15 FVII R353Q and GPIa C807T polymorphisms in Ukrainian ischemic stroke patients
M. Burlova-Vasylenko1, S. Kryvenchak1, L. Livshitz1; 1Educational and Scientific Centre “Institute of Biology” of National Taras Shevchenko University of Kyiv, Kyiv, Ukraine, 2Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, Department of Human Genomics, Kyiv, Ukraine.
Ischemic stroke is a complex pathology, with a variety of genetic and environmental risk factors. The aim of our study was to establish the possible involvement of the FVII R353Q and GPIa C807T polymorphisms in ischemic stroke development.
Case-control study involving 179 patients aged 39 to 81 years with ischemic stroke and 88 patients aged 59 to 92 (control I), as well as population control (control II, n=97) without a history of stroke has been performed. Genotyping was performed by the PCR followed by RFLP analysis. Comparative analysis of genotype distribution in ischemic stroke and control I showed a marginal association of the RR genotype of R353Q polymorphism with stroke (OR=1.79; 95% CI, 0.9-9.3; P=0.05). Also, there was a significant association between RR genotype and stroke compared to control II (OR=2.03; 95% CI, 1.1-5.9; P=0.01). Obesity as one of the stroke risk factors itself showed a strong association with stroke in our study (OR=2.35; 95% CI, 1.5-4.8; P=0.008). Moreover, while analyzing the joint effects of R353Q and obesity, interaction between these risk factors were revealed (Synergy factor=6.9, 95% CI, 1.3-4-36.3; P=0.02). The RR individuals with obesity had a significant susceptibility to ischemic stroke (OR=4.03; 95% CI, 1.6-4.9; P<0.01). No significant association was found between ischemic stroke and C807T polymorphism.
Our study suggests that RR genotype of R353Q polymorphism may be an additional ischemic stroke risk factor in patients with obesity, while GPIa C807T polymorphism is not associated with a risk of ischemic stroke in Ukrainian patients.

J11. Genomics, Genomic technology including bioinformatics methods, gene structure and gene product function and Epigenetics

J11.01 Epigenetic identification of stem cells: From embryonic toad tad A. Teynoran Marvian1, S. Esfahani moghaddam2; 1University of Tehran, Tehran, Islamic Republic of Iran, 2Sari Agricultural Sciences and Natural Resources University, Sari, Islamic Republic of Iran.
Stem cells, like other incredible properties they have, possess unique epigenetic characteristics. Here we will talk about two unique characters: histone modifications and DNA methylation. These epigenetic modifications affect cell structure and function and play a key role in cell differentiation. In post-mitotic cells, DNA methylation is considered as the main marker of gene silencing. Cell differentiation and cell fate determination are closely related to DNA methylation changes. The degree of DNA methylation depends on the balance between DNA methyltransferases (DNMTs) and DNA demethylases (DNMTs). Epigenetics and stem cells are connected via DNA methylation. The process of epigenetic reprogramming of DNA methylation in somatic cells revealed that the use of epigenetic reprogramming methods may be used for reprogramming somatic cells to induced pluripotent stem cells (iPSCs) which is an important approach in regenerative medicine. stem cell researcher aim to epigenetically reprogram somatic cells to reprogrammed iPS cells. Epigenetic reprogramming methods affect the epigenetic status of the cell, which in turn affects the transcription of target genes. The main epigenetic methods are: 5-azacytidine, decitabine, and differentiation induction by medium. The use of these epigenetic reprogramming methods in the reprogramming of somatic cells to iPSCs is a promising approach. It is possible to use epigenetic reprogramming methods not only in regenerative medicine, but also in the treatment of cancer and genetic diseases.
genetic structure. Growing evidence suggests that the potency of these cells to regenerate from low to complete differentiated cell lines is accurately depend on epigenetic processes occurring on DNA and chromatin. DNA methylation and histone modifications are the major contests which lead to the establishment of chromatin states in these cells. It seems that these contests have fundamental regulatory effect on the potency of different stem cells and make embryonic cells to be unique for their stemness characteristics compare to adult cells. Tracing these epigenetic change from embryonic stem cells to adult stem cells would be an appropriate approach to investigate the function of the events in reducing stemness capacity. More study in this field would help to establish new approaches to induce pluripotency in different cell types; especially in multipotent adult stem cells and it would be useful for therapeutic approaches. In this review we summarize current progress in field of embryonic and adult stem cells epigenetics and also we try to illustrate conceptual regard to epigenetic changes during embryonic development and beyond.

J1.1.02 Customized DNA microarray fabrication for gene expression analysis of multiple sclerosis

A. Pourjahed1, M. Babaei1, M. Sanati2, M. Ataei1;
1Amirkabir University of technology, Tehran, Islamic Republic of Iran, 2Iran National Institute of Genetic Engineering and Biotechnology, Tehran, Islamic Republic of Iran.

Multiple Sclerosis (MS) is a complex autoimmune disease, involved many pathophysiological processes which should be considered in designing diagnostic, prognostic studies. In recent years, microarray technology becomes a valuable tool for identifying good biomarkers in diagnostic as well as prognostic processes for all diseases. Also better drug treatments may be obtained by identifying new drug targets and studying drug effects via this technique.

In this work, we designed a customized microarray for 76 susceptible genes in MS, which involved in different pathophysiological processes (e.g. inflammation, demyelination, axonal damage and repair mechanisms) based on peripheral blood analysis. Poly-L-lysine coated glass slides was used to fabricate this microarray by BioRad vers-array spotting robot. Fabricated microarray can be used to study gene expression of MS patients and healthy controls in various clinical conditions.

J1.1.03 Development and validation of multiplex (4-plex) PCR-based assay to assess DNA degradation

M. S. Nazir, W. Goodwin, J. Smith;
School of Forensic and Investigative Sciences, University Of Central Lancashire, Preston, United Kingdom.

To assess the degradation of DNA in the model organisms (pig, rabbit and human) Multiplex (4-plex) PCR-based assay was developed. Sequence data for a nuclear gene; recombination activating gene 1 (RAG-1) from rabbit, pig and human was aligned to identify conserved regions for primer design that would amplify 70 bp, 194 bp, 384 bp amplicons. PCR was optimized so that it worked over a wide range of template amounts (0.03 ng to 75.03 ng). Multiplex (4-plex) PCR assay was validated following the guidelines of Scientific Working Group on DNA Analysis Methods (SWGDNA). The multiplex PCR was tested for its specificity, reproducibility, sensitivity and stability using ABI 310 and 3500 genetic analysers (Applied Biosystems). Samples treated with various environmental regimes and DNeasy1 were also included in this study. The multiplex (4-plex) PCR was found to work efficiently in triplicate samples of all three species until 0.3 ng of DNA template, although, partial profile is also obtained with 0.03 ng DNA template. The result of this validation study promises that this multiplex can be used in forensic analysis to assess DNA persistence in human decomposing bodies following mass disasters and in experimental animals (rabbit and pig) and therefore is recommended for forensic purposes.

J1.1.04 VMD DisRg: New user-friendly implement for calculation distance and radius of gyration in VMD program

S. Falsafi Zadeh1, Z. Karimi2, H. Galehdari3;
1Bioinformatics unit, Department of Genetics, Shahid Chamran University, Ahvaz, Islamic Republic of Iran, 2Department of Genetics, Shahid Chamran University, Ahvaz, Islamic Republic of Iran, 3Bioinformatics unit, Department of Genetics, Shahid Chamran University, Ahvaz, Islamic Republic of Iran.

Molecular dynamic simulation is a practical and powerful technique for analysis of biopolymers structure. Several programs have been developed to facilitate the mentioned investigation, under them the visual molecular dynamic or VMD is the most frequently used programs. One of the beneficial properties of the VMD is its ability to be extendable by designing new plug-in. We introduce here a new and easy to use facility of the VMD for distance analysis and radius of gyration of biopolymers such as protein and DNA. Our plug-in is a user friendly package which calculates mentioned analysis for structure or simulation trajectories with 3D representation center of mass.

J1.1.05 Epigenetic aberrations in leukocytes of patients with schizophrenia: Association of global DNA methylation with antipsychotic drug treatment and disease onset

P. A. Melas1, M. Bogdaki, U. Ösyh, M. Schalling, C. Lavebratt, T. Ekström;
Karolinska Institute, Stockholm, Sweden.

Even though schizophrenia has a strong hereditary component, departures from simple genetic transmission are prominent. DNA methylation has emerged as an epicgenetic explanatory candidate of schizophrenia’s non-Mendelian characteristics. To investigate this assumption, we examined genome-wide (global) and gene-specific DNA methylation levels which are associated with genomic instability and gene-expression activity, respectively. Analyses were conducted using DNA from leukocytes of schizophrenic patients and controls. Global methylation results revealed a highly significant hypomethylation in schizophrenics ($P = 2.0 \times 10^{-8}$) and linear regression models patients generated a model in which antipsychotic treatment and disease onset explained 11% of the global methylation variance (adjusted $R^2 = 0.11$, ANOVA $P < 0.001$). Specifically, haloperidol was associated with higher ("control-like") methylation ($P = 0.001$) and early-onset (a putative marker of schizophrenia severity) was associated with lower methylation ($P = 0.002$). With regard to the gene-specific methylation analyses, and in accordance with the dopamine hypothesis of psychosis, we found that the promoter of S-COMT was hypermethylated in schizophrenics ($P = 0.004$). In conclusion, these data support the notion of an aberrant epigenetic regulation in schizophrenia which may be subject to certain antipsychotic treatments. Additionally, blood DNA-methylation signatures show promise of serving as a schizophrenia biomarker in the future.

J1.1.06 Role of the genes encoding NMDA receptors in the development of neurologic pathologies during influenza infection

M. A. Plotnikova1, S. A. Klotskeno1, V. E. Egorov, A. V. Vains2;
Research Institute of Infectious, St. Petersburg, Russian Federation.

Influenza is one of the most widespread viral respiratory diseases, infecting humans. Influenza virus may cause various neurologic complications which can lead to chronic diseases characterized by different cognitive dysfunctions. However, until recently very little was known about the molecular biological mechanisms of activity disbalance of the central nervous system in case of influenza infection. One of the dominant roles in this process probably is related to the ionotropic glutamate receptors (NMDA receptors) encoded by the GRIN family. The NR1 family consists of six subunits and NR2 family has four subunits. The NR1 and NR2 subunits form the NR1/NR2 hetero- and homo-subunit combinations. Both NR1 and NR2 subunits of NMDA receptors are found in a wide range of brain tissues. However, the role of NMDA receptors in the development of influenza infection still remains unclear. In our previous study, we found that the expression of NR1 and NR2 subunits was increased in the brains of influenza infected mice. In conclusion, the results of this study demonstrate that the expression of NMDA receptors is increased during influenza infection, which may be related to the development of influenza-induced neurologic complications.

J1.1.07 Cafe Variome: sharing diagnostic sequence variants with the research community

O. Lancaster1, R. Dalgleish1, D. Atlan1, A. J. Brookes1;
1University of Leicester, Leicester, United Kingdom, 2PhenoSystems, Lillois, Belgium.

The internet-based Cafe Variome is designed to function as an exchange portal for genetic variant (mutation) data produced by diagnostics laboratories, offering users a secure environment through which to announce and discover a comprehensive listing of observed neutral and disease-causing variants in patients and unaffected individuals.
To achieve this, Cale Varromeo facilitates the "publication" of data from researchers, diagnostics laboratories, and others, to any stakeholders who may wish to, for example, check for evidence of causal influence upon certain disease states, and/or incorporate the data into locus-specific databases. While data generators generally do not object to disseminating anonymized diagnostic data, they are not motivated to do so because of the effort and time involved. Cale Varromeo specifically addresses these issues by:

- Enabling data analysis tools used by research and diagnostic laboratories with a "data submission" function which automatically pushes diagnostic data to Cale Varromeo, which acts as a universal data reception and advertisement point.
- Offering manual support to laboratories to move their variant datasets into Cale Varromeo (legacy data and new data in batches or in real time).

The development of Cale Varromeo (based at the University of Leicester) involves the cooperation of diagnostic software companies PhenoSystems (Gensearch) and Interactive Biosoftware (Alumut) as well as academic partners in the Bioinformatics Support Group at Leiden University Medical Centre (LUMC) whose Mutalyzer data-validation tool will allow us to feed back data inconsistencies to submitters, and at NGRI Manchester who have extensive expertise in diagnostic databases through their development of DMuDB.

J11.08

Mutation screening of ATP13A2 in early onset Iranian Parkinson's disease patients

M. Malakouti-nejad, A. Mavli, M. Hashemi, G. Shahidi, E. Elahi

1Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
2School of Biology, University College of Science, University of Tehran, Tehran, Islamic Republic of Iran
3Tehran Medical Branch, Islamic Azad University, Tehran, Iran

Parkinson's disease (PD) is the most common neurogenerative movement disorder whose average age of onset is 60 years. Individuals in whom symptoms first manifest before age of 40 years are classified as early onset PD (EOPD) cases. To date, 4 genes responsible for early EOPD have been identified, parkin/PARK2, PINK1/PARK8, DJ1/PARK7 and ATP13A2/PARK9. Among these genes, mutations in ATP13A2 are the least common. Mutations in PARK9 have been reported to cause autosomal recessive early onset Parkinson's disease (PD). ATP13A2 is located on chromosome 1p36, contains 29 exons, and codes a transmembrane protein of 1180 amino acids which belongs to the Group 5 P-type ATPase superfamily. The function and substrate specificity of the encoded protein remains unknown. Here we present results of mutation screening in 14 Iranian EOPD patients in whom mutational analysis in LRRK2, PARK2, DJ1, and PINK1 were previously ruled out. The average age at onset of the Iranian patients was 20 years and the range was 11-31 years. The whole ATP13A2 coding region (29 exons) and exon-intron boundaries were sequenced from genomic DNA. A novel homozygous variation (IVS8+19G>A) was identified in non-coding region in one sporadic patient. To identify the effect of this variation in splicing, NNSplice software was used. The results showed, this variation isn't effective on splice site. This patient also had a polymorphism (c.118G>C) in heterozygous state in PINK1. Thus we conclude that ATP13A2 genetic variability is unlikely to cause or influence the development of PD.

J11.09

Effects of PITX2 as a Transcription factor in ocular development on their Target genes

H. Mozaffari, A. Sadeghi-gilani, H. Payalikhah, E. Elahi

1University of Tehran, Tehran, Islamic Republic of Iran
2University of Damghan, Damghan, Islamic Republic of Iran

The development of the eye comprises a series of inductive events. A number of genes that include transcription factors, growth factors, nuclear proteins and enzymes are involved in multiple cascades of events in ocular development and other developmental processes. These developmental regulatory networks are therefore not only important in the development of the eye but also in the development of the whole embryo as well. The Pituitary homeobox 2 (PITX2) and Forkhead box C (FOXC1) proteins are examples of such transcription factors. PITX2 is a member of the paired-box (PAX) and homeo-domain (HOM) transcription factors. Pituitary homeobox proteins are actively involved in a wide range of developmental processes, including formation of the pituitary gland, hind limb and anterior segment of the eye. 41 genes for PITX2 were identified by Expression profiles derived using microarray.

Usage of Bioinformatics tools for determination of promoter region, finding

PITX2's Binding sites and conservation of promoters revealed that several genes directly affected by PITX2 among these, promoter of PLEKHG5 was cloned into PGL4-14 vector then this construct co-transfected into HeLa cells with expression vector of PITX2. Interestingly Dual luciferase assay revealed that PITX2 transcription factor, which is known to be involve in ocular development, increase the activity of PLEKHG5 promoter and expression of its downstream gene.

J11.10

Next generation sequencing for molecular diagnosis of neuromuscular diseases

N. Vaziri1, J. Böhm1-2, S. Le Gras1-2, J. Muller1-2, C. Piziot1-2, B. Jöst1-2, A. Echaniz-Laguna3, V. Laugel4, C. Tranchant5, R. Bernard6, E. Plewniak1-2, S. Vicarie1-2, N. Levy2, J. Chevilly7, J. Mandel1,2,4, V. Biancalana1,2,4, J. Laporte1,2,3

1GBGM(Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France, 2Inserm, U964, Illkirch, France, 3CNRS, UMR7104, Illkirch, France, 4Laboratoire Diagnostic Génétique, Faculté de Médecine, CHU, Strasbourg, France, 5Département de Neurologie, Hôpital Civil de Strasbourg, Strasbourg, France, 6Service de Pédiatrie, Centre Hospitalier Universitaire (CHU), Strasbourg, France, 7Faculté de Médecine de Marseille, Université de la Méditerranée, Inserm UMR 910 Génétique Médicale et Génomique Fonctionnelle, Marseille, France, 8Institut Cochin, Inserm Unité 1016, CNR UMR 910, Paris, France.

Introduction

Neuromuscular diseases (NMD) are debilitating disorders with a strong impact on the individuals and society. Despite tremendous research and clinical efforts, the molecular causes of NMD are still unknown for about 40% of patients and additional genes remain to be found. In order to provide a faster and cheaper molecular diagnosis for NMD patients and to detect different types of mutations, we have validated sequence capture, DNA barcoding and next generation sequencing (NGS).

Results

Using targeted re-sequencing of 267 genes implicated in NMD, we sequenced 16 patients (4 pools of 4 DNAs) with different types of mutations where we knew the mutations in half of them. We could successfully detect all the disease-causing variants in the 8 patients with known mutations (covering point mutations, insertions, deletions from splice sites, a large indel and a large deletion). For patients with unknown mutations, we used a ranking program and we could find the disease-causing mutations in several of them.

Conclusion

We conclude that NGS is a powerful approach to identify potential disease-causing variants, a prerequisite for genetic counseling and better healthcare. It should allow reducing the diagnostic time and its cost. It might represent a first screening without the need for detailed clinical criteria for inclusion that may be absent in atypical forms of the diseases or when the disease begins. In addition, the analysis might be proposed before the need of more invasive investigations such as biopsy. This emerging strategy is likely to become a standard tool for routine genetic diagnosis.

J11.11

Mitochondrial Defects in Trisomy 21 Fetuses might contribute to the Down Syndrome Neurological Phenotype

A. Izzo1, F. Bonfiglio2, R. Manco1, M. Prascò1, C. Piccoli3, F. Gentile4, G. Calì1, N. Capitanio1,2, A. Conti1, R. Manco1

1University of Naples Federico II, Naples, Italy, 1University of Foggia, Foggia, Italy, 2Institute of Experimental Endocrinology and Oncology, National Council of Research, Naples, Italy.

Hsa21 trisomy has been associated to mitochondrial dysfunction in Down Syndrome (DS) mouse models and the dysregulation of the nuclear and mitochondrial proteins has been demonstrated in human trisomic fetal brains by microarray analysis. Since mitochondrial function has a central role in many neurodegenerative diseases, such as Alzheimer and Parkinson, it has been hypothesized that the mitochondrial defect might contribute to the DS mental retardation.

The aim of this study was to fully characterize the mitochondrial defect in trisomic patients derived from trisomic human fetuses.

Genes mapping to chromosomes different from 21, and implicated in multiple mitochondrial functions such as respiratory chain, mitochondrial biogenesis and structure, were studied by qRT-PCR. Many of the analyzed genes, including PGC-1 α, a gene that plays a key role in mitochondrial biogenesis, were significantly down-regulated in trisomic versus euploid fibroblasts, supporting the hypothesis that Hsa21 trisomy perturbs the expression of mitochondrial genes. Mitochondria ultrastructure, assessed by electron microscopy, revealed morphological abnormalities in trisomic fibroblasts, like giant mitochondria with irregular shape, breaks of both inner and outer membranes and altered cristae pattern. Functional studies demonstrated a significant reduction of oxygen consumption rate and of respiratory chain
complex I activity, a decrease of mtDNA copy number and an increased production of reactive oxygen species in trisomic fibroblasts. These results are indicative of a widespread mitochondrial dysfunction and support the hypothesis that it might contribute to the DS neurological phenotype.

J11.12

Extended comparative analysis of high resolution array platforms for genome-wide detection of CNV

A. E. Urban, R. Haraksingh, M. Haney, A. Abeyw, M. Gerstein, M. Snyder; Stanford University, Palo Alto, CA, United States; Yale University, New Haven, CT, United States.

High-density oligonucleotide array CGH is now a widely available tool for the analysis of genomic copy number variation (CNV), in discovery studies, for the validation of CNVs detected with other means (i.e. sequencing) and increasingly in cytogenetic diagnostics. Various platforms are available from different suppliers, utilizing either array Comparative Genome Hybridization (aCGH) alone or in combination with SNP genotyping. Earlier [Haraksingh et al., PLoS One, 2011] we carried out a quantitative comparison analysis of the performances of twelve leading genome-wide CNV detection platforms. We tested the ability of each of the different array platforms to accurately detect Gold Standard sets of CNVs in the genome of HarMap CEU sample NA12878. The Gold Standards used were a 1,000 Genomes Project sequencing-based set of 3,997 validated CNVs and an ultra-high resolution aCGH-based set of 756 validated CNVs. The arrays that were originally analyzed were the NimbleGen 4.2 M, 2.1 M and 3+720 K Whole Genome and CNV focused arrays, the Agilent 1+1 M CGH and High Resolution and 2x400 K CNV and SNP+GH arrays, the Illumina Human Omni1 Quad array and the Affymetrix SNP 6.0 array. We have since then added the NimbleGen 12-plex and 6-plex platforms, respectively, to the comparative analysis. We compared the arrays with the criteria of sensitivity, total number detected, size range and breakpoint resolution of CNV. We found that arrays with the genome-wide CNV-focused design principle generally outperformed whole-genome [evenly spaced tiling] designs. Our results should be useful when designing CNV detection strategies in both research and clinical settings.

J12. Molecular basis of Mendelian disorders

J12.01

Ataxia with oculomotor apraxia, type 2 (AOA2) in a Russian family

M. V. Karkina, E. V. Zakhareva, G. E. Rudenskaya; Medical Genetics Research Centre, Moscow, Russian Federation.

AOA2 is an autosomal recessive ataxia caused by various mutations in SETX gene. Typical age of onset is 15-20 years (variability 3-30). Progressing ataxia due to cerebellar atrophy and polyneuropathy are main disabling features. Oculomotor apraxia (OA), inability to coordinate eye movements, is a specific sign seen in half of patients. Serum alpha-fetoprotein raise is helpful. AOA group includes AOA1 (APRA gene) with onset in 4-5 years and AOA3 [PIK3R5] described in 2012 in a Saudi family. OA is typical also for Louis-Bar ataxia-telangiectasia. Recently an AOA1 case was confirmed in our laboratory. A first Russian AOA2 case in a 25-year-old male, an only child in the family, is presented. The disease started in 18 years, in 23 years he lost independent walking due to incoordination and weakness; ataxia in hands were moderate. OA was found on neurological examination in children and young adults suspicious of autosomal recessive ataxias.

J12.02

High expression of IL-10 in Netherton Syndrome

S. Pehlivan, O. Ozgunak Bulut, S. Inaloz, E. Nucakmasanoglu, T. Sever, O. Keskiri, A. Galip, K. Ergeyaz; 1University of Gaziantep, Faculty of Medicine, Department of Medical Biology and Genetics, Gaziantep, Turkey; 2University of Gaziantep, Faculty of Medicine, Department of Medical Biology and Genetics, Gaziantep University, Gaziantep, Turkey; 3University of Gaziantep, Faculty of Medicine, Department of Dermatology, Gaziantep University, Gaziantep, Turkey; 4University of Gaziantep, Faculty of Medicine, Department of Pediatric Allergy, Gaziantep University, Gaziantep, Turkey; 5University of Gaziantep, Faculty of Medicine, Department of Periodontology, Gaziantep University, Gaziantep, Turkey.

Objectives: Netherton syndrome (NS) is a rare autosomal recessive disorder, characterized by congenital ichthyosiform erythroderma, trichorrhexis invaginata and severe atopic diathesis. Considering that cytokines are involved in the pathogenesis and that cytokine gene polymorphisms may affect cytokine production, our purpose was to investigate the association between NS and IL-10, IFN-γ, TGF-β1 and TNF-α polymorphisms.

Methods: Cytokine genotyping and haplotyping were performed in a family with NS by PCR-SSP method.

Results: We observed GCC GCC haplotypes (high expression) of IL-10 gene polymorphisms (-1082A/G, -819T/C, -592C/A) in proband with NS and no association with IL-6, IFN-γ, TGF-β1 and TNF-α polymorphisms.

Conclusion: GCC GCC haplotypes which lead to high expression levels of IL-10 may be associated with etiopathogenesis of NS.

J12.03

Charcot-Marie-Tooth disease in Republic of Sakha (Yakutia)

P. I. Guriev, N. R. Maximova, T. Y. Nikolaeva, A. L. Sukhomyasova; 1,2, M. Haney1, A. L. Sukhomyasova; 1,2, M. Snyder1; 1,2, M. Haney1, A. L. Sukhomyasova; 1,2.

Background: Republic of Sakha (Yakutia) is the largest region in Russia. It is located in the North-East part. Population of republic makes 958,021 persons. The leading place in structure of a genetic pathology in Yakutia is occupied with hereditary disease of nervous system among which one of the most common is Charcot-Marie-Tooth disease (CMT). Prevalence CMT in the world makes 4,7-40 per 100,000 population, in Yakutia prevalence has made 11,8 per 100,000. Methods: the research is carried out by the materials from Republican Genetic Registry of inherited and congenital pathology of Republic of Sakha (Yakutia) in medical-genetic consultation Department of the National Medical Center. The diagnosis was established on the basis of anamnestic data, data of neurological examination, genealogic analysis, electromyography and molecular-genetic analysis with the use of markers 17 dup4, 17 dup5 in gene PMP22 (focus 17 p12-p11.2). Results: we studied 113 medical records of patients with CMT in the age of 6 to 75 (average age is 33,3±0,45, male - 60 (53%), female - 53 (47%). There were 87 Sakha patients (77%), Russians - 22 (20%) and 4 other nations (3%). The CMT1A type was established in 37 out of 113 cases (33 %), the rest of patients had unknown mutations. For CMT1A is characterized by the onset in childhood, the high arch of the foot, the reduction or absence of tendon reflexes, upset sensitivity on polyneuritic type, hypotrophy of peroneal muscles, occurrence of stepping gait.
J12.05
Profile of Iranian Genome variation of connexin 31 gene
M. Falah1, M. Houshmand1, Y. Ghavami1, M. Balali1, M. Farhadi1
Department of Genetics, School of ENT & Head and, Tehran, Islamic Republic of Iran, 1National Institute of Genetic Engineering & Biotechnology, Tehran, Iran, Tehran, Islamic Republic of Iran.

Background & Objective: The connexins are a family of at least 20 homologous proteins in humans that form aqueous channels connecting the interiors of coupled cells and mediating electrical and chemical communication. Mutation in GJB3, the gene encoding the gap junction protein Connexin 31 (Cx31), has been associated with erythrocytoderma and non-syndromic autosomal dominant (DFNA2) or recessive hereditary hearing impairment (HHI).

In the present study, we aimed to characterize the genome variation of GJB3 in Iranian patients with hearing impairment.

Methods: Twenty five non-syndromic autosomal recessive hearing loss patients who were normal for two major responsible genes of non syromic hearing loss (GJB2 and GJB6) were tested with direct sequencing of entire coding region of the GJB3 gene.

Results: Single nucleotide sequence alteration was present in 15 out of 25 patients (60%) and 40 % of patients were normal. Five different variations that were detected are: G866A (34%), G798T (20%), C856A (6%), C357T (2%) and C357T (2%).

Conclusions: 60 percent of patients showed single polymorphism in coding and non coding part of GJB3. All patients were normal for sequencing of two well known genes for non syndromic hearing loss (connexin 26 and connexin 30). Therefore this high percentage of genetic variation in GJB3 may have pathogenic effects on Iranian population, but this needs more investigation on normal subjects.

J12.06
Early-onset primary dystonia (DYT1) in Iranian patients
H. Moshtari, V. Gheidinejadkhalilzad, O. Arijani, M. Houshmand1
1Special Medical Center, Tehran, Islamic Republic of Iran, 1National Institute of Genetic Engineering & Biotechnology, Tehran, Islamic Republic of Iran.

Early-onset primary dystonia (DYT1) typically presents in childhood or adolescence and only on occasion in adulthood. Dysonic muscle contractions causing posturing of a foot, leg, or arm are the most common presenting findings. Dystonia is usually first apparent with specific actions; e.g., writing or walking. Over time, the contractions frequently (but not invariably) become evident with less specific actions and spread to other body regions. No other neurologic abnormalities are present, except for postural arm tremor. Disease severity varies considerably even within the same family. Isolated writer’s cramp may be the only sign. DYT1 is inherited in an autosomal dominant manner with reduced penetrance. TOR1A, encoding the protein torsin-1A (torsinA) is the only gene known to be associated with this disease. DYT1 is detected by molecular genetic testing of TOR1A revealing the three-base pair deletion c.907-909delAG in most affected individuals. Oral medications are usually tried first and include anticholinergics, benzo, and others alone or in combination (levodopa, clonazepam and other benzodiazepines, carbamazepine, and dopamine-depleting agents).

We investigated molecularly 12 cases suspected to DYT1 using PCR and sequence analysis of TOR1A gene. C904_906delGAG heterozygote was found in one patient. This result showed that this alteration was observed in less than 9% of the cases. The rest of the cases are being investigated for the other relevant genes for familial dystonia.

J12.07
Plasmid vector encoding recombinant protein ApoB100 (site B) - GFP for measuring functional disruptions of LDL-receptor
V. A. Zhembkov1, E. A. Vasileva1, D. S. Polyahov, N.A. Grudnina1, K. V. Suloyyozov1, T. D. Alekhnin1, M. M. Shlovshov1
1Faculty of Medical Physics and Bioengineering, Saint-Petersburg State Polytechnical University, Saint-Petersburg, Russian Federation, 1Department of Molecular Genetics, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation.

Familial hypercholesterolemia (FH, OMIM 143890) is rather widespread autosomal dominant disease leading to increased level of low-density lipoproteins (LDL) what in turn leads to higher risk of atherosclerosis. FH is associated with disorder of LDL-receptor. Apolipoprotein B100 (apoB) is the only protein component of LDL particles providing their binding to receptor. Sub-clinical deficiencies of FH, such as genetic analysis, is difficult due to large size of LDL-receptor gene. Study of intermolecular interactions between receptor-active domain of apoB (3359-3369) and LDL-receptors gives new opportunities of measuring functionality of LDL-receptor. For this purpose we created the plasmid vector encoding receptor-binding region known as high conserved site-B (3359-3369) of apoB fused to 5'-terminus of GFP gene. Fragment of apoB gene was amplified through PCR. The template was human DNA. Vector was constructed by direct cloning of apoB gene fragment with Salt and HindII endonucleases. All vectors have inserted sequence encoding polyhistidine tag to 5'-terminus of apoB to make the metal chelate affinity chromatography of fusion protein possible. Plasmid was successfully sequenced and studied by restriction analysis. E.coli cells transformed with this plasmid vector and incubated in IPTG-containing medium showed presence of fluorescent protein. Maximums of excitation and emission of fusion protein are equal to GFP characteristics. This protein has been extracted and purified on nickel agarose column. Synthesized fusion protein could become basis for diagnosticum of FH, with which functionality of LDL-receptor could be measured. Studies of binding of fusion protein to cells receptor in cultures of hepatocytes and fibroblasts are taking place.

J12.08
To characterize and analyze the haplotypes of normal and “at risk of expansion” FMR1 CGG repeat alleles
M. S. Khaniani, S. M. Derakhshani
Tahirz university of Medical Science, Tehran, Islamic Republic of Iran.

The mechanism of instability of FMR1 alleles during transmission from mother to offspring and the exact timing of CGG repeat expansion are still unknown and recently the investigation of instability of the FMR1 gene has been a major goal in Fragile X research. The haplotypes which are in linkage disequilibrium with these unstable alleles provide not only potential markers of those with the potential to expand but also clues to their inherent susceptibility. This approach is important as it might contribute to understanding the mechanism for instability of CGG repeats in the initial steps of small CGG expansion. To address this issue and make a contribution to understanding the basis of the mutational process, three flanking microsatellites markers (DXS548-FRAXAC1-FRAXAC2) and two SNPs (ATL1 and FMRb) were genotyped in a large cohort and haplotype associations compared among subgroups of normal and intermediate alleles. It was of special interest whether there were differences in the distribution of haplotypes across the normal and intermediate allele ranges in two different cohorts.

J12.09
Determination of the nucleotide variations in exon 2 of GJB2 and exon 3 of GJB6 genes in central part of Iran.
S. Azadollahi1, M. seyedhassani, M. neshan1, S. kalantar1, f. saeb2
1Dr.seyedhassani genetic center, yazd, Islamic Republic of Iran, 2yazd medical science university, yazd, Islamic Republic of Iran.

INTRODUCTION: GJB2 & GJB6 are human genes encoding for gap junction protein. Defects in these genes lead to the most common form of congenital deafness. Some variations are reported in different countries.

METHODS: 120 individuals were evaluated by pcr-sequencing. Some of them were suffering from deafness & others were their relations that were referred for carrier detection.

RESULTS: of the 120 individuals, 22 had GJB2 mutations, 6 were found to be heterozygous for 35delG, 4 were heterozygous for C:143 C>T (R>W), 5 were heterozygous for 35delG, 4 were heterozygous for C:127 G>A (R>H), one case was heterozygous & one was homozgyous for C:143 C>T (R=W),5 were heterozygous for C:153 A>G (V>l), that 3 of them were deaf & 2 of them were healthy but one case was homozgyous for this mutation & he wasn’t deaf. One was heterozygous for C:30 A>G & one was heterozygous for 57delT. One individual had a compound heterozygous mutation of 35delG/C:143 C>T (R=W). There wasn’t any change in exon 3 of GJB6 gene. There was only one silent variant in sequence of this gene (G-A (T>T)).

CONCLUSION: these results can help genetic counseling & molecular genetic evaluation of GJB2 & GJB6 variation.

J12.10
Investigation of EPM2A and NHLRC1 Mutations in Turkish Patients with Lafora Disease
O. Ozdemir1, S. U. Iseri1, S. U. Iseri2, R. Argün, E. A. Kaya1, B. Baykan2, C. Gurcsu1, A. Dervent1, U. Ozbek1, N. Bebek2
1Department of Experimental Medicine, Department of Genetics, Istanbul, Turkey, 1University, Istanbul Faculty of Medicine, Department of Neurology, Istanbul, Turkey.

Investigation of Lafora Disease Mutations in Turkish Population
The progressive myoclonic epilepsies (PMEs) are composed of a rare group of inherited neurodegenerative diseases with a prevalence of 1% of epileptic syndromes in children and adults around the world. Among PME's, Lafora disease (OMIM #254780) has been recognized as the
most common and severe form of adult-onset progressive epilepsy with an autosomal recessive form of inheritance. Affected individuals exhibit epilep- tic seizures with a progressive deterioration to status epilepticus combined with progressive dementia, and startling-like polyglycons which called Lafora bodies detected in skin biopsies. The age of onset usually occurs between ages of 12 and 17 years, and patients usually die within 10 years of onset. Approximately 80% of affected individuals have displayed a mutation in EPM2A gene located on chromosome 6q24, which encodes laforin; a tyrosine phosphatase. NHLRC1 (EPM2B) gene, recently mapped to chromosome 6p22, encodes E3 ubiquitin ligase, and was shown to carry mutations responsible for DFN59.

The proposed study comprises mutational analysis of 9 patients diagnosed with the Lafora disease after all necessary clinical examinations. All exons and exon-intron boundaries of EPM2A and NHLRC1 genes were PCR amplified from genomic DNA and analyzed for mutations through direct DNA sequencing.

One of the patients’ revealed homozygous c.436G>A misense mutation (D146N) in NHLRC1 gene, which was previously reported in Danish families. This is the preliminary result of the study which is continuing with a larger group of patients.

J1.11 Novel deletion c.22-1320_633+1224del in gene CYB5R3 in patients with recessive congenital methemoglobinemia in Russia

N. Galeeva1, I. Kleymenova1, S. Nenasheva1, A. Polikov1;
1Research Centre for Medical Genetics, Moscow, Russian Federation, 2Voronezh Regional Pediatric Medical Hospital #1, Voronezh, Russian Federation, 3Regional Medical genetic consultation of the Samara Oblast, Clinical Hospital M Kaltin, Samara, Russian Federation.

Recessive congenital methemoglobinemia (RCM) type I and II is a rare autosomal disease, which characterized by deficiency of soluble or soluble and membrane-bound forms of NADH-cytochrome b5 reductase (cytb5r) protein. The more severe type II form is characterized by cyanosis with mental retardation, the only symptom for type I is cyanosis. Mutations in gene CYB5R3 is the molecular-genetics cause of both types of disease. We have investigated patient with type II of disease and found deletion of exons 2-7 in homozygous state. Also we have investigated two sisters with type I of RCM and found in two sisters only one mutation p.Val253Met in exon 9 in heterozygous state.

J1.12 Screening DFNB59 gene mutation in non-syndromic genetic hearing loss in Iran

J. azadegan, N. Bagheri, M. Abolhasani, E. Farrokhi, M. Hashmzadeh Chaleshtori;
Cell and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Islamic Republic of Iran.

Background and aim: Hearing Impairment (HI) is the most prevalent Neurosensory disorder which is heterogeneous and can also occur due to environmental causes. The majority of hearing deficiencies are of genetic origin affecting about 60% of the HI cases. A novel gene DFNB59 encodes pejvakin has been recently shown to cause deafness. This study aims to determine the frequency of DFNB59 gene mutations in coding region the gene in Iranian population.

Method: In this descriptive experimental study, we investigated the presence of DFNB59 gene mutations in Exons (2-7) of the gene in 80 deaf subjects. DNA was extracted using standard phenol-chloroform method. The screening of gene mutations was performed by PCR-SSCP/HA procedure. The possible mutations were confirmed by direct sequencing.

Results: In all, 9 polymorphisms 793C>G were found in 80 non-syndromic, genetic hearing loss subjects studied. However no DFNB59 gene mutation was identified.

Conclusion: We conclude that the association of DFNB59 gene mutations with hearing loss is very low in samples studies.

J1.13 Mutation detection in a large Iranian family with spinocerebellar ataxia type 6 (SCA-6)

S. Alimoghaddam1, M. Keramataipour2, M. Togha2;
1Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran, 2Department of Neurology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.

Spinocerebellar ataxia is an autosomal dominant neurodegenerative disorder characterized by slowly progressive ataxia. 30 different loci have been reported to be responsible for cerebellar ataxia. In general SCA 1-7 are the most frequent forms and account for 50-80 % of ADCA in most studies. The mutation associated with these loci is abnormal expansion of CAG repeat. The frequency of SCA subtypes varies in different ethnic groups. We have investigated a large Iranian pedigree with clinical presentation of ADCA consisting of 13 affected members in three generation. Genomic DNA was extracted from blood of patients with cerebellar ataxias and unaffected individuals. To amplify a fragment of SCAD/CACNA1 gene containing the CAG repeat, the polymerase chain reaction (PCR) was performed. PCR products were run on 3% agarose gel, wild-type and expanded alleles were extracted from the gel and were sequenced with both forward and reverse primers. Analysis of the sequence data determined the number of repeats for the normal and expanded allele as 11 and 24 repeats respectively. The results were confirmed by capillary electrophoresis using fluorescently labeled 6-FAM. The size of the normal and expanded alleles were determined as 128 bp and 169 bp respectively with capillary electrophoresis.

Tooth agenesis is the most common abnormality affecting formation of dentition in humans. The absence of six or less teeth is usually referred as oligodontia and is term used for agenesis of more than six teeth excluding third molars. Tooth agenesis can be found either in isolated form (non-syndromic) or it can be associated with systemic condition or syndrome, such as various types of ectodermal dysplasia (syndromic tooth agenesis). In addition to previously known genes (PAX9, MSX1, AXIN2, EDAR, EDARAD), mutations in EDARAD and WNT10 gene were recently found to be involved in isolated forms of tooth agenesis. Here we report unusual cases of two large families of Roma origin segregating non-syndromic oligodontia with variable phenotype (4-17 missing teeth in family I, 2-12 missing teeth in family II).

Tooth agenesis is the most common abnormality affecting formation of dentition in humans. The absence of six or less teeth is usually referred as oligodontia and is term used for agenesis of more than six teeth excluding third molars. Tooth agenesis can be found either in isolated form (non-syndromic) or it can be associated with systemic condition or syndrome, such as various types of ectodermal dysplasia (syndromic tooth agenesis). In addition to previously known genes (PAX9, MSX1, AXIN2, EDAR, EDARAD), mutations in EDARAD and WNT10 gene were recently found to be involved in isolated forms of tooth agenesis. Here we report unusual cases of two large families of Roma origin segregating non-syndromic oligodontia with variable phenotype (4-17 missing teeth in family I, 2-12 missing teeth in family II).

Molecular analysis of seven suspected genes will be presented.

This work was supported by projects LPP-0331-09 and ITMS 26220120041.

J1.15 GJB2 caused hearing loss in patients from Belarus

E. A. Bliznetz1, D. N. Martual2, O. G. Khvorov1, T. G. Markova2, A. V. Polyakov1;
1Research Centre for Medical Genetics, Moscow, Russian Federation, 2Grodno regional hospital, Grodno, Belarus, 3Grodno State Medical University, Grodno, Belarus, 4National Research Centre for Audiology and Hearing Rehabilitation, Moscow, Russian Federation.

Mutations in Connexin 26 gene (GJB2) are responsible for more than half of all cases of prelingual nonsyndromic recessive deafness in Caucasians. The carrier frequency of the c.35delG mutation in GJB2 gene was found to be as high as 1-4% in the European populations. Here a prevalence of GJB2 caused cases and a mutation spectrum in 112 unrelated probands (and 8 their sibs) with prelingual nonsyndromic deafness from Belarus are shown. Among the probands there were different ethnic groups including Belarusians (53%), Poles, Russians, Ukrainians, Azerbaijanians. In 50 probands and in all their sibs with hearing loss (45%) biallelic mutations in GJB2 gene were detected. We revealed 8 new mutations in the GJB2 gene: the most common mutation c.35delG (allele frequency: 84%), c.313_324del14 (7%), c.-23+1G>A (IVS1+1G>A) (2%), c.1435delC (0.8%), c.395delT (0.6%), c.-23delT and p.Ile82Met. The carrier rate in hearing individuals from Belarus for mutation c.35delG was estimated as 3% (8/234). A prevalence of hearing loss caused by mutations in GJB2 gene was calculated to be 1/2500 in Belars.
J12.16
The heterozygous carrier frequency of ABCA4 gene mutations in Russia
M. T. Nourouso, A. Chakhova, A. Laginova, A. V. Polakova;
Research Center for Medical Genetics, Moscow, Russian Federation.
Stargardt disease is the most common hereditary early-onset macular degeneration. It characterized by slowly progressive loss of central vision. Autosomal-recessive Stargardt disease type 1 (STGD1) is caused by mutations in the ATP-binding cassette transporter gene (ABCA4). ABCA4 gene includes 50 exons, encodes 2273 amino-acid and mapped to 1p22. There are about 500 mutations in the ABCA4 gene have been reported.

This research aimed at identifying the genetic cause of macular degeneration in a family. The family was composed of a father with STGD1 disease and five unaffected family members using high density single nucleotide polymorphism (MLPA) and subsequent gel electrophoresis. In the control group the allele frequency of Gly863Ala, Ala1038Val and Gly1961Gln were 0.17%, 0.51% and 0.62%, respectively. In STGD1 patients the allele frequency for mutations Gly863Ala, Ala1038Val and Gly1961Gln were 1.0% 17% and 6.0% respectively. Heterozygous frequency of mutation Gly863Ala is high in different countries of Europe (up to 1 of 18 in Northern Europe), but it is significantly lower in Russia (1 out of 294 by our data).

Mutation Ala1038Val is the most frequent in Russian STGD1 patients, but prevailing mutation in control group is Gly1961Gln. The possible explanation is that the heterozygous state of Gly1961Gln mutation provokes an age-related macular degeneration (AMD) and reduces this mutations’ frequency in the group of STGD1 patient. This research is the first attempt to define the heterozygous carrier frequency of ABCA4 gene mutations in Russian population.

J12.17
Homogygosity mapping of a family with a mixed dystonia phenotype
E. Jaberi1, M. Nemati1, G. Shahidi1, M. Rahimi1, I. Safar1, E. Elahi1;
1School of Biology, University of Tehran, Tehran, Islamic Republic of Iran; 2Department of Neurology, Tehran University of Medical Sciences, University of Tehran, Islamic Republic of Iran.
Introduction: Dystonia results from involuntary concomitant contraction of agonist and antagonist muscles, with overflow of unwanted muscle contractions into adjacent muscles. Several classifications of dystonia are based on topographic distribution, age at onset, cause, or genetics. According to the etiologic classification this syndrome includes primary dystonia, secondary dystonia, dystonia-plus syndromes, and paroxysmal dystonia. Presently, eleven genes and seven additional loci have been reported to be associated with monogenic primary dystonias. We report the mapping of a family from Iran with an autosomal recessive form of dystonia-plus syndrome with severe hearing impairment linked to the chromosome 13.

Materials & methods: Whole genome homozygosity mapping was performed in a consanguineous Iranian family with two dystonia affected children and five unaffected family members using high density single nucleotide polymorphism chips. Patients had childhood-onset form of dystonia, muscle atrophy, and severe hearing impairment. Results: We observed a large homozygosity region of 15 Mega bases on chromosome 13 in all affected individuals of this family but no among the non-affected individuals. Nearly 200 annotated genes exist within the linked region.

Conclusions: These findings indicate that the causative gene exists on chromosome 13. Because these patients are suffering from a mixed phenotype, we have chosen some candidate genes related to dystonia, hearing loss, and muscle atrophy in this chromosomal region. Exome sequencing and mutation screening of candidate genes within the linked region is being performed.

J12.18
Homogygosity mapping in one Iranian pedigree affected with Autosomal Recessive Congenital Ichthyosis (ARCI) reveals linkage to region 17p13 and mutation in ALOX12B gene
A. Alavi1, P. Rasooli1, M. Malakooti Nejad1, M. Mirshams Shahshahani2, E. Elahi1;
1University of Tehran, Tehran, Islamic Republic of Iran, 2School of Biology, University of Tehran, Tehran, Islamic Republic of Iran; 3Department of Neurology, Tehran University of Medical Sciences, University of Tehran, Islamic Republic of Iran.
Ichthyosis is clinically and genetically heterogeneous group of disorders characterized by abnormal skin scaling over the whole body. Autosomal Recessive Congenital Ichthyosis (ARCI) is a subgroup of ichthyosis that exhibits autosomal recessive inheritance. To date, eight genes and three additional loci have been associated with ARCI. Mutations in these genes account for disease in 70-75% of the patients.

We performed whole genome homozygosity mapping in an Iranian ARCI family using high density SNP chips.

Disease status in the family was linked to a homozygous region of 2.2 Mb on chromosome 17. The ALOX12B gene associated with ARCI lies within the region and mutation screening revealed a homozygous mutation causing p.Arg442Gln. The missense mutation p.Arg442Gln (c.1325C>T) in exon 10 just was reported in one Japanese patients as compound heterozygous and p.Arg442Gln mutation was not found in his parents and was thought to be a de novo mutation. But, R442Q mutation in ALOX12B in our patients was homozygous in both patients and heterozygous in their parents. Phenotypic similarities and variations among the mutation carrying patients are detected but, two patients showed a striking palmoplantar hyperlinearity. It seems mutation in ALOX12B gene is associated with mild form of ARCI and hyperlinearity in palms and soles.

J12.19
Molecular Genetic Diagnostics of Phenylketonuria in Kazakhstan
G. Syyatova, G. Berezhno, Z. Mukhamtutov, D. Salimbareva;
The Scientific Center of the obstetrics, gynecology and perinatology, Almaty, Kazakhstan.
The aim of our study was to determine the spectrum and frequency of the most common mutations of RAH gene in patients with phenylketonuria in Kazakhstan.

Materials and methods. Molecular genetic analysis of mutations in RAH gene (R408W, R261Q, R252W, IVS10-11, IVS12 +1, R158Q, P281L, IVS14 +5) carried out using PCR technique. We studied DNA from blood of 44 patients with phenylketonuria and their parents.

Results. The results of our study showed that in Kazakhstan the most important are the six mutations: R408W with frequency 0.455, mutation R261Q with frequency 0.136, IVS12+1, IVS12+5, R158Q, P281L, IVS14+5) carried out using PCR technique. We studied DNA from blood of 44 patients with phenylketonuria and their parents.

Conclusion. The examination of mutant alleles in patients and their families and investigation of alleged heterozygous carriers with pathological mutations provided good possibility for prenatal diagnosis of the fetus. This is important factor for prevention of hereditary diseases in families.

J12.20
Whole exome sequencing combined with linkage analysis identifies novel variations in a large Coronary Artery Disease family
K. Inanloo Rahatloo1, E. Elahi1, S. Davaran2, F. Farz1;
1School of Biology, University College of Science, University of Tehran, Tehran, Islamic Republic of Iran, 2Department of Neurology, Tehran University of Medical Sciences, University of Tehran, Islamic Republic of Iran.

We sought to use exome sequencing in conjunction with linkage information to identify candidate causative mutations in a large family with CAD. Linkage analysis of this family comprising six affected and four unaffected individuals revealed linkage signals at 3 Loci with maximum LOD score of 2.1. We captured exomes of two affected individuals from a family and performed sequencing analysis by a second-generation sequencer with a mean coverage of 30+ and sufficient depth to call variants at ~97% of each targeted exome. The shared genetic variants of these two affected individuals in the family being studied were filtered against the 1000 Genomes Project and the dbSNP131 database. After annotation and functional expectation, three variations were found to be candidates for CAD.

J12.21
Genetic study of demyelinating form of autosomal-recessive Charcot-Marie-Tooth diseases in Russian families
Research centre for medical genetics, Moscow, Russian Federation.
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropa thy. During of the scale analysis of demyelinating form of CMT in Russia the necessity was presented of research of autosomal-recessive CMT (AR-CMT). The aim was focused on molecular analysis of the selected genes associated with AR-CMT and construction of a molecular and genetic diagnostic algorithm in this group of disorders in the Russian population.

We analyzed a group of 92 unrelated patients with probably autosomal recessive inheritance. The studies covered analysis of coding regions of the GDAP1 gene using sequencing and molecular genetic analysis of eight frequent occurrence mutations using two Multiplex Ligation Probe Assay (MLPA) systems. The first MLPA-system contained six of frequent oc-
currence in four genes: FGFD4 (Met298Thr, Met298Arg), FGFR4 (Ile414Thr), GAPA1 (Leu239Phe), SH3TC2 (Arg545Stop, Arg568Cys). The second MLPA-system contained two frequency Gypsy mutations in two genes: NDRG1 (Arg146Stop) and SH3TC2 (Arg1109Stop). In result the cause of AR-CMT was determined in 26% of cases (24 patients). Mutations in GAPA1 gene were most frequent (18.5%) or 17 patients). The mutation Arg146Stop of NDRG1 gene was found of three patients (3.2%). Mutations Arg545Stop of SH3TC2 gene and Ile414Thr of FGFR4 gene were found of two patients (2.2%). This is the first study focused on the autosomal recessive Charcot-Marie-Tooth disease in the Russian population, which is essential for molecular diagnostics in CMT disease.

J12.22
Abnormal Type I Collagen folding and matrix deposition in a Cyclophilin B KO mouse model of recessive Osteogenesis Imperfecta

K. Werthem-Tysarowska1, A. Giai2, K. Wadowska2, A. Kukowska-Koźmiernicka3, A. Sobczyk-Tomaszewska3, J. Baf1
1Medical Genetic Department, Institute of Mother and Child, Warsaw, Poland.
2Department of Dermatology, Medical University of Warsaw, Warsaw, Poland.
3Simplex epidermolysis bullosa (SEB) is characterized by blister formation within basal or suprabasal layers of epidermis. Twelve clinically distinct subtypes of SEB have been distinguished. The localized SEB, Dowling-Meara SEB and other generalized SEB subtypes caused by mutations in KRT5 and KRT14 are most frequent. Keratins 5 and 14, encoded by them, form intermediate filaments in basal keratinocytes. According to the consensus on SEB diagnosis and classification, three subtypes are inherited in an autosomal dominant manner. The aim of present study was to investigate the spectrum of mutations in Polish SEB patients. 24 probands (10 localized SEB; 2 Dowling-Meara SEB; 8 other generalized SEB) were analysed by direct sequencing. We found 9 distinct variants in KRT5 and 7 in KRT14, including 7 novel changes. In 17/34 cases full genotype was established; in remaining patients molecular analysis has not been completed yet or no mutations were identified. The most frequent mutation found in 3 distinct families was p.610.170.Lys in KRT5, including 17 probands. The p.Lys170Stop mutation was found in 5 of 17 probands; 2 of these patients were siblings with mild SEB, where it was in trans with p.Val413Ala. Both parents of these patients seem to be unaffected carriers. Only few patients with compound heterozygosity in KRT5 have been reported previously, however, to our knowledge, none of them involved p.Val143Ala. Our preliminary results broaden the knowledge about SEB epidemiology and pathogenesis. The results have also practical impact on preparing the Polish molecular diagnostics scheme.

J12.24
Identification of mutations in PANK2 in Panthothenate kinase associated neurodegeneration (PANK) patients

M. Ansari Dezfoul1, J. Safari1, M. Ansari Dezfouli2, M. Rohane1, G. Shahid1, E. Elahi1
1University of Tehran, Tehran, Islamic Republic of Iran; 2Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.

Panthothenate kinase associated neurodegeneration (PANK) is a rare autosomal recessive genetic disease classified within the group of Neurodegeneration with Brain Iron Accumulation (NBIA) disorders. Its reported prevalence is less than 1/1,000,000. Three PANK mutations were identified. The mutations affect Arg>Trp and Arg>Leu and Arg>Pro. All mutations were checked in 100 control individuals. PANK2 mutation was not observed in any of the five cases without “Eye of Tiger” sign, consistent with the proposal that there is a tight association between PANK2 mutations and this imaging feature. The five patients without PANK2 mutations will be pursued for identification of another causing genes.

J12.25
The results of KRT5 and KRT14 analysis in Polish patients with epidermolysis bullosa simplex

A. M. Barnes1, W. A. Cabral2, S. J. Bale3, J. C. Marini1
1Research Laboratories, University of Washington, Seattle, WA, United States.
2Orthopaedic Research Laboratories, University of Washington, Seattle, WA, United States.
3The University of British Columbia, Vancouver, BC, Canada.

Type I Collagen folding and matrix deposition in a Cyclophilin B KO mouse model of recessive Osteogenesis Imperfecta

W. A. Cabral1, E. Makareeva2, M. Weis3, A. M. Barnes1, W. Chang1, S. Leikin1, D. Eyre1, J. C. Marini1
1Bone & Extracellular Matrix Branch, NICHD, NIH, Bethesda, MD, United States; 2Section on Physical Biochemistry, NICHD, NIH, Bethesda, MD, United States; 3Orthopaedic Research Laboratories, University of Washington, Seattle, WA, United States.

Recent Oss is caused by deficiency of proteins involved in collagen post-translational interactions, including the collagen prolyl 3-hydroxylation complex consisting of CRTAP, P3H1 and PPIB. The function of a(1)(I) Pro986 3-hydroxylation is unknown, but roles in fibril alignment and matrix cross-linking are speculated. PPIB, a prolyl cis-trans isomerase also known as cyclophilin B, is thought to catalyze the rate-limiting step in collagen helix formation. To further characterize the role of PPIB in collagen folding, Ppib-null mice were generated from a gene-trap ES cell clone with half-normal PPIB expression. Homozygous Ppib+/mice were verified by real-time RT-PCR to completely lack transcripts in skin, fibroblasts, osteoblasts and femora. Ppib+/ mice weigh one-third less than WT and Het littermates. Ppib protein was absent and P3H1 reduced 50% in Ppib+/- cultured fibroblasts and osteoblasts. As expected, a(1) (I) Pro986 3-hydroxylation was reduced to 5-11% of WT. In agreement with previously described patients with decreased P986 3-hydroxylation, collagen from Ppib+/ mice had delayed electrophoretic mobility on SDS-Urea PAGE. However, thermal stability, 5-lysyl and 4-prolyl cross-linking were normal. Inhibiting hydroxylation and preventing cross-linking did not affect secretion. These data suggest unique roles for Ppib in collagen folding, matrix deposition was decreased by 70% vs WT cultures, despite only moderate delay of secretion. These data support the hypothesis that PPIB has a chaperone function for collagen folding.
Abstracts - European Human Genetics Conference 2012

A novel missense mutation (p.Arg309His) in the nuclear localization signal sequence of spastin protein causes a complicated form of Hereditary Spastic Paraplegia

A. Magarotto1, C. Tortorella1, A. Patitucci1, R. Tortelli2, M. Liguori3, R. Mazza4, F. L. Conforti5, L. Cignedo1, C. Ungaro1, I. L. Simon1, M. Maglia1

1Institute of Neurological Sciences - CNR, Pescara, Italy; 2Institute of Neurology, Department of Neurological and Psychiatry Sciences, University of Bari, Barletta, Italy.

Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative diseases causing slowly progressive spasticity and weakness of the lower extremities. Mutations in the SPAST gene are responsible for approximately 40% of autosomal dominant HSP and 6-15% of sporadic cases. Here we report the case of a 53-years old man who was complaining for a progressive gait difficulty in the last 4 years. At the time of the study his neurological examination showed spastic paraparesis with mild spasticity of the legs, slight weakness of the thigh and big toe extensor muscles, hyperreflexia of arms and legs, and left extensor plantar sign. Brain MRI showed diffuse T2-hyperintensities in the posterior periventricular white matter, possibly due to chronic vascular damage, and a mild atrophy of cerebellar vermis and hemispheres. The family history was negative for neurological diseases and consanguinity was excluded. Genomic DNA was extracted from peripheral leukocytes using the salting out method, after receiving informed consent from the patient. Sequencing of all 17 coding exons of the SPAST gene revealed a c.926 G>A transition in the exon 6. The change substitutes the arginine 309 with an histidine (p.Arg309His). This novel mutation was not found in 200 normal chromosomes.

Mutation analysis of the GRIN2B gene in Alzheimer’s Disease

F. Trecroci, R. Cittadella, E. V. De Marco, M. Liguori, P. Spadafora, G. Di Palma, V. Andreoli

Institute of Neurological Sciences-National Research Council, Pianolago di Mangone, CS, Italy.

Various mechanisms may contribute to neurodegeneration in Alzheimer’s disease (AD), including glutamate-mediated excitotoxicity. This excitotoxic effect appears to be mediated by the N-methyl-D-aspartate receptors (NMDARs). The NMDAR subunit 2B (NR2B) has attracted more attention due to its characteristic distribution and selective reduction in AD brain. The potential involvement of the GRIN2B gene, encoding NR2B, in the risk for AD was validated in an independent series of Southern Italy samples. Clinical data and blood sample were collected from 270 selected AD patients, after informed consent. All coding exons and exon-intron junctions were amplified and a mutational screening was done by DHPLC and direct sequencing. Although the six detected variants are in the coding sequence, they are silent polymorphisms: Ala5; Pro122; Ser555; Cys838; Thr888 and His1178. First, we investigated Ser555 in exon 8 and His1178 in exon 13 of the GRIN2B in our patients and 250 healthy-matched controls. No statistically significant differences were found in GRIN2B genotype and allele frequencies (Ser555 P=0.142; His1178 P=0.868) between the AD sample and controls, even when the subjects were stratified by gender, APOE and age of disease onset in AD patients. The results of the Ala5 and Cys838 polymorphisms were omitted (low frequencies detected), while the analysis of the Phe888 and Thr888 variants are in progress. Systematic mutation scanning of the GRIN2B gene in our patients with AD failed to identify any functional changes. However, we will continue with a more comprehensive screening of GRIN2B polymorphisms that might be useful to determine the involvement of this gene in AD.
J12.31
Are synaptophysin (SYP) mutations causing a syndromic form of X-linked intellectual disability?
K. Phillips1, K. Areval1, S. Haaf1, H. Hui1, M. Soner1, V. Khalekov1, I. Järvelä1,
1Department Of Medical Genetics, Helsinki, Finland, 2Department Of Medical Genetics,Family Federation of Finland, Helsinki, Finland, 3Max Planck Institute for Molecular Genetics, Berlin, Germany.

Background
To date, about 100 genes have been identified to underlie XLID [http://dnie.interfie.ru/home.htm]. Sequencing of the coding region of X-chromosome has revealed four mutations (T92fs*4, N596K*10, D277fs*5 and G217R) in the synaptophysin gene (SYP) at Xp11.23-p11.22 encoding an integral membrane protein of small synaptic vesicles [Tarpey et al. 2009] in families with ID.

Subjects and Methods
Exome sequencing using AgilentSureSelectHumanX-chromosome kit and single-read70nt NGS on the Illumina GAII sequencer was applied to find the causative gene in the index patient belonging to a large Finnish family with a total of nine male patients with ID in three generations. DNA of six patients and their mothers were available for the study.

Results
A novel missense mutation c.879G>A (p.Gly293Ser) in exon 6 of SYP was identified that perfectly co-segregates with the disease in the family. The mutations were not found in 440 Finnish anonymous blood donors respectively. In detailed clinical investigation of the three affected patients (III/5, IV/1 and IV/2) similar dysmorphic features were identified including hyperplastic supra-orbital ridges, straight eyebrows, deep set eyes, and short philtrum. The carrier mothers were normal.

Conclusions
We anticipate that mutations in the SYP gene cause a previously undescribed syndrome of with X-linked intellectual disability.

Grants: The Sigrid Jusélius Foundation, Helsinki, Finland

J12.32
Analysis of the J12.32 bed syndrome of with X-linked intellectual disability.
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 2Republican Hospital #3, Kirov Republic of Tula, Russian Federation, 3Nobuk Scientific Centre of Complex Medical Problems, Siberian Branch of the Russian Academy of Medical Sciences, Yakutsk, Russian Federation, 4M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation, 5Institute of Chemistry Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation, 6Novosibirsk State University, Novosibirsk, Russian Federation.

Background
The J12.32 bed syndrome was not detected among 200 control chromosomes. Although it is also in a region. The p.W172C change is located in the second extracellular domain of Cx26 protein. Based on evolutionarily conservation of c.516G in the p.W172C change is located in the second extracellular domain of Cx26 protein.

Subjects and Methods
We sequenced the coding region of the J12.32 bed syndrome of with X-linked intellectual disability.

Results
The p.W172C was first reported in the Altaians (the Altai Republic) (Posukh et al., 2005) and then in one Mongolian deaf patient (Tekin et al., 2010). The p.W172C was first reported in the Altaians (the Altai Republic) (Posukh et al., 2005) and then in one Mongolian deaf patient (Tekin et al., 2010).

Conclusions
We anticipate that mutations in the J12.32 bed syndrome of with X-linked intellectual disability.

J12.34
Sacsin-related ataxia caused by the novel missense mutation Arg272His in a patient from Southern-Italy
F. Cavalcanti1, A. Nicoletti2, G. Annesi,3 P. Tarantino1, M. Gagliardi1,2, M. Mostile1, V. Dibulio, A. Quattrone1, A. Gambardella1, M. Zappia2,
1Department of Neurological Sciences, National Research Council, Cosenza, Italy, 2Department of Neurosciences, University of Catania, Catania, Italy, 3University of Magna Graecia, Catanzaro, Italy, 4Neuroimaging Research Unit, Institute of Neurological Sciences, University of Magna Graecia, Catanzaro, Italy.

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset cerebellar ataxia with spasticity, ataxia, dysarthria, and peripheral neuropathy. The SACS gene is only known to be associated with the ARSACS phenotype. The gene was initially reported to be encoded by a single giant exon. Recently eight additional exons were identified upstream of the giant exon. The SACS protein product, sacsin, is believed to integrate the ubiquitin-proteasome system. The SACS protein product, sacsin, is believed to integrate the ubiquitin-proteasome system.

Conclusions
Recent missense mutations in SACS patients have been identified in patients from Southern-Italy. This mutation was present in heterozygosis in both parents (R272H). This mutation was present in heterozygosis in both parents.

J12.35
Lack of the VPS35 Asp620Asn mutation in southern Italian patients with familial Parkinson’s disease
G. Annesi1, M. Gagliardi1, P. Tarantino1, F. Cavalcanti1, M. Caraccio1, A. Bagalò2, A. Gambardella3, T. Mirante1, A. Quattrone1,
1Institut National de Recherche en Neurologie et Neurosciences, Université Côte d’Azur, Nice, France, 2Institut National de Recherche en Neurologie et Neurosciences, Université Côte d’Azur, Nice, France, 3Institut National de Recherche en Neurologie et Neurosciences, Université Côte d’Azur, Nice, France.

Parkinson disease (PD) is a common neurodegenerative disorder, affecting 2% of those over the age of 75 years. Overall, the gene product is a sporadic disease, Mendelian forms of the gene are described (SNCA and LRRK2 causing autosomal dominant PD and 3 genes causing autosomal neurodegeneration, caused by homozygous mutation of the ceruloplasmin (CP) gene cause a previously undescribed syndrome of with X-linked intellectual disability.

Grants: The Sigrid Jusélius Foundation, Helsinki, Finland

www.eshg.org
J13.01 The diagnosis and the clinical features of a rare disease; Alpha-mannosidosis
B. G. Nur, E. M. Nasab; Akdeniz University School of Medicine, Department of Pediatric Genetics, Antalya, Turkey.

Alpha-mannosidosis is a rare autosomal recessive lysosomal storage disease of glycoprotein catabolism caused by a deficiency of lysosomal alpha-mannosidase activity. The incidence is approximately 1 of 500,000 live births. Characteristic clinical features include mental retardation, coarse facial features, ataxia, hearing loss, dysostosis multiplex, and immunodeficiency. Three clinical subtypes include a mild form recognized after age ten years with absence of skeletal abnormalities, myopathy, and slow progression (type 1); a moderate form recognized before age ten years with presence of skeletal abnormalities, myopathy, and slow progression (type 2); and a severe form manifested as prenatal loss or early death from progressive central nervous system involvement (type 3). Assay of acid alpha-mannosidase enzyme activity in leukocytes or other nucleated cells is the confirmatory diagnostic test. We presented a 8-year-old girl with psychomotor development delay. She was an adopted child. She attended a special education. On her physical examination was consisted with alpha-mannosidosis. The urine tests for mucopolysaccharides showed small amount of dermatan sulfate. The alpha-mannosidase enzyme activity was 1.6 umol/g/h (normal range: 100-800 umol/g/h), 3.2 umol/l/h (normal range: 20-100 umol/g/h) in white cells and plasma, respectively. Although alpha-mannosidosis is a rare disorder, it is important to consider the alpha-mannosidosis in the differential diagnosis of young patients with neurodevelopmental disabilities. We could not forget the importance of the screening for oligosaccharides in children with neurodevelopmental delay with mild phenotypic signs and symptoms. Early diagnosis allows more effective medical management and genetic counseling.

J13.02 Inflammatory cytokine gene expression profile in patients with coronary artery disease
J. Tuvakoly-Bazaz1, M. M. Moalili1, M. Khajesteh-Fard2, P. Amir1; 1Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran, 2Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.

Objective. Both adaptive and innate immune systems are involved in coronary artery disease (CAD). The aim of this study was to evaluate cytokine expression profiles in un-stimulated peripheral blood lymphocytes (PBMCs) of patients with coronary artery disease (CAD).

Methods. Expression profiles of IL-1, IL-6, IL-10, IL-17, IL-23, INF-γ, TNF-α and TGF-β1 were determined in individuals with and without CAD using Real-time PCR.

Results. IL-1, IL-6 and IL-10 gene expression were decreased in un-stimulated PBMCs of patients with CAD, while IFN-γ gene expression as a prototype of Th1 immune response and IL-6, were increased in patients with CAD compared to individuals without CAD. However, the differences were not significant. Nevertheless, a significant decrease in IL-23 gene expression in un-stimulated PBMCs of patients with CAD compared to those without CAD was found (p<0.001, 95% CI: 0.29-0.80).

Conclusion. Our data reinforce the potential role of the IL-23-IL-17 axis as a critical regulatory system that bridges the innate and adaptive arms of the immune system in the complex mechanisms associated with the development of atherosclerosis. Since IL-23 is main cytokine in Th17 pathway, future studies focusing on the role of Th17 immune response in atherosclerosis will be important to clarify the regulatory mechanisms involved in pathogenesis of CAD.

J13.03 A Case of Persistent Neonatal Hypoglycaemia
A. Manea1, M. Boia1, D. Iacob2, D. Nicoara1, R. Iacob2; 1University of Medicine and Pharmacy Timisoara, Timisoara, Romania, 2Clinical Emergency of Children Hospital, Timisoara, Romania, 3County Emergency Hospital Arad - Department of Pediatric Surgery, Arad, Romania.

Introduction: Hyperinsulinism is the most common cause of persistent hypoglycaemia in early infancy. Hyperinsulinemic infants are usually macroscopic, reflecting the anabolic effects of insulin during pregnancy; also, in most cases there is no history of maternal diabetes. Common symptoms of hypoglycaemia are non-specific and include increasing demands for feeding, hypotonia, irritability, jitteriness, and frank seizures.

Case report: Two days old female newborn from a mother with no history of diabetes was admitted to our clinic presenting with macrosomia and severe hypoglycaemia for further management. Glucose level upon arrival was extremely low, 0.72 mg/dL (0.04 mmol/L) and despite vigorous therapy the severe hypoglycaemia persisted throughout the first two months of life. Further investigations revealed inappropriately elevated insulin levels at the time of documented hypoglycaemia, as well as lack of acidosis or lactic oedema. The presence of organomegaly, structural abnormality, and tumours was assessed by abdominal echography and CT scan.

Conclusions: Blood glucose levels should be closely monitored in infants with hyperinsulinism even if the baby does not present with jitteriness, frank seizures or other signs of hypoglycaemia. An increase in glucose level of at least 40 mg/dL proves that glucose mobilization has been inhibited by insulin and that the mechanisms of glycogenolysis are intact.

Wilson disease (WD) is an autosomal recessive disorder of copper balance leading to hepatic damage and neurological disturbance. Clinical manifestations include hepatic disease ranging from acute liver failure to chronic liver conditions more frequently. Mechanisms that influence the course and clinical presentation of WD are not well understood. Here we describe two young women and 20 years old) female patients whose WD manifested as acute liver failure first. Patient 1 was pregnant woman developed signs of preeclampsia and acute liver failure at 30 weeks gestation. Patient 2 had thromboembolic complications after the liver transplantation performed for acute liver failure. Inherited thrombophilia testing was performed in both patients before the diagnosis of WD was made and both were heterozygous for Leiden mutation. Later WD was confirmed and they were found to be compound heterozygotes for p.H1069Q and unknown mutation of ATP7B gene.

The incidence of WD is 1 per 11000 and the frequency of heterozygous Leiden mutation. In WD was confirmed and they were found to be compound heterozygotes for p.H1069Q and unknown mutation of ATP7B gene. The incidence of WD is 1 per 11000 and the frequency of heterozygous Leiden mutation is 2.9% in Belarus. The probability of random coincidence of these conditions is 2.6x10^-10. We conclude that more studies are necessary to investigate the influence of inherited thrombophilia on the course of WD. Inherited thrombophilia testing can be useful for patients with acute liver failure.

J13.05 Preliminary Results of Early Diagnostics of Lysosomal Storage Diseases by Tandem Mass-Spectrometry
A. Nigimyanova1, G. Abdilova1, M. Bayanova2, B. Ramalova1, A. Kostina1; 1National Research Center for Maternal and Child Health, Astana, Kazakhstan, 2Clinical Medicine Research Center, Astana, Kazakhstan.

To measure the enzyme activity of dried blood spots by tandem mass spectrometry had used standard operation protocols (SOP) for the diagnosis of lysosomal storage diseases. Had examined the enzyme concentration β-gluco-cerebrosidase (ABG), galactocerebrosidase (GALC), α-galactosidase (GLA), α-ido-nuronidase (IDUA) from 46 families in newborns by dried blood spots by tandem mass spectrometry.

The substrate molecule had subjected to degradation products under the action of enzymes in extracts of dry blood spot. The appearance of products is directly proportional to enzyme activity.

The results of the research had showed that the concentration of metabolites did not differ from the control of standard indicators. The values of enzyme activity were in the range of 95 percent and are consistent with low, medium and high levels of standards.
A novel IDUA gene mutation in an Iranian family affected by mucopolysaccharidosis type I

H. Ayram 1, T. Tajabed 1, A. Sanati 2
F. Sanati genetic laboratory, Tehran, Islamic Republic of Iran, 1National institute for genetic engineering and biotechnology, Tehran, Islamic Republic of Iran.

Mucopolysaccharidosis type I (MPS I) arises from a deficiency in the α-L-iduronidase (IDUA) enzyme. MPS-I is an autosomal recessive disease. Although the clinical spectrum in MPS I patients is continuous, it was possible to recognize 3 phenotypes reflecting the severity of symptoms, viz., the Hurler, Scheie and Hurler/Scheie syndromes. In this study, one Iranian MPS-I family was investigated. The proband was a three years old girl who had severe symptoms of MPS-I including gibbus deformity of the lower spine, progressive skeletal dysplasia and linear growth ceases. After clinical investigation, DNA extracted from proband was sequenced for whole IDUA gene. In sequencing results 1 novel mutation was identified. It was a 32bp homozygote deletion located in IVS 5 and c.599-607 (exon6) deletion codon: 197-202. For more investigation and confirmation of the mentioned deletion we examined parents. Result approved heterozygote deletion for parents.

Key words: mucopolysaccharidosis type I, α-L-iduronidase, novel mutation.

Molecular Study of Multiple Endocrine Neoplasia type 2 in Iranian Patients

S. Dadjag, 1 M. Dehghan Manshadi, 1 O. Aryan, 1 M. Hashoumand 2
1Special Medical Center, Dep. of Medical Genetics, Tehran -Iran, Tehran, Islamic Republic of Iran, 2National Institute of Genetic Engineering & Biotechnology, Pasteur Ave. 17th Km Tehran-Karaj Highway, Tehran, Iran, Tehran, Islamic Republic of Iran.

Multiple endocrine neoplasia type 2 (MEN 2) is classified into three subtypes: MEN 2A, FMTC (familial medullary thyroid carcinoma), and MEN 2B. All three subtypes involve high risk for development of medullary carcinoma of the thyroid (MTC). MTC typically occurs in early childhood in MEN 2B, early adulthood in MEN 2A, and middle age in FMTC.

RET is the only gene known to be associated with MEN type 2. Molecular genetic testing of the RET gene identifies disease-causing mutations in 98% of individuals with MEN 2A, more than 98% of individuals with MEN 2B, and in about 95% of families with FMTC. All MEN 2 subtype inherit in an autosomal dominant manner. The probability of a de novo mutation is 5% or less in index cases with MEN 2A and 50% in index cases with MEN 2B. Offspring of affected individuals have a 50% chance of inheriting the mutant gene. Approximately 98% of families with MEN 2A have a RET mutation in exon 10 or 11. Prenatal testing is possible.

Testing for known common and rarer mutations is performed in our laboratory. PCR and sequence analysis of exons 10, 11, 13, 14, 15, and 16 (hot spots exons) was applied to detect these mutations. Up to now, we investigated molecularly 7 cases suspected to MEN type 2 syndrome (majority with thyroid papillary carcinoma), each of these heterozygote mutations C 630 R (exon 11), G634 F(exon11), G691 S(exon11), L790 F(exon13) were found in one patient, respectively.

New frameshift mutation in the RET gene causes Niemann-Pick disease type A in a child from southwest Iran: A case report

H. Gallahdari
Genetics, Ahwaz, Islamic Republic of Iran.

Niemann pick disease type A (NPA: OMIM #607608) is a variant of a group of lipid storage disorders that is inherited in an autosomal recessive manner. The SMPD1 gene encoding the enzyme sphingomyelase is disrupted by pathogenic mutations, which leads to accumulation of sphingomyelin in different organs.

We report firstly a 2.5 years old boy with NPA in southwest Iran. Initially, the diagnosis resulted on the basis of consultation and clinical symptoms. The suspected individual was subjected to the molecular genetics diagnostics. A novel mutation was observed at codon 247 in the SMPD1 gene that might be causative for the formation of the disease.

The present report is the first molecular genetics diagnosis of the NPD type A in south west Iran.

The detected deletion in the SMPD1 gene is remarkable because of its novelty.

Two New Mutations in Iranian Niemann-Pick patients

M. Dehghanmamadhi, 1 F. Keshtvari, 2 S. Dadjag, 1 A. Arastehkani, 1 A. Aryan, 1 T. Zamanifar, 1
1Department of Biology, Science and Research branch, sanadag, Islamic Republic of Iran, 2Special Medical Center, Dep. of Medical Genetics, Tehran, Islamic Republic of Iran.

Types A and B Niemann-Pick disease both result from the deficient activity of the lysosomal hydrolase, acid sphingomyelase. Type A Niemann-Pick disease is a severe neurodegenerative disorder of infancy which leads to death by three years of age, whereas Type B disease has a later age at onset, little or no neurologic involvement, and most patients survive into adulthood. The first symptom in NPD-A is hepatosplenomegely, usually noted by age three months; over time the liver and spleen become massive. Psychomotor development progresses no further than the 12-month level, after which neurological deterioration is relentless. Acid sphingomyelase (ASM) deficiency is inherited in an autosomal recessive manner. SMPD1 is the only gene known to be associated with acid sphingomyelase deficiency.

The SMPD1 gene is composed of six exons and is located on chromosome 11p15.1-11p15.4. This study included 20 patients suffering from Niemann-Pick disease. The initial diagnosis was based on clinical and biochemical findings.

For genetic diagnosis, all exons amplify and sequence to find defective mutations in this gene. The result showed Gly 508 Arg was found in 6 patients. This mutation was reported previously. Val 36 Ala was found in 3 patients and del CT in codon 473 was found in one patients. These mutations were not reported.

Association of the angiotensin converting enzyme (ACE) gene I/D polymorphism with sarcoidosis in Turkish patients

G. Sarı, 1 E. Kozan, 1 F. Saydam, 2 I. Değirmenci, 1 H. V. Güneş, 1
1Eskişehir Osmangazi University Faculty of Medicine, Department of Chest Diseases, Eskişehir, Turkey, 2Eskişehir Osmangazi University Faculty of Medicine, Department of Medical Biology, Eskişehir, Turkey.

Sarcoidosis is a chronic inflammatory disease of complex pathogenesis and is unknown etiology characterized by noncaseating epithelioid granuloma that invades the lung, eye, liver and other organs. Angiotensin converting enzyme (ACE) gene insertion (I)/deletion (D) polymorphism has been investigated for a genetic predisposition to sarcoidosis in different populations, but results have been inconsistent and inconclusive. This study was carried out to detect the frequencies of I/D polymorphism genotypes and allele of ACE gene in Turkish patients with sarcoidosis. Genomic DNA obtained from 154 persons (70 patients with sarcoidosis and 84 healthy controls) was used in this study. DNA was amplified by polymerase chain reaction using allele-specific primers. Amplified products were assessed with UV transilluminator by being exposed to 2% agarose gel electrophoresis. The allele frequencies and genotype distribution of the groups were analyzed with the chi-square test. There were no statistically significant differences between controls and sarcoidosis cases with respect to genotype distribution (x²=4.502, p=0.122) and allele frequencies (x²=1.356, p=0.244). Our results suggest that there is no genetic predisposition to sarcoidosis in Turkish population.

VEGF gene mRNA expression in un-stimulated PBMCs of patients with coronary artery disease and its association with -2578C/A polymorphism

M. M. Amoli, 1 J. Tarokholy-Bazazz, 2 P. Amirz; 1Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran, 2Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.

Objective: Based on previous reports on association between VEGF and pathogenesis of vascular disorders the aim of this study was to verify the expression of VEGF mRNA in unstimulated peripheral blood mononuclear cells (PBMCs) of patients with and without coronary artery disease (CAD) and comparing the expression of VEGF expression in patients carrying va-
sious genotypes for VEGF -2578°C/A polymorphism.

Methods: The study was performed patients who underwent coronary artery angiography and patients with >50% stenosis in vessels considered as case groups (CAD+) and normal vessel group as control (CAD-). VEGF mRNA expression was examined using quantitative real-time PCR and genotyping for VEGF -2578°C/A was performed using ARMS-PCR technique.

Results: VEGF mRNA expression was significantly decreased in CAD+ patients compared to CAD- patients (p=0.01, 95%CI= 4.2- -0.4). Also in patients carrying AA genotype VEGF mRNA expression was increased compared to patients carrying CC and CA genotype.

Conclusion: Increased expression of VEGF in patients without CAD is indicating an important role for VEGF in CAD development. More studies on larger number of samples are required to further confirm the results obtained in our study.

J13.12 Prevalence of signs of Hurler and mild Hunter syndrome in infants of the first year of life

N. V. Buchinskaya, O. V. Kalashnikova, M. M. Kostik, V. G. Chasnyk

State Pediatric Medical Academy, Saint-Petersburg, Russian Federation.

Background: The prevalence of mucopolysaccharidosis (MPS) is 1 case in 16,000-30,000 births, and MPS II accounts for 80% of all cases. Clinical presentations depend on the type of enzyme defect. Usually patients with MPS initially have normal development and the signs of pathology are seen later in childhood, which causes late diagnosis and makes lower their quality of life.

Objectives: To evaluate the prevalence of pathologic signs during the first year of life in patients with MPS I and MPS II in order to diagnose MPS early.

Materials and methods: 7 children with MPS I (Hurler) and 5 children with MPS II (mild Hunter) were examined and their history was analyzed.

Results: Only 29% of MPS I and 20% of MPS II cases were diagnosed during the first year of life. During the first/second half of the first year of life MPS I manifested with hydrocephalus (71% / 86%), mental and neurologic retardation (43% / 71%), hearing impairment (29% / 43%), corneal clouding (29% / 43%), hepatomegaly (14% / 14%) while MPS II manifested with hydrocephalus (86% / 86%), umbilical or/and inguinal hernia (40% / 60%). In addition in the second half of the first year coarse facial features (43%) and umbilical hernia (14%) were revealed in MPS I and kyphoscoliosis (40%), coarse facial features (20%), hepatomegaly (20%) in MPS II infants.

Conclusions: The revealed prevalence of clinical signs can help a pediatrician to diagnose MPS I and mild MPS II during the first year of life.

J13.13 Analysis of side effects due to valproic acid in patients with epilepsy respective of SNPs polymorphisms in CYP2C9, CYP2C19 and MDR1

M. M. Danilova1, A. S. Glotov2, T. T. Sergeyeva1, V. S. Baranov1

1D.O. Ott Research Institute of Obstetrics and Gynecology, Saint-Petersburg, Russian Federation, 2Saint-Petersburg State University, Saint-Petersburg, Russian Federation, 3Bekhtereva’s Institute of Human Brain, Saint-Petersburg, Russian Federation.

Epilepsy is a chronic disorder caused by brain lesion and characterized by repeated convulsive and/or other seizures. The valproic acid (VPA) medication is the basic approach to the therapy of epilepsy. Detoxification of VPA and its major metabolites is known to be carried out by cytochrome P450 enzyme system with special emphasis on CYP2C9 and CYP2C19 as well as on ATP-binding cassette (ABC) transporter, P-glycoprotein-MDR-1. Analysis of VPA treatment efficiency respective of polymorphisms in SNPs in CYP2C9 (430C>T and 1075A>C), CYP2C19 (681G>A) and MDR1 (3435C>T) was a main goal of the present study. PCR-RFLP analysis was carried out in 76 epilepsy patients and in 210 individuals of the control group. The genotype and allele frequencies of the relevant genes were different in the patients compared to the control groups (P>0.05, y2=5.99). Chronic adverse complications were associated with CYP2C9 allele (*2 and *3), which correlates with reduced activity of this enzyme (P=0.048 F=0.49). The multivariate logistic regression analysis also supported that carriers of particular SNPs alleles have higher risk of chronic adverse events. Analysis of SNPs polymorphism in cytochrome P450 genes allows more precise control of the necessary dosage of VPA medication, thus making epilepsy treatment more efficient, personalized and less toxic.

J13.14 Chinese Hamster Ovarian (CHO) cell lines expressing mutant ATP7B

E. Scrotov1, T. Todorov1, V. Sacara1, A. Zibert1, H. H. J. Schmidt1

1University of Academy of Sciences of Moldova, Chisinau, Republic of Moldova, 2National Center of Reproductive Health and Medical Genetics (NCHIMG), Chisinau, Republic of Moldova, 3Clinic for Transplantation Medicine, Muenster University Hospital, Muenster, Germany.

Wilson disease (WD) is a rare autosomal recessive disorder of copper (Cu) homeostasis that is caused by mutations of gene ATP7B. WD patients mostly present hepatic and/or neurological manifestations, however, severity and age of onset are variable. We explored whether Cu resistance of tissue culture cell lines that express specific mutations of ATP7B can predict severity and course of disease. Chinese Hamster Ovary cells that lack intrinsic ATP7B expression were used for stable expression of ATP7B mutants by retroviral vectors. 12 mutations were chosen for analysis from reports of homozygotic patients. To determine Cu resistance MTT assay was established. ATP7B protein expression was determined by Western-blot analysis. Cu resistance of the cell lines appeared to be highly specific and could be classified into three groups. The first group showed high copper resistance similar to that of wild-type ATP7B. The second group showed low copper resistance similar to native CHO cells, the third group displayed intermediate resistance. Magnitude of ATP7B protein expression correlated with level of Cu resistance in most but not all cases. ATP7B mutants found in patients having a mild clinical presentations were highly resistant to Cu. In contrast, an early onset and severe disease was found in the group of mutants that showed low Cu resistance. The third group with intermediate Cu resistance was heterogeneous with respect to clinical manifestation of disease. Our observations indicate that functional characterization of ATP7B mutants can give further insights into the understanding of individual mutations and for prediction of WD.

J13.15 The mutational spectrum of Phenylketonuria in Egypt: A unique pattern of mutations including four common mutations and five novel mutant PAH alleles.

L. K. Effet

Division of Human Genetics and Genome Research, giza, Egypt.

Phenylketonuria (PKU) is one of the most common inborn errors caused by deficiency of the hepatic phenylalanine hydroxylase gene (PAH). Extensive studies identifying mutational spectrum of PKU have been published during the last two decades. The frequencies of the different mutations vary in different locations of the world. On the basis of phenotype-genotype correlations, determination of phenylketonuric genotype is crucial for better classification of the clinical phenotype and treatment, including tetrahydrobiopterin therapy. We report here on the mutational spectrum of PAH gene in 150 Egyptian families using the following systems: (1) PCR-RFLP analysis for common Mediterranean mutations; (2) single stranded conformational polymorphism; (3) direct sequencing; and, (4) Long range PCR for detection of large deletions. Of the 300 mutant alleles, 288 (96%) were genotyped and a total of 25 distinct mutations were identified including 5 novel mutations. R176X, R243X, Y191Fs and IVSII-11G>A were prevalent mutations in our population. The mutational data obtained reflects a unique pattern of mutations in Egyptian patients with PKU which will permit precise carrier detection, prenatal diagnosis and genetic counseling for these families.

J14.01 Strong association between ABCB1 gene (MDR1) 3435 C>T polymorphism and multiple drug nonresponder patients of chronic hepatitis C

G. Ozdemir1, H. Alagozlu2, M. Timucin1

1Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey, 2Department of Medical Genetics, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey, 3Department of Gastroenterology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.

The curing viral infection of chronic hepatitis C (CHC) is a main strategy to prevent progression of liver disease and cancer. Some CHC patients are failed to respond to common antiviral therapy in some populations. In the current study it was aimed to find the possible role of multidrug resistance gene 1 polymorphism (MDR1) in nonresponder patients with CHC. Peripheral blood samples were used for total genomic DNA isolation. In a total of 55 HCV positive patients [31 male (56.4%), 24 female (53.6%) and mean age-min: 56.1 ± 66.59 [39-71]]; 19 responder (34.5%) and 15 non-responders (27.3%) were included, genotyped for functional MDR1 gene polymorphism. Target gene were genotyped by multiplex PCR-based reverse-hybridization StripAssay method. The current results indicate that codon 3435 C>T polymorphism in exon 26 of MDR1 gene is associated with colchicine resistance in nonresponder CHC patients.
is the treatment of choice for patients suffering from MPS1 with no or mini-
mal central nervous system manifestation. Case Report: We report 4 Iranian cases of MPS type 1, 3 boys who are 60
months-old, 34 months-old, & 30 months-old; and 1 girl who is 41 months-
old. They have phenotype of MPS1, coarse facial features, prominent fore-
head, corneal cloudy, sleep disturbance, hepatosplenomegaly, inguinal hernia, joint stiffness, and dysostosis multiplex congenital. They diagnosed
MPS1 on the basis of clinical findings, an elevated urinary glycosaminogly-
can level and low alpha-L-iduronidase activity in leukocytes. For 3 of the ca-
eses mutation analysis revealed homozogy mutation in the IDUA gene, and
for one of them reveals novel mutation. They have been started injection
of aldurozyme intravenously every week from 26 months-old, 18 months-
old, 12 months-old, and 19 months-old. To prevent neurological impairment
before bone marrow transplantation, they receive intrathecal enzyme re-
placement of aldurozyme monthly from 29 months-old, 21 months-old,
21 months-old, and 31 months-old. They tolerate intrathecal ERT with no
adverse events. One of them when he was 50 months-old, he received bone
marrow transplantation, but others are now receiving aldurozyme intrave-
nously and intrathecally.

J14.02
Creation of the carriers containing gene encoding site of
apolipoprotein B100 and green fluorescent protein (GFP) gene for
transfection into eukaryotic cells.

A. A. Belayev, V. A. Zemkov, D. S. Poloyak, N. A. Grudinina, K. V. Solovyov, T. D. Aleynikova, M. M. Shavlovsky;
Department of molecular genetics, Institute of Experimental Medicine Nord-West Branch of Russian Academy of medical sciences, St.Petersburg State, Russian Federation.

The purpose of this work is creation of new carrier for transfection the ge-
netic information into eukaryotic cells. Apolipoprotein B100 (apoB) provi-
des binding of low-density lipoprotein (LDL) particles to the receptor. Such
cells as hepatocytes, fibroblasts and lymphocytes have LDL-receptor. We have created fusion protein consisting GFP and high conservative receptor-
binding region named site B (3359-3369) of apoB. Site B is strongly requi-
ed for interaction between carrier and cells LDL-receptor, and its entering
into the cells. Presence of GFP in the recombinant polypeptide will help to
determine the flow of the protein in by fluorescence microscopy. We used plasmid pTRC99a-p7 with two unique restriction sites for SalI (after
sgFPP) and HindIII (downstream). We have created plasmid with GFP gene, sequence encoding site of apoB, five histidine codons for chromatography
purification of recombinant and stop codon. The resulting plasmid was
successfully sequenced. As a result we synthesized peptide, which peaks of
exonuclease activity are equal to the native peptide. It has a free position with
nickel agarose. This fusion protein is basis of new construction for transfec-
tion the genetic information into eukaryotic cells. It contains GFP and site B
of apoB. Amino-acid sequence of siteB could be used as an alternative way
doing of different therapeutic substances into eukaryotic cells. Studies on
cell cultures are expected.

J14.03
Complexity of rehabilitation treatment in a case with limb-girdle
muscular dystrophy

S. Mihalcescu, M. Cretean, D. Stoianescu;
1Medical Rehabilitation Clinical Hospital, Baile Felix, Romania, 2University of Oradea,
Faculty of Medicine and Pharmacy, Oradea, Romania, 3University of Medicine and
Pharmacy, Victor Babes, Timisoara, Romania.

Limb-girdle muscular dystrophy comprises a heterogeneous group of disor-
ders, with progressive evolution, affecting especially proximal limb muscu-
lature. Here we report the case of a 39-year-old man with autosomal recess-
ive limb-girdle muscular dystrophy, with negative family history, diagnosed
7 years ago. The clinical examination revealed major motor deficit, severe
muscle hypotrophy in the scapulohumeral girdle and arms, impossibility
to perform active movements of the scapulohumeral joint, regarding pass-
ive movements abduction and flexion limited to 90 degrees. Walking and
standing were impossible, requiring wheelchair, person-assisted transfers
from clinestatism to sitting position. He can maintain a sitting position with
out help. He has a rare photosensitivity, and his left vocal cord is paralysed.
Assessment with functional ambulation classification showed that the pati-
ent needed firm continuous support from one person, who helps carrying
weight and with balance. Particularity of the case is represented by the rapid
evolution, with impaired self-care capacity and occurrence of osteoporosis
due to immobilization. In 2010 he fell when transferring from wheelchair
to bed, with the fracture of left body of L1, right humerus head, resulting
into the complex regional pain syndrome. Rehabilitation program objectives
were maintaining mobility, transfers re-education, gain maximum indepen-
dence. Methods were medication and physical-kinetic treatment for basic
disorder and complications, with hydrokinetotherapy, massage, electroth-
ery, laser. The patient should have done daily kinetic program, but plaster
immobilization was necessary for 2 months. The patient was discharged into
the home environment, with support of another person. Early diagnosis and
improvements in management of patients with this disorder by a multidisciplinary team will improve their
prognosis and quality of life.

J14.04
Intrathecal Enzyme Replacement Therapy for Neurological
Impairment in Mucopolysaccharidosiia 1(4 Iranian cases)

F. Hadipour, I. Shafeghati, P. Sarkhail, L. Hadipour;
Medical genetics Department, Sarem Cell Research Center & Hospital, Tehran, Islamic Republic of Iran.

MPS1 is an autosomal recessive disorder caused by deficient activity of the
lysosomal enzyme alpha-L-iduronidase, which leads to accumulation of he-
pan sulfate and dermatan sulfate, resulting in a progressive multisystem
disease with respiratory, skeletal, and nerve-logic manifestations. Treatment
for MPS1 consists of supportive care, and enzyme - replacement therapy
with Laronidase. Bone marrow and hematopoietic stem cell transplantation

J14.05
Spinal Muscular Atrophy Therapeutics: Progress and Promise

A. Ben Itto;
LGCM, Casablanca, Morocco.

Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder that
causes degeneration of α-motor neurons. Frequently, muscle weakness is
very severe causing affected infants to die before reaching two years of age,
but mild forms of the disease can be characterized by relatively static muscle
weakness for many years. SMA is caused by recessive mutations of the SMN1
gene, but all patients retain at least one copy of SMN2, a similar gene capable
of producing low levels of full-length SMN protein. No treatments currently
exist for SMA patients, but the identification of therapeutic targets as Hy-
droxuryra, Quinazino derivatives, Salbutamol, Small molecules, Antisense
oligonucleotides, aminoglycosides and pmease inhibition, Riluzole and
Ceftiraxone, Okesoxide and Embryonic stem (ES) cells also the development
doing of drug and animal models for preclinical testing have resulted in an increased
drug development efforts in the past ten years. Here, we review the current
status of many of these programs, including those designed to activate SMN2
gene expression, modulate splicing of SMN2 preRNAs, stabilize SMN prote-
in, replace SMN1, provide neuroprotective support, and transplant neural
cells. The knowledge of SMA pathogenesis and the development of clinical
candidates have increased considerably since the discovery of the disease-
carising gene. Drug development in SMA has been characterized by robust
cooperative efforts between academic, government, pharmaceutical, and
non-profit organizations. As the promise of a treatment for this devastating
disease continues to grow, we are hopeful that progression over the next 15
years will be even more rapid than the last.

J14.06
The effect of age and strain on screening, proliferation, and
differentiation of chicken bone marrow mesenchymal stem cells

F. Pirvaei, F. Pirvaei, M. Ramezani;
1Department of Biology, Payame Noor University of Tehran, Tehran, Iran, Tehran,
Islamic Republic of Iran, 2National Institute of Genetics Engineering and Biotechnology, Tehran,
Islamic Republic of Iran, 3Dept. of Biology, Faculty of Science, Islamic Azad
University, Ashtian Branch, Ashtian, Iran, Tehran, Islamic Republic of Iran.

Background: Noticing the practical significance of stem cells, this study was
cultured and screened bone marrow mesenchymal stem cells derived
from Raf and Hiline chicken strains and investigate the effect of age and
race on the morphology and differentiation of the generated cells.

Methods and Materials: In this fundamental study, bone marrow cells from
3 to 25 day-old Raf and Hiline chicken strains were cultured in low glucose
DMEM, 1% BBS. Then third passage bone marrow cells of the two strains
were compared in terms of morphology, differentiation to bone, cartilage,
and adiposity. Data were analyzed through SPSS software.

Results: In culturing Raf chicken derived bone marrow cells, in contrast to
Hiline chicken strain, colonization took place and they almost had a better bi-
broblastic morphology. The results indicated higher yields of differentiation
to bone, cartilage, and adipose tissues in Raf chicken derived bone marrow
cells than Hiline chicken. These differences were statistically significant.

Conclusion: Screening and proliferation of mesenchymal stem cells from 15-
day old Raf chicken bone marrow cells are good resources for differentiation
and purification of chicken bone marrow mesenchymal stem cells.
J14.07

Treatment with bisphosphonates in osteogenesis imperfecta

Introduction. Osteogenesis imperfecta, a genetic disease of bone formation, with autosomal recessive trait, is characterized by bone fragility and reduced bone mass due to mutations in genes coding for type I collagen. Different severity of clinical signs is due to imperfect genotype-phenotype correlation. The present work was aimed at evaluating the results of treatment with bisphosphonates (antiresorptive agents that inhibit osteoclast function and stimulates osteoblastic bone formation) in a group of patients with osteogenesis imperfecta. The method consisted in: clinical and bio-humoral assessment of bone mineralization, radiological examinations, osteodensitometry; assessing occupational score.

Results. Treatment with bisphosphonates (commercial preparations Arediva) was administered in two 12 cycles, at a dose of 0.5 - 1 mg/kg/day IV infusion, 3 consecutive days at 4 months interval. The drug was well tolerated, the only side effect being fever recorded in the first cycle of treatment in 4 patients. Bio-humoral parameters of phospho-calcic metabolism remained within normal limits, except for reduced alkaline phosphatase values in a 20-year old male with osteogenesis imperfecta. Bone pain has resolved, fractures have not occurred (except in one patient), occupational score and Z score were improved.

Conclusions. Under bisphosphonates treatment the clinical symptoms, occupational score and Z score were improved.

J14.08

A cell model system to monitor the translocation of Ataxin-3 in SCA3

Z. Wang, T. Schmidt; Human Genetics Institute, Tuebingen, Germany.

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an autosomal dominantly inherited neurodegenerative disorder caused by the expansion of a CAG repeat in the MJD1 gene encoding a expanded polyglutamine repeat in the Ataxin-3 protein. Ataxin-3, the affected protein in SCA3, is mostly a cytoplasmatic protein, however, it distributes to different subcellular regions i.e the cytoplasm and the nucleus in different cell types. The characteristic hallmark of this disease is the formation of Neuronal intranuclear inclusions (NII) including expanded and misfolded causative protein. Whether NII are toxic or protective, their presence is associated with neuronal degeneration.

Results. In this study we have developed a cellular model system to monitor the translocation of Ataxin-3 in SCA3. Nuclear factor erythroid-2 related factor 2 (Nrf2) is a redox-sensitive transcription factor that regulates the expression of multiple genes involved in cellular defense against oxidative stress. Previous studies have shown that Nrf2 expression is elevated in the brains of mice with spinocerebellar ataxia type 3 (SCA3) and that Nrf2 overexpression provides cytoprotection against ROS-induced neurotoxicity.

Conclusions. We have demonstrated that Nrf2 overexpression provides cytoprotection against ROS-induced neurotoxicity in a cellular model system. Our findings suggest that Nrf2 is a potential therapeutic target for the treatment of SCA3.

J15.01

Cloning and transient expression of cytoprotective factor, Nrf2, in mesenchymal stem cells using the adenoviral expression system through Gateway technology

M. Mohammadzadeh, M. Habibi Roadkhan; Transfusion Research Center, Tehran University of Medical Science, Tehran, Islamic Republic of Iran.

Background and Objectives: Nuclear factor erythroid-2 related factor 2 (NRF2) is one of the potent cytoprotective factor. The goal of this study was cloning and transient over expression of the human Nrf2 gene in MSCs using the adenoviral expression system based on Gateway technology.

Material and Methods: In order to induce expression of Nrf2, MSCs were exposed to UV for 1 hour. Full length cDNA of Nrf2 was isolated and cloned into pENTR TOPO D vector by TOPO cloning reaction. To construct the expression clone, a LR recombination reaction was carried out between the entry clone and destination vector, pAdCMV/V5-DEST. The Recombinant virus was produced in appropriate mammalian cell line. MSVs were infected by the recombinant virus expressing Nrf2.

Results: The results showed that human recombinant Nrf2 was successfully cloned and the accuracy of the gene and its frame in the vector were confirmed by DNA sequencing. Expression of Nrf2 in MSVs was confirmed by RT-PCR and western blot analysis. The results indicated that the expression of Nrf2 is transient.

Conclusions: The adenoviral expression system through Gateway technology was successfully used to clone and over-express cytoprotective factor, Nrf2, in MSCs.

J15.02

Italian National External Quality Assessment in molecular genetic testing - VII round (2010-2011)

F. Censi, M. Marra, F. Tosto, G. Floridia, V. Falbo, D. Tarascio; Centro Nazionale Malattie Rare - Istituto Superiore di Sanità, Roma, Italy.

The Italian External Quality Assessment for molecular genetic testing, coordinated by the Istituto Superiore di Sanità, started in 2001; it cover four pathologies: Cystic Fibrosis (CF), Beta Thalassemia (BT), Fragile X-Syndrome (FX) and Familial Adenomatous Polyposis Coli (APC). A web utility dedicated to this activity has been developed and, since 2010, participation is open both to public and private Italian laboratories. In 2010 the number of participants was 53; 43, 17, 15 and 5 laboratories participated for CF, BT, FX and APC schemes respectively. In each scheme four DNA samples were validated and sent to participants together with clinical and technical information. Laboratories were asked to use their routine procedures and protocols to analyse samples. A panel of assessors reviewed the final returns to assess the quality of genotyping, interpretation and reporting.

In 2010 assessors reviewed 320 genetic testing analyses. Genotyping results showed complete and correct data in 98.5%, 95.9%, 100%, 100% of CF, BT, FX, APC samples analyzed respectively; satisfactory interpretation of data was recorded only in 9.9%, 32%, 20%, 40% of CF, BT, FX, APC reports respectively; lack of information/inaccuracy in reports was detected in all schemes. This work will show in detail all 2010 results comparing, when possible, our data with those of other European schemes.

J15.03

The Italian External Quality Assessment in classical cytogenetics: results of the 2010/2011 round

G. Floridia, F. Censi, F. Tosto, M. Marra, V. Falbo, D. Tarascio; Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Roma, Italy.

The Italian External Quality Assessment in classical cytogenetics, coordinated by the Istituto Superiore di Sanità, started in 2001 and covers prenatal, postnatal and oncological diagnosis. The scheme is retrospective and each part of the scheme stands alone; a web utility dedicated to the EQA is developed.

Since 2010 the EQA has been recognised as institutional activity; laboratories pay a fee for each scheme as published in an official document issued by the Italian government (GU n.199-28th August 2009). Participation is open to all laboratories.

Assessment takes into account technical, analytical and interpretative performance; an assessment system with scores was developed. Assessors are selected in collaboration with the Italian Society of Human Genetics and, at the end of the round, participants receive a report with marks and comments to improve the analysis.

The total number of laboratories participating in 2010-2011 round was 69, 17 of them were private (i.e. 40%); in particular 55, 60 and 22 laboratories participated in the prenatal, postnatal and oncological scheme respectively. A banding quality not adequate for the analysis was observed in about 6% and 10% of 108 prenatal and 120 postnatal cases respectively; an analytical error was identified in one case, out of 44, in oncological diagnosis. An use of the nomenclature ISCN not appropriate was detected in about 15%, 13% and 75% of reports in prenatal, postnatal and oncological diagnosis respectively. Not completeness and/or inadequacy of information in reports was the most frequent analytical inaccuracy recorded in all schemes.
EMPAG Plenary Lectures

EPL1.1 Priority setting in genetic testing: a pilot discrete choice experiment
F. Severin, J. Schmidtke, A. Mühlbacher, W. Rügner
Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, *Hannover Medical School, Institute for Human Genetics, Hannover, Germany, †Hochschule Neubrandenburg, University of Applied Science, Neubrandenburg, Germany.

Given the increasing number of genetic tests available for clinical practice, decisions have to be made on how to allocate limited health care resources to maximize their importance. As genetic testing is becoming more widespread, there has been a growing concern to prioritize the process of priority setting. However, their relative importance is still unclear. This paper explores the feasibility of discrete choice experiments to identify and weight various criteria in a form that allows prioritization through a ranking of different testing options. Therefore a pilot discrete choice experiment was carried out, using face-to-face interviews, among 22 genetic professionals. Respondents chose between two generic scenarios (dual choice options) that described testing options, represented by medical and non-medical attributes. Choice data was used to rank order a set of seven testing options on the basis these attributes and their relative weights. A series of follow up questions were asked to learn about participants’ understanding of the choice format and potential improvements in the discrete choice instrument. The criteria “Prevalence”, “Severity”, “Clinical Utility” and “Avenues available” were significant, all including “Infrastructure available” and “Urgency” had positive signs. A preliminary rank order of tests could be established. Findings from this pilot demonstrate the discrete choice methodology to be a feasible approach to use stated preference techniques in priority setting of genetic tests. We believe that the DCE framework is an important step towards the development of a rational approach to priority setting that meets the needs of decision makers.

EPL1.2 First Trimester Screening, it’s not a routine test An education module for General Practitioners to help women to make an informed choice
K. B. Barlow-Stewart1,2, K. Dunlop2,1
1University of Sydney, Sydney, Australia, 2Centre for Genetics Education, Sydney, Australia.

In NSW, Australia, health care professionals should inform all pregnant women about first trimester screening (FTS) and give appropriate risk information to enable an informed choice. This requirement usually applies to genetic practitioners (GPs), with increased risk results usually referred to genetic counsellors (GCs) or obstetricians. Challenges for GPs include addressing patients’ different perceptions and interpretations of risk; presenting the pros and cons of screening; the possible implications of an increased risk result; the potential for coercion in guiding decision making; and the inconsistencies in the availability of FTS and genetic counselling services. To support GPs, and at the request of providers of professional development, an education module, First Trimester Screening: it’s not a routine test, was developed to be used in group educational settings or stand alone. Content included a slide presentation of information and three video case studies of GP consultations that addressed issues anecdotally reported to commonly occur. Process evaluation consisted of piloting the module in GP education sessions (1 hr 52 GPs) and GPs (5). The module was rated highly relevant, useful and reflected questions that arise in GP practice (96%) and comments included prompting future more thorough discussion of FTS, having discussion over more than one session, adopting ideas from the way the GP in the videos phrased her comments and be more confident. 13% of GPs requested a further video case discussing increased risk results be included. The next process evaluation results following incorporation of recommendations will be presented.

EPL1.3 What do pregnant women and their partner know about Down Syndrome when they decide to undergo prenatal diagnosis? C. Ingvaldseth1, P. Lindgren1, G. Aannestad1, E. Ternov1, O. Aasland1
1Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden, 2Department of women’s and children’s health, Uppsala University, Uppsala, Sweden, 3Department of genetics and pathology, Uppsala University, Uppsala, Sweden, 4Department of children’s health, Uppsala University, Uppsala, Sweden.

Information to expecting parents about prenatal diagnosis (PND) for chromosomal aberrations focus on the risk of bearing children with chromosomal abnormalities, i.e. Down syndrome (DS), and the risks associated with amniocentesis and chorionic villus sampling. Routinely, no information is given about the symptoms of DS and the consequences for the child and the family. This study examined what prospective parents know about medical, cognitive and social aspects of DS. A questionnaire was answered by 208 parents taking a CUB test (combined ultrasound and biochemistry) at Uppsala University hospital during 2011. Only 25% of the parents had received information about DS and more than 60% would like more information. The reason for taking a CUB test was, for 70% of the parents to get a warranty of a healthy child. Half of the parents had not taken a position on what to do if the CUB test showed an increased risk of DS. Almost all knew that DS is caused by a chromosomal abnormality. Still there was a vast lack of knowledge about medical and cognitive complications in children with DS, as well as social consequences for the children and the families. This study shows that a high proportion of parents who undergo a CUB test have little knowledge of DS and might consider invasive PND procedures, and perhaps also pregnancy termination, without knowing what Down syndrome implies. Improved information to expecting parents about medical, cognitive and social consequences of DS, could help the parents to make informed decisions regarding PND.

EPL1.4 How do women make decisions about genetic carrier screening for fragile X syndrome? A qualitative study
A. G. Ames1,2, A. D. Archibald1, R. Duncan1, J. Emery1, S. A. Metcalfe1,2,3
1Murdoch Childrens Research Institute, Melbourne, Australia, 2University of Melbourne, Parkville, Australia, 3The University of Western Australia, Crawley, Australia.

Background: As population-based genetic carrier screening becomes more common the increasing need to evaluate decision-making, ensuring participants make free and informed choices. Carrier screening for fragile X syndrome (FXS), the leading cause of inherited intellectual disability, provides individuals with information about their health and risk of having children with FXS. It is important individuals participate understand the personal and familial implications of such screening. This study aimed to explore perceptions and decision-making styles of non-pregnant women from the general population offered FXS carrier screening in Australia.

Methods: Purposive sampling was used to select equal proportions of participants who declined and accepted screening. 37 qualitative, semi-structured telephone interviews were conducted after women accepted or declined screening, but prior to receiving test results (if tested). Interviews were transcribed with data coded into themes. Results: A range of decision-making styles emerged from the data, including: relying on initial gut reaction, being influenced by previous experiences and in-depth deliberation. Most participants felt they made an informed decision, although there was substantial variation in perceptions of an informed decision and a ‘good decision’. Preliminary analysis suggests differences in how informed decisions are defined in the literature and perceived women considering screening.

Implications: This research provides valuable insight into women’s decision-making processes and how they view an ‘informed decision’. These data will be instrumental in informing the development of tools for evaluation of informed decision-making in genetic screening programs and in determining how best to support women through the testing process in the future.

EPL1.5 Development and validation of a short family history screening tool for chronic disease prevention in primary care
F. M. Walter1,2, F. M. S. Bert1,2, K. Grehan1, K. Restarick3, H. C. Morris1,2, P. Rose1,2, S. Downing1, S. Sutton1, J. D. Emery1
1University of Cambridge, Cambridge, United Kingdom, 2University of Western Australia, Perth, Australia, 3King’s College London, London, United Kingdom, 4Oxford University, Oxford, United Kingdom, 5Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.

Introduction: Family history (FH) is an important risk factor for many common diseases, yet no simple, validated tools exist in primary care for accurate FH management. We aimed to develop and validate a short FH screening tool for systematic FH assessment in primary care. Diabetes (DM), ischemic heart disease (HD), breast (BC) and colon cancer (CC) were selected as marker conditions as they fulfill screening criteria and, effective interventions and lifestyle strategies exist for their primary and secondary prevention.

Methods: Participants were identified via randomised electronic searches in 10 Eastern England general practices. During a practice-based consultation participants completed a FH Questionnaire (FHQ), then had a 3-generation ‘gold standard’ pedigree taken. In stage 1 the FHQ comprised 12 items; in stage 2 the shorter FHQ was validated against the same ‘gold standard’

www.eshg.org
pedigree, and the psychological impact of FH screening was examined using questionnaires containing validated measures at baseline and 4 weeks.

Results: 1,147 participants were recruited (stage 1: 618; stage 2: 529). Among stage 1 participants, 32% were at increased risk of one or more major FH risk factors, with 13% HD, 13% BC 5%, and 22% determination of the sensitivity, specificity, and predictive values of each item allowed the refinement of the FHQ to 6 items for identification of any of the four conditions (sensitivity 91%, specificity 61%). Results of stage 2 validation of the FHQ-6 will be presented, with psychological findings indicating that FH knowledge, including awareness of being at increased risk, does not increase anxiety.

EPL1.6 Measuring patient benefits from interventions in clinical genetics and genetic counselling services: Are we finally able to do this?

M. McCluskie, A. M. Wood, G. Dunne, K. Payne, L. Davies, D. Donnai, R. MacLeod, C. Todd,

Cardiff University, Cardiff, United Kingdom, University of Manchester, Manchester, United Kingdom, St Mary’s Hospital, Manchester, United Kingdom.

An enduring challenge in evaluating interventions in clinical genetics and genetic counselling is how best to measure patient benefit. Patient Reported Outcome Measures (PROMs) offer a possible solution. PROMs are self-administered questionnaires used in research to evaluate patient benefits from new interventions e.g., in randomised controlled trials, and for service evaluation in routine clinical practice. PROMs differ from satisfaction questionnaires because they measure change over time in outcomes valued by patients, rather than simply reporting satisfaction with service received. Current UK health policy encourages use of PROMs data. But in clinical genetics, there is no consensus about the best PROMs to use. A research programme involving ~450 patients and 130 clinicians tackled the issue of PROMs use in clinical genetics (Manchester 2003-2011). Mixed methods were used to identify patient benefits: a) a systematic review of validated outcome measures used (b) a Delphi survey to identify consensus amongst clinicians and patients about appropriate outcome domains and (c) qualitative interviews and focus groups. The next stage involved validating the General Outcome Measure Scale (GCOS-24), a new PROM developed from the qualitative data, and the existing Perceived Personal Control (PPC) scale. Both PROMs were proven to (i) have high internal consistency (PPC: Cronbach’s α=0.83, GCOS-24: α=0.87) (ii) have concurrent validity with health locus of control, satisfaction with life, depression, and authenticity and (iii) capture statistically significant patient benefit following clinic attendance (PPC: Cohens d=0.4, GCOS-24: d=0.7). These properties suggest that both GCOS-24 and PPC are appropriate validated PROMs to evaluate clinical genetics services.

EPL2.1 Breast cancer risk communication by health care providers’ in 4 European countries

C. Julian-Reynier1, A. Bouhnik1,2, G. Evans1, H. Harris1, C. van Asperen1, A. Tibben1,2,3,4, I. Nippert1,2,3,4,5

1INSERM, UMR912, “Health Economy, Social Sciences & Medical Information Processing” (SESSTIM), Marseilles, France, 2Aix-Marseille Université, UMR912, Marseille, France, 3Institut Paoli-Calmettes, Marseille, France, 4Medical Genetics Research Group, Regional Genetics Service and National Molecular Genetics Reference Laboratory, Central Manchester Foundation Trust, St Mary’s Hospital, Manchester, United Kingdom, 5GenEd Coordinating Centre, University of Manchester, Manchester, United Kingdom.

The overall answer rates were 30% and 37% for GPs and BS, respectively. Risk family history and HRT were the most frequently risk factors explained by GP’s and BS. Countries and providers differed significantly (p<0.001) for the kind of factors discussed particularly for those other than family history. Event frequency was the most frequently used presentation (47% GP’s; 52% BS), particularly in UK. Absolute risks were more frequently presented than relative risks. Only 11% of GP’s and 17% of BS would present risk communication including absolute and relative risks with both negative and positive framing and no verbal presentation. Preferences and declared behaviours will be presented according to specialty and country after multivariate adjustment on personal characteristics.

In order to optimise cancer risk communication in medicine, initial and vocational training could be reinforced by published guidelines issued from multidisciplinary task forces.

EPL2.2 International variation in physicians’ attitudes towards prophylactic mastectomy - comparison between the UK, France, Germany, and the Netherlands

M. de Roover1, C. J. van Asperen2, H. Harris1, I. Nippert1, C. Julian-Reynier3, G. Evans1, A. Tibben1,

1Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands, 2Department of Clinical Genetics, Leiden University Medical Centre, Leiden, Netherlands, 3GenEd Coordinating Centre, University of Manchester, Manchester, United Kingdom, 4Women’s Health Research, Münster Medical School, Münster, Germany, 5UK, INSERM, IRD, Institut Paoli-Calmettes, Aix-Marseille Universite, Marseille, France, 6Medical Genetics Research Group and Regional Genetics Services, St. Mary’s Hospital, Manchester, United Kingdom.

Introduction

Prophylactic mastectomy (PM) has proven to be the most effective method to reduce the risk of breast cancer in high-risk women. The present study aimed to present and compare the attitudes towards PM among physicians in France, Germany, the Netherlands and the UK.

Methods

An international sample of 1,196 general practitioners (GP) and 927 breast surgeons (BS) were surveyed using a mailed questionnaire.

Results

Both GP’s as well as BS’s opinions towards PM significantly differed from one country to another. Only 30% of the French and 27% of the German GP’s were of opinion that PM should be an option for an unaffected female BRCA1/2 mutation carrier, as compared to 85% and 92% of the GP’s in the Scandinavian and UK, respectively. Similarly, 70% of the French and 66% of the German BS reported a positive attitude towards PM, as compared to 100% and 97% of the BS in the Netherlands and UK, respectively.

In the whole sample of GP’s, a positive attitude towards PM was associated with country of residence, being female, and having more knowledge of breast/ovarian cancer genetics, while among BS there was a positive association with country of residence and having more knowledge of breast/ovarian cancer genetics as well, and, in addition, with a higher number of newly diagnosed breast cancer patients last year.

Conclusion

These results demonstrated the international variations in the attitudes towards PM among physicians. This might reflect that different policies are adopted to prevent breast cancer in women at-risk.

EPL2.3 Life at risk: Negotiating identities on healthy carriers of a genetic alteration predisposing to cancer

E. Sumaller1, V. Castojer1, C. Ocho1, Y. Valverde1, A. Solanes1, C. Capell1,2,5, I. Blanco1,2,6

1Genetic Counseling Unit, Hereditary Cancer Program, L’Hospitalit, Spain, 2Genetic Counseling Unit, Hereditary Cancer Program, Badalona, Spain, 3Psychological and Social Research Unit, Instituto de Investigaciones Biomédicas “8 de octubre”, CSIC, Madrid, Spain, 4Psychology, Medicine and Health Research, Münster Medical School, Münster, Germany, 5Women’s Health Research, Münster Medical School, Münster, Germany, 6GenEd Unit, University of Manchester, Manchester, United Kingdom.

Cancer survivorship often involves identity reconstruction and integration of the experience into one’s self-concept, and may even lead to radical transformations in one’s identity. The increasing availability of genetic testing enables other family members who have not yet developed cancer to determine if they have inherited the risk; those with a mutation are known as previvors. Once a previvor is identified, they are faced with complicated and often difficult decisions and this new situation may have important psychological and social implications. To date, little is known about the formation of previvor identities and the extent to which genetic diagnosis is central to one’s identity. The main objective of this study was to conduct a qualitative investigation based on a phenomenological framework in order to understand the lived experience of cancer previvors and to examine the centrality of the genetic diagnosis and the associated life changes. Eighteen previvors were studied using a qualitative semi-structured interview. All interviews were subjected to interpretative phenomenological analysis. We have identified at least four different basic strategies of identity negotiation in these previvor individuals showing that adjustment to a pre-symptomatic genetic diagnosis is an active psychological process of negotiating identity strategies.

www.eshg.org
resulting in both positive and negative life changes. Genetic diagnosis centrality was fairly low in our studied population. According to our results, adoption of a specific previvor identity may impact well-being and health behavior changes and warrant further research.

EPL2.4
Women’s experiences of familial ovarian cancer screening: A qualitative study
K. J. Lifford, A. Clements, L. Fraser, D. Lancoastt, K. Brain1; 1Institute of Primary Care and Public Health, School of Medicine, Cardiff University, Cardiff, United Kingdom, 2Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom, 3Gynaecological Oncology, University College London Institute for Women’s Health, London, United Kingdom, 4Department of Humanities and Social Sciences, University of Glamorgan, Pontypridd, United Kingdom.

Until recently, the main risk management options for women at increased risk of familial ovarian cancer have been risk-reducing surgery to remove the ovaries or ovarian cancer screening (OCS) as part of a research study. The psychological evaluation of familial OCS (PsyFOCS) was conducted to examine the psychological impact of taking part in OCS on women who are at increased genetic risk. The aims of the qualitative component of PsyFOCS were to understand 1) women’s experiences of OCS and 2) the catalysts for surgery to remove the ovaries and reactions to subsequent withdrawal from OCS. Semi-structured interviews were conducted with 48 women who were or had been taking part in OCS. Women were chosen on a number of demographic and clinical criteria to endeavour to capture a range of OCS experiences. Interview topics included: family history, cancer risk, the screening process, risk management decisions and information provision. Results suggested that OCS provides reassurance for women and they feel privileged to take part in OCS. A number of catalysts, including OCS test results, and secondary considerations were found to prompt surgery. The emotional impact of discontinuing OCS following surgery varied between relief, acceptance and loss. In conclusion, OCS appears to be an acceptable risk management strategy for women at increased risk of ovarian cancer. However, OCS results may prompt women to reconsider their risk management options. These findings highlight the benefit women feel they receive from OCS as well as the importance of the timing of decision-making about risk management options.

EPL2.5
What counts as successful in genetic counselling for presentations in late onset disorders? The consultants’ perspective.
L. Guimarães1; 2Sequeira1, H. Skirton1, M. Paneque Herrera1, 1ICBAS-Universidade do Porto, Porto, Portugal, 2School of Nursing and Midwifery, University of Plymouth, Plymouth, United Kingdom.

Genetic counselling must be offered in the context of presumptomatic testing (PST) for severe late-onset diseases; however, what is effective genetic counselling is not well-defined, and measurement tools that allow a systematic evaluation of genetic practice are still not available. The aims of this qualitative study were to (1) recognize relevant aspects across the whole process of genetic counselling in PST for late onset neurodegenerative disorders that might indicate effective practice from the consultant’s perspective; and (2) analyse aspects of current protocols of counselling that might be relevant for a successful practice. We interviewed 24 consultants undergoing PST for late-onset neurological disorders (Huntington disease, spinocerebellar ataxias and familial amyloid neuropathy ATTRV30M) in the three major counselling services for these diseases in Portugal. Main themes emerging from the analysis of content were (1) consultant’s general assessment of the PST process in genetic services; (2) appropriateness and adaptation of the protocol to the consultant’s personal expectations and needs; and (3) consultant’s experience of the decision-making process and the role of engagement and counselling skills of the counsellor. Participants provided also a set of recommendations and constructive criticisms relating to the length of the process, the time gap between consultations and when the results were delivered. These issues and the construction of the relationship between counsellor and counselee should be further investigated and used for the improvement of current protocols.

EPL2.6
Impact of predictive genetic testing for Huntington’s disease (HD), Familial Cardiomyopathy (FCM) and Hereditary Breast and Ovarian Cancer (HBOC) in young people
R. M. MacLeod1, A. Becht2, S. Henriques1, J. Knopp1, R. Nelson1, L. Kerzin-Staurt1; 1Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom, 2University of Manchester, Manchester, United Kingdom.

Introduction
Whilst debate has focused on testing of minors for late onset genetic disorders, less is known about the impact on young people (<25 years) who have had predictive testing often many years before the likely onset of symptoms.

Method
36/61 individuals who had a predictive test for HBOC, HD or FCM, age 15-25, in our Centre, at least 3 months previously, agreed to participate. Telephone interviews with the 36 participants (10 HD, 16 HBOC and 10 FCM) were audiotaped, transcribed and analysed using Interpretative Phenomenological Analysis.

Results
None of the participants expressed regret at having the test at a young age. Participants saw the value of pre test counselling not in facilitating a decision, but rather as a source of information and support. Several reflected it had been difficult to emotionally rehearse the potential outcomes prior to testing and thought this was related to their youth. Differences emerged amongst the three groups in parent/family involvement in the decision to be tested. Parents in HBOC and FCM families were a strong influence in favour of testing, whereas in HD the decision was more autonomous and sometimes went against the opinions of parents/grandparents. Participants from all three groups proposed more tailoring of predictive test counselling to the needs of young people.

Conclusion
Some individuals will benefit from knowing their genetic status in young adulthood. The challenge for professionals is adapting the counselling process to the needs of the young person, with possible emphasis on post test support.

EPL3.1
The impact of NIPD on clinical practice: what do prenatal care providers need to know?
M. Bishop, J. Haydon, D. Latham, J. Tennant, P. Farnndon; 1NHS National Genetics Education and Development Centre, Birmingham, United Kingdom.

New genetic technologies impact on the practice of a wide range of health professionals who may be called upon to offer these tests to their patient groups. One such development is non-invasive prenatal diagnoses (NIPD) which has the capacity to transform prenatal diagnosis. To understand how health professionals in the UK see NIPD impacting on clinical care, interviews and focus groups with professionals from fetal medicine (n=7), clinical genetics (n=12) and midwifery (n=46) were conducted, audio taped and transcribed. Thematic analysis was employed to elicit common views regarding the integration of NIPD into clinical practice and the education needs of the workforce who will deliver this service. All three groups recognised that NIPD will impact on the service they provide, however they believed this new technology should be viewed as supplementing current roles as opposed to changing practice. As such, the identified educational needs focused primarily on the procedural issues associated with NIPD, such as the laboratory process and appreciating the implications of test results. Participants stated that any educational package developed needed to reflect the service model for delivering NIPD to ensure education was relevant to the health professional’s roles. These findings have informed the development of a national competence framework outlining the clinical activities and underpinning knowledge required by health professionals who offer NIPD women. This framework forms the basis of an online educational package which has been developed by the National Genetics Education and Development Centre to support the implementation of NIPD into clinical practice.

EPL3.2
Non-invasive prenatal diagnosis for fetal sex determination - benefits and disadvantages from the service users’ perspective
C. Lewis, M. Hish, H. Skirton1, L. Chitty; 1Genetic Alliance UK, London, United Kingdom, 2Great Ormond Street Hospital for Children NHS Trust, London, United Kingdom, 3Faculty of Health, University of Plymouth, Plymouth, United Kingdom, 4Clinical and Molecular Genetics, UCL Institute of Child Health, London, United Kingdom.

Prenatal fetal sex determination is clinically indicated for women who are at risk of having a child with a serious genetic disorder affecting a particular chromosome. Ultrasound has been the traditional method used, but early fetal sex determination using non-invasive prenatal diagnosis (NIPD) can now be performed using cell free fetal DNA in maternal plasma. The study aim was to assess the views and experiences of service users who had used NIPD for fetal sex determination. A qualitative approach using semi-structured interviews was used. Forty four participants (38 women and 6 partners of
EPL3.3

Using discrete choice experiments to explore stakeholder preferences for non-invasive prenatal diagnosis compared to current invasive testing

M. Huljic, F. Forya, J. Fisher, S. Morris, L. Chitty

Abstracts - European Human Genetics Conference 2012

Non-invasive prenatal diagnosis (NIPD) using cell-free fetal DNA has the potential to bring many positive improvements for prenatal diagnosis. There are, however, many challenges ahead for successful implementation and it is critical that stakeholder preferences and opinions are considered. Discrete choice experiments (DCE) have been widely utilised in healthcare research to examine stakeholder preferences. Participants choose between a series of healthcare options and in doing so reveal their preferences and trade-offs in a way that reflects the complex nature of real-life decisions. Here we describe the use of DCE’s to compare patient and health professional preferences for key attributes of NIPD relative to invasive testing for Down syndrome and for single gene disorders such as sickle cell anaemia and beta-thalassaemia. Participants include: 1. pregnant women and partners attending maternity services for routine pre-natal care; 2. members of relevant patient support groups; and 3. health professionals involved in prenatal care. Women (n=335) and health professionals’ (n=181) views were found to have differing preferences when considering diagnostic tests for Down syndrome. The key attribute for women’s decisions regarding testing was no risk of miscarriage, while for health professionals accuracy and timing were most important. Studies exploring preferences for diagnostic tests for single gene disorders are ongoing. Our results are important for the implementation of NIPD. In particular, women’s strong preference for tests with no risk of miscarriage indicates that test safety has the potential to outweigh other factors in decision making and highlights the need for effective pre-test counselling and informed consent processes.
Abstracts - European Human Genetics Conference 2012

EPL4.1 Evaluation of the efficacy of two models of delivering information about treatment-focused genetic testing among young women newly diagnosed with breast cancer
B. Rahman1,2, J. P. Gopie1,2, R. K. Meiser1,3, M. T. Rogers1, D. Lancaster1, C. Phelps1, E. K. Watson14, A. Clements7, I. Jacobs7, U. Menon1,1,2, J. P. Gopie1,2,1, R. K. Meiser1,3, M. T. Rogers1, D. Lancaster1, C. Phelps1, E. K. Watson14, A. Clements7, I. Jacobs7, U. Menon1,1,2
1Institute of Primary Care and Public Health, School of Medicine, Cardiff University, Cardiff, United Kingdom, 2Centre for Genetics Education, Sydney, Australia, 3Centre for Genetics Education, Sydney, Australia, 4School of Psychology & Counselling, Swansea Metropolitan University, Swansea, UK, 5Department of Medical and Molecular Genetics, University of Western Australia, WA, Australia, 6Peter MacCallum Cancer Centre, VIC, Australia, 7Centre for Genetics Education, Sydney, Australia, 8Westmead Institute for Cancer Research, Sydney, Australia.

Background: Increasingly, young women newly diagnosed with breast cancer with a relevant cancer family history or other high risk features are being offered genetic testing to guide their treatment (Treatment-Focused Genetic Testing ‘TFTG’). In this randomised controlled trial, we evaluate two ways of offering information about genetic testing to young women at diagnosis.

Methods: Women (<50 years) at diagnosis before definitive breast cancer surgery, with either suggestive cancer family history or other high risk features, are invited to participate by their surgeon. After completion of a baseline questionnaire, participants are randomised to receive information about TFTG either: a) in educational material (intervention) or b) at a genetics service (control). Free rapid genetic testing is offered; results are disclosed at a genetics service. Self-report questionnaires assess demographic information, decisional uncertainty about TFTG, surgical and psychosocial outcomes.

The second questionnaire is administered after the intervention; the third and fourth questionnaires are completed 2 weeks after results disclosure, and at 12 months, respectively.

Results: Preliminary results for change in decisional conflict are reported for 62 women who completed the first and second questionnaires, all of whom opted for TFTG. Decisional conflict (DC) decreased following receipt of information about TFTG, with no difference in mean change between the two groups [Intervention N=33, M = -13.8, SD = 20.7; Control N=29, M = -17.6, SD = 25.8], t(60) = 0.642, p = .523.

Conclusions: These early data suggest that both modes of delivering information about genetic testing to women at breast cancer diagnosis are equally effective.

EPL4.2 Psychological outcomes of familial ovarian cancer screening: No evidence of long-term harm
K. E. Brain1, K. J. Lifjord1, L. Fraser1, A. N. Rosenthal1, M. T. Rogers1, D. Lancaster1, C. Phelps1, E. K. Watson1, A. Clements7, I. Jacobs7, U. Menon1,1,2, J. P. Gopie1,2, R. K. Meiser1,3, M. T. Rogers1, D. Lancaster1, C. Phelps1, E. K. Watson1, A. Clements7, I. Jacobs7, U. Menon1,1,2, J. P. Gopie1,2, R. K. Meiser1,3, M. T. Rogers1, D. Lancaster1, C. Phelps1, E. K. Watson1, A. Clements7, I. Jacobs7, U. Menon1,1,2
1Institute of Primary Care and Public Health, School of Medicine, Cardiff University, Cardiff, United Kingdom, 2Centre for Genetics Education, Sydney, Australia, 3Centre for Genetics Education, Sydney, Australia, 4School of Psychology & Counselling, Swansea Metropolitan University, Swansea, UK, 5Department of Humanities and Social Sciences, University of Glamorgan, Pontypridd, 6Department of Surgery, University of Western Australia, WA, Australia, 7Centre for Genetics Education, Sydney, Australia, 8Westmead Institute for Cancer Research, Sydney, Australia.

Background: Ovarian cancer screening for women at increased genetic risk in a large UK study involved 4-monthly CA125 tests and annual ultrasound, with return to routine screening or at longer-term follow-up when cancer was not apparent after return to routine screening or at longer-term follow-up.

Methods: Preliminary results for change in DC are reported.

Results: Preliminary results for change in DC are reported for 62 women who completed the first and second questionnaires, all of whom opted for TFTG. Decisional conflict (DC) decreased following receipt of information about TFTG, with no difference in mean change between the two groups [Intervention N=33, M = -13.8, SD = 20.7; Control N=29, M = -17.6, SD = 25.8], t(60) = 0.642, p = .523.

Conclusions: These early data suggest that both modes of delivering information about genetic testing to women at breast cancer diagnosis are equally effective.

EPL4.3 Are illness perceptions a useful predictor of emotional distress over time in individuals undergoing cancer genetic risk assessment?
C. Phelps1, P. Bennett1, A. Murray1, K. Brunt1, B. Meiser1,3, J. P. Gopie1,2, R. K. Meiser1,3, M. T. Rogers1, D. Lancaster1, C. Phelps1, E. K. Watson1, A. Clements7, I. Jacobs7, U. Menon1,1,2, J. P. Gopie1,2, R. K. Meiser1,3, M. T. Rogers1, D. Lancaster1, C. Phelps1, E. K. Watson1, A. Clements7, I. Jacobs7, U. Menon1,1,2
1Swansea Metropolitan University, Swansea, United Kingdom, 2Swansea University, Swansea, United Kingdom, 3Cancer Genetics Service for Wales, Cardiff, United Kingdom, 4Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom.

Background: It is well recognised that objective risk status rarely predicts psychological responses to risk information. The predictive utility of Leventhal’s self-regulation model in explaining psychological responses to cancer genetic risk assessment was explored.

Methods: Questionnaire data from 331 individuals undergoing cancer genetic risk assessment was analysed to explore associations between baseline psychological variables (taken upon referral) and psychological distress and emotional outcomes one month later whilst waiting for risk assessment results (Time 2) and following the provision of risk information (Time 3).

Results: In illness perceptions (Time 2) of the Illness Perceptions Questionnaire-Revised (IPQ-R) explained 20.3% of the variance in cancer-specific distress at Time 2 and 11.8% of the variance at Time 3, with strong beliefs about the consequences of being at risk of cancer uniquely contributing to psychological distress. The same variables explained 7% of the variance in positive affect at Time 2 with beliefs about greater consequences of being at risk (p=<0.01) and stronger beliefs in screening/surgery being able to control their chances of getting cancer (p=<0.01) making a unique contribution.

Conclusions: These preliminary results suggest that illness perceptions may be useful in predicting distress in individuals undergoing cancer genetic risk assessment.

EPL4.4 The underestimation of impact of prophylactic mastectomy
J. P. Gopie1, R. Timmar1, M. T. Hilhorst1, M. A. M. Mureau2, A. Tibbon1,2,1,2
1Leiden University Medical Center, Leiden, Netherlands, 2Erasmus University Medical Center, Rotterdam, Netherlands.

Purpose: The decision for bilateral prophylactic mastectomy with immediate breast reconstruction (BPM) in BRCA1/2 mutation carriers is a radical decision. The impact on cancer distress, general mental and physical health, and satisfaction with body image, sexuality and the partner relationship was investigated.

Methods: Fifty women opting for BPM completed psychological questionnaires at baseline, 6 and 21 months after surgery. With repeated measures ANOVA the quality of life in time was explored with a prospective design.

Conclusions: Although cancer distress significantly declined, the psychosocial impact of BPM including immediate breast reconstruction should not be underestimated. Particularly, the intimate relationship can be adversely affected. Adaption to the new body image and the impact on femininity and identity may take a long time. Psychological consults should be provided preoperatively as well as postoperatively to catch the patients and partners in need of psychological counseling.

EPL4.5 The impact of risk-reducing hysterectomy and/or oophorectomy in premenopausal women at high risk of endometrial and ovarian cancer due to Lynch syndrome
R. Moldovan1, S. Keating1, T. Clancy1
1Genetic Medicine, University of Manchester, Manchester, United Kingdom, 2Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania, 3Department of Genetics, University of Western Australia, WA, Australia, 4Peter MacCallum Cancer Centre, VIC, Australia, 5Centre for Genetics Education, Sydney, Australia, 6Westmead Institute for Cancer Research, Sydney, Australia.

Background: It is well recognised that objective risk status rarely predicts psychological responses to risk information. The predictive utility of Leventhal’s self-regulation model in explaining psychological responses to cancer genetic risk assessment was explored.

Methods: Questionnaire data from 331 individuals undergoing cancer genetic risk assessment was analysed to explore associations between baseline psychological variables (taken upon referral) and psychological distress and emotional outcomes one month later whilst waiting for risk assessment results (Time 2) and following the provision of risk information (Time 3).

Results: In illness perceptions (Time 2) of the Illness Perceptions Questionnaire-Revised (IPQ-R) explained 20.3% of the variance in cancer-specific distress at Time 2 and 11.8% of the variance at Time 3, with strong beliefs about the consequences of being at risk of cancer uniquely contributing to psychological distress. The same variables explained 7% of the variance in positive affect at Time 2 with beliefs about greater consequences of being at risk (p=<0.01) and stronger beliefs in screening/surgery being able to control their chances of getting cancer (p=<0.01) making a unique contribution.

Conclusions: These preliminary results suggest that illness perceptions may be useful in predicting distress in individuals undergoing cancer genetic risk assessment.
combined methods study to explore women’s experience of such surgery and the impact it had on their cancer worry, general health and menopause-specific quality of life. We sent validated questionnaires to and conducted semi-structured interviews with 15 of the 24 women invited to take part (response rate 62.5%). The results suggest that risk reducing surgery does not lead to significant psychological distress. Women tend not to think or worry much about developing cancer. Women tend to be distressed about the physical and somatic symptoms associated with menopause; their social well-being is somewhat affected, but sexual difficulties are minimal. The 5 major themes identified from the interviews were: motivating factors; taking control; benefits of surgery; physical and emotional costs of surgery; and, experiences of HRT and the menopause. Recommendations from the study include that professionals discuss the menopause, its side effects and HRT in detail prior to surgery.

EPL4.6

The use of an electronic genealogy database in cancer genetic counseling in Iceland
V. Stefansdottir1, O. T. Johannsson1, H. Skirtont1, L. Tryggvadottir1, H. Talinius1, C. Chapmans1, J. J. Jonsson1
1Dept. of Genetics and Molecular Medicine, Landspitali, Reykjavik, Iceland, 2Dept. of Medical Oncology, Landspitali - The National University Hospital, Reykjavik, Iceland, 3Faculty of Health, Education and Society, Plymouth University, Plymouth, United Kingdom, 4Icelandic Cancer Registry, Reykjavik, Iceland, 5The Genetical Committee of the University of Iceland, Reykjavik, Iceland, 6West Midlands Regional Genetics Unit, Birmingham Women Hospital NHS Trust, Birmingham, United Kingdom, 7Landsdipati - The National University Hospital, Reykjavik, Iceland, 8Department of Medicine, University of Iceland, Reykjavik, Iceland.

Background: Pedigrees are key tools in cancer genetic counseling where accurate and comprehensive information is needed for risk assessment. Counselors often have incomplete information. We have adopted the use of an electronic population-based genealogy database to generate a full 3 generation pedigrees.

Materials and methods: From January 2007 to January 2012, over 600 counselees have been seen in the cancer genetic counseling clinic, for 3 or 4 visits each. During the intake the counselee signs a consent for tracing her family through her DNA. The pedigrees are held within the Genealogical Society of the University of Iceland (GCU) and the Icelandic Cancer Registry. The GCU holds accurate information on at least all Icelanders born after 1840. As cancer diagnosis is recording is mandatory, the Cancer Registry provides very accurate information.

Families with pedigrees in the clinic are 265. Pedigrees made during intake, include 10-25 individuals and the electronic pedigrees 40 - 2000 individuals, most commonly 3-500. Families with the BRCA2 founder mutation are 42 and BRCA1 families 5. Tested individuals are 541 resulting in over 107 BRCA2 and 14 BRCA1 carriers.

Conclusion: In our experience this method adds considerable information. No disapproval on the behalf of the families have been noticed. This is especially important in the light of the policy of many cancer registries to only release individual information based on informed consent. We argue, in principle, that the consent is on the family group that conserved consent should suffice. Such a policy would be consistent with other sharing of individual’s genetic pedigrees, between health care facilities.

EPL5.1

Self- and Other-Oriented Reassurance in Telegenetic Counselling
S. Sarangi1, O. Zayts1
1Cardiff University, Cardiff, United Kingdom, 2The University of Hong Kong, Hong Kong, China.

This paper focuses on telephone-mediated genetic counselling in Hong Kong where nurses contact mothers whose newborns have been diagnosed with a mild hereditary disorder (G6PD deficiency, commonly known as fakism). Since this condition is preventable through avoidance of certain food and medication, it becomes imperative that when mothers are given the ‘affected’ status of their child, reassurance of the manageability of the condition ensues.

Our paper draws from 50 transcripts of audio-recorded telephone counselling encounters as part of a funded study. We use thematic discourse analysis (Roberts and Sarangi, 2005) to demonstrate that the ‘affected’ status of the child is always delivered first, which is immediately and briefly mitigated before explanations about causes and consequences of the condition are offered. The delivery of ‘good news’ in the form of reassurance follows a particular structural pattern: typically advice is offered about lifestyle practices that mothers must adhere to in order to avoid the inherited risks associated with the condition. We argue that this ‘positive’ framing of advice allows nurses not only to reassure mothers that they are able to manage their child’s condition, but also to become self-reassured that there is manifest uptake of the advice by the mothers (e.g. via confirmation check questions; recycling of information). We examine how the nurses orient themselves to the mothers’ existing knowledge of the condition vis-à-vis identifiable reassurance trajectories. In conclusion, we discuss the ways in which the reassurance trajectories are a specific feature of the telephone mode of counselling.

EPL5.2

Profile of genetic counsellor and genetic nurse practice in Europe
H. Skirtont1, C. Cordier2, D. Lamberti3, H. Huster-Csurgai4, V. Voelckel5
1Faculty of Health, Education and Society, Taunton, United Kingdom, 2University Hospital of Strasbourg, Strasbourg, France, 3Our Lady’s Children’s Hospital, Crumlin, Ireland, 4Sahlgrenska University Hospital, Gothenburg, Sweden, 5La Timone Hospital, Marseille, France.

The opportunities for genetic nurses and genetic counsellors to work professionally in Europe have varied according to the country of practice, the health service structure and educational opportunities. The European Society of Human Genetics is supporting development in these two professions through the promotion of a new European registration system. To inform the design of a European Master level curriculum and registration process, we undertook an online survey of 216 practitioners working in 19 European countries to ascertain current areas of practice, legal regulation, collaborative working and clinical responsibilities. Of the respondents, 82.7% were genetic counsellors and 9.9% were genetic nurses. It was a legal requirement to work with a medical colleague for 40.8%, while another 32.1% always did so, however many of the remaining respondents were unsure about the legal obligation in this regard. The majority of respondents stated that they alone or with a medical colleague took responsibility for making the first contact with the family (87.9%) drawing the pedigree (85.2%), explaining a genetic test to the patient (79.5%) and providing psychological support through the testing process. Over 81% managed some cases without the input of a medical doctor. These findings indicate that genetic nurses and counsellors in Europe are working autonomously and are making a substantial contribution to the care of patients. However with a specific registration system operating in only four countries (United Kingdom, Netherlands, France, Israel), a unified European registration system is required to ensure comparable standards of education and competent practice operate across countries.

EPL5.3

Rational and reasonable: requests for genetic testing of children
I. Holme1, G. Crawford1, A. Fennwick1, A. Lucassen2
1Southampton University, Southampton, United Kingdom.

Professional guidelines state that predictive genetic testing of children for adult onset conditions should generally be delayed unless the result would affect medical management of the child or until the child can make a decision about testing for themselves. Based on 50 semi-structured interviews with UK genetic service professionals and families who have spoken with genetic services about childhood predictive genetic testing, this paper will explore the reasons given by HCP and parents for testing against the guidelines. These include parental anxiety about the unknown status of their child; the parent’s right to know and decide what and when to tell their children; and the need to maintain a positive relationship with parents. In examining these accounts we explore how the ‘reasonable parent’ is constructed to argue for or against testing outside of the guidance. The paper concludes by exploring the implications for genetic service current practices.

EPL5.4

Assessing the effects of genetic counseling for people with serious mental illness: findings of the first randomized controlled trial
J. Austin1, C. Ripmani1, A. Inglis1, A. Ringrose1, J. Cheek2, W. Hines1
1University of British Columbia, Vancouver, BC, Canada, 2Vancouver Island Health Authority, Victoria, BC, Canada.

Serious mental illnesses (schizophrenia, bipolar and schizoaffective disorder) cumulatively affect ≥2% of the population. They are complex disorders (typically arising as a result of the combined effects of genetic and environmental factors) for which no genetic testing is clinically available. Previous work shows that people with serious mental illness want genetic counselling and that few have had it, and no studies had examined its effects in this population. We conducted the first randomized controlled trial to test the effects of genetic counseling among people with serious mental illness. We hypothesized that as compared to a control intervention or a waitlist group, genetic counseling would: decrease internalized stigma, increase perceived control and knowledge about mental illness, and facilitate more accurate risk
EPL5.5 Assessing wellbeing in women caring for children with Duchenne or Becker muscular dystrophy
L. L. Peay, K. Kinnett, B. Meisler, A. Tibber.
1Parent Project Muscular Dystrophy, Richmond, VA, United States, 2Leiden University Medical Center, Leiden, Netherlands, 3Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States, 4Prince of Wales Clinical School, University of New South Wales, Sydney, Australia.

Background: Caring for children with progressive disorders places significant demands on mothers. This study assesses perceived needs, motivations, and wellbeing of mothers of offspring with Duchenne or Becker muscular dystrophy (DBMD). We examine the effects of mothers’ carrier status, self-concept, worry, caregiver burden, perceived control, and coping efficacy on adaptation.

Methods: Mothers were recruited through advocacy organizations, a DBMD registry, and from clinic populations to complete one online survey each year for five years. This abstract includes data from the first 124 participants in the first survey. We anticipate reaching the target sample (over 200) by May 2012.

Results: Preliminary results are reported for 124 respondents. 55.6% of affected children were ambulatory. Mothers endorsed highest needs for ways to deal with uncertainty about their child’s future (50% med/high); specific ways to cope with being a mother of a child with DBMD (57% med/high); specific ways to manage fears (55% med/high); and better ways to get needed support (55% med/high). The predictor variables dispositional optimism (r=.427, p<.001), self concept (r=-.384, p<.001), coping efficacy (r=.531, p<.001), perceived control (r=.286, p<.001), perceived burden (r=-.273, p<.001), and self-efficacy (r=-.309, p<.001) were significantly correlated with mothers’ adaptation. Backwards elimination regression was used to assess the ability of the variables to predict adaptation. The preliminary model showed that dispositional optimism (β=.191, p=.041) and coping efficacy (β=.424, p<.001) explained 30.7% of the variance in adaptation (F[4,111] = 26.11, p<.001).

Conclusions: These early data suggest that interventions targeting coping efficacy may improve the adaptation of mothers of individuals with DBMD.

EPL5.6 Interventions and Outcomes for Inherited Retinal Dystrophy: A Qualitative Examination
R. Combs1, G. Half, M. McAllister, K. Payne4, S. Downes1, J. Lowndes1, A. Moore1, S. Devery1, G. Wright1, S. Ramsden1, G. Black1, 1University of Manchester, Manchester, United Kingdom, 2Central Manchester University Hospital (NHS Foundation Trust, Manchester, United Kingdom, 3Cardiff University, Cardiff, United Kingdom, 4Oxford Eye Hospital, Oxford, United Kingdom, 5Moorfields Eye Hospital, London, United Kingdom.

The needs and outcomes of Inherited Retinal Dystrophy patients are not fully understood. Furthermore, there is a disparity between the way genetic ophthalmology services are delivered in the UK. This research used thematic qualitative analysis to identify and describe the needs and outcomes experienced by a set of UK patients and their families (n=20). Extensive prior qualitative research has identified five outcome domains in clinical genetics: Behavioural Control, Cognitive Control, Decisional Control, Emotional Regulation and Hope, referred to as Empowerment. Yet, the relevance of these five domains to inherited eye disease is unknown. The data were analysed through the Empowerment framework to determine what attributes, if any, differentiate retinal dystrophy patients from other clinical genetics patients.

The research found that patients’ desired outcomes related to medical, psychological and practical categories of need, most of which line up closely to the Empowerment domains. However, three themes discovered in the data do not have a corresponding Empowerment outcome measure: Information about benefits, Adaptations and Mobility. Thus, a new outcome domain, Independence, defined as “The ability to participate fully in social, family, economic, educational and/or public life”, is proposed to reflect the desired practical outcomes. Independence is a logical outcome for coping with a potentially disabling condition. It may not apply to genetic conditions that are non-disabling, which could account for its absence in previous studies. This data will be used to design and evaluate an optimal care model for genetic retinal diseases.

EPL6.1 Providing written information as an aid in Genetic Counseling - dispensable or helpful?
C. Walter1, H. Berth1, F. Kreuz1, K. Schendel-Kaiser1, H. Schindelhauer-Deutsch1.
1Association Psychosocial Aspects of Human Genetics, Hamburg/Saar, Germany, 2Institute of Human Genetics, Freiburg, Germany, 3Association Psychosocial Aspects of Human Genetics, Dresden, Germany, 4Association Psychosocial Aspects of Human Genetics, Freiburg, Germany.

Providing written information as an aid in Genetic Counseling - dispensable or helpful?
Written information can complement and aid genetic counseling. This information allows patients to re-ad the information presented during counseling thus strengthening and deepening it. An appendix with additional addresses and consultation possibilities helps to increase the options for becoming fully informed. This can be of great importance, in particular when the genetic counseling entails difficult decisions.

Since 1996 the Association for Psychosocial Aspects of Human Genetics (VPAH eV) has been publishing the brochure „Bad news after prenatal diagnosis - A companion brochure for women and couples who consider termination of pregnancy“. The brochure enjoys ever-increasing demand, and the VPAH has now published the 13th updated edition. In addition, the brochure has also been available online for several years. The poster shows the positive reception history that the booklet has seen since its inception, and which has reached a preliminary high with the enactment of the Gene Diagnostics Law in Germany. In addition, the poster shows the recipients of the brochure by professional category, as well as the regional distribution in Germany and in Austria.

Finally, an outlook is given on further patient brochures that the VPAH e.V. publishes or issues or plans to publish. These [will] treat the use of predictive tests in the context of HNPPC, breast cancer or neurological diseases.

EPL6.2 Communicating familial breast cancer risks: risk presentation formats and women’s preferences
L. Heneman1,2, J. Van Asperen1, J. C. Oosterwijk1, F. H. Minko1, L. Claassen2, C. F. Ooijen-Vermey1, R. D. M. Timmermans1,2.
1UY University Medical Center, Amsterdam, Netherlands, 2EMGO Institute for Health and Care Research, Amsterdam, Netherlands, 3Leiden University Medical Center, Leiden, Netherlands, 4University Medical Center, Groningen University, Groningen, Netherlands.

Background: Besides the effectiveness of risk communication formats, it is also important to consider patient preferences to improve patient-centred care. This study assessed women’s preferences and satisfaction with different risk presentation formats.

Methods: 279 unaffected women with a breast cancer family history were allocated to receive one of five additional risk consultations after standard genetic counseling, in which breast cancer risks were presented as: 1) percentages (X%); 2) frequencies (X out of 100); 3) frequencies and graphical format (10x10 human icons); 4) lifetime risk and age-related risk in numerical format; 5) lifetime risk and age-related risk in both numerical and graphical format. Preferences and satisfaction were assessed 2-weeks follow-up.

Results: Both numbers and words (37%) and numbers only (26%) were preferred most. Of the numerical formats, 55% preferred percentages. Women who had received graphical displays favoured graphical displays more than other women (p<.001). This preference was lower for women who were lower educated compared to those higher educated (5% vs.41%). The preference (73%) for hearing both lifetime risk and 10 year age-related risk. This preference was not affected by experience with the format. Men who had received graphical displays favored graphical displays more (55% med/high). The predictor variables dispositional optimism (β=.424, p<.001), coping efficacy (β=.531, p<.001), perceived control (β=.286, p<.001), perceived burden (β=-.273, p<.001), and self-efficacy (β=-.309, p<.001) were significantly correlated with mothers’ adaptation. Backwards elimination regression was used to assess the ability of the variables to predict adaptation. The preliminary model showed that dispositional optimism (β=.191, p=.041) and coping efficacy (β=.424, p<.001) explained 30.7% of the variance in adaptation (F[4,111] = 26.11, p<.001).

Conclusions: These early data suggest that interventions targeting coping efficacy may improve the adaptation of mothers of individuals with DBMD.
The generation of clinically significant genetic data during research studies raises a number of ethical issues about the disclosure of this information to research participants and their family. Little is known about individuals’ experiences of receiving research results. This qualitative interview study investigated research participants’ (n=10) or their nominated next of kin’s (n=15) experiences of receiving notification that (genetically) significant information is available following the proband’s participation in the Australian Ovarian Cancer Study (AOCs). This paper describes the emotional impact of receiving a notification letter, interviewees’ views about the person these variables posed, and their intentions to receive results within four categories of findings ranging from medically actionable to variants of unknown significance. 294 participants indicated a preference to learn their genome

EPL.6.3 The Signal-Trial: Evaluation of a Checklist to Improve Communication about Psychosocial Problems in Cancer Genetics

W. Eijgenda, 1, N. K. A. Aaronson, 1, D. E. E. Hahnl, 1, I. Kuhl, 1, G. V. Sihharta, 1, M. G. E. M. Ausems, 1, E. M. A. Blinker; 1, The Netherlands Cancer Institute, Amsterdam, Netherlands, 2, University Medical Center Utrecht, Utrecht, Netherlands.

Introduction

Approximately 20% of individuals undergoing oncogenetic counseling with/without DNA-testing experience clinically relevant levels of distress. Within the counselling session, information provided is mostly biomedical and provider-driven. The use of a checklist, completed by counsellors prior to the counselling session, might facilitate discussion of psychosocial issues. The aim of this trial is to evaluate the use of a checklist as an aid in 1) facilitating communication, 2) increasing counselors’ awareness, and 3) improving the management of psychosocial problems.

Methods

In total, 260 individuals undergoing oncogenetic counseling at the family cancer clinics of the NKI-AVL (Amsterdam) or the UMCU (Utrecht) will be randomised to either a group whereby the results of the checklist, completed prior to the counselling session, are shared with the genetic counselor (intervention), or a group where the results of the checklist are not used within the counselling (control). The counselling sessions are audiotaped for purposes of content analysis.

Results

Preliminary data on the first 98 participants indicate that counsellors experience problems in the following psychosocial domains: living with cancer (95% of the counsellors), genetics (67%), children (51%), family, and social issues (30%), emotions (24%), and practical problems (14%). Whether these issues are more frequently addressed in the intervention group compared to the control group will be evaluated when the study matures.

Discussion

If proven effective, the use of a oncogenetics-specific psychosocial checklist problem collection can be recommended as an aid to facilitating communication, increasing counselors’ awareness, and improving the management of psychosocial problems within cancer genetics.

EPL.6.4 Disclosure of information within French families with BRCA mutation

Disclosure of genetic information to first-degree relatives in families with a genetic predisposition was studied in two French regions. Data for 64 women were collected (24 index cases, 40 relatives with the BRCA mutation). Concerning disclosure to children over 10, 90% of these had been informed (100% of daughters and 96% of sons) and 46% underwent genetic screening. For siblings, all of sisters and 98% of brothers had been informed and 44% underwent genetic screening. 85% of parents had been informed; 59% of mothers and 44% of fathers had undergone genetic screening.

Concerning age of the communicant, incomplete information to first-degree relatives was observed in 14% of those above 60 years of age, 11% in the 50/60 age group, 5.5% in the 40-50 years, and 0% in those between 30 and 40 years. Complete information of the relatives was also more observed when the communicant was index case (96% versus 92.5% for relatives), and was symptomatic (97% versus 85% for asymptomatic women). The reasons for non-disclosure of the information to relatives included family dispute (33%), wish not to worry others (50%), or no particular reason (17%).

This study showed that disclosure of the information is well done for children and siblings, whatever the sex, and less constant for parents. Disclosure of the information was better in young and/or symptomatic women. The reasons for not providing the information were not related to poor understanding or difficulties reiterating the information to members of the family.

EPL.6.5 The impact on self and family of receiving genetic test results following participation in the Australian Ovarian Cancer Study (AOCs)

N. Hallowell, 1, K. Alspaugh, 1, M. Gleeson, 1, D. Bowtell, 2, G. Mitchell, 1, 1, The Australian Ovarian Cancer Study Group; 1, 1, The Ovarian Cancer Study Group; 1, 1, FMA Foundation, Cambridge, United Kingdom, 1, 1, Peter MacCallum Cancer Centre, Melbourne, Australia, 1, 1, Monash University, Melbourne, Australia, 1, 1, Westmead Institute for Cancer Research, University of Sydney and Millennium Institute, and Departments of Gynaecological Oncology, Westmead Hospital, NSW, Australia, 1, 1, Westmead Institute for Cancer Research, University of Sydney and Millennium Institute, and Departments of Gynaecological Oncology, Westmead Hospital, NSW, Australia.

The volume of data generated for a single individual and the wide range of findings from whole genome sequencing raise critical questions about the return of results and their potential value for end-users. We conducted a mixed-methods study of 311 participants in the ClinSeqTM study to assess attitudes toward learning results, perceived opinions of valued others, and beliefs about variables posed and intentions to receive results within four categories of findings ranging from medically actionable to variants of unknown significance. 294 participants indicated a preference to learn their genome
sequencing results and six were unsure. Most often participants cited disease prevention as their reason, including intention to change their lifestyle behaviors. A third expressed a general desire to know, reflecting those who generally valued information and others who sought to understand the potential implications of BRCA1/2. Participants had positive attitudes, strong perceived social norms and strong intentions to learn results overall, although there were significant mean differences among categories of findings. Attitudes and social norms formed edly actionable and carrier results were most highly rated. Strong intentions were motivated by confidence to use the information to prevent future disease and belief in the value of information. It behooves investigators to facilitate participants’ desire to learn more genetic information and to support the development of shared decision-making. To promote realistic expectations for its clinical utility and perceived personal utility.

EPL7.2 Introducing high-throughput sequencing in the clinical setting - but what will patients think?
A. Soulier, S. Leonard, S. Julia, A. Cambon-Thomsen; UMR 1027, Inserm, Université de Toulouse - Université Paul Sabatier-Toulouse III, Épidémiologie et analyses en santé publique : risques, maladies chroniques et handicaps, Toulouse, France.

Developments in genetics, in particular the advent of high-throughput sequencing technologies, are expected to have a profound impact on health and healthcare, yet much remains to be learned about how people - present or potential recipients of such care - perceive and frame these expectations. What do laypeople anticipate? How are expected changes understood and portrayed? Are these expectations grounded in their previous experiences of clinical care or do they reflect principles and values attached to medicine? In order to explore these questions we carried out a series of 8 focus groups (a total of 64 participants) in three categories: laypeople, research participants and members of patient organisations. This work was done in the context of the European Techgene project, which aimed to develop high-throughput tests for clinical use. The results of these focus groups gave insights into the types of results that people are willing to receive; the desire for a new kind of physician-patient relationship and the differences between the clinician’s and the layperson’s perspectives on the distinction between clinical and research. This research provided an opportunity to confront ethical theories about these new technologies with empirical data to test ethical reasoning in context and to allow it to be grounded in the values and concerns of service users. Such empirical ethical analysis is crucial for the development of guidelines that is applicable to the experiences and expectations of those who will use these emerging genetic technologies.

EPL7.3 Rapid genetic testing for BRCA1/2 genes: How could oncogenetic counseling deal with an urgent choice?
E. Rozzaboni, L. Cortesi, G. Tazzoli, M. Pignatti, A. Baccarani1, A. Andreotti, E. De Matteis, V. Medici, M. Federico; 1Department of Oncology, Haematology and Respiratory Disease, Modena, Italy; 2Department of General Surgery and Surgical Specialties, Modena, Italy; 3Department of Plastic and Reconstructive Surgery, Modena, Italy.

The life-time risk to developing breast cancer in BRCA1/2 mutation carriers is 43% and 46%, respectively, and ten years risk of developing a contralateral breast cancer is 25%. Risk reducing bilateral mastectomy (RRBM) can reduce breast cancer risk in BRCA1/2 mutation carriers up to 95%. Rapid genetic testing is now available for newly diagnosed breast cancer before having surgical treatment. To guarantee autonomous and informed decision we elaborated a new model of oncogenetic counseling focused mostly on psychological aspects and surgical counseling. Since 2008, at the Modena Centre for Hereditary Breast and Ovarian Cancer (Italy) has been performed a rapid genetic testing for women with hereditary profile at the time of breast cancer diagnosis. The entire oncogenetic counseling path is completed within three weeks. So BRCA1/2 carriers have the opportunity to choose for RRBM. About 71 mutational analyses were performed and 25 (35%) patients were mutated. Among the 25 patients with a positive result, 13 (52%) had a RRBM at the surgery time for the breast cancer. A psychological follow-up was performed in all patients undergone RRBM. After 12 months from the intervention, patients showed an overall good emotional adjustment and satisfaction with their decision whereas only in a minor case sexual and psychological problems occurred. Our study demonstrated that rapid genetic testing with RRBM in women with a hereditary profile significantly improved the choice of RRBM and that it is fundamental to guarantee both multidisciplinary counseling and psychological follow-up to these women.

EPL7.4 The impact of diagnostic developments in prenatal diagnosis; a psychological challenge
S. Biedijk, G. Oudejans, J. Hunfeld, S. Le Sage, R. Galjaard, A. Tibben; Erasmus Medical Center, Rotterdam, Netherlands.

The introduction of new techniques for screening of genetic anomalies such as whole genome microarray analysis (WGA) into the clinic of prenatal diagnosis ensures a number of psychological challenges for pregnant couples. WGA generates more information about the current and future health of the unborn child than conventional karyotyping (CK), the gold standard for genetic chromosome analysis in prenatal diagnosis. One of the one hand couples need to determine the extent of information they wish to receive about the (future) health of their unborn child. On the other, professionals may withhold or disclose information in the interest of the health/future autonomy of the unborn child. Our experience thus far is that WGA generates more probabilistic results (e.g. increased risk of learning disabilities) than CK. Probabilistic information is more difficult to grasp than information about actual presence of an anomaly. Moreover, probabilities represent an uncertainty that impedes decision-making. A best possible decision about the course of desired pregnancy needs to reflect consistency with personal values and considerations in order to be processed adequately emotionally.

Thus, the broadening of knowledge about the current and future health of the unborn child implies that pregnant couples will have to anticipate a variety of outcomes, determine the extent of information they wish to receive, interpret the meaning of probabilistic results and assimilate the results with personal values and considerations into their decision about the course of their desired pregnancy. Health care professionals must attend each of these themes in the pre- and post test counselling.

EPL7.5 Close parental relatedness identified by SNP microarray - challenges for genetic counselling
R. Forbes1, P. Borry2, T. Burgess1, D. Amor3, Z. Stark1,2; 1Victorian Clinical Genetics Service, Royal Children’s Hospital, Melbourne, Victoria, Australia; 2Victorian Clinical Genetics Service Pathology, Cytogenetics, Royal Children’s Hospital, Melbourne, Victoria, Australia; 3Murdock Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia; 4University of Melbourne, Department of Paediatrics, Melbourne, Victoria, Australia.

Introduction
Molecular karyotyping by microarray is recommended as ‘first tier’ testing in evaluation of individuals with intellectual disability, developmental delay, multiple congenital abnormalities, and autism spectrum disorders. SNP microarrays extend diagnostic scope beyond detection of submicroscopic pathogenic copy number changes by also revealing uniparental disomy, chromosomal mosaicism and long continuous stretches of homozygosity (LCSH) creating the potential to determine previously undisclosed inestimable relationships, posing legal and ethical challenges for genetic services.

Methods & Results
SNP microarray was performed on 11000 consecutive samples. LCSH was detected in 1156 samples (10.5%). Close parental relatedness (greater than 6.25% LCSH) was detected in 322 samples (3%), with 4 samples showing homozygosity levels ≥20%, consistent with a first-degree relationship between parents. Two known cases of first-degree unions were detected with homozygosity levels of 17.3% and 19%.

Discussion
Identification of close parental relatedness poses unique ethical and legal challenges for genetic services. Can we reliably differentiate between extensive LCSH arising from incestuous relationships and consanguineous unions over several generations? How these findings should be reported to avoid inappropriate or sensitive disclosure whilst fulfilling legal and ethical obligations, protect the child’s right to privacy, whilst ensuring medically relevant information is available is complex. We will present the approach our service has developed to deal with results indicating close parental relatedness. Next generation microarrays are likely to combine both the CGH and SNP platforms. These issues will arise with greater frequency, necessitating the development of specific guidelines.

EPL7.6 Criteria for responsible introduction of genome-based-technologies and information into public health care
H. C. Howard1, E. Swinnen2, K. Douw3, H. Vondeling1, J. Cassiman4, A. Cambon-Thomsen2, P. Borry5; 1University of Basel, Basel, Switzerland, 2KULeuven, Leuven, Belgium, 3University of Twente, Enschede, Netherlands, 4INSERM, Université de Toulouse 3 Paul Sabatier, Toulouse, France.

Abstracts - European Human Genetics Conference 2012

www.eshg.org

EMPAG Plenary Lectures

425
With the incredible advances in genome sequencing over the last decade, there has been a shift towards studying more common complex disorders. The integration of this information into the health care setting has proved to be much more problematic than for monogenic disorders. Furthermore, with the 1000$ genome just around the corner, there is a strong push for the uptake of additional genomic testing. Although laudable, these advances also bring with them a slew of ethical and social issues that challenge the normative frameworks used in clinical genetics until now. With this in mind and considering a previous report from the Dutch Health Council, we outline herein five principles that should be considered in order to introduce genome-based-technologies and information (GBTI) into public health.

1) Their introduction should be based on a solid scientific foundation.
2) GBTI introduced into the health care system and financed by public funds should be focused on significant health problems.
3) The advantages of introducing and offering GBTI should outweigh the disadvantages.
4) The autonomy of patients, and individuals in general, must be respected.
5) The offer of GBTI funded from public sources should be justified in the context of the overall healthcare budget.

In families with Huntington’s Disease (HD), family dynamics are often unfavorable for the healthy psychological development of children. In a recent study, we found that persons who grew up with a parent with HD had been exposed to more adverse experiences in childhood than the general population. This may have life-long negative consequences; we found that adults with a parent with HD have poorer mental health and more fear of intimacy and abandonment than the general population.

Recently, in the Netherlands, a meeting with professionals (psychologists, social workers) was held, to explore the nature and extent of problems that professionals encounter in their work with HD families. It was agreed that HD families present with specific difficulties concerning parents and children. Adequate support can not always be given, because couples may not be open for support with child rearing, and because existing support is not tailored to the needs of HD families.

Professionals working in Clinical Genetics, where persons apply for predictive testing and receive counseling on reproductive options, may have an opportunity to address parenting issues in an early stage, before neurological diagnosis of HD and before problems with parent-child interactions occur. In this workshop, we will exchange experiences with parent-child issues in HD families, and with existing forms of support. Hopefully, we can cooperate in a search for more adequate, specialized programs for prevention and intervention, so that children who are growing up in HD families now and in the future have optimal chances of becoming stable adults.

Actual constraints and better awareness of critical factors underlying psychosocial based interventions had increased needs, and doubts, about genetic counseling efficacy and effectiveness. Further from the ethical foundations of genetic counseling importance and simple experience-based evidences, there is still a huge gap on empirical validation of genetic counseling interventions and still low number on meta-analytical results are conclusive. We had advocated on several contexts the need for substantial evidences about efficacy and efficiency of genetic counseling interventions and about better understanding of interview skills and programs structure specific impacts. Based on this point of view, it is proposed a model for future research on genetic counseling clinical research based on known guidelines adapted to this context.

Aspects related to frequent difficulties on randomized controlled trials as: 1. Manualization of interventions respecting broad literature reviews and clinical opinions; 2. Sampling aspects envisaging minimum bias; 3. Aspects concerned with proper control groups; 4. Sophistication of methodological design; 5. Problems with outcome measures; 6. Statistical aspects to quantify counselling effects; 7. Concerns will long term effects, acceptability and robustness of interventions, are addressed on this workshop and specific research contingencies are reflected.

Guidelines are operationalized and explained on two levels of discussion: past relevant research examples and based on ongoing or future participant’s projects. Participants will be invited to share their clinical research dilemmas in order to enable solutions for future research.
EP1 Psychosocial issues in Neurodegenerative diseases

EP01.01 The challenge of diagnosis and counseling for intermediate alleles in Huntington's disease: a clinical example

A. Van Tongerloo1, P. Santens2, R. Close3, A. De Paepe4; 1Dept. of Medical Genetics, University Hospital Gent, 9000 Gent, Belgium, 2Dept. of Neurology, University Hospital Gen, 9600 Gent, Belgium.

In presymptomatic testing for Huntington's disease (HD), counsellors expect to receive a clear cut result about their carrier status. However, we are increasingly confronted with counseling dilemmas related to the presence of intermediate (IA) or reduced penetrance (RP) alleles, of which the individual clinical outcome is more difficult to predict than for full penetrance alleles. Moreover, these alleles can expand into full penetrance alleles upon transmission, which has specific disease risk implications for the offspring. We present a family in which the index patient, a 45-year-old man, was clinically diagnosed with HD and shown to carry a HD allele with 43 CAG repeats. Remarkably, he was the youngest in a sibship of nine, with no other affected individuals in the family. His father, who died at age 78, reportedly showed aggressive behavior throughout his life but the diagnosis of HD had never been suspected in him. His mother died at age 77 without signs of HD.

Subsequently, six siblings requested presymptomatic testing: three showed a normal molecular test result, although, in two of them, the pre-test neurologic evaluation was inconclusive regarding the possibility of early signs of HD; three other sibs had an IA of 34 CAG. The clinical history of the father suggested that, most likely, he also carried a 34 CAG allele and that expansion occurred in the index patient. This case illustrates the unusual segregation and counseling issues that may arise in families segregating an intermediate HD allele.

EP01.02 Psychological effects of presymptomatic DNA testing for Huntington's Disease. An Italian research.

S. Serpentini1, L. Dal Sassor2, E. Pasquin1, G. Dalchobro2, F. Cesca1, S. Radovic1, M. Balestrieri2, F. Cerci2, G. Damante1, R. Lonigro2; 1Istituto di Genetica, A.O.U., Udine, Italy, 2Dipartimento di Scienze Agrarie, Università, Udine, Italy.

The communication process between parents and their affected children regarding a genetic condition and its prognosis is rarely explored. The aim of this study was to investigate this complex communication process about the diagnosis and prognosis of presymptomatic Huntington's disease (HD) carriers and non-carriers 6-12 months after the genetic testing. Methods: From May 2009 to October 2011 we evaluated 18 presymptomatic subjects resulted carriers of HD gene and 18 non-carriers. The instrument used is the Psychological General Well-being Index (PGWBI).

Results: Both the 18 subjects resulted carriers (N:18; M:5, F:13; mean age: 47,35, range age: 26-75) and the 18 subjects non-carriers (N:18; M:7, F:11; mean age: 45,93, range age: 26-69) don't show any significant difference from normative data, but the carriers mean scores are lower than the normative scores; moreover the Global Index Score indicate a moderate level of distress (71,37). The Student T-test comparison between carriers and non-carriers shows statistically significant differences in Vitality scale (11,78 versus 14,56; p<0.01) and in the Global Index Score (71,37 versus 82,33; p<0.05).

Conclusions: The results of the present study indicate that the presymptomatic HD gene carriers in comparison with non-carriers 6-12 months after testing present a significant lower vitality and a significant worse level of the global index of well-being. The research, despite the limited sample, highlights a psychological critical situation in presymptomatic HD gene carriers and suggests the importance of specific psychosocial interventions. Further studies are needed in order to explore in a longitudinal perspective how the communication of HD gene carrier condition impacts on the psychological well-being and the quality of life of the individuals involved in genetic counseling process.

EP01.03 Genetic conditions: a challenge for couple/ family therapy

A. Leonardob,c; 1Hospital Santa Maria, Lisboa, Portugal, 2POESIS - Portuguese Association of Couple and Family Psychoanalytic Psychotherapy, Lisboa, Portugal.

As a psychologist working and learning with genetics patients in a central hospital, I have become aware of the extreme importance of the family therapy in addition to the individual. During my clinical practice, I have realized that genetic conditions can put family dynamics at risk. For instance, the termination of pregnancy after prenatal diagnosis. As Klass (1988) pointed out, this experience can have an effect of estrangement between the couple. We know by experience that women often complain about their partners who seem to have no grief feelings. Peppers and Knapp (1980) called our attention to the tremendous differences between women and men mourning processes and named it Incongruent Grief. If we take this knowledge to our practice we will be able to help the couple to recognize these differences in a gold instead of a scary way.

What about the costs of a diagnosis/predictive testing kept in secret? We will discuss a case of a woman who decided not to confess her diagnosis of Familial Amyloidotic Polyneuropathy to her husband, and how that decision put the couple bonds at risk. We will compare this case with another woman who asked for family support the diagnosis of CADASIL. Accepting that the secret was a bigger risk, than the disclosure, for her family bonds, she decided to share the diagnosis with her partner and siblings.

We will discuss the pros of couple/family therapy in addition to the individual. Examples will illustrate the impact of genetic conditions over the family dynamics.

EP2 Communicating Genetic information

EP02.01 The Process of parental disclosure in Duchenne Muscular dystrophy (DMD)

P. Dasani; Cardiff University, Cardiff, United Kingdom.

The communication process between parents and their affected children regarding a genetic condition and its prognosis is rarely explored. The aim of this study was to investigate this complex communication process about the diagnosis and prognosis of Duchenne muscular dystrophy. To explore this the researcher conducted 1) 6 interviews with parents of affected individuals and 2) 4 interviews with Health professionals involved in the care of the affected boys. This data was transcribed and coded for thematic analysis. We identified the appropriate method of communication, the role of family culture, key issues raised by such communication needs and appropriate source. The most appropriate method of communication was indicated as a ‘drip feed’ approach using language suited to the child’s development. The family culture towards communication played an enormous part is how comfortable they felt discussing difficult issues. The key issues raised during this process were mutual protection, a tension between autonomy and protection and parental responsibility.
"prenatal trisomy 21", and 17 to the issues "fragile X syndrome", "infertility pairs", and "unknown syndrome", respectively. Reflecting the gathered reports with special regard to already existing guidelines we developed a catalogue of criteria, which adequate reports should fulfill. We classified the criteria in general, formal and technical criteria, content and counseling specific criteria. Additionally, we established a checklist for writing a "successful" genetic report, well structured according to topics like general requests, necessary information, anamnesis, medical reports, results of investigations, contents of the counseling, conclusion. Both, the checklist and the catalogue of criteria, could be useful tools for writing adequate for client reports. Moreover, they might be helpful in establishing a reasonable quality management of genetic counseling.

EP02.03
Using conversation analysis to improve genetic counseling: An example regarding counseling of fellow healthcare personnel

G. Overbeck, B. R. Dinesen1;
1Department of Scandinavian Studies and Linguistics, University of Copenhagen, Copenhagen, Copenhagen, Denmark, Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark.

Background and aim: Conversation Analysis (CA) is a qualitative method where recurring speech-patterns are noted and broken patterns identified. For instance if the patient change turn-design from minimal responses to long responses, and thereby change the semi-allocated turn-taking system. The analysis of the transcription is data-driven, and therefore inductive. CA of recorded consultation might improve provider awareness of mechanisms of communication.

Method: In 4 of 10 recorded counseling sessions the patient had a profession or an education within the health sciences. In one of these sessions excerpts were transcribed and sequentially analyzed. The CA examines how the genetic counselor and the patient linguistically cast the patient’s identity.

Result: Analysis showed that there was an ongoing negotiation of the patient’s identity as patient and health care professional respectively. The role of the patient expected by the counselor may therefore be less evident to the patient. This observation was then communicated to the counselor along with suggestions of how to deal with such negotiations.

Discussion: This analysis illustrates, that CA might be a useful tool to analyze the interaction in genetic counseling, because of the data-driven approach.

Concurrent interviews with the counselors might be a good supplement to the CA. Genetic counseling is best when provided form a multidisciplinary team.

Inclusion of professionals with knowledge of CA might further increase the capacity of the team.

EP02.04
Communication in pediatric clinical genetics: a case study illustrating a useful analytic technique

J. Paul1, J. Hodgson2, L. Stirling, S. Metcalf1;
1Genetics Education and Health Research, Murdoch Children's Research Institute, Parkville, Australia, 2Department of Paediatrics, The University of Melbourne, Parkville, Australia.

Various techniques have been employed to explore interactions in genetic consultations ranging from quantitative methods which have assessed over one hundred consultations, to in-depth qualitative analyses of single transcripts. Overwhelmingly research has demonstrated that dialogue is dominated by the clinician, with content being mostly educational or scientific in rather than psychosocial.

This presentation will illustrate how an interactional sociolinguistic framework, in particular, one making use of Mishler’s ‘voices’ in medical consultations, can enable researchers and clinicians to gain a greater understanding of the apparent medical dominance illustrated in these studies (Mishler, 1984).

Mishler describes two different ‘voices’ present during medical interactions. Talk relating to the knowledge and experience of the client is described as the ‘voice of the lifeworld’. The ‘voice of medicine’ refers to the technical, scientific talk of the medical world. Mishler argues that the typical or ‘unremarkable interview’ is dominated by the voice of medicine, while the voice of the lifeworld remains mostly suppressed. Barry et al. support Mishler’s theory that allowing more space for the lifeworld can result in more efficient medical consultations (Barry et al. 2001).

In analysing two contrasting paediatric clinical genetic consultations we track the voice of medicine and the voice of the lifeworld through the lens of interpersonal sociolinguistics. It will be demonstrated how clinicians can effectively engage with the voice of the lifeworld, while preserving other essential elements of the consultation.

We believe that this framework could be useful for both researchers and clinicians to enhance a client-centred model of care.

EP02.05
‘I realised it was coming, it was just a question of time’: living with the knowledge of increased familial risk

L. Bird1, J. Emsley2, K. Restarick3, K. Groher1, P. Walter1,2;
1University of Cambridge, Cambridge, United Kingdom, 2University of Western Australia, Perth, Australia.

Introduction
The use of family health screening tools is increasing in primary care settings. However, little is known about the psychosocial/behavioural impact of familial risk assessment for common chronic diseases. This qualitative study explored people’s response to receiving information about their risk of developing one of four marker conditions: diabetes, heart disease, breast and colon cancer. These conditions fulfill screening criteria, and effective interventions and lifestyle strategies exist for their primary and secondary prevention.

Methods
Thirty participants (aged 24-50, 22 females), recently informed of their personal risk, were recruited via the FAST study, set in 10 East of England general practices. Purposeful sampling led to a cohort of population (N=12) and increased (N=18) risk participants. Data were collected using semi-structured interviews, transcribed verbatim and interpreted using framework analysis.

Results
Receiving information about increased personal risk did not appear to cause psychological distress. Participants used mental models of health to assess salience of risk to themselves and kin. Four personalising processes were identified: 1) actively making lifestyle changes and seeking further health advice; 2) acknowledging risk but not enacting lifestyle changes or seeking further screening; 3) not presently perceiving personal risk as high but acknowledging possible changes in the future; and 4) being at population risk was generally perceived as a validation of current lifestyle.

Discussion
Participants were influenced by their knowledge of marker condition risk, but reported that being at higher risk did not always lead to preventive behaviours. Furthermore, being at population risk could lead to fewer preventive behaviours.

EP02.06
Non-syndromic neurosensorial prelingual deafness: the importance of genetic counseling in demystifying parents’ beliefs about the cause of their children’s deafness

F. Rodrigues1, M. Paneque2, C. Reis1, M. Vendício1, J. Sequeiros1, J. Saravia1;
1Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal, 2Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.

Introduction
Recent advances in molecular genetics have allowed the determination of the genetic cause of some childhood non-syndromic hearing loss. Nevertheless, only a small proportion of families are referred to a clinical genetics service for proper genetic counseling. In Portugal, there are no published studies about the prior beliefs of parents about the causes of hereditary hearing loss of their children and their genetic knowledge after the genetic counseling offered by professionals with specific training. The aim of this study was to assess beliefs about possible causes of non-syndromic neurosensorial prelingual deafness in order to improve the quality of communication.

Methods
Forty-four parents (24 mothers, 20 fathers) of twenty-four children with the diagnosis of non-syndromic neurosensorial prelingual deafness due to mutations in the connexin 26 gene (GJB2) answered a questionnaire about genetic knowledge before and after the genetic counseling.

Results
Before counseling 15.9% of the parents knew the cause of deafness, while at a post-counseling setting this percentage was significantly higher. No differences were found between the answers of mothers and fathers before and after genetic counseling. Parents’ level of education was a significant factor in pre-test knowledge. After genetic counseling 95.5% of the parents stated that the clinical genetics consultation had met their expectations; 70.5% remembered the inherited pattern, 93.2% recalled the recurrence risk of deafness.

Discussion
Participants identified: 1) actively making lifestyle changes and seeking further health interventions and lifestyle strategies exist for their primary and secondary prevention.

Conclusion: It is important genetic counselors to take into account parents’ beliefs and assess their genetic knowledge, in order to increase the knowledge and demystifying parents’ beliefs.
EP02.07
Young adults’ attitudes towards newborn screening and carrier identification

M. Nokes, F. Upho; University of Manchester, Manchester, United Kingdom.

Research examining parents’ experiences of receiving carrier result information from newborn screening suggests that anxiety and distress are caused by unpreparedness for results and how these results are communicated, rather than the results per se. Questions have been raised about how feasible it is to convey newborn screening information adequately during pregnancy, a time when parents often experience information overload. To understand how these newborn screening processes can be improved for future generations and to investigate the feasibility of providing newborn screening prior to pregnancy, young adults’ understanding of and attitudes towards newborn screening were investigated. Thirty-four young adults, with no experience of screening, took part in one of seven focus groups. The analysis suggested that respondents recognised the benefits of carrier knowledge on altering future reproductive decisions, and despite concern regarding the stigmatisation of carriers, typically expressed a desire to have access to personal carrier status. After viewing key information from Cystic Fibrosis and Sickle Cell Disease websites, adults became preoccupied by the personal threat of being a Cystic Fibrosis carrier, yet did not acknowledge the risk of being a Sickle Cell Disease carrier, despite re-evaluating its perceived severity. Some adults were unable to accurately interpret inheritance diagrams. Young adults were not interested in receiving screening information prior to pregnancy; rationales varied from worry associated with screening information (avoidance) to the inability to conceptualise its relevance (denial). Incremental impartation of information aimed at increasing adult’s interest in screening to enable them to appreciate the personal relevance is suggested.

EP03 Reproductive Decision making

EP03.01
Impact of genetic counselling on reproductive planning of couples in families with myotonic dystrophy type 1

R. Nunes, M. Panaque, J. Sequeira, A. Fortuna; 1Hospital Center of Porto, Porto, Portugal, 2Center for Predictive and Preventive Genetics, Institute for Molecular and Cell Biology, Porto, Portugal, ICBAS, University do Porto, Porto, Portugal.

Myotonic dystrophy type 1 (DM1) is a neuromuscular, multisystem, progressive disease, with autosomal dominant inheritance. Genetic counselling is a delicate process in this disease, as reproductive decisions are difficult due to the variable clinic presentation and the phenomenon of anticipation of age-at-onset. We planned (1) to assess the impact of genetic counselling in families with DM1, their reproductive choices and the factors that influenced it, (2) to consider the results of prenatal diagnosis, and (3) to assess the influence of psychosocial elements in their reproductive planning. A retrospective study of 10 years used a questionnaire aimed at couples with a family history of DM1, followed by genetic counselling for reproductive planning. The main reproductive choice was not to have children (55.6%), followed by pregnancy and prenatal diagnosis (33.3%). In 60% of those couples who had prenatal diagnosis, the foetus was a carrier and the option was for termination of pregnancy. The main factors that have influenced reproductive decisions were (1) the risk of having an affected child, and (2) the existence of other children prior to genetic counselling; (3) the psychosocial impact of the disease also contributed to the reproductive choices. Genetic counselling has a strong impact on reproductive choices in families with DM1. A multidisciplinary team should always be involved in the counselling process, to meet the expectations and the needs of counselees and their families, and to provide the support they need at all stages of their decision-making process about reproductive options.

EP03.02
As the old cock crows, the young cock learns. An intergenerational approach in the perspective of family planning in case of a gene mutation carrier

T. Brouwer; Department of Medical Genetics, Utrecht, Netherlands.

A BRCA gene mutation carrier has an increased risk of 60-80% to develop breast cancer and 5-60% to develop ovarian cancer. Its diagnosis may lead to an increased psychosocial disturbance. Female gene mutation carriers are faced with the choice to decide for screening or risk-reducing surgery. Since BRCA carriers may develop breast cancer at an age before reproduction, and the fact that they have 50% probability to pass the gene defect to offspring, this may influence their decisions as to how to fulfill the wish to start families or complete their family. The context of reproductive choices: to have children regardless the risk, to remain childless, or adoption, or sperm- or egg donation, or to consider assisted reproduction techniques such as PND or PGD. The moral struggle and concerns that these couples have to face can be driven by various factors: their own desires, desires of the partner; the responsibility to future offspring, prevailing values with respect to the hereditary disorder in the family of origin, opinions in their wider social network and in society in general.

To prevent an unnecessary burden for the prospective parents, it is desirable that themes regarding reproduction are scheduled in the pre- and posttest counseling. In a situation where the decision-making process of reproduction stagnates, it can be beneficial to analyze the underlying reasons from the perspective of an intergenerational approach. This will be illustrated on the basis of several case reports.

EP04 Living with genetic disease

EP04.01
Psychological impact of diagnosis of thrombophilia on women with childbearing potential

R. Mihaescu1, A. Stoian1, C. Gag1, S. Negr2, C. Serban3; 1University of Medicine and Pharmacy, Timisoara, Romania, Timissoara, Romania, 2Oncomed, Timisoara, Romania.

Background: Thrombophilia is a inappropriate tendency to thrombus formation. In recent years numerous studies were conducted in the field of thrombophilia, in an attempt to prevent the consequences of thrombotic disease. However, there are few studies to evaluate impact of diagnosis on quality of life for patients with childbearing potential.

Methods: Between 02.2010-01.2012 in Oncomed Timisoara we evaluated 94 patients with thrombophilia, all women. A questionnaire was given to every women, to assess quality of life.

Results: Only 70 patients accepted to answer the questionnaire. 70% were hopeful about the future, hope generated by the fact that they found the source of miscarriage, but they were frustrated 85% of the patients, stressed about being unable to conceive. Only 27% of them were mentally exhausted by the number of attempts to become pregnant and all of them were decided to try again. All patients answered that they where able to get organized and take care of daily activities; still, 25% had difficulties to resolve conflicts and 40% were not able to provide emotional support for others. All patients were able to maintain a normal sexual life. 90% of them experienced sudden mood changes, 75% felt overly sensitive to others comments, but only 37% felt at least once lost.

Conclusion: The answers showed that despite the depression associated with the miscarriages, all of them were still hoping to become mothers. This result shows that a close collaboration between hematologist and psychologist is the key to a good quality of life for these patients.

EP04.02
Quality of life and subjective health complaints in acute intermittent porphyria

J. Andersen1,2, S. Sandberg1,2, K. Nord1; 1The Norwegian Porphyria Centre, Bergen, Norway, 2University of Bergen, Bergen, Norway, 3Uppsala University, Uppsala, Sweden.

Acute intermittent porphyria (AIP) is a metabolic disease inherited in an autosomal dominant way with reduced penetrance and variable expressivity. Symptoms presents as attacks of abdominal pain, vomiting, muscle aches, muscle weakness, and in extreme cases, respiratory paralysis. Triggering factors can be medications; hormones, alcohol, physical and psychological stress, hunger and fast. There exists little formal information about the subjective experiences of persons suffering from this condition, but previous research indicates that AIP can cause serious life style consequences and reduce quality of life in those affected.

The aim of this study was to describe self-reported quality of life and subjective health complaints in persons with latent, manifest and active AIP respectively, and to investigate the relationship between quality of life and disease related variables, demographic variables and coping strategies. A written postal survey was distributed to all persons registered with AIP older than 18 years in Norway. Response rate was 55% (n = 140). The instruments WHOQOL-Bref, SHC, IES and MHLC were used, in addition to demo-
graphic data and information on disease severity in the family. Quality of life in AIP patients was significantly reduced in regards to physical challenges. An overall trend in the material was that disease activity increased subjective health complaints and decreased quality of life. Results indicate that manifest and active AIP has an important impact on the lives of those afflicted.

EP04.03
Features of hospital adolescent with hereditary disease
A. Y. Buzhanov, E. Y. Zhaldzimskaya.
Petrovsky Russian Research centre of Surgery RAMS, Moscow, Russian Federation.

We recently began offering specialized psychological help to patients with hereditary diseases. One of the first patients in this project is D - a twelve years old boy with primary oxalosis. Dis waiting for the kidneys and liver transplantation and has been carried daily haemodialysis for almost year and a half. Also he has a tracheostomy which significantly reduced his ability to talk. He spent in a hospital two years. D has two younger healthy siblings. His parents are both alive and also haven't any genetic disorders.

Methods used:
- observation
- conversation

- Dembo-Rabinstein’s method for self-esteem studying
- Drawing of nonexistent animal (projective method for studying attitudes and emotional states)

Also D’s mother was asked to make a test APE (analysis of family education).

D looks below his age. He doesn’t eager to communicate either with other people. D’s defensive strategy has been withdrawal from situation through games and movies. He refuses to work with psychologist because he “tired of talking”.

D’s self-esteem is lowered, but level of claims is high. He praised his skills and intellect at low rate and self-confidence at high at the same time.

D has increased anxiety and high level of verbal aggression, which has been effectively suppressed.

His mother is placing increased responsibilities on D, especially in social sphere.

To help D to effectively cope his situation it is necessary to lower demands which are applied to him and help him to express his aggression and grief.

EP05 Psychosocial issues in cancer genetics

EP05.01
Sharing genetic cancer information with relatives: development and validation of an instrument to assess counsellors’ knowledge, motivation and self perceived competence.
E. de Geus1, C. M. Aalfs2, R. H. Meul1, R. H. Sijmons3, E. M. Smet3.
1Academic Medical Center, department of Medical Psychology, Amsterdam, Netherlands,
2Academic Medical Center, department of Clinical Genetics, Amsterdam, Netherlands,
3VU University Medical Center, department of Clinical Genetics, Amsterdam, Netherlands

Introduction
Despite the use of genetic services, counsellors do not always share genetic cancer information with their at-risk relatives. Reasons for not informing relatives may be categorized as a lack of: 1) knowledge, 2) motivation and/or 3) self perceived competence. The aim of this cross-sectional study was to develop and assess the psychometric properties of an instrument that measures counsellors’ knowledge, motivation and self perceived competence.

Methods
Consecutive counsellors who visited the department of Genetics with questions regarding the possibility of hereditary breast and/or ovarian cancer or colon cancer (including Lynch and FAP/MAP) were asked to complete a home-sent questionnaire after receiving a summary letter from the department of Genetics. This letter included information from the last counselling session. Knowledge, motivation and self perceived competence were assessed with a study-specific questionnaire. Analyses will address the acceptability of the instrument, its dimensionality (i.e. whether knowledge, motivation and self perceived competence items constitute separate scales), the reliability of separate scales and the instruments validity.

Results
Overall, 214 of 343 questionnaires were included in the analyses (response rate 62%); 108 breast and/or ovarian cancer and 106 colon cancer. We will report on the instruments’ acceptability and its properties to reliably and validly assess counsellor characteristics that might hamper sharing genetic information with relatives. Such instrument will allow the evaluation of interventions aimed at enhancing counsellors’ ability to be a competent, motivated and confident informant of their at-risk relatives, which in turn may lead to more relatives taking up genetic services.

EP05.02
Impact of genetic counselling in women with a family history of breast cancer
L. Godino, M. Bianconi, E. Razzaboni, D. Turchetti.
Medical Genetics, Bologna, Italy.

A semi-structured telephone interview was designed to assess the impact of genetic counselling in a series of asymptomatic women with a family history of breast cancer (BC). To date, 58 women who underwent genetic counselling for BC between 2003 and 2011 have been interviewed, and the data of 42 were available for a preliminary analysis. Age ranged from 24-71 years. The majority of women considered the information received during counselling as clear (quite clear: 31.0%); very clear: 33.3%; extremely clear: 21.4%) and helpful (quite helpful: 33.3%; very helpful: 33.3%; extremely helpful: 7.1%). Twenty-five (59.5%) stated that their perceived risk of BC had changed after the counselling: for 20 (80%) it had decreased, for 3 (12%) increased, while 2 did not specify. Twelve (28.6%) declared to have made useful decision for their health after the counselling; most appropriate breast surveillance (75.0%, n=9), healthier lifestyle (8.3%, n=1) or intensification of surveillance for fear (8.3%, n=1). Nevertheless 27 women (64.3%) stated they had not followed the surveillance recommended by the counsellor. The majority of women (88.0%, n=37) had shared the information received with their family: parents (37.8%, n=14), sisters and brothers (32.4%, n=12), daughters (10.8%, n=4) or other relatives (10.8%, n=4). The family reaction was reported as positive (i.e. listening, support) by 29 of the 42 women (78.4%).

These preliminary data suggest that genetic counselling has a significant impact on awareness, risk perception, and communication within the family, but not on surveillance. The reasons for such a low compliance to surveillance will be investigated.

EP05.03
Counselling and clinical implications of an unclassified variant in MLH1 in a family with a history suggestive of Lynch Syndrome.
Genetic Medicine, St Mary’s Hospital and Manchester Academic Health Sciences Centre, Manchester, United Kingdom.

Unclassified variants (UVs or variants of unknown significance) are now a relatively frequent occurrence in genetic tests. Differentiating between a benign polymorphism and a pathogenic mutation can be technically difficult, particularly for missense changes and intronic variants. A number of strategies exist to help this process, but it is not always possible to confidently exclude pathogenicity because of insufficient data, lack of resources and/or samples from other affected and unaffected individuals within the family.

In this case a clinical diagnosis may be tentative and/or predictive testing is unavailable. Genetic professionals face challenges when communicating this information to patients and families.

The lack of certainty can cause confusion and/or frustration. We present a case study that highlights some of the counselling implications. A 45 year old woman was referred because of a family history of colon, endometrial and pancreatic cancer. This was suggestive of Lynch syndrome, and the patient was considered to be at 50% risk. She was keen to pursue predictive genetic testing to clarify the risk for her and her children. Immunohistochemistry in her cousin’s bowel cancer and her mother’s endometrial cancer showed loss of MLH1 protein, and molecular testing in the cousin identified a UV in the MLH1 gene. In-silico analysis suggested the variant was pathogenic, but no confirmatory tests (e.g. functional studies) were available. Therefore, predictive genetic testing to refine the patient’s risk was not possible. She found this frustrating, particularly given the invasive nature of bowel and endometrial screening.

EP05.04
New strategies needed to improve familial colorectal cancer prevention
N. Dekker1, P. M. M. Hermanova, G. Elwyn1, F. M. Nagengast2, H. de Wit3, J. H. M. van Krieken1, M. J. Ligtenberg1, T. van der Weijden3.
1Academic Medical Center, department of Clinical Genetics, Amsterdam, Netherlands, 2Academic Medical Center, department of Medical Psychology, Amsterdam, Netherlands, 3University Medical Center Groningen, department of Genetics, Groningen, Netherlands.

Background: Currently, only 12-49% of individuals with an increased fi-
milial colorectal cancer (CRC) risk are referred for highly effective cancer prevention. This study was performed to improve referral rates for genetic counselling and surveillance colonoocities for high-risk and moderate-risk families, respectively.

Methods: Eighteen hospitals participated in a clustered RCT. Nine intervention hospitals received a website and brochures about familial CRC risk for patients and clinicians, and education and guideline pocket cards for clinicians. Patients in nine control hospitals received usual care. Data were collected from patients and clinicians using questionnaires and medical records.

Results: Fifty-five percent of patients (n=478/862) and 34% of clinicians (n=47/137) participated. In the intervention group, 110/161 patients (68%) and 7/20 clinicians (35%) visited the website; 34/161 patients (21%) read the brochure. Patients valued clinicians’ information as most useful. Clinicians rated the education and guideline pocket cards as most useful.

In the intervention group, 1/10 high-risk patients (10%) was referred for genetic counselling, versus 5/34 (15%) in the control group (p=0.705). In the intervention group, relatives of 6/21 (29%) moderate-risk patients had received surveillance colonoocities, versus 23/43 (53%) in the control group (p=0.65).

Conclusions: Implementation of tailored digital and printed information did not improve referral rates for genetic counselling or surveillance colonoocities of individuals at an increased familial CRC risk. Although patients and clinicians appreciated the materials, patients preferred clinicians’ advice regarding their familial risk; clinicians preferred more traditional materials. Therefore, new strategies aimed both at patients and clinicians are needed to improve familial colorectal cancer prevention.

EP05.07 Unclassified variants in BRCA1 and BRCA2: Assessment of in silico analysis and proposal for communication in genetic counselling

S. Moghadasi, N. Holand, J. N. Wouts, M. P. G. Vreeswijk, C. J. van Asperen; Leiden University Medical Center, Leiden, Netherlands.

Background: In nearly 15% of BRCA1/2 tests an unclassified variant (UV) is identified. In the Netherlands the four-group classification system of Bell is in use. In the current practice, class III UVs are communicated with the counselees and class II are not. Aim was to investigate whether UVs in classes II and III showed significant differences in their in silico characteristics and would this classification justify differences in counseling protocols regarding communication.

Methods: 88 missense UVs in BRCA1/2 were analyzed. In silico analysis of UVs was performed using SIFT-ana, Grantham score and AGVGD for the predicted severity of amino acid substitutions.

Results: 60% (n=53) of the UVs were predicted to be tolerated by SIFT-ana, scored as neutral (C0) by AGVGD. Of the remaining 35 UVs, sixteen were scored as C0, eight were scored C1-C25 (intermediate) and eleven were predicted to be deleterious. Class III UVs more frequently show in silico parameter outcomes suspicious for a deleterious effect. The observed differences, however, are not absolute. Four UVs classified in class II had similar in silico profiles to five UVs in class III.

Conclusion: This study showed that in general in silico analysis is consistent and applied and is able to discriminate between different classes of UVs. Additinal analyses will be required to classify UVs with more certainty. To reduce psychological distress in UV families we propose that communication of an UV should not primarily depend on its class, but on the possibility to discriminate between different classes of UVs. Ad

EP05.08 Consent to tissue testing: Other-orientation and responsibility in cancer genetics

H. E. Shipman, A. J. Clarke, S. Sarangi; Cardiff University, Cardiff, United Kingdom.

Although consent theory fundamentally focuses on the ‘autonomous’ choices of patients involved in clinical testing, in recent years there has been more novel conceptualisations. Within medical genetics there has been increasing recognition of the uncertainties and shifting responsibilities involved in predictive genetic testing.

In this study we take consent to tumour testing for evidence of mis-match repair defects, indicative of Lynch Syndrome, as an example of the interplay between individual autonomy, population health screening, familial involvement and beneficence. This work is part of a broader PhD study exploring the complexities of consent in the context of novel genetic testing technology. We use data (transcripts of audio-recordings) from 11 semi-structured interviews with clinicians and 13 observations of clinic sessions in the UK and Australia where consent is sought. Adopting discourse analysis, we explore the rhetoric of consent as manifest in these interviews and encounters. We relate our findings to the concept of responsibility (in relation to self, relatives and unrelated others).

We demonstrate how testing is framed as beneficial, altruistic and of minimal burden. Using observational data we demonstrate how clinicians reassure and minimise the risk due to the preliminary nature of the testing.
which enables those attending clinic (or their relatives) to be available to consent. The familial dimensions of testing and consent, in terms of communication and burden, are played down in professional interviews and yet are foregrounded in observations. This analysis provides an alternative frame to explore the dynamics of the consent process within cancer genetics.

EP05.09
A qualitative study of provider and patient experiences with decisions about risk-reducing surgery in women at increased familial risk of ovarian cancer

J. Witt1, G. Elwyn1, E. Wood2, M. T. Rogers3, M. Memari4, M. Johnson5, W. Jones6, K. Brain1; 1Institute of Primary Care and Public Health, School of Medicine, Cardiff University, Cardiff, United Kingdom, 2School of Medicine, Cardiff University, Cardiff, United Kingdom, 3Gynaecological Oncology, University College London Institute for Women's Health, London, United Kingdom, 4Cancer Genetics Department, Swansea Singleton Hospital, Swansea, United Kingdom.

Women at increased familial risk of ovarian/breast cancer are offered risk-reducing bilateral salpingo-oophorectomy (RRBSO) to reduce their risk of ovarian cancer. As there is no evidence for effectiveness of ovarian screening, surgery is the only active management option available to these women. However, this decision is complex and depends on patient values and preferences. We explored the views of healthcare professionals through semi-structured interviews and the views of patients through focus groups to obtain a detailed picture of the process of decision-making about RRBSO. Eleven interviews with professionals, including genetic counsellors and gynaecologists, were conducted. They felt that women's questions mainly related to surgical menopause and hormone replacement therapy (HRT), although a number of other factors, such as body-image and risks of surgery, were also discussed.

Five focus groups with women at increased risk of ovarian/breast cancer were held. In agreement with professionals, women were especially concerned about surgical menopause and HRT. Additionally they felt it was important for them to understand their personal risk and the effects of surgery on that risk. Many women felt that elective surgery was an extreme step and said they needed a catalyst, such as a confirmed genetic mutation, to sway them towards surgery.

Both professionals and women felt that standardised, evidence-based information to facilitate deliberation about RRBSO was currently not available and that this would be helpful to support women's decision making. The results of this study will be used to develop decision support for women considering RRBSO.

EP05.10
Factors which influence participants to follow up genetic test results as a result of taking part in a population based ovarian cancer research study?

M. Young1, K. Aspin; 1Department of Paediatrics, the University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia, 2Molecular Genetics Laboratory, Department of Paediatrics, the University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia.

Background: In 2001, 15 attended, in 2009, 102 attended; of these 70% were first time visitors. Evaluations reflect larger numbers did not affect access to information and support. Participants attend after diagnosis, to assist with decision making and others come each year. Men and women attend and discussion groups for men have focused on needs of men as partners, fathers, brothers and carriers.

This event is a non clinical approach providing emotional support. Presentations by cancer specialists ensure validity of information. Evaluations completed by 73% of attendees show a positive response to attending. AGSA seeks funding to run the program nationally.

EP05.11
New Model of Support and Information for Women and Men with a BRCA 1 / 2 gene fault

L. Taylor; 1 Department of Paediatrics, the University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia.

Introduction

Individuals with BRCA 1 & 2 gene faults are a unique group. They may not have had cancer and are referred to by one support organization as “previvors” (FORGE).

In 2001, The Association of Genetic Support of Australasia (AGSA) was approached to provide support for BRCA 1 / 2 gene fault carriers describing anxiety around cancer risk, decision making related to risk management and grief due to lack of support.

Aims

Emotional support, accurate information / management options and analysis of participant evaluations ensuring applicability of format.

Method

From 2001 - 2004 invitations were sent to past attendees and individuals selected by Cancer Genetic Counsellors. In 2005, invitations were mailed to all families within NSW with a known BRCA 1 / 2 gene fault. The program is devised by AGSA and a committee of consumer advocates and genetic counselors. Presentations are determined by evaluations.

Results

In 2001, 15 attended, in 2009, 102 attended; of these 70% were first time visitors. Evaluations reflect larger numbers did not affect access to information and support. Participants attend after diagnosis, to assist with decision making and others come each year. Men and women attend and discussion groups for men have focused on needs of men as partners, fathers, brothers and carriers.

The label 'teachable moment' (TM) has been used to describe naturally occurring life transitions or health events thought to motivate individuals to spontaneously adopt risk-reducing health behaviors. Three key constructs underlie whether a cueing event is significant enough to be a TM: the extent to which the event (1) increases perceptions of personal risk and outcome expectancies, (2) prompts strong affective or emotional responses, and (3) redefines self-concept or social role. Teachable moments have been used in preventive care to promote changes in life styles (i.e. smoking cessation) and to improve cancer screening adherence. In cancer genetic counseling, teachable moments could be a form of opportunistic counseling that could take advantages of health concerns and events in patients’ lives to increase willingness and commitment to change behavior and to improve adherence to cancer screening and prophylactic measures. To do this effectively, genetic counselors need to recognize and explore the salience of patient concerns and identify opportunities to link them with unhealthy behaviors. The purpose of this study is to review and discuss the concept of TM and to explore the discourse between genetic counselors and patients identifying potential teachable moments for health behavior changes during the cancer genetic counseling process.
Global engagement with an online genetics education resource: using Google Analytics to evaluate visitor activity and behaviour in countries developing genetics-genomics within nursing practice

M. Kirk1, R. Morgan1, E. Tonkin1, K. McDonald2, H. Skirton3;
1NHS National Genetics Education & Development Centre, Pontypridd, United Kingdom,
2Genomics Policy Unit, Pontypridd, United Kingdom, 3Plymouth University, Taunton, United Kingdom.

The rapid increase in gene-disease discoveries offers real promise of clinical applications for people and families affected by genetic conditions but for which health professionals are unprepared because of lack of training. The availability of clinically relevant education resources is critical to enabling nurses and other health professionals to develop the appropriate genetics-genomics knowledge and skills to provide optimum care for individuals and families. Online education resources play an essential role in this but such resources can be personnel-intensive and developed over an extended period. Optimising such resources, particularly in economically challenging times, is essential.

Telling Stories, understanding real life genetics (www.tellingstories.nhs.uk) is a web-based education resource using real life stories to promote understanding of the impact of genetics-genomics in healthcare. Google Analytics provides time series data for analysing web usage to optimise website effectiveness. We present data of visitor activity and behaviour from 123 countries from 2009-2011 and consider how the application of the web analytics:

- informs approaches to enhancing visibility of the website;
- provides an indicator of engagement with genetics-genomics both nationally and globally;
- informs future expansion of the site as a global resource.

Telling Stories is an accessible, broad-reaching resource that is of global relevance for health professionals, attracting over 33,500 visitors between 2009-2011, with a steady increase in numbers of returning visitors. The majority of visitors come from the UK, USA, Netherlands, Canada and Australia. More needs to be done now to enhance its accessibility for people of other languages and cultures.
groups and individual interviews were performed involving 30 professionals from Portuguese healthcare institutions where oncogenetic counselling is offered (geneticists, gynaecologists, oncologists, nurses, psychologists and genetic counselor trainees). Current practice, unmet service needs and issues for improving practice were the major themes identified in participants’ perceptions. Findings suggest: professionals’ practice is aligned with the teaching model; the genetic counselling agenda is predominantly informative-based with a non-directive focus; a scarce workforce of adequately trained psychosocial professionals, aggravated by other structural and organizational constraints are serious drawbacks to consistent psychosocial delivery; multidisciplinary teams working in genetics were stated as priority along with genetics education for healthcare professionals in primary care. Cancer genetics healthcare needs an adequate training and organization towards collaborative standards of care and functional forms of access for patients. Portuguese genetic counsellors have recently completed their training and may therefore ease some of the needs. This study may contribute for envisioning paths for the integration of a psychosocial-oriented stance in oncogenetic services.

EP06.06 Knowledge and attitudes of Italian nurses toward Genetics

L. Godine1, D. Tattolli2, H. Skirton2;
1Medical Genetics, Bologna, Italy; 2Plymouth University, Plymouth, United Kingdom.

In order to explore the understanding and attitudes of Italian nurses and midwives toward genetic health care, a cross-sectional survey using a self-administered questionnaire was carried out in Bologna, Italy, in 2010. In 2011 the survey was extended to a larger population of Italian nurses by using a questionnaire uploaded to the Survey MonkeyTM website. Specialist genetics midwives currently work in many Italian hospitals. There are very few genetic nurses in Italy and the knowledge of Italian nurses to provide care for people with or at risk for genetic conditions is unclear.

Out of 102 (85%) nurses and midwives responding to first study, 61% believed genetic counselling was only an informative and advisory process, while 53% did not specify; 62% (n=63) did not identify nurses’ role in genetic healthcare, but 28% (n=26) believed nurses could provide information and support.

The second study was completed by 385 nurses, the majority (40.4%, n=131) correctly answered four of five questions on knowledge of genetics. Knowledge scores did not change by age, but was positively correlated with academic qualification. Only a minority (26.8%, n=103) of respondents believed genetics was very relevant to the nursing role.

The findings of these studies indicate that although nurses have the basic knowledge of genetics, they need more education not only on genetics topics, but also on the transferability of those into nursing care.

EP06.07 The Home Coming of Genetic Counsellors: The Cyprus Experience

V. Anastasiadou1, 2, T. Delikurt Tuncalp1, E. Spanou Aristidou1, A. Kotli1, G. Tanteles1;
1Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 2Archbishop Makarios III Medical Centre, Nicosia, Cyprus.

The impact of culture in genetic counselling and cultural competence of genetic counsellors are important topics masters level training programs and academic research. They are also crucial in clinical settings. Genetic counsellors are being taught to become self-aware of other ethnic/cultural groups, to acknowledge similarities and differences between their own and other cultures and to understand how such similarities/differences impact socially and/or institutionally the care of diverse patients.

Although, masters-level programs are steadily emerging in several countries, most genetic counsellors are still either untrained or have been trained in countries other than their own home-country, such as United States (US) and United Kingdom (UK), where these programs are well-established. These counsellors adopt a professional culture that is shaped by the healthcare and social culture of their host-country. It has been noted that not enough attention has been given to how such genetic counsellors “readapt” to their own culture, both socially and professionally, after returning to their home country. Our Clinical Genetic Clinic (CGC) gives emphasis to cultural competence, especially as our patient load culturally so diverse. Among the team are two masters-level genetic counsellors; a Greek-Cypriot and a Turkish-Cypriot genetic counsellor who have been trained in the US and UK. Both genetic counsellors have similar and different experiences about training overseas and returning to their own country. The poster addresses on these experiences in challenges faced in work-place and small community due to the clashes of their cultural identity specific to their own country/community and professional culture they acquired through their overseas training.

EP06.08 E-learning in Genetics - Multimedia Educational Training Program

C. Gug;
University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania.

Telemedicine is born with the Internet. Tele-education is one of its applications. An on-line learning infrastructure is considered essential for the delivery of educational programs in medical genetics. The use of a performing animation system allows the geneticists to explain the essence of the fundamental genetic phenomena. The flash technology was used to access animation on the Internet, as it already represents a standard in creating animation that has Internet impact. The navigation system of the Flash animation allows each scene to be accessed separately using representative images of a scene as buttons. Respecting the scientific truth by taking into account the limits imposed by the technical possibilities may represent a true challenge for the people involved. For didactic purposes, the phenomena (mitosis, chromosomes and chromatin structure, DNA replication and DNA repair) were divided into several stages. The number of the scenes is directly proportional with the complexity of the phenomenon. As learning in the traditional manner involves transmitting the information under the form of a text simultaneous with the scrolling image, a short explanation of the scene is inserted. The text is available in English and Romanian. The use of the multimedia (graphics and 3D animation) program enhances teaching process of any fundamental genetic phenomenon and contributes to the computer supported training in the field of medical genetics.

EP07 Access to genetic services

EP07.01 Systematic review of research related to barriers to access to genetic services

T. Delikurt1,2, G. R. Williamson1, V. Anastasiadou1, H. Skirton2;
1School of Nursing and Midwifery, Faculty of Health, Education and Society, Plymouth University, Plymouth, United Kingdom, 2Clinical Genetics Clinic, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.

The genetic components of disease are being identified through rapid progress in human and genetic research. Genetic knowledge is quickly being translated into clinical practice. Demands on genetic services are increasing in parallel to these advances. There is a global challenge for healthcare-systems in different countries to efficiently integrate genetic services into their healthcare infrastructure, to utilise scientific advances and, most importantly, provide equitable access for citizens while minimising healthcare costs. To achieve this, it is important to identify which factors can prevent or influence patients’ access to genetic services. As part of a doctoral study on the provision of genetic services for the Turkish Cypriot community in Cyprus, a systematic review of empirical evidence on barriers to accessing genetic services was conducted. Five electronic databases were searched for studies published in English in peer-reviewed journals between 2000 and 2010; 27 articles were included in the review. The majority of studies were undertaken in the United States (n=17), focused on cancer genetic services / counselling (n=17) and used quantitative methodology (n=19). Identified barriers were related to individuals (n=17), to institutional/healthcare professionals / systems (n=14) and to the community (n=5). There is diversity in how access to genetic services is researched and the majority of barriers we identified emerged from studies that were not directly investigating barriers to access. More specific research on this topic is urgently needed to inform development of “targeted interventions” to enable equitable access to genetic services for individuals in a range of populations.

EP07.02 Patient Expectations and Attitudes towards a Specialist Genetic Eye Service

E. Clarke1, G. Half2, R. Combs3, G. C. M. Black4;
1University of Manchester, Manchester, United Kingdom, 2Genetic Medicine, Manchester Academic Health Science Centre, CMFT, Manchester, United Kingdom, 3Manchester Academic Health Science Centre, CMFT, Manchester, United Kingdom.

BACKGROUND: Little research has explored the views of patients referred to specialist genetic eye clinics. Future service development must be informed by the perspectives of patients to ensure that services are accessible and meet their needs.

METHOD: Semi-structured telephone interviews were undertaken with patients referred to the Genetic Eye Clinic in Manchester, UK. Participants were interviewed before their first appointment. The interview transcripts were analysed using Interpretative Phenomenological Analysis (IPA).

RESULTS: Forty six people were invited to participate and 9 agreed to be
interviewed (response rate 20%): 5 participants were patients with a visual impairment; 4 were the parent/carer of a child patient. The major themes identified were: lack of preparation and restricted expectations due to unfamiliarity with the service; psychological adjustment to the diagnosis of an eye condition; practical needs and emotional concerns about the future; hope for future treatments; and, positive attitudes towards genetics.

CONCLUSIONS: The participants had consistently positive attitudes towards genetic eye services, genetic testing and genetic research. However lack of preparation and knowledge of available services, particularly genetic counselling, meant families may not get the most out of their appointment. A booklet, available in a range of formats, has been devised to improve patient experience. The results from this study improve our understanding of the counselling needs, expectations and attitudes towards genetics, including hopes for treatment, in families with inherited eye conditions.

EP08.02

When to tell? - disclosing genetic information

D. M. Petrie OAM, D. Kouznetsova; Association of Genetic Support of Australasia (AGSA), Sarry Hills NSW 2031, Australia.

Little research exists on when and how parents should go about disclosing genetic information to their affected children and siblings, as well as its impact. This presentation will detail quantitative and qualitative research amalgamated from reports sourced directly from the Association of Genetic Support of Australasia (AGSA) - a peak umbrella organisation established in 1988 for rare genetic conditions, and its extensive Rare Disease Database representing over 950 genetic conditions in 2,200 families.

This presentation will outline the dilemmas faced by parents upon receiving a genetic diagnosis for their child. Negative effects of withholding information from all family members will also be discussed. Recommendations for when to disclose genetic information, as well as strategies employed for information sharing will be discussed. Finally, implications for the health professional are diagnosis delivery, and the importance of securing access to an appropriate support group will be explored.

EP08.03

Sharing data from whole genome studies: empirical study of ethical implications

A. Middleton, M. Parker, E. Brugn1, C. Wright1, H. Firth1, N. Carter1, M. Harl2, On Behalf of the DDD Study1; 1Wellcome Trust Sanger Institute, Cambridge, United Kingdom, 2Ethos, University of Oxford, Oxford, United Kingdom.

Elements of a person's past, present and future medical health can now be revealed in a matter weeks via whole exome sequencing of a saliva/blood sample. Such technology is frequently used in research to understand the genomic basis of disease and will very soon be used within clinical health services. It has been considered good practice for many years to conduct genomic research anonymously and not share any individual results with research participants. However, there is mounting pressure to change this approach as a contribution to this process we have designed a mixed-methods study that uses film to explore the ethical implications of whole genome research. We are inviting genetic counsellors, health professionals and lay members of the public worldwide to complete the questionnaire and are aiming for 20,000 responses. This poster will introduce the study design, explain why the research into genome ethics is important and discuss the relevance of this to both the research and clinical genetics community.

EP08.04

A new initiative for genomics and society research

J. Kaye1, M. Meslin1; B. Knoppers2, H. Pincus3,4,5, Deschênes1, A. Cambon-Thomsen1, D. Chalmers1, J. De Vries1, N. Hoppe1,2, A. Kent1,2,3, C. Adebamowo1,2,13, P. Marshall1,2, K. Kato1,2,3.

1Department of Public Health, University of Oxford, Oxford, United Kingdom, 2Indianana University, Bloomington, IN, United States, 3McGill University, Montreal, QC, Canada, 4University of North Carolina, Chapel Hill, NC, United States, 5P3G, Montreal, QC, Canada, 6INSERM, Toulouse, France, 7Université de Toulouse, Toulouse, France, 8University of Tasmania, Australia, 9Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, 10Leibniz Universitaet, Hanover, Germany, 11Genetic Alliance UK, London, United Kingdom, 12Institute of Human Virology, Garki, Nigeria, 13University of Maryland, Baltimore, MD, United States, 14Case Western Reserve University, Cleveland, Ohio, United States.
Genomic science is advancing rapidly and is increasingly international, proactive and coordinated. In contrast, research into the ethical, legal and social implications (ELSI) of genomic science, a lynchpin of appropriate policy development, so far remains largely regional, reactive and fragmented. Given the achievements in terms of scholarship, policy information and public engagement that have emerged from ELSIs conventional research methodology so far, important progress can legitimately be expected if ELSI research adopts strategic, large-scale and collaborative approaches analogous to those that have characterised genomic science. This presentation will present an international initiative, which is developing an infrastructure and a research culture aimed at making large-scale ELSI research more efficient, effective and economical. The aims of this initiative are to:

- facilitate new collaborations;
- increase output;
- provide tools to help coordinate endeavours;
- reflect the international character of genomic science appropriately; and
- avoid unnecessary research redundancy.

This will facilitate networking, critical reflection and the development of proactive strategies for international ELSI research in genomics and derived fundamental or translational sciences. In doing so, it will not only provide maps of the international ELSI landscape to inform and coordinate future research, but will also foster a new way of thinking and doing international ELSI research and fuel the rapid advance of ELSI research in the short, medium and long term.

EP08.05
Who’s to blame? A reflection work about identification of genetic potential in high-performance athletes
D. Delani
Universidade Federal de Rondônia, Porto Velho, Brazil.

The sport in general is an activity that is gaining more importance and more people around the world. In order, growing, developing high-performance athletes, many companies invest in the preparation of these athletes for international competitions like the Olympics Games. In this sense, innovative studios both in the field of sports as in studies of health, seek to identify and recognize these genetic patterns in athletes in the various methods for indicating potential physical abilities required for different sports or genetic predisposition to diseases that may likely to affect its performance. Although innovative and hold large financial interest, the ethical issues involved in this process should be discussed. A key role has to be devoted for assessing quality of laboratories and delivering information regarding such tests. Many other aspects have been discussed in the preparatory debates to the revision, such as consent issues or biobanks and are absent from the proposal. However these issues are among the most problematic in research and practice. Thus these work alerts discuss the consequences of this lack of regulation. Unless the delineation of responsibilities is clarified result may no longer be acceptable. How to delimit this seemingly, open-ended avenue of potential professional responsibility and possibly, liability? What are the mechanisms available? Moreover these without these assignments the results can cause irreparable damage to the candidates analyzed.

EP08.06
“A morass of considerations”: Exploring attitudes towards primary care ethnicity-based haemoglobinopathy screening.
S. M. Jans1, L. Henneman1, A. de Jonge1, C. G. van EF1, L. M. C. van Teg2, M. C. Cornel1, A. L. M. Lagro-Janssen2
1EMGO Institute for Health and Care research, Amsterdam, Netherlands. 2VU medical centre, Amsterdam, Netherlands. 3Institute for Gender Studies, Radboud Medical centre, Nijmegen, Netherlands.

Background: Although advised by the WHO, the Netherlands does not have a national haemoglobinopathy carrier screening program. HbP carrier testing for those at risk is at best offered on the basis of anaemia without facilitating reproductive choice. Registration of ethnicity has been shown to be controversial and may complicate the introduction of a screening programme. However, other factors may also play a role.

Aim: To explore perceived barriers and attitudes amongst general practitioners (GPs) and midwives regarding ethnicity-based haemoglobinopathy carrier screening.

Method: Six focus groups with a total of 37 GPs and midwives were conducted, transcribed and content analysed using Atlas-ti.

Results: Both GPs and midwives struggled with correctly identifying ethnicities at risk leading to several complex considerations. Ethical concerns regarding privacy seem to originate from World War II memories when ethnic and religious registration facilitated deportation of Jewish citizens, coupled with the current political climate. Some midwives thought the ethnicity question might undermine the relationship with their clients. Despite this, both groups seemed positive and are familiar with identifying ethnicity and use this in individual patient care. Software programs prevent GPs from registering ethnicity of patients at risk. Financial implications for patients were also a concern.

Conclusion: Although health professionals are generally positive, ethical, financial and practical issues surrounding ethnicity-based HbP carrier screening need to be clarified before introducing such a programme. Primary care professionals can be targeted through professional organisations but need national policy support.

www.eshg.org
Abstracts - European Human Genetics Conference 2012

a-globin variant: P05.28
a-L-iduronidase: J13.06
β-Thalassemia: P14.23, J05.06
β-myosin: P02.128
δ-thalassemia: J05.07
γ-ray exposure: J03.19
μ-opioid receptor: J02.01
1000 Genomes: P08.24
10q25 deletion: P02.002
10q25 microdeletion: P02.011
11p13 deletion: P03.083
11p15 region: P02.041
13p: P02.099
13q12.3: P02.003
13q14 deletion: P07.08
15q13.3 microdeletion: J03.18
15q25.2 microdeletion: P02.004
16 q24.3 microdeletion syndrome: P02.142
16p duplication: J03.16
16p11.2-p12 deletion: P03.002
16p11.2-p12 duplication: P03.002
16p11.2-p12: P05.151
17q21.31 microdeletion region: P02.158
17q21.31 microdeletion: P03.004
17q21.31: C01.1
17q22.2: J02.14
18q: P03.056
18p11.33 region: P03.020
21 hydroxylase deficiency: P12.037
21q deletion: P03.005
22 RNA: P13.29
22q11 deletion syndrome: J05.08
22q11: P03.095
22q11.2 Deletion Syndrome: P02.007
22q11.2 deletion: P02.006
2nd generation sequencing: P11.001
2p14-p15: P02.008
2p21 deletion: P03.006
2p24 region: J02.52
2q42.1-q43.3 deletion: P02.007
2q42.1-q43.3 polymorphism: J09.20
3D animation: EP08.06
3D-FISH: C04.3, P03.036
3p deletion/duplication: P02.009
3p26.3: P03.018
3q29 deletion: P02.010
31TR: P11.008
400 K array CGH: P02.016
46, XY DSD: J04.16, P02.011
46,XY ovoisotelic DSD: D04.02
47,XXY: P10.35
4q deletion: P03.140
4q: P03.070
5-fluorouracil: P06.001
5-HT3: P09.069
5-HTT: J11.05
5-hydroxymethylcytosine: P06.002
5p deletion syndrome: P02.058
5p: P03.006
5q12.2 duplication: P03.009
5q12 deletion: P02.238
5q31: P02.012
5q31.1 duplication: P03.010
5q32: P09.036
5q32: P02.11: J02.55
5q24: C14.4
AGL gene: P13.13
Agnathia-Otocephaly: P12.006
AHR pathway: P06.016
Aicardi-Goulettes syndrome: P02.019
AIP1/P43: P12.122
AKT1: P02.210
Alas2: P12.084
Albinism: J02.38
Albright’s Hereditary Osteodystrophy: J02.49, P02.212
albumin: P06.106
Achalasia: P12.210
alcantilin (SNCA): J09.27
alcantilin phosphatase: P13.20
All activities with a Presentation Number are included.
ALL: P06.008
allelic variants: P08.16
allel: P13.23
allele frequencies: P10.42
Alcyon: P12.011, P12.012
ALD: P02.210
ALK1: P02.004
ALK2: J12.18
Alper syndrome: J02.02
Alpha 1-Antitrypsin: P02.019
Alzheimer's disease: J09.01, P09.013
Alzheimer: P12.134
Alopecia areata: P09.010
allergic rhinitis: J08.01
allelic variants: P09.064
allelic variants: P09.015
Amplicon sequencing: P06.212
ampicillin: P02.217
Amplicon-Based Ultra-Deep Next-Generation Sequencing: P06.190
ampicillin: P02.217
Amplicon sequencing: P06.212
ampicillin: P02.217
AMP: P03.078
AMPA receptor: J02.032
AMPK: P02.047
anetodens: P02.09
anetodens: P02.09
Aneurysms-Osteoarthritis Syndrome: P12.209
Angiogenesis: P06.019
angiogenic: P02.09
angiotensin 2 type II receptor gene: P04.39
angiotensin-converting enzyme: J13.10, P12.209
AnkyrinB: P02.202
ankyrin: P14.01
anomalies: P12.144
Aneurysms-Osteoarthritis Syndrome: P02.026
anti VEGF treatment: P09.091
Anticaner: J06.11
anticipation: P11.005
Anticoagulant therapy: P14.22
anti-leukotene therapy: P09.017
Anti-mutagenicity: J06.02, P06.09
Antineoplastic drugs: P03.125
anti-neutrophil antibodies: P02.103
antitoxins: P03.125
anti-oxigenol nucleotides therapy: P12.147
antisense oligonucleotides therapy: P12.147
antisocial behavior: P01.15
ANO5: P04.04, P04.41
AOA2: J02.11
Aortic stenosis: J03.14
Aortic Diseases: P12.086
aortic valve stenosis: J01.05
AP4 syndrome: C15.2
APC gene: P06.010, P06.011, P06.096, P06.162
APC: P03.010
APC: P02.202
Apolipoprotein B100: J14.02
apoprotein E: J09.03, J09.41
aortography: P06.104
apparently balanced rearrangements: P03.016
aposophenex: J02.36
ar: P12.205
AR: P03.025
ARCI: P02.027
AR-CMT: J12.21
ARCMT: P10.07
arginine vaspressin: P09.014
ARD1B: P12.051
Armenian: J01.01
ARMS: P02.115
ARMS-2: P09.110
Amin to-leg transformation: C03.1
ARNL: P09.084
aromatase: P04.11
ARPKD: P12.015
array analysis: P03.078
array CGH: J01.12, P02.02, P02.02
array CGH: J01.12, P03.02, P03.44
array CGH: J01.12, P03.02, P02.24, P02.25, P03.009, P03.017, P03.044, P03.046, P06.032, P07.043, P08.083, P03.097, P03.106, P03.111, P03.112, P03.115, P03.15, P03.169
array comparative genomic hybridization: P02.258, P05.05, P05.12, P05.67, P09.015
Array painting: P03.078
array CGH: P02.14, P02.15, P03.23
array CGH: P02.016, P02.016, P03.020, P03.085, P03.084, P04.02, P04.24
Keyword Index

Abstracts - European Human Genetics Conference 2012

Xp duplication: P03.059
Xq duplication: P03.143
XPD gene polymorphism: P06.088
Xq22 duplication: P02.262, P03.144
Xq22.2 duplication: J02.34
Xq23q25 duplication: P03.145
Xq24: P02.263
Xq28 deletion: P03.115
Xq28: P02.174
XRCC3 gene polymorphism: P06.089
XY sex reversal: P02.058

Y
Y chromosome haplogroups: P04.55, P10.59
Y chromosome microdeletions: P04.52
Y chromosome: J04.08, J04.09, J04.11, J04.14, P10.58
Y haplogroups: P04.27
Y-autosome translocation: P04.57
Yakuts: P12.261
Yeast: P13.44
young onset: EP05.07
Yq microdeletions: P04.58
Yunis Varon Syndrome: P02.264, J02.08

Z
ZDHHC9: P02.265
zebrafish: P06.057
ZNF41: P10.09
ZNF750: P12.262
ZNF9: J10.06
ZRS: P12.256
Author Index

Altmüller, J.: C13.4, P12.108
Altunoglu, U.: P02.157, P03.026
Al-Turki, S.: C11.4
Altukrani, M.: P02.146
Altuzarra, C.: P12.167
Álvarez Lozano, R.: P07.14
Aives, A. C.: P12.085
Aives, M.: P09.063
Aires, R. M.: P02.118
Aires, S.: P12.007
Aires-Ferreira, M.: P10.21
Aires-Ferreira, M. F.: P08.45
Aires-Leon, S.: P09.139
Ali, M. Y.: P06.209
Al-Zahery, N.: P10.58
Alzyaydi, M.: P06.164
Ammann, K.: P02.136
Ampangou, S.: P04.36, P04.36
Arab, H.: P12.186
Amin, M.: C03.6, P10.53
Amin, I.: P03.082
Amin, F.: J13.02, J13.11
Aminiar, A.: J05.02, J05.07, P05.28, P06.56, J05.06
Aminian, M.: J01.05
Aminijavid, S.: J06.13
 Amit, A.: P04.20
Ammar-Keskes, L.: P04.16, P04.27
Ammerpohi, C.: P04.1, P04.14
Ameye, G.: P09.125
Amiel, J.: C11.01, P02.141, P02.165, P11.123, P12.167
Amin, N.: C06.3, P10.53
Apostol, G.: P14.06
Apostol, P.: C06.5
Apostol, G.: P14.06
Apostol, P.: J10.12, P06.010, P10.10
Apostolopoulos, M.: P09.007
Appelbäck, M.: P02.087, P11.005
Aquilano, A.: P12.130, P13.27
Ara, H.: P12.186
Arabzadeh, M.: J06.05, J06.06, J06.07
Arab, B.: P12.167, P12.178
Arciniega, I.: P03.28
Ardeleanu, C.: J02.26
Arden, N.: PL2.5
Ardeishvardani, N.: P02.221
Aref, A.: P12.197
Arellano, T.: P12.244
Arac, M.: J09.11, P09.082
arham, F.: P06.052
Arbez-Gindre, F.: P02.011
Archer, C.: P12.248
Archibald, A. D.: P04.1, P04.36
Ariza, N.: P07.28
Ardeleanu, C.: J02.26
Arden, N.: PL2.5
Ardeishvardani, N.: P02.221
Aref, A.: P12.197
Arellano, J.: P06.061
Arez, M.: C16.5, P11.038
Arez, S.: C10.2
Argente, J.: P12.003
Arghir, A.: P03.046
Argircheva, S.: J03.05, J06.12
Argy, N.: P09.093
Argyriou, L.: P05.53
Ariani, F.: P02.080
Ariani, O.: P02.050
Arias, P.: P07.12, P07.28
Arias, M.: P12.216
Arias-Rivas, S.: P12.216
Arias-Vázquez, A.: P08.105
Ariyani, O.: J12.06
Aryaratne, P. N.: C10.3
Arkansu, N.: C03.3
Arkhipova, A. A.: J09.40, P06.151, P09.068, P09.083
Arioth, J.: P08.20, P11.104
Aramangil, D.: P05.64
Armela, F.: P06.176
Ammergörl-Duclos, P.: P03.019
Amor, D.: C18.1
Armstrong, J.: P10.49
Amaš, C.: P09.085
Armstron, M.: P02.068
Arnold, E.: P12.086
Arnold, N.: P06.117, P07.05
Arona, R.: P12.221
Arps, S.: P04.29
Arieta, I.: P03.025, P12.094
Arroyo, C.: P08.42
Araújo, J.: P12.197
Arsani, M.: P12.008
Arsenieva, E.: J09.10
Arshad, N.: C12.2
Arslan Ates, E.: J12.04
Arslan-Kirchner, M.: P03.059, P09.027, P12.239
Aslanlari, A.: P07.19
Artan, R.: P12.143
Artan, S.: P06.040, P07.19
Artigas, M.: P03.016, P03.070
Arts, H. H.: P12.126
Artuso, R.: P11.077
Anunachalama, J. P.: P12.142
Aryan, H.: J13.06
aryani, o.: J02.27, J03.07, J13.09, P07.09, P13.29, P14.06
Ashaber, A.: C06.5
Asadchuk, T.: P05.03
Asadollahi, R.: P02.162
Asadollahi, s.: J12.09
Asadpoor, U.: P04.56
Asadullin, A.: P08.02
Asami, M.: P03.131
Asanov, A. U.: P12.112
Asanov, A. Y.: J09.10
Asgari, N. F.: P14.22
Ashthari, M.: P02.082
Aski, M.: J02.54
Asparoukhova, I.: J02.27, J03.07, J13.09, P07.09, P13.29, P13.46
Asnacios, A.: P09.093
Asnakash, M.: P11.037
Assaf, M.: P12.156
Assam, A.: P11.086
Aslam, A.: P10.10
Aslan, Y.: P05.64, P12.027
Aslaerg, A. D.: P02.157
Asleger, E.: P02.157
Asroniene, V.: P06.106
Asasawamakin, A.: P09.029
Asserberg, F. W.: C18.1
Assimes, T. L.: C04.4
Assis, T. M.: P12.212
Assmann, B.: P02.241
Assouline, Z.: P13.32
Asy, O.: P02.160
Astratenkova, I.: P12.167
Astratenkova, I.: J09.38
Asvàsd Karmeli, I.: P06.133
Ataei, M.: J02.19, J11.02, P02.094
Ataman, E.: P12.171
Atanasov, P.: P10.56
Barthel, W. : P13.19
Barth, M. : P12.246
Barton, A. : C14.5
Barton, D. E. : P15.10
Bartos, D. C. : C16.4
Bartošová, J. : P01.11
Barberova, Z. : P06.101
Bartram, C. R. : C18.5, P02.236, P02.241
Barths, D. : C13.6
Barths, H. : P02.082
Baruchel, A. : P06.166
Beck, B. B. : P12.140, P12.201
Beckmann, B. M. : P02.138, P04.43, P05.14
Beckmann, C. : P11.013
Beckmann, J. S. : P01.28
Becvarova, V. : P02.259, P03.123
Bedesch, M. F. : J09.46, P02.060
Bednarz, D. : P09.089
Bednarek, N. : P09.026
Becheem, J. M. : P11.035
Begemann, M. : C04.2, P02.092, P02.234, P11.012
Beggs, A. : P02.055
Beigov, G. B. : P06.151
Beigovic-Hadzimustovic, S. : P03.075
Begovic, D. : P03.040, P11.100, P05.02, P05.19
Behboodi, A. : P02.102
Beiheshiti, Z. : P03.033, P03.077
Behneman, L. : P08.053
Behrens, F. : C14.5, P09.111
Behzadi, R. : P11.133
Bel, A. : P05.147
Beixen, P. : P10.16
Bele, O. : J02.41, J09.33, J02.05
Belengeanu, A. : J02.20, P02.127, P03.010, P06.034
Belengeanu, D. : J02.20, P02.207, P03.145
Belengeanu, V. : P03.007, P03.010, P13.145, P05.39
Belwash-Meineles, A. : J02.17, P03.050
Belge, P. : J14.13
Belguth, N. : J04.16, P12.194
Bellitz, B. : P03.083
Belkadi, M. : P07.28
Belligni, E. : P12.227
Belligni, E. F. : J02.55, P02.010, P02.100
Bello, Y. : J02.03, J02.04, P13.42
Bellor, B. : P01.24
Belluccio, D. : P06.202
Bellumos, I. : P13.27
Belmont, J. W. : C04.1
Belonogova, N. M. : P08.34
Bethcheva, O. : J09.15
Belsusca, L. : P06.010
Belyaeva, I. A. : J09.10
Bembea, D. : P02.105
Bembea, M. : P02.105, P02.137
Bembea, S. : P02.105
Ben Abdallah Bouhjar, I. : P03.066
Ben Abdallah, F. : P04.27
Ben Abdallah, I. : P03.085, P07.31
Ben Ahmed, S. : P02.221
Ben Dridi, M. F. : P13.14, P14.10
Ben Itto, A. : J14.05
Ben Jemaa, L. : P02.054
Ben Khelifa, H. : P03.066, P03.085
Ben Larbi, N. : P04.13
Ben Mefteh, R. : P02.053
Ben Rhouma, B. : P06.131
Ben Salah, G. : P03.015, P10.31
Ben Yosif, D. : P04.20
Ben Zeey, B. : P10.49
Béna, C. : P06.09
Bénévides, A. : P12.005
Benedek, I. : P06.089
Benedicenti, F. : P12.060
Beneneken, C. : C10.6
Benet-Pagès, A. : C12.6
Bengesser, K. : P06.157, P06.158, P06.159, P06.160
Bengoa, A. : P03.016
Bengoechea, O. : P06.131
Beni, V. : P06.042
Benkhedira, H. : P07.31
Benko, S. : P11.123
Benler, N. : J09.11
Beniloch, L. : P07.28
Bennett, P. : EPL4.3
Bennett, R. : P11.009, P11.014
Benomar, A. : C11.2
Bens, S. : P04.25, P11.069, P11.120
Bens, T. : C15.2
Bens, Y. : P03.19
Bent, D. : P01.24
Bennett, R. : P03.020
Bensoussan, S. : P03.058
Bents, D. : P12.062
Benthem, T. : C02.3
Berberoglu, M. : P02.022
Berdel, W. E. : C02.3
Bereczki, C. : P12.015
Bereket, A. : P12.037
Bereketjoğlu, C. : P04.39
Beren, T. : C05.17
Beresheva, A. K. : P03.014
Berezina, G. : J12.19
Berger, I. M. : P12.016
Berger, W. : P09.091
Bergh, J. : P12.012
Bergh, G. E. : C09.04
Berghmans, R. : P01.15
Bergmann, A. K. : P06.199
Bergmann, C. : C15.5, P02.049, P02.091, P02.136, P02.200, P02.201, P02.168, P12.211, P12.252, P12.253
Bergmann, M. M. : P01.03
Bergstrom Lucas, J. : P11.093
Bergström, T. : P12.246
Berguga, R. : P07.31
Bé, M. : P02.161, P09.026
Béri-Deixheimer, M. : P03.020, P12.167
Bernstein, I. : P06.135
Bérès, M. : P15.03
Berr, C. : C11.1
Berrade, S. : P12.003
Berry, D. J. : P01.12
Berrard, Y. : P06.166
Bertil, M. : P12.203
Berth, H. : EPL6.1
Berthele, A. : P10.33
Berti, E. : J12.30
Berti, E. : P12.147
Bertola, D. : P03.023
Bertola, D. : R02.42, P02.020, P13.38
Bertola, M. : P11.131
Bertola, T. : P09.060
Bervouts, S. : P15.10
Besana, A. : C16.4
Beskorovajnja, H. : P04.31
Besuelle, C. : P02.123
Bester, A. C. : S02.3
Bettemann, T. : P03.143, P11.136
Bethens, K. : P08.03, P12.073
Betts, H. : C14.3
Betz, R. C. : P06.058, P12.123, P12.153
Beutel, U. : EPLP2.02
Bévot, A. : P02.076, P02.169
Beysio, J. C. : P13.12, P11.026
Bhaskar, S. : C15.6
Bhatt, S. : P03.091
Bhengu, L. : P02.208
Biagi, F. : P09.115
Bialocronka, M. : P03.114
Bianchini, E. : P02.010, P02.100, P12.227
Biancalana, V. : J11.10, P02.104
Author Index

Abstracts - European Human Genetics Conference 2012

www.eshg.org
Ebrahimian Vesal, R.: P06.108
Ecbay, M.: P12.032
Echeranz-Laguna, A.: J11.10
Eck, S.: C12.6
Eck, S. H.: C15.2
Eckel, J.: P13.03
Eckhold, J.: P12.245
Eckstein, G.: P11.047
Economides, J.: P12.067
Edalatkhah, H.: J04.13
Edelstein, L.: P11.109
Edkins, S.: P09.120
Edmont, M.: P01.20
Edmunds, B.: C14.1
Eek, A. K.: P03.128
Efflat, L. K.: J13.15
Efimova, O. A.: P03.094, P11.024
Eftimov, A.: P06.077
Egger, G.: P06.070
Eggermann, K.: P03.081
Eggermann, T.: C04.2
Eggermann, T.: P02.049, P02.092, P02.234, P11.012
Eggett, M.: P02.067, P02.160
Eggington, J. M.: P06.214
Eghbali, M.: J04.13
Egowl, C. M.: P06.082
Egorov, V. V.: J10.02, J11.06, P12.063
Egorova, A.: P12.230
Egrihas, O.: P12.238
Egusa, H.: P04.41
Ehlers, C.: P02.181
Ehlers, K.: P03.09
Ehrlm, N.: P02.215
Ehrenreich, H.: P12.142
Ehret, J.: P02.169
Ehrler, M.: C02.1
Eichler, E.: PL4.1, S10.2
Eichler, E. E.: C06.1, C06.4, P10.16, P10.51
Eichom, B.: P13.05
Ehidm, H.: EPL7.1
Eider, C.: P02.049
Eigelshoven, S.: P09.010, P09.078
Eijnenga, W.: EPL6.3
Elkid, K. L.: P12.148
Eilers, M.: P06.113
Eilers, P. H. C.: P11.029
Ellis, R.: C10.5
Einanssdottir, E.: P09.037
Eisenberger, T.: C15.5, P02.201, P12.211, P12.252, P12.253
Eisner, F.: C10.6
Eitel, C.: C15.5
Eicki, A.: C16.6, P02.225, P09.050, P11.060
Eicki, A. B.: C03.6, C14.5, C15.2, P03.068, P03.120, P11.091, P11.090, P12.218
Ekström, T.: J11.05
El Chehadeh, S.: P02.161, P02.265
El Gammal, M.: P12.197
El Hajj, N.: C16.5, P11.033, P11.038
El Khassawna, T.: P10.016
El Maarm, O.: P09.009
El Malik, S.: C11.2
Elaloui, S.: P12.055
Elbeily, L.: P06.132
Elchinova, G. I.: J10.10
Elferentou, F.: P12.162
El-Ferbawi, K.: C11.2
El-Gammal, M.: P12.132
El-Hegazy, H.: P03.066, P07.31
Eliez, S.: P09.141
Eljuga, D.: P06.030
Elkhartourif, N.: P12.178
El-Khalifeh, M.: P03.135
Elleder, M.: P13.36
Ellis, J. A.: P09.078
Ellouze, S.: P06.011
Emilie, V. F.: C01.1
El-Murr, N.: P06.078
El-Osta, S.: S03.2
El-Ruby, M. O.: P03.126
Elsayed, S.: J06.22
Elstein, D.: P13.14
Elywn, G.: EP05.04, EP05.09
Emamgholipour, S.: P06.211, P06.215
Emanuel, B. S.: P02.006
Emelyanov, A.: P12.189
Emery, J. D.: EPL1.5
Emhoff, J.: P11.086
Emirgolu, M.: PL2.4
Emmerich, D.: P02.210
Emmert, G.: P12.098
Emons, G.: P06.032
Emonts, M.: C14.3
Empting, S.: P13.19
Emrahli Golar, V.: J09.02, J09.18, P06.121
Encha-Razavi, F.: P12.178
Endele, S.: C13.2, P02.237
Erdvis, V.: C13.6
Ert, D.: P06.186
Engel, J.: P13.20
Engel, U.: P06.032
Engel, W.: P06.179, P11.053, P11.135
Engelborghs, S.: P08.003, P12.163
Engelen, E.: P12.199
Engels, H.: C09.4, C13.2, P02.012, P02.026, P02.169
Engert, S.: P06.117
Enjoiras, O.: C01.4
Enklaar, T.: P02.049
Ennis, S.: P02.214, P12.174
Enomoto, K.: P02.029
Eroque, S.: C08.4, C17.6
Erzalzami, M.: S10.1
Entezari, M.: J06.11, P05.23, P06.009
Eponer, I.: P05.58
Erslan, S.: P15.15
Erasmus, S.: J01.08
Erb, S.: P06.188
Ercet, R.: P09.078
Ercin, C.: P06.037
Erciyas, K.: J12.02
Erdel, M.: P06.013
Erdem, G.: P12.241
Erdman, V. V.: P08.22
Erdmann, J.: C05.5
Erdöl, H.: P05.64
Eren, S.: J03.12, P02.014
Ergec, D.: P06.020, P12.037
Ergin, S.: P05.07, P05.29
Ergunsa, S.: P02.220
Erhardt, A.: P11.104
Ercisen, H. C.: C15.4
Erickson, C.: C04.4
Ericksson, J. G.: C05.3, P09.086
Erjavec Skerget, A.: J05.03, P04.07
Erm, T.: P06.067
Erms, H.: P05.22, P05.29
Ertst, F.: P11.034
Erugo, T.: P06.137
Erogullari, A.: P12.245
Ershov, N.: P04.40
Ertel, A.: P11.109
Ert-Wagner, B.: P02.204
Erturhan, S.: P06.189
Erz, C.: P02.220
Escobero-de La Peña, J.: P08.24
Escuder, E.: P12.178
Esfahani moghadam, S.: J11.01
Eskandari Nasab, E.: P06.052, P10.54
Eskandari, G.: J03.01
Esko, T.: C08.4, C17.6
Elazimyazdeh, S.: J06.05, J06.06, J06.07
Esmaili, R.: P06.046
www.eshg.org
Fan, X.: P10.08
Fanelli, F.: P13.27
Fang, E.: C02.6
Fang, N.: P11.013
Fang, Y.-H.: P08.43
Fannemel, M.: P03.103
Fanning, K.: P15.10
Faramarzi Garous, N.: P02.252
Farone, S.: P03.105
Farazi, S.: J09.08, P09.112
Faravashfossa, P.: P05.066, P06.023, P06.021, P06.065
Farbadi, S.: P10.40
Farmani, A.-E.: EPL3.1
Farnion, P.: P06.030, EPL3.1
Farnood, A.: J09.35
Farokhi, B.: J09.24
Farooq, M.: C13.4
Farooqi, S.: P12.132
Farrahi, S.: S12.252
Farrokh, E.: J09.22, J12.12
Farshidi, S.: J09.24
Farrar, F.: P08.41
Faters, N.: J04.10
Fatemi, N.: P09.023
Favier, M.: EPL3.7
Faud, M.: J09.24
Fauve, L.: P09.005
Favade, R.: P04.11, P11.089, P11.124
Fawcett, H.: P12.050
Fazio, C.: P13.27
Fea, A. M.: P02.010
Fedotov, V. P.: P12.166, P12.256, P12.256
Fedotova, T. V.: P12.249
Fedotovskaya, O. N.: J09.44
Feenstra, I.: C07.2
Fees, S.: P08.111
Fehrenbach, H.: P02.138, P02.201, P02.201, P02.201
Fehrmann, R.: EPL3.1, P02.109, P10.110
Fedotov, V.: P12.176, P12.249
Fedotov, E. E.: P02.109, P10.110
Fedotovskaya, O. N.: J09.44
Feenstra, I.: C07.2
Fees, S.: P08.111
Fehrenbach, H.: P02.138, P02.201, P02.201
Fehrmann, R.: C08.4, C08.6, C08.10
Fehrmann, R. S.: C17.6
Fei, Y.: C10.3
Fellet, F.: P13.25
Feigel, M.: P02.132
Feinstein, M.: P12.122
Fekete, A.: C04.6
Felbair, U.: C11.6, P02.107, P12.041, P12.204
Felice, A.: P10.36
Felice, M. S.: P06.008
Felipe, V.: P06.161, P12.237
Fend, F.: P06.178
Fenneleau, O.: P06.166
Fenwick, A.: C08.4, EPL3.3
Ferard, I.: P08.42
Ferbert, A.: P02.200, P12.041
Ferreidomi, J.: P06.04, P06.142, P06.150
Fereres, R.: P09.131
Ferlazzo, E.: J09.45
Fernandes, A. R.: P11.055
Fernandes, S.: P02.177
Fernandez Carvajal, J.: P14.08
Fernandez Garcia, D.: P09.051, P13.18
Fernandez Mateos, J.: P06.128
Fernandez, B.: P09.095
Fernandez, J.: P02.55
Fernandez, O.: P09.085
Fernandez, P.: P11.050
Fernandez, X.: P02.126
Fernandez_Otero, C.: J12.28
Fernandez-Castillo, N.: P12.083
Fernandez-de-Misas, R.: P06.138
Fernandez-Jalil, A.: P09.030
Fernandez-Jimenez, N.: P09.036, P09.038, P09.039
Fernandez-Pedrosa, V.: P06.161, P11.050, P11.091, P12.237
Fernandez-Villar, A.: P06.122
Ferrasi, M.: P08.169
Ferrari, L.: P06.057
Ferrari, P.: C03.1
Ferraz, V. E. F.: P06.029
Ferreira, C. A.: P06.029, P06.096, P10.46, P12.212
Ferreira, E. N.: P11.030
Ferreira, G. D.: P06.115
Ferreira, S. I.: P03.017
Ferreil, L.: P10.071
Ferrero, G. B.: P02.010, P02.040, P10.120, P10.129, P10.187
Fert-Bober, J.: C01.1
Feuth, T.: C01.1
Fic, M.: P09.107
Ficcadent, A.: P12.057
Ficcek, A.: P12.139
Fichera, M.: P09.030
Fiedler, E. E.: P02.247
Fiedler, J.: P02.243
Figueiredo, A. L. S.: P09.139
Figueiredo, J.: P08.063
File, L.: P01.117
Filipe, I.: P01.19
Filipova, H.: P06.210
Filkova, H.: P07.06
Findik, D.: P07.20
Finelli, P.: P12.057, P12.058
Finocchi, A.: J12.30
Fiorentino, F.: P05.05, P05.12
Fiorillo, E.: C08.3, P09.077
Fiorini, P.: P02.044
Flott, A.: P10.36
Firth, H.: EPL2.9
Firth, H. V.: P02.169
Fischer, A.: P06.185
Fischer, B.: C09.6, P02.032, P02.223, P12.061, P13.45
Fischer, C.: C18.5, P02.215
Fischer, C.: C18.2, P02.027, P02.112
Fischer, K.: P01.02, P06.087, P11.121
Fischer, K.-D.: C13.5
Fischer, M.: C16.8
Fischer, S.: P12.042
Fischer, W.: P03.063
Fisher, E.: C12.1
Fisher, J.: EPL3.3
Fisher, S.: P09.128
Fisher, T.: EPL1.4
Fishek, A. K.: C01.3
Fisman, S. J.: C01.4
Fiskerstrand, T.: C12.2, P02.201
Fitze, G.: P06.080
Fitzgerald, O.: C14.5
Fitzner, A.: C16.6, P11.038
Fitzpatrick, D. R.: P02.228
Flahaut, P.: C09.2
Flaherty, M.: P12.088
Flato, B.: C15.4
Feige-Monzen, S.: P11.001
Fleischer, S.: P02.153, P02.154
Fleischhauer, J.: P09.091
Réjou, J.-F.: P06.078
Author Index
Abstracts - European Human Genetics Conference 2012
Hung, T.: P11.086
Hünlich, M.: P11.053
Hunt, K.: C17.1, P09.059
Hunter, J.: C09.1
Huntley, D.: P02.217
Hureaux, M.: P02.120
Hurles, M.: C11.4, EP08.03
Hussain, M. S.: C13.4
Hussein, H. A.: P03.126
Hussein, I. M. R.: J03.20
Huth, C.: P13.09
Hutter, B.: C10.5
Hutter, P.: EP05.07
Huusko, J. M.: P09.034
Hwu, C.-M.: P09.061
Hyppönen, for the D-CarDia collaboration, E.: P10.12
I
Iacob, C.: J02.21, J02.39
Iacob, D.: J02.22, J13.03, P05.39
Iacob, R.: J13.03
Iafusco, D.: P02.001
Iancu, B.: P03.121
Iancu, D.: P03.121
Ibala, S.: P04.49
Ibrahim, D.: C03.1, P12.031
Ibrahim, J.: P14.03
Ibrulj, S.: J03.10, P03.030, P03.075
Ichida, K.: P09.071
Iglauer, P.: P12.251
Iglesias, S.: EP05.12
Ignatovica, V.: P09.098, P09.136
Igumvov, P. S.: J10.10
Ijntema, H.: C07.2
Ikbal, M.: J02.36
Ikels, K.: P13.03
Ikonnikova, A.: P09.127
Ilencikova, D.: P02.211, P06.083, P06.168, P12.161
Ilgın Ruhi, H.: P02.022
İlhan, N. E.: P02.226
İlkay, Z.: J03.12, P06.056
Illarioshkin, S. N.: J09.37
Illig, T.: P11.047, P13.09
Ilyina, E. S.: P02.019
Imanian, H.: P02.252, P05.30, P06.125, P12.090
Imkeller, P.: P11.100
Immesberger, A.: P04.03
Imyanitov, E. N.: P06.036
Inagaki, A.: P04.41
Inaloz, H. S.: J09.29
Inaloz, S.: J12.02
İnanır, A.: J09.13, P08.25, P08.38
İnanır, S.: J09.13
Inanloo Rahatloo, K.: J12.20
Inashkina, I.: J09.09, P11.066
Incollu, S.: P10.57
Indráková, V.: P06.001
Infante Sanz, M.: P06.021, P06.023
Infante, M.: P06.065, P06.196
Ingelsson, M.: C04.4
Inglis, A.: EPL5.4
Ingvoldstad, C.: EPL1.3
Innaskina, I.: P11.065
Insolia, R.: C16.4
Instone, J.: EP06.03
Insunza, A.: P07.28
Intermesoli, T.: P06.059
Inwald, D.: C14.3
Ioan, A.: P08.15
Ioana, M.: P13.10
Ioannides, M.: P03.112
Ion, A. D.: J10.12, P10.10
Iordache, C.: P02.140
Iotchkova, V.: C17.3
Iourov, I. Y.: P03.009, P03.014, P03.022, P03.115
Irabe, M.: J02.43, P02.120
Irani, S.: P06.142

Irastorza, I.: P09.036, P09.038, P09.039, P09.040
Iredale, R.: EPL4.2
Irfanoglu Timuragaoglu, A.: P06.130
Iribarren, C.: C04.4
Irles, E.: P06.072, P06.082
Irvanloo, G.: P06.095, P06.174
Irvine, A. D.: C01.4
Isaacs, A.: C05.2, P09.076, P10.53
Isakovich, L.: J01.01
Isaksson, M.: P11.129
Isau, M.: P06.185
Isaya, G.: P14.09
Isbir, T.: P12.037
Iseri, S. U.: J12.10
Ishihara, N.: P02.110
Ishimoto, H.: P02.196
Isidor, B.: P06.166
Isik, A. F.: P06.132
Islamgulov, D.: P06.058
Ismael, A.: P11.060
Isobe, K.: C10.3
Isohanni, P.: C12.5
Itagaki, Y.: P12.131
Iturbe, A.: P06.027
Ivanov, I.: P03.125
Ivanova, E.: P12.166, P02.176
Ivanova, L. Y.: P01.10
Ivanova, N.: P12.117
Ivashchenko, T. E.: P03.113, P13.28
Iwanicka- Pronicka, K.: P02.117
Iyevleva, A. G.: P06.036
Izadi, P.: P08.10
Izhevskaya, V. L.: P01.10
Izhevskij, P.: J10.09
Izmailov, A.: P06.016
Izmailova, S.: P06.016
Izquierdo, D.: P11.062
Izquierdo, G.: P09.085
Izumi, S.: J05.01, P02.196
Izzi, B.: J02.49
Izzo, A.: J11.11
J
J. Braathen, G.: P02.056
Jaal, J.: P06.066, P06.067
Jaberi, E.: J12.17
Jackson, A.: P02.208
Jackson, L.: P01.13, P01.31
Jacob, D. E.: P12.201
Jacobs, I.: EPL4.2
Jacobs, P.: P03.037
Jacobsen, U.: P11.069
Jacobsson, J. A.: P09.136
Jacquemont, M. L.: P02.141
Jacquemont, S.: C03.5, PL3.3
Jacquette, A.: P02.007, P02.024
Jaecklin, T.: P14.06
Jafari, H.: P06.133, P06.134
Jafarieh, H.: P02.002
Jafarshad, R.: P02.002
Jäger, N.: C10.5
Jaggi, R.: P06.181
Jaggs, N.: C07.3
Jagielska, D.: P09.010
Jahantigh, M.: P06.052
Jahnova, H.: P13.36
Jaiswal, P. K.: P06.019
Jakaitienė, A.: P08.17
Jakkula, E.: P09.086, P12.192
Jaklič, H.: J04.15
Jaklin, C.: P03.090
Jakob, F.: P13.20
Jakubiak, A.: P09.099
Jakubiczka, S.: P12.175
Jakubowska-Burek, L.: P06.084, P14.12
Jalili, A.: J03.09

www.eshg.org

Jalilian, N.: P08.10, P12.106
Jalkh, N.: P12.055
Jallad, S.: P04.49
Jalůvková, M.: P06.165
Jamali Zavarei, M.: J04.10
Jamar, M.: P02.238
Jambou, M.: P13.32
Jameel, M.: P02.033
Jamet, X.: C18.4
Jamieson, R. V.: P12.088
Jamsheer, A.: P02.193, P12.237, PL2.3
Jamshidi, J.: J04.06, J08.06
Janashia, M.: J03.08
Janavicius, R.: P06.024
Janecke, A. R.: P02.166
Janicsek, I.: P10.25, P10.30, P10.43, P10.52
Jankevics, E.: J09.09, P11.065, P11.066
Jankulovski, N.: P06.077
Jans, S. M.: EP08.06
Jansen, L.: C10.4, P06.055
Jansen, R.: C08.4, P08.13, C17.6
Janssen, A.: P02.045
Janssen, J.: P02.077, P02.189, P02.241, P02.246,
P03.059
Janssen, N.: P02.006
Janssens, S.: P01.09
Janusicova, V.: J09.12, P12.209
Janvareva, O. K.: P02.042
Jaquette, A.: P02.141
Jardim, A.: P03.017
Jarolim, L.: P06.182
Jarolimova, L.: P12.134
Járomi, L.: P10.25, P10.30, P10.43, P10.52
Jaroudi, S.: P04.30
Järvelä, I.: J12.31
Järvelin, M. R.: P10.12, C05.3
Jaspers, M.: P11.083
Jastrzebska, E.: P12.121
Jauch, A.: P02.077, P02.189, P02.234, P02.241,
P02.246, P03.059, P03.090
Jauhiainen, M.: C05.3
Javadi, G.: J06.04, P06.043, P06.104
Jazayeri, R.: J09.21
Jazayeri, S.: J09.21
Jeannin, P.: P02.045
Jędrzejowska, M.: P02.186, P02.262, P03.049
Jekel, M.: EP08.01
Jelsig, A.: P02.113
Jenetzky, E.: P02.130
Jensen, A. S.: P02.144, P10.35
Jensen, L. R.: P10.09
Jensen, T. D.: P03.130
Jeong, K.: P11.028
Jessen, W.: P02.049
Jeunemaitre, X.: PL2.2
Jezela-Stanek, A.: P02.005, P02.041, P02.186, P02.262,
P03.045, P03.114
Jezierska, J.: C11.3
Jia, X.-Y.: P11.025
Jiang, C.: P02.102
Jimenez Criado, C.: P06.146, P07.14
Jimenez Orozco, E.: P06.161
Jin, Y.: P06.116
Jissendi, P.: P02.062
Jmel-Hammami, K.: P03.015
Jochim, A.: P10.33
Jöckel, K. H.: P09.078
Joda, H.: P09.042
Joensuu, A.: P09.134
Joensuu, T.: P12.192
Johannsson, O. T.: EPL4.6
Johansson, H.: P11.129
Johansson, L. F.: P12.111
Johansson, S.: C12.2
Johnsen, H.: P11.096
Johnson, M.: EP05.09
Jonaitis, L. V.: P09.138

469


Koh, L. P.: C01.13
Kohl, S.: C11.5, P11.112
Kohler, A.: P12.232
Köhler, J.: P06.117
Kohls, L.: P02.204
Kohlshütter, A.: C18.5
Kohoutová, J.: P03.078
Korte, J.: P07.03
Morgenthaler, J.: P02.246
Morin, G.: P02.088, P05.18
Moriya, H.: J05.01
Mork, M.: P02.087
Mori, S.: P12.167
Morino, S.: P02.065
Morlot, S.: P03.063
Mormile, A.: J02.14, J02.52
Moritz, O.: P03.005
Moročz, E.: P06.195
Moron, C. I.: C12.3
Morozov Poshovski, L.: P03.096, P03.117
Morozov, I. V.: J12.32
Morris, A.: C05.4, S01.2
Morris, D. W.: C06.4, P11.117
Morris, H. C.: EPL1.5
Morris, M.: P01.24
Morris, M. A.: P15.10
Morris, S.: EPL3.3
Morris-Rosendahl, D. J.: P02.167, P12.145
Morsy, H.: P12.027
Mortezaazadeh, M.: J05.02, J05.07, P05.28, P05.66, J05.06
Mortier, G.: C13.1, P02.115, P07.22
Mortier, G. R.: C01.3
Mortini, P.: P06.057
Mory, A.: P03.111, P05.59
Mosca-Boldrioni, A. L.: P02.170, P03.020, P05.48, P12.167
Mosesso, V.: J12.30
Moschos, M. M.: P12.001
Moschoví, P.: P07.11, P07.18, P07.33
Mosser, B.: P10.09
Mosser, E.: P02.166
Mosser, T. P.: L2.4
Moshir, S.: P06.064
Moshiri, H.: J12.06
Mosse, K.: J01.01, P05.03, P12.195
Mossey, P. A.: C14.4
Müller, C.: C01.6
Müller, J.: C10.02
Müller-Myshok, B.: C08.5, P08.20, P11.104, P11.122
Müller, J. B.: C01.4
Mülliken, J. C.: P10.16
Mullinax, B.: P11.093
Murni, Y. C. N.: P10.03
Munk, R.: P02.112
Munk-Schulenburg, S.: P02.112, P12.041
Muñoz, C.: P07.12, P07.28
Muñoz-Bellvis, L.: P06.131
Muñoz-Calvo, M.: P12.003
Munoz-Sarza, N.: P12.074
Münster, T.: P09.050
Muntoni, F.: C18.3
Mur, A.: P03.076
Murakami, K.: P09.071
Murakami, N.: P02.206
Murakami, Y.: C13.1
Muramatsu, Y.: P12.131
Murray, D.: P02.178
Murdolo, C.: P01.12
Mureau, M. A. M.: EPL4.4
Mureau, B.: P05.17, P05.24, P05.69
Mureau, C.: P15.17
Mureau, C. M.: P05.24, P05.69
Murgia, A.: J09.46
Muriél Villoria, C.: P09.051
Murphy, H.: C03.5
Murray, A.: EPL4.3
Murray, J. C.: C14.4, P13.43
Muru, K.: P02.231
Murugan, M.: J03.21
Murumets, Ü.: P04.19
Musabaeva, L.: P03.101
Musani, V.: P06.030
Musante, L.: P08.37
Muschke, P.: P02.043, P05.32
Musialik-Swietlińska, E.: P02.264
Musella, A.: P02.040, P02.129
Musaffi, H.: P12.200
Musolten, T.: P06.157, P06.158, P06.160
Mutafian, A.: P06.183
Mustafina, L. J.: J09.39, J09.44
Mustafina, O. E.: P08.22, P09.045
Mutesa, L.: J12.076
Muti, M.: P12.027
Mutter, M.: P09.092
Mya, H.: C10.3
Myler, L.: C01.3
Myrie, A. G.: P02.212
Mynkrović, E. V.: J09.05
N
Nabioni, M.: P04.11
Naburu, S. B.: P12.124
Nacak, M.: J09.11, P09.082
Nacher, G.: P10.010
Nahury, C.: P12.096
Nadalin, S.: P06.178
Nadarajan, V. S.: C10.3
Nadel, S.: C14.3
Naderi, M.: P10.54
Nadiri, N.: J09.35
Nadgornyaya, V.: P06.014
Nadir, K.: J02.38
Nadzyrshina, D.: P12.180
Naeem Khan, T.: P02.033
Naeem, T.: P12.020
Napels, P.: P05.18
Nafei, Z.: J01.05
Nagai, J.: P12.029
Nagai, T.: P02.206
Nagalla, S.: P11.109
Nagel, C.: P02.219
Nagengast, F. M.: J03.04
Nagimtayeva, A.: J13.05, P06.061
Nagl, C.: P09.035, P09.130
Nagornov-Obnadrov, L. J.: J10.03
Nagtegaal, T.: P01.34
Nagy, A.: P12.251, S02.1
Nagy, B.: J09.12, P05.47, P05.49, P05.63
Naiki, M.: P02.046
Nair, A.: C03.3, C11.4
Najafi, K.: P03.034, P03.048
Najafi, R.: P05.30, P06.125, P12.090
Najera, N.: P02.128, P06.061
Najjar, N.: P12.105
Najm, J.: P02.107, P12.041
Najmabadi, H.: C15.3, J09.21, P02.252, P05.30, P06.125, P08.05, P08.37, P12.023, P12.024, P12.025, P12.090, P12.168, P12.243
Najmshafar, A.: P09.089
Nakamura, M.: P09.071
Nakamura, T.: P09.071
Nakamura, Y.: P06.171
Nakashima, H.: P09.071
Nakata, T.: P02.110
Nakayama, A.: P09.071
Nanda, I.: P02.254, P12.103
Nandhagopal, R.: P12.205
Nanni, L.: P02.058
Napolitano, S.: P05.05, P05.12
Nardozza, A. P.: P12.222
Naritomi, K.: P02.150, P12.131
Narz, F.: P15.06
Nasedkina, T.: P03.129, P09.127, P09.012
Nasibulinina, E. S.: J09.40
Nasibulinin, T. R.: P08.22, P09.045
Nasar-Esfahani, M.: P12.208
Nasser, E.: C14.4, P08.32
Nastasia, C.: J02.26
Nasykhova, Y. A.: P03.113
Natsume, J.: P02.110
Nauck, M.: P12.047
Naudina, M.: P11.065
Navab Moghadam, F.: J05.02, J05.07, P05.28, J05.06
Navarrete, R.: P12.032
Navarro, A.: P10.51
Navarro-Palou, M.: P04.38
Navas, P.: P13.44
Naveed, M.: P10.36
Navin, N.: S02.2, C02.4
Navabmoghaddam, F.: P05.66
Nawara, M.: C11.2
Naydenov, C.: P12.264
Naz, G.: P12.153
Nazaronko, L. P.: P05.61
Nazari, S.: J09.30
Nazerini, A.: J06.10, P05.23, P06.197
Abstracts - European Human Genetics Conference 2012

Author Index

487
Walrafen, P.: P12.098
Wallentin, M.: P02.144
Wall, S. A.: P12.264
Walia, M.: P13.06
Waliszewski, K.: P09.001
Wal, S. A.: P12.264
Walldalin, M.: P02.144
Wailon, D.: C11.1
Waltanen, P.: P12.098
Walsh, T.: P06.028
Walker, F.: PE02.05, EP1.5
Walter, L.: P10.09
Walter, M.: P06.071
Waltereit, R.: C13.6
Walters, N.: C08.1
Walther, J. U.: C07.01
Walther, M.: P06.178
Wand, D.: PE02.02, P02.057
Wang Jabe, E.: P12.264
Wang, F.: P11.115
Wang, J.: C12.1, P06.116, P12.046, P12.169
Wang, N.: P14.10
Wang, S.-Y.: P11.010
Wang, W.: P08.14
Wang, X.: C08.2
Wang, Z.: J14.08, P09.002
Wanherdick, K.: P06.078
Wanker, E.: P12.121
Wappenschmidt, B.: P06.117, P07.05
Walker, M.: P02.107
Warran, M.: PL2.3, S15.1
Wary, C.: P12.130
Wasikiewicz, A.: P02.117
Waszak, S.: C06.5
Watanabe, A.: P12.240
Watanabe, H.: P12.240
Watanabe, K.: P02.110
Watson, C.: P12.073
Watson, E. K.: EP4.2
Watson, R.: C01.4
Watt, C. M.: P02.178
Watts, K.: EP4.4
Watzinger, N.: P09.035
Wauders, J.: P07.22
Weber, P.: P11.104
Weber, R. G.: C12.1, P06.136, P07.05
Weber, S.: P02.201, P12.155
Weber, Y.: P12.082
Weber-Ferro, W.: P02.004
Weberova, L.: P07.08
Webersinke, G.: P03.047, P06.013
Weersma, R.: P08.15
Wegner, R.: P04.37
Wehrert, M.: C11.6, P12.204
Weichselbaum, A.: P02.149
Weidemann, J.: P03.035
Weih, S.: P02.130
Weimer, J.: P07.05
Weinhaeseul, A.: P06.070, P11.022, P06.002, P12.207
Weinreb, N.: P14.03
Weis, M.: J12.22, J12.23
Weisbrod, P.: P09.120
Weise, A.: P03.063, P03.091, P10.08
Weishaupt, J.: P12.011
Weissmanova, E.: P06.092
Weissnech, U.: C14.1, P11.112
Weilensteiner, H.: P15.14
Weissman, C.: C06.5
Weismann, R.: P10.09
Weitzman, S.: P07.01
Welte, K.: P06.022
Welling, T. M.: P12.039
Wen, Y.-Y.: C02.6
Wenstrup, R. J.: P06.214
Wenz, M.: P11.075, P15.03
Werdan, K.: P09.106
Wermstedt, A.: P02.172, P06.176
Wermth-Tysarowski, K.: J12.25, P12.127
Wessels, M. W.: P12.051
Westerman, M. P.: C04.4
Western, P.: P06.202
Westermeng, M.: P01.22
Westra, H.-J.: C08.4, C08.6, C10.1, C17.6, P06.13, P08.23, P09.059, P11.126
Wethers, R.: P13.04
Whalen, S.: P02.027
Whatley, S.: P11.054
Wheeler, M.: PL2.5
White, S.: C08.1, P06.201, P06.202
White, W. M.: C16.4
Whiteford, M.: P02.178
Whittmore, A. S.: P08.07
Wibeler, E.: P02.064
Wichmann, H.-E.: P13.09
Wick, J.: C16.4
Wick, W.: C02.1
Wickert, J.: P02.179
Wick, R.: P06.126
Wicklein, E. M.: P12.108
Wiederack, P.: C13.2, P02.043, P03.006, P04.02, P04.57, P12.033
Wiegmann, H.-E.: C14.5
Wierczorek, D.: C03.4, C12.02, P02.043, P02.222, P03.120, S04.3
Wieland, B.: P06.156
Wieland, I.: P11.071, P13.19
Wieland, K.: P02.255
Wielandt, T.: C12.6, C13.2
Wierschel, M.: P09.002, P11.022
Wienker, T. F.: C14.4, P15.12
Wierzba, J.: P02.066
Wiesener, H.: C13.2
Wieskamp, N.: C07.2
Wiesel, C. E. V.: P10.10
Wigl, A.: P14.03
Wjempega, C.: C09.4, C09.6, C10.1, C17.1, C17.6, P08.13, P08.15, P08.23, P09.004, P09.036, P09.043, P09.059, P09.115, P11.126, P11.134
Wijnen, J. T.: EP05.05
Wilchowski, E.: C01.5, C12.4, P14.19
Wilmsma, M.: P05.68
Wilkins, L.: P06.113
Wilke, A. O. M.: P12.264
Will, M. L.: C16.4
William, M.: P12.137
Willatt, L.: P02.169
Wilms, M.: P02.141
Willems, S. M.: C05.2
Willemsen, G.: P11.143
Willemsen, M. H.: C15.1, P11.019
Williams, A. G.: P09.068
Williams, D.: P11.106
Williams, J.: S05.1
Williams, M.: P05.41, P11.054, P12.050
Williams, S.: P11.095
Williamson, G. R.: EP07.01
Williamson, K. A.: P02.228
Willoughby, C.: P09.016
Wilson, A. F.: P12.264
Wilson, C. D.: C02.4
Wilson, L.: C18.1
Wilson, R. K.: C06.1, P10.51
Wimmer, K.: C18.5, S02.172, P06.158, P06.159, P06.176
Wimmer, R.: P05.31
Wineinger, N. E.: C04.4
Winek, T.: P06.37
Winkelmam, J.: P10.33
Winkler, J.: P02.101
Winkler, T. W.: C06.2
Winnicka, D.: P02.066
Winterpach, A.: C16.8, P09.050
Winitz, J.: P02.254
Wirh, C.: S01.6
Wirh, R.: C03.4
Wirtz, M.: C14.1

www.esgh.org
<table>
<thead>
<tr>
<th>Author</th>
<th>Abstract(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zarrouk-Mahjoub, S.</td>
<td>P08.18</td>
</tr>
<tr>
<td>Zasedatelev, A.</td>
<td>P09.127, P09.012</td>
</tr>
<tr>
<td>Zastavna, D.</td>
<td>J09.26, P04.18, P04.46, P13.16</td>
</tr>
<tr>
<td>Zatera, J.</td>
<td>P12.009</td>
</tr>
<tr>
<td>Zatkova, A.</td>
<td>J09.28, P06.168, P12.161</td>
</tr>
<tr>
<td>Zavalishina, L.</td>
<td>P06.103, P06.186</td>
</tr>
<tr>
<td>Zavelevich, M.</td>
<td>P06.014</td>
</tr>
<tr>
<td>Zavodna, K.</td>
<td>P06.101</td>
</tr>
<tr>
<td>Zavyalova, M. V.</td>
<td>J06.15</td>
</tr>
<tr>
<td>Zayts, O.</td>
<td>EPL5.1</td>
</tr>
<tr>
<td>Zaza, A.</td>
<td>P09.131</td>
</tr>
<tr>
<td>Zdebniacka, E.</td>
<td>P12.115</td>
</tr>
<tr>
<td>Zebrowska, I.</td>
<td>P06.165</td>
</tr>
<tr>
<td>Zechner, R.</td>
<td>C18.2</td>
</tr>
<tr>
<td>Zedd, G.</td>
<td>P09.077</td>
</tr>
<tr>
<td>Zeggini, E.</td>
<td>P10.06, P10.45</td>
</tr>
<tr>
<td>Zehatia, M.</td>
<td>C12.1</td>
</tr>
<tr>
<td>Zemali, S.</td>
<td>J02.12, J05.02, J05.07, P04.36, P05.28, P12.144, J05.06, P05.66</td>
</tr>
<tr>
<td>Zeilante, L.</td>
<td>P02.060</td>
</tr>
<tr>
<td>Zelenika, D.</td>
<td>C11.2</td>
</tr>
<tr>
<td>Zelenova, M. A.</td>
<td>P03.115</td>
</tr>
<tr>
<td>Zelič, K.</td>
<td>P06.170</td>
</tr>
<tr>
<td>Zeller, B.</td>
<td>P02.080</td>
</tr>
<tr>
<td>Zellmeier, E.</td>
<td>C02.3</td>
</tr>
<tr>
<td>Zelter, A.</td>
<td>P07.29</td>
</tr>
<tr>
<td>Zeman, J.</td>
<td>P13.30</td>
</tr>
<tr>
<td>Zemánková, E.</td>
<td>P03.123</td>
</tr>
<tr>
<td>Zemanova, Z.</td>
<td>P07.02</td>
</tr>
<tr>
<td>Zembutsu, H.</td>
<td>P06.171</td>
</tr>
<tr>
<td>Zemkov, V. A.</td>
<td>J14.02</td>
</tr>
<tr>
<td>Zemljic, L.</td>
<td>P09.140</td>
</tr>
<tr>
<td>Zemlyakova, V.</td>
<td>P06.145</td>
</tr>
<tr>
<td>Zemri, R.</td>
<td>P02.053</td>
</tr>
<tr>
<td>Zemek, M.</td>
<td>C14.1</td>
</tr>
<tr>
<td>Zemler, M.</td>
<td>C17.6, P02.091, P02.134, P02.175, P02.225, P05.32, P06.166, P11.071, P12.138, P12.175, P13.19</td>
</tr>
<tr>
<td>Zenk, T.</td>
<td>C10.5</td>
</tr>
<tr>
<td>Zenk, W.</td>
<td>C14.3</td>
</tr>
<tr>
<td>Zeqiri, H.</td>
<td>J04.13</td>
</tr>
<tr>
<td>Zerjavic, K.</td>
<td>P06.094</td>
</tr>
<tr>
<td>Zerova, T. E.</td>
<td>P04.28</td>
</tr>
<tr>
<td>Zerres, K.</td>
<td>P02.201, P02.234, P11.012, P12.196</td>
</tr>
<tr>
<td>Zeschneick, C.</td>
<td>P12.145</td>
</tr>
<tr>
<td>Zeschneick, M.</td>
<td>P06.212</td>
</tr>
<tr>
<td>Zeviani, M.</td>
<td>C12.3, P14.19</td>
</tr>
<tr>
<td>Zevit, N.</td>
<td>C12.1</td>
</tr>
<tr>
<td>Zhai, G.</td>
<td>P09.095</td>
</tr>
<tr>
<td>Zhanatalov, A.</td>
<td>P06.085</td>
</tr>
<tr>
<td>Zhang, B.</td>
<td>C02.4</td>
</tr>
<tr>
<td>Zhang, J.</td>
<td>P12.064, P12.169</td>
</tr>
<tr>
<td>Zhang, W.</td>
<td>P12.35</td>
</tr>
<tr>
<td>Zhao, H.</td>
<td>P11.113</td>
</tr>
<tr>
<td>Zheleznyakova, G.</td>
<td>P12.230</td>
</tr>
<tr>
<td>Zhemkov, V. A.</td>
<td>C12.07</td>
</tr>
<tr>
<td>Zhermakova, A.</td>
<td>P08.15</td>
</tr>
<tr>
<td>Zhermakova, D. V.</td>
<td>P08.13</td>
</tr>
<tr>
<td>Zhermakova, S.</td>
<td>P09.115</td>
</tr>
<tr>
<td>Zhou, L.</td>
<td>P15.04</td>
</tr>
<tr>
<td>Zhuravlev, R.</td>
<td>P14.14</td>
</tr>
<tr>
<td>Zhuravleva, I. V.</td>
<td>P01.10</td>
</tr>
<tr>
<td>Zhurkova, N. V.</td>
<td>J09.10</td>
</tr>
<tr>
<td>Ziedi, M.</td>
<td>J09.02</td>
</tr>
<tr>
<td>Zialetina, H.</td>
<td>C09.1</td>
</tr>
<tr>
<td>Zibert, A.</td>
<td>J13.14</td>
</tr>
<tr>
<td>Zidarn, M.</td>
<td>P12.110</td>
</tr>
<tr>
<td>Ziegler, M.</td>
<td>P03.063</td>
</tr>
<tr>
<td>Ziehe, M.</td>
<td>P09.060</td>
</tr>
<tr>
<td>Zieker, D.</td>
<td>P06.178</td>
</tr>
<tr>
<td>Ziemnička, K.</td>
<td>P06.084, P06.204</td>
</tr>
<tr>
<td>Žilina, O.</td>
<td>P03.078</td>
</tr>
<tr>
<td>Zilles, K.</td>
<td>J03.18, P03.032, P09.047</td>
</tr>
<tr>
<td>Zimanová, V.</td>
<td>P03.079</td>
</tr>
<tr>
<td>Zimmermann, F.</td>
<td>C12.3</td>
</tr>
<tr>
<td>Zimmermann, K.</td>
<td>C02.1</td>
</tr>
<tr>
<td>Zimmermann, M.</td>
<td>P12.103</td>
</tr>
<tr>
<td>Zimmermann, R.</td>
<td>C16.1, C18.2</td>
</tr>
<tr>
<td>Zimmermann, W. H.</td>
<td>P11.053</td>
</tr>
<tr>
<td>Zimovina, T.</td>
<td>P13.21</td>
</tr>
<tr>
<td>Zimran, A.</td>
<td>P13.14, P14.10</td>
</tr>
<tr>
<td>Zinchenko, R. A.</td>
<td>J10.10, P10.27, P10.44</td>
</tr>
<tr>
<td>Zink, A.</td>
<td>C09.4, P02.012, P02.026, P02.169</td>
</tr>
<tr>
<td>Zinovik, A.</td>
<td>P13.15, P13.21</td>
</tr>
<tr>
<td>Ziv, Y.</td>
<td>P14.04</td>
</tr>
<tr>
<td>Zivkovic, M.</td>
<td>P09.084</td>
</tr>
<tr>
<td>Zivna, J.</td>
<td>P07.17</td>
</tr>
<tr>
<td>Zlatkov, V.</td>
<td>P06.054</td>
</tr>
<tr>
<td>Zlohořová, J.</td>
<td>P12.146</td>
</tr>
<tr>
<td>Žmolíková, J.</td>
<td>P06.165</td>
</tr>
<tr>
<td>Zoghbi, H.</td>
<td>P04.08</td>
</tr>
<tr>
<td>Zou, Y.</td>
<td>C18.3</td>
</tr>
<tr>
<td>Zoukovskaya, S.</td>
<td>P04.08</td>
</tr>
<tr>
<td>Zouvani, I.</td>
<td>P11.072</td>
</tr>
<tr>
<td>Zrenner, E.</td>
<td>C11.5</td>
</tr>
<tr>
<td>Zribi, N.</td>
<td>P04.16, P04.27</td>
</tr>
<tr>
<td>Zmova-Hladíková, E.</td>
<td>P03.051</td>
</tr>
<tr>
<td>Zoříčková, J.</td>
<td>P06.190</td>
</tr>
<tr>
<td>Zabaková, Z.</td>
<td>P12.134</td>
</tr>
<tr>
<td>Zubatirov, R.</td>
<td>P06.183</td>
</tr>
<tr>
<td>Zubor, P.</td>
<td>J09.12</td>
</tr>
<tr>
<td>Zuccari, D. A. P. C.</td>
<td>P06.047</td>
</tr>
<tr>
<td>Zuccotti, P.</td>
<td>P11.008</td>
</tr>
<tr>
<td>Zuffardi, O.</td>
<td>P03.065, P09.030, P11.077</td>
</tr>
<tr>
<td>Zühlke-Jenisch, R.</td>
<td>P07.03</td>
</tr>
<tr>
<td>Zuřilka, A.</td>
<td>J02.03, J02.04, P04.15, P13.42</td>
</tr>
<tr>
<td>Zúrīga, S.</td>
<td>P11.050, P11.091</td>
</tr>
<tr>
<td>Zúrīga-Trejos, S.</td>
<td>P06.161, P12.237</td>
</tr>
<tr>
<td>Zuzulova, M.</td>
<td>P09.052</td>
</tr>
<tr>
<td>Zvirbliene, A.</td>
<td>P09.138</td>
</tr>
<tr>
<td>Zweier, C.</td>
<td>C13.2, P02.158, P02.237, P12.102, P12.218</td>
</tr>
<tr>
<td>Zweier, M.</td>
<td>P02.237, P03.062, P12.218</td>
</tr>
<tr>
<td>Zweiker, R.</td>
<td>P09.035</td>
</tr>
<tr>
<td>Zwienenberg-Lee, M.</td>
<td>P12.264</td>
</tr>
<tr>
<td>Zwink, N.</td>
<td>P02.130</td>
</tr>
<tr>
<td>Zwolinski, S.</td>
<td>P03.093</td>
</tr>
<tr>
<td>Zygulova, I.</td>
<td>P07.17</td>
</tr>
</tbody>
</table>