Interpretation and classification of genetic variants

Gunnar Douzgos Houge MD PhD

Take home message # 1

Clinical information is important for variant classification

- and even more for variant reporting - or not

SolveRD: Pick-up rate increased from 50% to 70% by 2-level expert review (data analysis task force + data interpretation task force)

Two general systems for variant classification

On step system

ACMG/AMP – clinical importance likelihood

P – Pathogenic	5
LP – Likely Pathogenic	4
VUS – Variant of Unknown Significance	3
LB – Likely Benign	2
B – Benign	1

Classification does not consider penetrance and is not a severity scale

Two step system (A+B) + standard comment C

ABC step A – functional effect likelihood

- FE Functional Effect
- **LFE** Likely Functional Effect
- HFE Hypothetical Functional Effect
- **LNF** Likely Normal Function
- **NF** Normal Function

Step A grading only considers gene- or protein function – not clinical information or importance

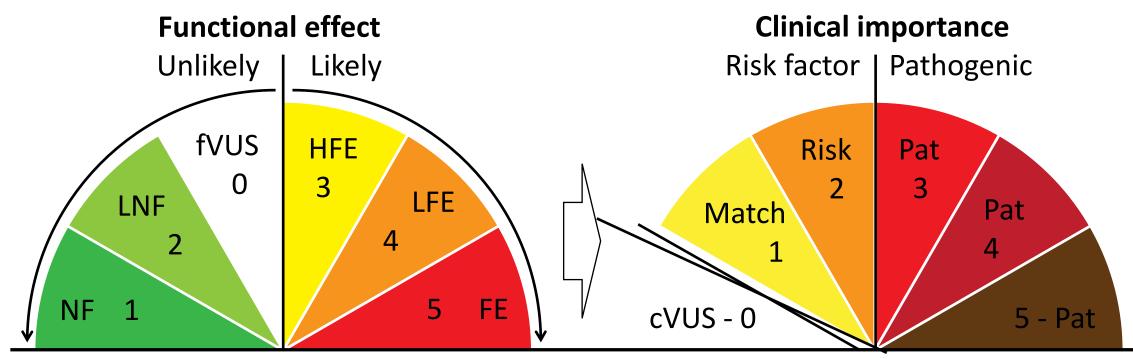
The ACMG/AMP system: Criteria based (29)

- P (5) Pathogenic
- LP (4) Likely pathogenic (>90% / >95% for cancer)
- VUS (3) Variant of unknown significance
- LB (2) Likely benign (>90% / >95% for cancer)
- B (1) Benign

The system is well suited for dominant single-gene disorders of high penetrance.

Hypomorhic alleles and **low penetrant variants** are often classified as a VUS – despite the significance being well known.

How can a known pathogenic variant be classified as a VUS? Because the black box says so...


on behalf of the ClinGen Sequence Variant Interpretation Working Group (ClinGen SVI)

Beware that

1) The a priori likelihood that a variant is causative is defaulted to 10%

2) The odds-of-pathogenicity is the square root of the value above: 350 – 18.7 – 4.3 – 2.08 (= very strong / strong / moderate / supportive)

Unlike ACMG, the ABC system can classify any type of variant

Step A: Functional grading

- 1 NF = Normal Function
- 2 LNF = Likely Normal Function
- 0 fVUS = functional VUS
- 3 HFE = Hypothetical Functional Effect
- 4 LFE = Likely Functional Effect / hypomorphic allele
- 5 FE = Functional Effect (e.g. LoF or GoF)

Step B: Clinical grading

0 - cVUS = clinical VUS

4

5

- 1 Match = right type of gene for this phenotype
- 2 Risk = known risk factor / variant-of-interest
- 3 Pat = pathogenic variant,
 - penetrance-graded when known

Severity classification: Combined grade (A+B) classifies the variant from F to A:

Class

D

X

Step A 0-2 + no step B = 0-2 Step A + step B = 3Step A + step B = 4-5Step A + step B = 6-7Step A + step B = 8Step A + step B = 9Step A + step B = 10

Not reported – and clinical grading unnecessary Not reported Variant-of-interest (VOI) group, reporting optional Risk factor (RF) group, reporting recommended if clinical match Pathogenic (P), unknown or low (lifetime <20%) penetrance Pathogenic (P), moderate penetrance (lifetime 20-40%) Pathogenic (P), high penetrance (lifetime >40%)

Step A + step B = 5-10

Secondary/incidental/unsolicited/opportunistic finding

Based on F to A class, a standard comment is picked in step C:

standard
variant
comments
adapted to the
clinical question

17

A+B grade 0-2:				
0	NORMAL findings			
A+B gr	rade 3-7, i.e. class <mark>F</mark> (3), <mark>E</mark> (4-5) and <mark>D</mark> (6-7):			
1	NORMAL findings – no pathogenic or likely pathogenic variants were detected			
2	NORMAL findings – no pathogenic variants that could be related to the phenotype were detected			
3	NORMAL findings – no pathogenic variants that could explain the phenotype were detected			
4	VOI – A genetic variant of potential interest was detected			
5	VOI – Heterozygosity for a recessive genetic variant of potential interest was detected			
6	VOI – Hemizygosity for a genetic variant of potential interest was detected			
7	VOI – Homozygosity for a genetic variant of potential interest was detected			
8	RISK FACTOR – A genetic variant that increases susceptibility for this phenotype was detected			
9	RISK FACTOR – Heterozygosity for a recessive genetic variant of interest was detected			
10	PATH – Likely compound heterozygosity for recessive pathogenic variants was detected			
11	PATH – Homozygosity for a recessive pathogenic genetic variant was detected			
A+B grade 8-10, i.e. class <mark>C</mark> (8), <mark>B</mark> (9) and <mark>A</mark> (10):				
12	PATH – Heterozygosity for a dominant likely pathogenic variant was detected			
13	PATH – Heterozygosity for a dominant pathogenic variant was detected			
14	PATH – Heterozygosity for a dominant pathogenic variant of moderate penetrance was detected			
15	PATH – Heterozygosity for a dominant pathogenic variant of high penetrance was detected			
Incidental/unexpected findings (class X):				
16	IF – A genetic variant unrelated to the clinical question was detected			

IF – No obvious match between genotype and phenotype. Further clinical investigations necessary

Heterozygosity for the F5 Leiden «mutation»

F5(NM_000130.4):c.1691G>A, Arg506GInMonoallelic variantgnomAD MAF up to 5%Functional assay: LoF allele due to resistance to activated protein C (APC resistance)Literature: DVT associated, increases thrombosis risk ~3 times

ACMG: PS3 PS4 PP1 BA1 = a VUS

ABC: A-5 (FE) + B-2 (risk) = 7 (class D). Step C is either C-RF if relevant clinic or C-NORM if incidental finding. European Journal of Human Genetics (2022) 30:150–159 https://doi.org/10.1038/s41431-021-00903-z

ARTICLE

Stepwise ABC system for classification of any type of genetic variant

Gunnar Houge 1° · Andreas Laner² · Sebahattin Cirak³ · Nicole de Leeuw⁴ · Hans Scheffer⁴ · Johan T. den Dunnen 1°

Received: 22 July 2020 / Revised: 13 February 2021 / Accepted: 22 April 2021 / Published online: 13 May 2021 © The Author(s) 2021. This article is published with open access

EJHG Readers' choice in 2022 with >22K downloads and 32 citations

See <u>www.eshg.org</u> under News for an updated version with .pptx file

Suggestion for integration of ACMG criteria in the ABC system:

Step A

FE LFE HFE fVUS LNF NF	PVS1 PS1 PS3 PP1-Strong PM4 PM5 PS2 PS4 PM1 PM2 PP2 PP3 PP5 not enough data to grade variant BS1 BS2 BS3 BP1 BP2 BP3 BP4 BP5 BP6 BP7 BA1	1 criterium is enough to grade as FE 2 criteria or more: upgrade to FE 3 criteria or more: upgrade to LFE
Step B		
cVUS VOI RISK FACTOR PATH PATH PATH	BS4, no clinical match, or no clinical Information gene fits phenotype PM3 PP4 PP5 known pathogenic (AR or AD) known pathogenic (AD, mod.) known pathogenic (AD, high)	1 criterium is enough to grade as RF

Points to remember

Variant classification (A+B grade) does not depend on the clinical question

A known hypomorphic allele is by default step A grade 4 (= LFE)

A *de novo* unknown is never lower than step A grade 3 (= HFE)

A single recessive allele is not above step B grade 2 (= RF - risk factor)

Standard variant comment selection (step C) depends on the clinical question

This allows reporting of a hypomorphic or low penetrant allele when relevant

- otherwise not

The ABC system is also well suited for rare diseases

Rare diseases may be associated with

- *De novo* variants in a disease-associated or novel gene
- Runs-of-homozygosity (ROH)
- Biallelic variants in a disease-associated or novel gene
- Monoallelic variants in a known recessive gene
- Chromosomal aberrrations (CNVs, SVs)
- Epigenetic changes

Extensive IBD in first child of first cousins

Clinic: Girl 2y with severe NDD with hypotonia, bad epilepsy, dysmorphic face, normal HC and brain-MRI.

Finding: 121 Mb of ROH (runs of homozygosity) >5Mb divided on 10 chromosomes.

ACMG: Cannot be classified

ABC: A-3 (HFE) + B-2 (RF) = class E and a C-Risk Factor that was reported.

If the phenotype had been normal (e.g. a screening test of a fetus), the comment would also have been normal, i.e. no findings.

Same patient:

Homozygous NM_001382273.1(*TNK2*):c.622G>C p.(Ala208Pro)

Clinic: Girl 2y with severe NDD with hypotonia, bad epilepsy, dysmorphic face, normal HC and brain-MRI.

Finding: Homozygous missense change to prolin of a conserved Ala in a conserved exon encoding the kinase domain of a cytosolic tyrosine kinase with high brain expression.

gnomAD pLI = 0, z = -0.2, but no homozygous LoFs in gnomAD.

ACMG: PM1 + PM2 + PP3 = VUS. Report?

ABC: A-4 (LFE) + B-1 (match) = class E and a C-VOI that was database registered and reported.

Heterozygous NM_018249.6(*CDK5RAP2*):c.3890del p.(Gly1297Valfs*6)

Clinic: Boy 3y with ASD, progressive microcephaly (- 4.7 SDS), deafness and right-side aortic arch. Brain-MRI: Small but otherwise normal brain.

Finding: Nucleotide deletion causing frameshift and predicted LoF of *CDK5RAP2*, a recessive microcephaly gene. gnomAD pLI = 0, z = -0.37.

ACMG: PM2 (not in gnomAD) = VUS. Report?

ABC: A-4 (LFE) + B-2 (risk) = class D and a C-RF that was reported because the recessive disease was a good match.

WGS later revealed a 7 kb deletion including the first *CDK5RAP2* exons but not the variant.

46,XX.arr[GRCh37] 9q21.31(82125508_83332721)x1

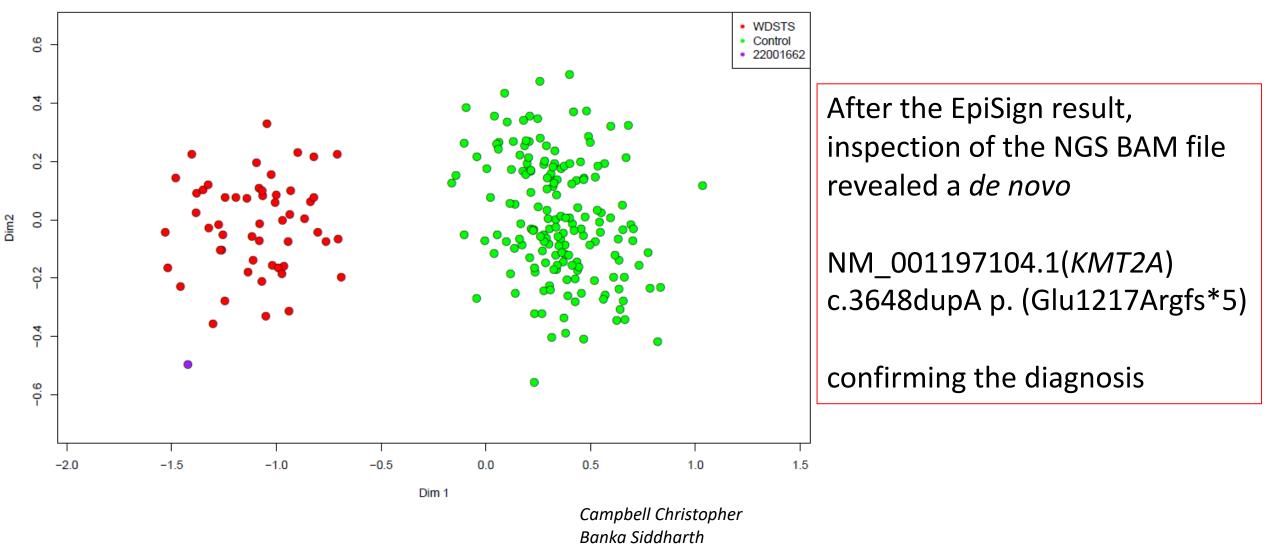
Clinic: Girl 11y with feeding difficulties and learning problems. Mother and father also have learning problems, not tested (yet).

Finding: 1,2 Mb deletion removing one gene, *TLE4*, encoding a trancriptional repressor with high brain expression. Nothing in databases (gnomAD, DGV etc), but a de novo duplication of *TLE4* registered in DECIPHER without phenotype data. gnomAD pLI = 1, z = 3.6.

ACMG: 1A (contains a gene) 2H (HI gene) 5F (unknown inheritance) = 0.15

ABC: A-3 (HFE) + B-1 (match) = class E and a C-VOI that was reported because the phenotype could be a match.

EpiSign methylation signature


Clinic: Boy 8 mo with feeding difficulties (needed PEG), NDD with hypotonia, good contact and short stature.

Finding: High-resolution copy number array and TRIO-WES normal. EpiSign methylation profile suggested Wiedemann-Steiner syndrome.

ACMG: Cannot be classified.

ABC: A-3 (HFE) + B-1 (match) = class E and a C-VOI that was reported because of good clinical match.

MDS – WDSTS

Manchester University NHS FT

ABC system

- Intuitive use with a logical two-step grading (A+B leading to class A-F)
- Can classify all types of genetic findings
- Hypomorphic alleles are not labelled as a «VUS»
- Findings that are not pathogenic are not labelled «pathogenic»
- Can accomodate gene-specific or ACMG criteria if desired
- Provide a list of standard comments adapted to the clinical question
- Classification can be done by one (CLG/MD) or two (CLG+MD) persons