Variant classification and reporting

Gunnar Houge MD, PhD ESHG President

ACMG/AMP classes

- 5 Pathogenic
 - 4 Likely pathogenic (90% / 95% for cancer)
 - 3 Uncertain significance a VUS
 - 2 Likely benign (90% / 95% for cancer)
 - 1 Benign

The classification system is made for Mendelian disorders. **Penetrance** is not part of the classification system, but should be stated in the report.

Genetics in Medicine ORIGINAL RESEARCH ARTICLE

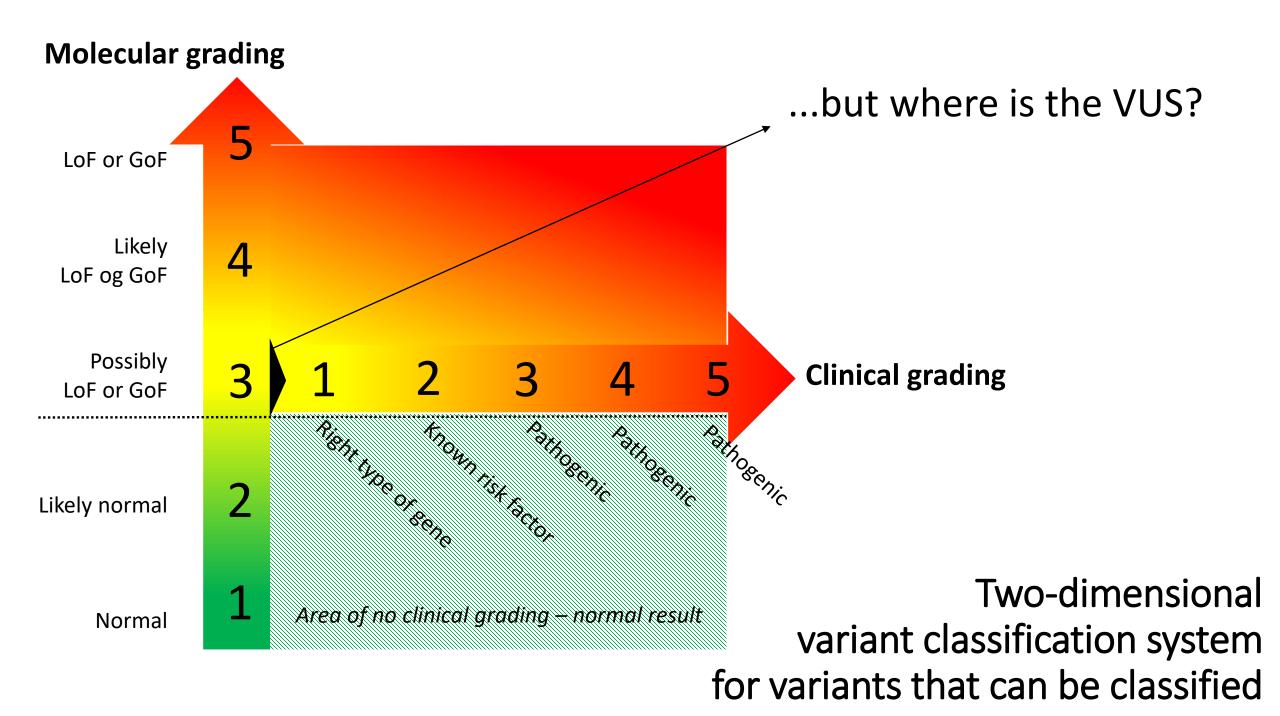
© American College of Medical Genetics and Genomics

Modeling the ACMG/AMP variant classification guidelines as a Bayesian classification framework

Sean V. Tavtigian, PhD¹, Marc S. Greenblatt, MD, PhD², Steven M. Harrison, PhD³, Robert L. Nussbaum, MD⁴, Snehit A. Prabhu, PhD⁵, Kenneth M. Boucher, PhD⁶ and Leslie G. Biesecker, MD⁷;

on behalf of the ClinGen Sequence Variant Interpretation Working Group (ClinGen SVI)

Should a VUS be reported to the clinician?


- YES, because
 - The referring physician should have all information about a test
 - It is the responsibility of the clinician and not the laboratory to treat the patient
 - A VUS may later turn out to be pathogenic
 - The laboratory may later be sued for not reporting a «pathogenic VUS»
 - The VUS is considered a "good candidate" that should be investigated further (a VUS+)
- NO, because
 - The referring physician may think that a VUS is pathogenic (quote: «uncertain significance just means that the pathogenic mechanism is unknown»)
 - The referring physician do not know what to do with this information
 - A wrong diagnosis may be given...
 - ...and the right diagnosis is no longer looked for!

ESHG prototype system

- A: Molecular grading 1-5 based on the ACMG/AMP system
- B: Clinical grading 1-5 considering e.g. penetrance and gene type
- Grading is impossible = a VUS (= 0). Can be a VUS in A or B or both.
- A+B: Combined grading (2 numbers: e.g. 3+4)
- Standarized variant explanations (9 alternatives)
- May utilise DECIPHER's clinical fit estimator
- Promotes teamwork

ESHG variant classification task force:

Hans Scheffer (Eurogentest) Johan den Dunnen (LOVD/HGVS) Nicole de Leeuw (molecular cytogenetics) Helen Firth (DECIPHER) Gunnar Houge (ESHG)

... it is a zero because a true VUS cannot be graded

Molecular VUS

A variant with little/no molecular information = 0

Clinical VUS

Gene with poor fit to phenotype or of unknown function = 0

Α	Molecular grading	Score	Odds	Description
ACMG	Protective variant («den Dunnen variant»)	-1?		Variant known to be protective, i.e. hinder a given phenotype
3	Variant of unknown biological significance - a molecular VUS	0	0.10-0.50?	Variant of unknown biological significance - usually due to lack of knowledge
1	Benign variant	1	0.00-0.01	High frequency variant with no reason to suspect a recessive or hypomorphic role, or certainly neutral after functional family studies
2	Likely benign variant	2	0.01-0.10	Lower frequency variant with no reason to suspect a recessive or hypomorphic role, or likely neutral after functional/family studies
"3+"	Variant of potential interest, possibly pathogenic	3	0.50?-0.90	Rare variant that could affect gene function based on biological knowledge aided by bioinformatic tools, i.e. a variant of potential biological significance
4	Hypomorphic (R) or likely pathogenic variant (D)	4	0.90-0.99	Recessive : Variant that reduces gene function, but that only causes a biochemical abnormality - or disease - if <i>in trans</i> to a LoF allele. Dominant : likely LoF, or variant of functionally important consequence
5	Pathogenic variant	5	0.99-1.00	Variant that is certain to disrupt gene function or to be disease causing

B Clinical grading

Score

Variant of unknown clinical significance - a clinical VUS		Variant of unknown clinical significance, i.e. variant in a gene that is unlikely to be directly linked to the patient's phenotype
Variant of potential interest	1	"The right type of gene" because the gene fits the phenotype : Dominant variant that could be pathogenic, or a single hypomorphic variant that could be linked to a recessive cause
Known risk factor variant 2		Low penetrance dominant variant, like the F2 R506Q (APCR-Leiden) variant, or single certainly pathogenic variant in recessive gene
Mild penetrance pathogenic variant (< 20%)	3	Mild penetrance variants, e.g. a single ATM pathogenic variant
Moderate penetrance pathogenic variant (20-40%)	4	Moderate penetrance variants, e.g. a single <i>KCNH2</i> pathogenic variant
High penetrance pathogenic variant (> 40%)	5	High penetrance variants, e.g. a <i>BRCA1</i> pathogenic variant

A+B	Combined grading
class	(NB: both numbers should be listed)

Examples of reporting recommendations (policy dependent)

	Combined			
0	Mol 1 / Mol 2 / 0+0 / 0+1 / 0+2	«0-2»	Usually not reported - clinical grading not necessary if molecular class 1-2	
F	Mol or Clin VUS group: 0+3 / 3+0	«3»	Not reported if the gene in question is unlikely to explain the phenotype	
E	3+: 3+1 / 3+2 / 4+0 / 4+1 / 5+0	« <u>4</u> -5»	Reporting optional: Variant of potential interest (VUS+), or single recessive allele in a gene that might explain the phenotype	
D	4+: 4+2 / 4+3 / 5+1 / 5+2	<mark>«6-7»</mark>	Reporting usually recommended if dominant or verified recessive: Susceptibility variant	
С	4+4 / 5+3	«8»	Reporting recommended: Disease-associated variant (of low penetrance)	
В	4+5 / 5+4	«9»	Reporting recommended: Disease-associated variant (of moderate penetrance)	
А	5+5	«10 »	Reporting recommended: Disease-associated variant (of high penetrance)	

Standard variant explanations (not interpretations): This system is not for making diagnoses - it is made to better help the physician

Class

- Normal findings
- Normal findings no pathogenic or likely pathogenic variants detected
- F/E Normal findings no pathogenic variants that could be related to the phenotype detected
- E/D Normal findings pathogenic variants that could explain the phenotype were not detected
- E/D Genetic variant of potential interest detected
- E/D Heterozygosity for a recessive genetic variant of potential interest detected
 - A genetic variant that increases susceptibility for this phenotype was detected
- C/B/A Disease-associated pathogenic variant detected (+/- penetrance if known)

Genetic variant unrelated to the phenotype detected

DECIPHER's clinical fit estimator can be used as an aid in borderline cases:

A Bayesian-based odds ration calculation for ACMG scoring has been published and implemented in DECIPHER

New system advantages

- Separates variant classification into a molecular and clinical arm
- Both systems score a true VUS as 0
- Penetrance is taken into account
- Hypomorphic alleles can be classified
- It does not matter if the phenotype has a recessive or dominant cause
- Allows standarized «semiautomatic» variant explanations

New system challenges

- Clinical geneticists must know more about basic biology
- Clinical information is essential including family history
- Genetic laboratories must have evaluation teams for challenging variants